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Abstract. Comprehensive techniques to describe the organic
composition of atmospheric aerosol are needed to elucidate
pollution sources, gain insights into atmospheric chemistry,
and evaluate changes in air quality. Fourier transform in-
frared absorption (FT-IR) spectrometry can be used to char-
acterize atmospheric organic matter (OM) and its compo-
sition via functional groups of aerosol filter samples in air
monitoring networks and research campaigns. We have built
FT-IR spectrometry functional group calibration models that
improve upon previous work, as demonstrated by the com-
parison of current model results with those of previous mod-
els and other OM analysis methods. Laboratory standards
that simulated the breadth of the absorbing functional groups
in atmospheric OM were made: particles of relevant chemi-
cals were first generated, collected, and analyzed. Challenges
of collecting atmospherically relevant particles and spectra
were addressed by including interferences of particle wa-
ter and other inorganic aerosol constituents and exploring
the spectral effects of intermolecular interactions. Calibra-
tion models of functional groups were then constructed us-
ing partial least-squares (PLS) regression and the collected
laboratory standard data. These models were used to quan-
tify concentrations of five organic functional groups and OM
in 8 years of ambient aerosol samples from the southeast-
ern aerosol research and characterization (SEARCH) net-
work. The results agreed with values estimated using other

methods, including thermal optical reflectance (TOR) or-
ganic carbon (OC; R? = 0.74) and OM calculated as a dif-
ference between total aerosol mass and inorganic species
concentrations (R? = 0.82). Comparisons with previous cal-
ibration models of the same type demonstrate that this new,
more complete suite of chemicals has improved our ability to
estimate oxygenated functional group and overall OM con-
centrations. Calculated characteristic and elemental ratios in-
cluding OM/OC, O/C, and H/C agree with those from pre-
vious work in the southeastern US, substantiating the aerosol
composition described by FT-IR calibration. The median
OM/OC ratio over all sites and years was 2.1 £0.2. Fur-
ther results discussing temporal and spatial trends of func-
tional group composition within the SEARCH network will
be published in a forthcoming article.

1 Introduction

1.1 Challenges of quantifying atmospheric aerosol
organic matter mass

Atmospheric aerosol organic matter (OM) composition,
sources, and formation processes have been a focus of re-
search for many decades (Haagen-Smit, 1952; Went, 1960).
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However, because the organic fraction of aerosol parti-
cles contains thousands of individual chemical compounds
(Schum et al., 2018a), it is a difficult task to character-
ize the total OM composition of an aerosol sample. Typi-
cal molecular-level analytical techniques quantify up to 30 %
of OM concentration (Hallar et al., 2013). Chromatography
techniques suffer from needing to have sufficient molecular
selectivity and sensitivity for each chemical, requiring cali-
bration of each species. As an alternative, rather than quanti-
fying each chemical, the total OM concentration can be mea-
sured.

Some analytical techniques such as aerosol mass spec-
trometry can quantify OM concentrations in real time (Aiken
et al., 2008). Other methods with involved chemical anal-
yses of discrete filter samples have been used to estimate
OM concentration. These include multiple linear regression
of aerosol constituents using various analytical techniques
(Hand et al., 2019; Malm and Hand, 2007; Simon et al.,
2011), extrapolation from gas chromatography—mass spec-
trometry of extracts (Turpin and Lim, 2001), infrared ab-
sorption spectrometry of extracts (Polidori et al., 2008), or
thermal—-optical and gravimetric analyses of extracts (El-
Zanan et al., 2009). However, each of these methods is sub-
ject to specific limitations. Aerosol mass spectrometry OM
concentrations, for example, are subject to uncertainties re-
sulting from fragmentation and high heat exposure (Cana-
garatna et al., 2015). Filter extraction procedures can result
in the loss of organic species (Kawamura and Bikkina, 2016)
and render a sample unusable for further analysis, while mul-
tiple linear regression and mass balance techniques require
accurate estimation of all inorganic species concentrations,
which can involve large uncertainties (e.g., ignoring particle
water mass or losses of volatile ammonium and nitrate dur-
ing NH4NO3 collection from different filter media; Chow et
al., 2015; Yu et al., 2006).

The methods of estimating OM concentrations listed
above are either not feasible or have substantial uncertainty
for measurements that are remote, resource-limited, or long-
term (e.g., multi-year). Analyses of OM for routine moni-
toring networks have specific requirements. Because of the
large number of samples, collection must be simple, and the
cost of analysis must be low. Nondestructive, filter-based
techniques are also desirable for networks because they al-
low for multiple chemical analyses to be performed on one
sample.

In air monitoring networks, OM concentrations are typi-
cally estimated indirectly from organic carbon (OC) concen-
trations (Edgerton et al., 2005; Pitchford et al., 2007). While
OM includes other atoms such as O and H associated with C
(sometimes also N, S, and P; Russell, 2003), OC accounts for
only the C atoms. Sample OM concentration is typically de-
termined from thermal optical reflectance (TOR) OC by mul-
tiplying the OC concentration by a static ratio of OM/OC.
An OM/OC value of 1.4 for urban samples (White et al.,
1977) or 1.8 for rural samples (Pitchford et al., 2007) is typ-
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ically used, although a value 2.1 for rural areas (Turpin and
Lim, 2001) has been broadly cited. However, OM/OC varies
widely amongst ambient samples. For example, Ruthenburg
et al. (2014) estimated values varying between 1.46 and 2.01
(10th and 90th percentiles) in 1 year of samples at seven ru-
ral US locations. This and other observed OM/OC variabil-
ity suggests that a static value of OM/OC is not adequate to
capture the spatial and temporal variations in OM. A tech-
nique for routine OM concentration measurement in ambient
aerosol at network sites is therefore needed.

1.2 Using infrared absorption of functional groups to
quantify aerosol OM

Fourier transform infrared absorption (FT-IR) spectrometry
can be used to quantify most of the organic aerosol concen-
tration in a given sample by functional groups (Coury and
Dillner, 2009; Faber et al., 2017; George et al., 2015; Reff et
al., 2005; Russell et al., 2011; Ruthenburg et al., 2014). Mea-
suring functional group concentrations in ambient aerosol
samples is useful to (1) accurately estimate the total OM
concentration, (2) further characterize the OM composition
by functional groups, (3) monitor organic composition and
sources of aerosol over time, and (4) estimate the degree of
oxidation. The FT-IR spectrometry approach is particularly
useful for routine and network OM measurements because it
can be applied to filter samples that are routinely collected
for other purposes (e.g., particulate matter mass), is nonde-
structive, and is inexpensive.

The principle of organic characterization through FT-IR
spectrometry is as follows: chemical bonds with appropriate
vibrational symmetries and frequencies absorb light at spe-
cific mid-infrared wavelength ranges, allowing the determi-
nation of the bond type and, in some cases, even molecular
environment. The magnitude of the light absorption is pro-
portional to the number of bonds present, allowing the direct
quantification of bonds within an aerosol sample (Allen et
al., 1994).

Infrared absorption spectrometry has been used to quantify
functional groups using a peak-fitting approach (Takahama
et al., 2013), but factor-based calibration of spectra can more
readily determine interferents and is strengthened by using
multiple spectral bands at once (Naes et al., 2002). Specifi-
cally, partial least-squares (PLS) regression has been used in
factor-based work. A comparison of the peak fitting and PLS
calibration methods has been recently discussed (Reggente et
al., 2019). In a PLS functional group calibration, concentra-
tions of pure chemical standards are regressed onto their cor-
responding FT-IR spectra to reduce the number of variables
describing the data. These new variables, sometimes called
“factors”, are identified to explain the covariance between
the chemical standard concentrations and spectra. Each func-
tional group is quantified (typically by mole) as a weighted
sum of the extracted factors, resulting in a unique calibra-
tion model for each functional group (see Sect. 2.5, Supple-
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ment Sect. S10, and Naes et al., 2002). Examples of PLS cal-
ibration of functional groups in atmospheric OM include the
work of Reff et al. (2007), Coury and Dillner (2009), Ruthen-
burg et al. (2014), and Kamruzzaman et al. (2018).
Calibration curves are developed from “laboratory stan-
dards”: pure chemicals collected onto fresh polytetrafluo-
roethylene (PTFE) filters. The chemical mass collected is
varied to capture the relationship between infrared absorp-
tion and number of bonds (Coury and Dillner, 2008). Ruthen-
burg et al. (2014) built a set of FT-IR-PLS calibration models
using nine organic chemicals and one inorganic salt interfer-
ent (ammonium sulfate) to quantify four functional groups:
aliphatic C-H, carbonyl (C=0), carboxylic acid O-H, and al-
coholic O-H. The concentrations of these functional groups
(and OM concentrations as weighted sums of these func-
tional groups) were predicted in ambient filter samples col-
lected from seven IMPROVE network sites in 2011. The
same measurements were made, adding an amine functional
group model, for a larger group of IMPROVE network sites
from 2013 (Kamruzzaman et al., 2018). However, the rela-
tively short list of chemicals to represent atmospheric com-
position likely limited the ability of these models to char-
acterize the aerosol composition fully. Previous work was
also done with a more comprehensive list of chemical stan-
dards; unfortunately, the particular measurement technique
damaged the filter samples, which is not desirable for air
monitoring network data (Coury and Dillner, 2008).

1.3 Functional group calibration method
improvements

Efforts to improve FT-IR functional group concentration
measurements involve addressing the following challenges:
(1) approximating atmospheric composition by selecting ap-
propriate lists of chemicals and functional groups for cali-
bration, (2) considering ambient aerosol molecular environ-
ments, including particle water content, (3) selecting appro-
priate model parameters based on the current understand-
ing of atmospheric composition, (4) validating models when
methods for direct comparison are lacking, and (5) quantify-
ing as much of the OM mass as possible given that most, but
not all, relevant molecular bonds absorb in the mid-infrared
spectral range. The following paragraphs discuss these chal-
lenges in more detail.

The selection of chemicals is nontrivial: atmospherically
representative bonds must be selected to enable the calibra-
tion to capture the variation in ambient samples. It is not
possible to generate standards of the thousands of individual
molecules that exist within aerosol samples, many of which
have not yet been identified (Schum et al., 2018). An appro-
priate starting point for the list of chemical standards used
in the calibration models is the atmospheric speciation re-
ported in previous studies. The molecular bonds (or func-
tional groups) included in the calibration must represent the
majority of the OM. In addition, efforts to measure subgroups
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of functional groups within a broad functional group cate-
gory such as carbonyl groups are made (e.g., inclusion of
dicarboxylic acids and amino acids), while recognizing the
limitations of subdividing groups given overlapping spectral
features. In addition, inorganic species that absorb infrared
light must be included as “interferents” in a robust calibra-
tion model.

Laboratory standards are prepared with the goal of cap-
turing the molecular structures and intermolecular interac-
tions most relevant for the atmosphere. The infrared spec-
trum of a molecule is affected by its chemical environment,
including its hydrogen and ionic bonding interactions with
other molecules in a sample (Davey et al., 2006; Mayo et
al., 2003). Ideally, the variety of interactions between the
many molecules in ambient aerosol particles would be mod-
eled by the calibration to capture the variability in infrared
spectral features. The bonding structures within particles of
single, pure chemicals, and between mixtures of chemicals,
may also warrant consideration. Mixtures can probe for in-
teractions between different types of polar organic functional
groups (hydrogen bonding), as well as organic with inorganic
ions (ionic bonding, such as carboxylates). Water that is
chemically or physically bound to collected ambient aerosol
particles is also expected to alter ambient samples spectro-
scopically and could be abundant (Dabek-Zlotorzynska et al.,
2011). The presence of water could induce molecular transi-
tions, such as formation of gem-diols from carbonyls (Maron
etal., 2011), or enhance spectral features of particle water: as
liquid water associated with particles (Faber et al., 2017) or
as hydrate water chemically bound to particle chemical con-
stituents (Cziczo and Abbatt, 2000). Laboratory-generated
particles under humid conditions may display these spectral
impacts of water, and may be useful as inputs to inform mod-
els.

The inputs to PLS models must be carefully selected to
minimize measurement uncertainty. Examples of inputs in-
clude the concentration range of the chemical standards and
the number of PLS factors included in each model. These in-
puts are selected based on the best available information but
may need to be updated over time as understanding of atmo-
spheric composition improves.

Few methods exist for verifying FT-IR spectrometry func-
tional group concentrations. Strong correlations have been
found between ratios of FT-IR spectrometry measurements
with high-resolution aerosol mass spectrometry tracer ions
(e.g., ratioed carboxylic acids and C-H groupings); direct
(not ratioed) correlations between measurements were less
successful (Faber et al., 2017; Russell et al., 2009a). Ruthen-
burg et al. (2014) quantitatively evaluated their FT-IR func-
tional group concentrations by comparing OC concentrations
from summed functional groups with TOR OC concentra-
tions.

Although comprehensive in that a broad range of
molecules in OM are detected, there are some limitations to
the sensitivity of FT-IR spectrometry. Some bonds, such as
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tertiary C-C bonds and C-O bonds, do not absorb in mid-
infrared spectral regions or absorb where the filter substrate,
PTFE, also absorbs (Weakley et al., 2016). Ongoing work
using empirically based simulations aims to quantify this
“mass recovery” of FT-IR-spectrometry-resolvable ambient
OM (Burki et al., 2019).

1.4 Summary of study goals

The goal of this work is to further develop a method to mea-
sure functional group concentrations and calculate OM con-
centrations in ambient aerosol samples using FT-IR spec-
trometry and PLS calibration. Samples were collected by
the SouthEastern Aerosol Research and Characterization
(SEARCH; Hansen et al., 2003) network. There are two main
components of achieving the overall study goal. The first is to
expand upon previous work (Ruthenburg et al., 2014) to bet-
ter characterize OM and address other challenges of FT-IR
spectrometry and PLS calibration (as described in Sect. 1.3).
The second is to evaluate the improved method by quantify-
ing atmospheric functional group concentrations over multi-
ple years at consistent locations.

To address the first component of achieving the study goal,
a broader list of atmospherically relevant chemical standards
were incorporated, including chemicals specific to the south-
eastern US. The functional groups included more specific
subgroups than in previous work: aliphatic C-H groups, car-
boxylic acids, oxalates, non-oxalate and nonacid carbonyls,
and alcohols. Additional interfering species, including par-
ticle water and ammonium nitrate, were accounted for, and
molecular interactions expected in ambient samples were
considered. Model parameters such as the number of regres-
sion factors were selected based in part on current atmo-
spheric composition literature and focused studies using sim-
ulation methods.

To address the second component, SEARCH samples from
2009 to 2016 at five sampling sites with varying (urban or ru-
ral) emissions were analyzed. The calibration of SEARCH
samples was particularly challenging due to interference
from the thicker filter material and lower aerial density of
particles than the IMPROVE samples used by Ruthenburg
et al. (2014). The final models were evaluated qualitatively
and semiquantitatively by comparing the ambient SEARCH
functional group measurements with atmospheric compo-
sition measurements made using multiple analytical meth-
ods. For example, resulting OM and OC concentrations were
compared with residual OM and TOR OC concentrations, re-
spectively.

2 Methods
Ambient aerosol samples, collected onto Teflon filters from

five SEARCH network sites over 8 years, were analyzed by
FT-IR absorption spectrometry (Sect. 2.1). A series of lab-
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oratory standards that mimicked the ambient samples were
collected using a range of relevant pure chemicals, and spec-
tra were explored to confirm that molecular environments
were atmospherically relevant (Sect. 2.2). After FT-IR spec-
tra were acquired (Sect. 2.3), outliers were detected and
were either set aside during model development or removed
from the dataset (Sect. 2.4). Calibration models were de-
veloped to measure five functional groups using multivari-
ate analysis (Sect. 2.5). The resulting calibration models
were described by interpreting important spectral variables
(Sect. 2.5.2). While no direct measurements for evaluating
the functional group model measurements exist, estimates
of OM concentrations from mass and measured components
and TOR OC concentrations were used for comparison, and
the van Krevelen space was used to compare other measure-
ments of aerosol composition (Sect. 2.5.2). Method detection
limits were applied (Sect. 2.5.3), and uncertainties in model
measurements of functional groups and predictions of OM
quantities were estimated (Sect. 2.6).

2.1 SEARCH network samples, network data, and field
blanks

Aerosol composition in the southeast was characterized from
1999 to 2016 by the SEARCH network. The SEARCH net-
work was unique in that it focused on one region of the US,
with sites in urban and rural pairs (Birmingham and Cen-
treville in Alabama and Atlanta and Yorkville in Georgia).
Measurement methods were advanced and comprehensive,
including real-time gas-phase measurements, light and mass-
based measurements of total particles, a variety of particle-
phase composition measurements (trace elements, inorganic
salts, OC, and elemental carbon), and supporting meteoro-
logical variables.

Filter samples of ambient aerosol collected in the
SEARCH network from 2009-2016 were used in the present
study. The sampling sites included urban Birmingham
(BHM) and rural Centreville (CTR) in Alabama, urban Jef-
ferson Street, Atlanta (JST), rural Yorkville (YRK) in Geor-
gia, and a rural outlying landing field (OLF) near Pensacola
in Florida (Edgerton et al., 2005). Samples from colocated
samplers at the JST site (cJST) were used to calculate the
sampling uncertainty of the functional group measurements
(Sect. 2.6). Three additional SEARCH network sites were
closed before 2016 and were therefore not included in the
current study; sampling in the SEARCH network ended in
2016, on different dates for each site.

Samples analyzed in this work were collected using
the Federal Reference Method (U.S. Environmental Pro-
tection Agency, 2011). Briefly, Partisol Plus 2025 sam-
plers (Rupprecht & Patashnick, Fisher Scientific, http://
www.thermofisher.com/, last access: 9 December 2019) were
used to collect ambient particulate matter smaller than 2.5 um
aerodynamic diameter (PMj;5) at 16.7 L min~! onto MTL
47 mm PTFE filters with 2 um pore size (Measurement Tech-
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nology Laboratories, https://mtlcorp.com/filters, last access:
9 December 2019). Gravimetric analysis of PM» 5 mass and
X-ray fluorescence of trace metals concentrations were per-
formed using these filters. Additional filter samples were col-
lected and analyzed by the SEARCH network (Edgerton et
al., 2005). Quartz filters (37 mm) were used for TOR analy-
sis of OC and elemental carbon concentrations. PTFE filters
(47 mm) were used for 8027, NOj, and NHZr analyses. Ny-
lon and cellulose filters (47 mm) were used for negative ar-
tifact NO;™ and NHI analyses, respectively. SEARCH TOR
OC measurements are blank-corrected using annual network-
wide mean field blank OC concentrations.

One-in-three-days, seasonally representative (January,
April, July, and October) samples from 2009 to 2015, as
well as daily samples from 2016, were analyzed using FT-
IR spectrometry. The one-in-three-days sampling schedule
matched the sampling for TOR OC measurements. At each
site, ~ 30—45 samples were analyzed by FT-IR spectrome-
try per year from 2009 to 2015; 1474 ambient sample filters
were included altogether in this study. A total of 359 field
blank filters were used (approximately two field blank filters
per month, per site).

In contrast to other networks, there were some advantages
and challenges of SEARCH sampling for FT-IR analyses.
Unlike IMPROVE samples, filters were shipped and stored at
<4°C (from Aerosol Research and Analysis, Inc., ARA, in
Morrisville, NC) to minimize loss of volatile species. Gravi-
metric filter measurements were made in an environmen-
tally controlled weigh space to minimize uncertainty in wa-
ter content (Edgerton et al., 2005), a control technique the
IMPROVE network has only recently implemented. How-
ever, the mass loading of SEARCH network filter samples
was generally lower than that of the IMPROVE network.
While the IMPROVE network uses 25 mm diameter filters
and a flow rate of 22.8 L min—!, the SEARCH network used
relatively large filters (47 mm diameter) and a lower flow
rate (16.7 L min~ 1), following the Federal Reference Method
(FRM) sampling procedures (Mikhailov et al., 2009). The
Chemical Speciation Network (CSN) also uses 47 mm diam-
eter filters for collection, and, similarly to SEARCH, filters
are shipped and stored cold; however, the SEARCH aerosol
loading was higher than that in the CSN, which uses a flow
rate of 6.7 L min—! and 47 mm diameter filters. In addition,
the SEARCH filters were constructed of thicker PTFE mate-
rial, overlapping some aerosol sample peaks in transmission
spectrometry and producing strong, variable FT-IR spectral
features related to scattering by PTFE.

2.2 Laboratory standard generation

Laboratory standards used to measure functional group con-
centrations were produced by collecting particles of pure
chemicals onto 47 mm MTL PTEFE filters to mimic ambient
SEARCH network samples. The aerosol generation system
consisted of an atomizer (model 3076 Constant Output At-
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omizer, TSI Inc.), a custom-built diffusion dryer, and a Par-
tisol (FRM) aerosol sampler operated at 16.7 L min"!. The
atomizer was supplied with pure chemical solutions and fil-
tered house air (Model 3074B Filtered Air Supply, TSI Inc.,
http://www.TSI.com/, last access: 9 December 2019).

Two types of laboratory blanks were collected. “Cham-
ber blanks” were collected using deionized (DI) water (>
18.2 M purity) for 10—180 min or isopropanol (IPA; Spec-
trum Spectrasolv grade) for 5-35 min. “Method blanks” were
placed in the aerosol generation system and handled identi-
cally to laboratory standards, but the pump was not turned on.
One method blank was collected while each pure chemical
was being collected. Multiple pure chemicals (Table 1) were
chosen to represent each of the organic functional groups cal-
ibrated (see Sect. 2.5).

For each pure chemical, 10-20 filters of varying masses
were collected (for 1-35 min); 315 chemical standards were
produced. The mass of functional group deposited onto each
laboratory standard filter was calculated as the difference
in filter mass (in pg) before and after collection. Each fil-
ter was pre- and post-weighed at least three times using
a high-precision balance (+2pg; model XP2U, Mettler—
Toledo, https://www.mt.com, last access: 9 December 2019).
The total quantity of functional group anticipated in ambi-
ent samples, based on literature values, was used to deter-
mine the range collected for each chemical. For example,
suberic acid standards were generated in the range of 0.04—
4 umol C=0 per filter, which is higher than expected for
suberic acid itself (Gao et al., 2006) but within the range an-
ticipated for total C=0 (Polidori et al., 2008). The range of
measured functional group concentrations in ambient sam-
ples was also compared to the dynamic range included in the
models (Sect. 3.3.2).

Most of the pure chemical solutions were prepared in IPA
and/or DI water; a small number were prepared in ethanol
(Koptec Pure Grade). Impurities in the solvents were identi-
fied by looking at FT-IR spectra of chamber blanks. However,
weights of the impurities in the IPA and ethanol were within
the uncertainty of the high-precision balance when collected
for up to 35 min, and were not predictive in the functional
group models. No impurities were discovered in the DI water.
Sonication for up to 2h was used for some solutions. Con-
centrations and other details of the pure chemical solutions
are listed in Sects. S1-S3.

Molecular environments of the laboratory standards were
influential on the infrared spectra and were explored qualita-
tively (observations summarized in Sect. 3.2, and more de-
tail compiled in Supplement). Hydrogen and ionic bonding
patterns were interpreted within spectra of collected stan-
dards containing single chemicals. In some cases, a chemi-
cal was not included in the model due to a variable hydrogen
bonding pattern. The influence of humidity on the laboratory
standards was assessed by exposing a selection of laboratory
standards to a dry and a wet environment (a desiccator with
silica beads and a desiccator with water, respectively). Blank
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Table 1. Pure chemicals collected as laboratory standards and used in the calibration of FT-IR spectra for functional group concentrations.

Pure chemical Chemical Reason for inclusion in model O/C H/C OM/OC Molecular structure Molecular
character formula
Squalene Unsaturated Represents unsaturated hydrocarbons 0.00 1.67 1.14 C3pHsp
hydrocarbon
Oxalic acid Oxalic acid Abundant chemical in atmospheric 2.00 1.00 3.75 CoHy04
aerosol &
HO.
Malonic acid Short chain Abundant chemical in atmospheric aerosol 1.33 133 2.89 5 R C3H404
di-acid length u\){
:IG/ \Dr\
Succinic acid Short chain Midrange length carboxylic acid 1.00  1.50 2.67 q C4HgOy4
length di-acid ‘z\ﬂ/\)L,H
Suberic acid Medium chain Midrange to long carboxylic acid (spectrum 0.50 1.75 1.81 i CgH404
di-acid length similar to long-chain mono-carboxylic acids) Y\/\/\)I\w
Terephthalic acid Aromatic acid Represents aromatic acids, especially 0.50 0.75 3.67 - - CgHgO4
industrial emissions
\EJLH
D-alanine Amino acid Amino acid abundant in atmospheric 0.67 233 247 . C3H7NO,
aerosol o
'ts\")\ NH,*
N o
Ammonium oxalate ~ Carboxylate salt ~ Theoretically atmospherically abundant 2.00 4.00 5.17 I CoHgN,O4
carboxylate salt
= Ma*
Ha® \’ch
Sodium oxalate Carboxylate salt ~ Theoretically atmospherically abundant 2.00 2.00 5.58 © C>04Nay
carboxylate salt
D-(+)-glucono- lactone Represents cyclic carbonyls, including 1.00  1.67 247 0 . CeH1006¢
delta-Lactone carbohydrates J\ -
Tannic “acid” Humic-like Representative of oligomeric 0.61 0.68 1.86 .;LJ:LT: C76H52046
substance substances (carbonyl, phenolic OH) ﬁl é‘g’ A
e
, o , T T K
Ethyl palmitate Aliphatic ester Representative of esters 0.11  2.00 1.32 T, )ﬁ:l r&\ C1gH3602
T
10-Nonadecanone Aliphatic ketone ~ Representative of ketones 0.05 2.00 130 o~ /‘Y.f\/\,a\,ﬂvl .. C19H330
meso-Erythritol Biogenic tetrol Abundant product of isoprene oxidation 1.00  2.50 2.54 . C4H 904
NN \J\/\ NN
- E /0“
D-(+)-glucose Carbohydrate Representative of carbohydrates 1.00  2.00 2.50 " /Y\" CeH1206
Levoglucosan Biomass burning  Tracer of biomass burning emissions 0.83 1.67 2.25 CeH10Os5
tracer
4-Nitrocatechol Phenol Representative of phenols, typical of 0.67 0.83 2.15 T CgHsNO,
biomass burning emissions i
Tl
1-Docosanol Long chain Representative of fatty alcohols 0.05 2.09 124~~~ C22HyeO
length alcohol
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Table 1. Continued.

Pure chemical Chemical  Reason for inclusion in model O/C H/C OM/OC Molecular structure Molecular
character formula
Ammonium sulfate Interferent ~ Abundant in atmospheric aerosol - - - a (NHy)2S04
(inorganic salt) || NH,*
Q= Si -0
we |
Ammonium nitrate Interferent ~ Abundant in atmospheric aerosol - - - NH4NO3
(inorganic salt) o)
N NH4*
'O/ \‘O'
Magnesium chloride, Interferent Does not absorb in infrared region of interest but - - - Cl’MngrCl’ MgCl,
hexahydrate (water) is strongly hygroscopic so that the spectrum represents

particle (hydrate and liquid) water

filters, as well as laboratory standard filters containing a hy-
drophobic chemical (squalene), were analyzed as controls.
Each filter was exposed to each environment for 1 week.

2.3 FT-IR spectrometry analysis: spectrum acquisition

Analyses of the sample and laboratory standard filters were
carried out in transmission mode on a Bruker Tensor II FT-IR
spectrometer (Bruker Optics, Inc.; http://www.bruker.com/,
last access: 9 December 2019) equipped with a mid-infrared
light source and liquid nitrogen cooled mercury cadmium tel-
luride detector. Each filter was placed into a custom-built
(see Debus et al., 2019) chamber within the FT-IR spec-
trometer that was continuously flushed with air scrubbed
of H,O and CO; (model VCDA air purge system, Pure-
gas, LLC, http://www.puregas.com/, last access: 9 Decem-
ber 2019; <10 % humidity). Additional information about
the FT-IR spectrometry analyses can be found elsewhere
(Debus et al., 2018; Ruthenburg et al., 2014). Spectra were
collected between 4000 and 420 cm ™!, but 1500 to 400 cm ™!
was excluded due to strong PTFE filter absorption (Weakley
et al., 2016) and highly variable absorption between chemi-
cals.

Subsets of ambient SEARCH samples were reanalyzed af-
ter differing storage periods to determine whether FT-IR han-
dling and analysis, short-term storage and transport, or long-
term storage had substantially affected the spectra. Changes
in predicted functional group and OM concentrations over
each period were compared to the sampling uncertainty to
assess whether a measurable bias could be observed. The re-
sults of this reanalysis demonstrated that (1) duplicate anal-
yses via FT-IR spectrometry were reproducible (—3 % me-
dian bias in OM concentrations) and FT-IR analysis did not
impact filter sample composition, but (2) decreases in some
functional group concentrations for some samples were mea-
surable within the first year or two after sampling (e.g., ap-
prox. —10% yr~!' and —5 % yr~! median bias in aCOH and
OM concentrations, respectively); however, (3) samples sta-
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bilize in storage and no longer had measurable concentra-
tion changes after several years (approx. 5% median bias
measured between 7 years and 5 years after collection). Ad-
ditional information about the reanalyses is summarized in
Sect. S16.

2.4 Outlier detection and handling

Outlier laboratory standards and blanks were identified, and
data were removed or set aside during the calibration pro-
cess so that models were constructed and evaluated based on
data with minimal errors. Laboratory standards and blanks
with the following characteristics were explored as potential
outliers: (1) unusually strong water vapor absorption bands
in the spectra, (2) uncharacteristic and atypical chemical ab-
sorption bands in the spectra, (3) atypical molar absorptivi-
ties compared to other laboratory standards, or (4) collected
material weights that were too high or essentially zero (ex-
cept for blanks). Spectra with anomalously high leverage val-
ues (those which disproportionately impacted the model re-
sult; Hoaglin and Welsch, 1978) were also examined.

Ambient samples and field blanks are expected to be oc-
casionally anomalous: for example, filters can be ripped, and
field blanks can be swapped with ambient samples. Potential
outlier ambient samples and field blanks were identified us-
ing a variety of methods. We treated the confirmed sample
outliers in two ways. If no explanation for poor data qual-
ity could be determined, the spectrum was set aside into the
validation set (see Sect. 2.5) and not used in the model con-
struction process. Functional group concentrations of these
spectra were measured and reported after model construc-
tion. If an explanation for poor data quality was determined,
the spectrum was excluded from the analyses entirely.

We identified and further explored ambient samples with
the following characteristics as potential outliers: (1) a spec-
trum that was visibly anomalous (e.g., swapped with a blank,
having a hole, or having strong water vapor absorption
bands), (2) a spectrum corresponding to a high TOR OC
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concentration but low infrared absorption, or (3) a high er-
ror in prediction after calibration. Principal component anal-
ysis (PCA), a technique used to find the patterns describing
maximum variance in a dataset (Naes et al., 2002), was ad-
ditionally used to identify potential outliers. Overall, approx-
imately 8 % (128 of 1656) of the ambient samples were re-
moved from the dataset, and 31 were set aside for later pre-
diction (in the validation set). Samples missing a TOR OC
concentration were still included in the results.

2.5 Building and evaluating the functional group
calibration models

Six functional group calibration models were initially con-
structed: saturated and aliphatic C-H (aCH), unsaturated C-H
(unsCH), carboxylic acids (COOH), oxalate C=0 (0xOCO),
non-oxalate C=0 (noxCO), and alcohol C-OH (aCOH). We
used a linear regression between COOH and noxCO to dif-
ferentiate between carboxylic C=0 and “naCO” (nonacid,
non-oxalate, or other C=0; see Sect. S11 and Takahama et
al., 2013). This was necessary because, although the C=0
stretching bands of carboxylic acids are theoretically shifted
to lower wavenumbers (~ 1700-1710cm™") than an unper-
turbed C=0 stretching band (~ 1725-1740cm™'; Mayo et
al., 2003), there is not a clear separation between these two
types of C=0 in spectra of particles and this spectral range is
not unique to carboxylic acids. A calibration model for un-
sCH was developed, but we did not include the values in our
results because a substantial fraction of the samples was be-
low the detection limit (see Sect. 2.5.3). The five functional
groups reported are therefore aCH, COOH, 0oxOCO, naCO,
and aCOH.

Although we used literature values as an initial estimate
for the range of functional groups in the ambient samples, we
further determined the maximum number of moles of each
functional group to include in the models using a randomized
energy minimization algorithm called simulating annealing
(Ledesma et al., 2012; see Sect. S8—S9 for discussion on this
method). The final values determined were 30 umol aCH and
unsCH, 5 umol COOH, 4 pmol 0xOCO, 4 umol noxCO, and
10 umol aCOH.

Partial least-squares (PLS) regression was used for cali-
bration and performed in Matlab using the nonlinear iter-
ative partial least-squares (NIPALS) algorithm (Wold and
Sjostrom, 2001). A mathematical description of PLS regres-
sion for functional group measurement is given in Reggente
et al. (2019) and Ruthenburg et al. (2014). Briefly, PLS iden-
tifies a set of factors describing the variations in the labo-
ratory standard spectra and known functional group moles,
based on the maximal covariance between them. The spectral
patterns of these factors (loadings) and the respective con-
tributions of the factors to each standard spectrum (scores)
are derived. The spectra and moles of functional groups in
the calibration set of laboratory standards are mean-centered
prior to use in the PLS model. A set of regression coeffi-
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cients, similar in concept to the slope of a univariate calibra-
tion curve, is calculated from the scores and loadings.

Laboratory and field data were partitioned into subsets for
model development and application: (1) a calibration set of
standards for training the calibration models, (2) a test set of
standards used for testing the model parameters with respect
to the response of laboratory standards, (3) a test set of ambi-
ent SEARCH samples for testing the model parameters with
respect to bulk metrics such as residual OM and TOR OC,
and (4) a validation set for evaluating model performance us-
ing the final model parameters. The calibration set of stan-
dards contained seven laboratory standards of each chem-
ical, two chamber blanks per chemical, one method blank
per chemical (56 total laboratory blanks), and 20 % of the
available SEARCH network field blanks (52). The test set
of standards contained 1 to 14 standards per chemical (de-
pending on the number of available standards) and the rest
of the laboratory blanks (20) and field blanks (307). The test
of samples set contained 1125 ambient samples and the same
307 test set field blanks. The validation set of samples con-
tained 318 ambient samples, as well as extreme samples that
were identified as possible outliers, but no explanation for
their removal from the dataset was found (31; Sect. 2.4). The
test and validation sets of ambient samples were combined
for all figures and metrics.

The calibration set for each functional group model con-
tained chemicals as organic “interferents” if the particular
molecule did not contain that functional group, with quanti-
ties of functional group set to zero. This accounted for spec-
tral overlap between functional groups. For example, car-
boxylic acids and alcohols were quantified separately, but
both functional groups contain an O-H bond absorbing in
a similar mid-infrared range. Changing the number of such
organic interferent standards in each model had a negligible
impact on prediction.

Each functional group model was tested by applying it to
the test set of laboratory standards using Eq. (1). The moles
(n) of each functional group (g) in a laboratory standard ()
with spectrum x; are measured as the sum of inner products
with regression coefficients b as follows:

Nig =Eijbgjxij~ (1)

The modeled moles of functional groups in the test set of
laboratory standards (Eq. 1) were plotted against the known
moles from filter weights. An orthogonal least-squares re-
gression of the moles from the model and filter weights was
fitted, and the median error, correlation coefficient, and slope
were examined. Model inputs (such as the subset of labora-
tory standards included in the calibration versus test sets of
standards, and the maximum quantity of each chemical in the
calibration set laboratory standards) were altered to optimize
the modeled test set of standards.

Multiple methods were tested to find the optimal number
of factors for each SEARCH functional group model (see
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Sect. S8). The minimum root-mean-squared error of cross-
validation (RMSECYV) with a k-fold of 3 was selected be-
cause of its speed and simplicity. Overfitting of the COOH
functional group was observed (resulting in overestimation
of naCO concentrations). To minimize this effect, the maxi-
mum number of factors was constrained to 15 for this model.
All other functional groups were constrained to 25 factors.
The resulting numbers of factors for each functional group
calibration model selected by the automated minimum RM-
SECV method were 21, 25, 15, 24, 20, and 25 for aCH, un-
sCH, COOH, 0xOCO, noxCO, and aCOH, respectively.

2.5.1 Bulk OC and OM concentration estimates

The concentration of OC in each ambient sample, OC;, was
estimated as the sum of measured C atoms (“functional
group OC”), assuming the following C atom contributions
per functional group (A,): aCH = 0.5C; COOH = 1C; ox-
OCO = 1C; naCO = 1C; and aCOH = 0.5C (Eq. 2). The
same values were used by Russell et al. (2003). For the four
functional groups measured by Ruthenburg et al. (2014), the
same assumptions were made, except that aCOH was as-
sumed to contribute no C atoms. In Eq. (2), the moles of
functional group g in the ith sample are denoted n;,, and
12.011 gmol~! is the molar mass of C:

OC; = 12.015gn;ghg. ©)

These assumed values of A, therefore influence the predicted
functional group OC concentrations. The values of A, are
supported by parallel measurements and modeling (Taka-
hama and Ruggeri, 2017), as well as Monte Carlo simu-
lations (Burki et al., 2019). Similarly, OM concentrations
were calculated from summed functional groups including
the same assumptions for C contributions, plus all associated
O and H atoms.

The OM/OC ratio was calculated by dividing the summed
OM concentrations by the summed OC concentrations. Al-
though TOR OC concentrations have been suggested for nor-
malizing OM/OC ratios in the past (Reggente et al., 2019),
the summed OC concentrations were used because these two
values give a more consistent representation of organic com-
position than a ratio between an FT-IR spectrometry mea-
surement and TOR measurement (these techniques capture
slightly different portions of organic species or functional
groups).

2.5.2 Model evaluation: interpretation of model
predictors and comparison with external
measurements

The variable importance in the projection (VIP) scores were
calculated to simplify interpretation of the variance described
by the calibration models. VIP scores have been previously
utilized to demonstrate the importance of predictor variables
(here, absorbance at each wavenumber) in PLS when the pre-
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dictor variables are not independent (Chong and Jun, 2005).
This applies to the current method because in infrared ab-
sorption spectra absorbance at separate wavenumbers varies
together (bonds can absorb in multiple regions simultane-
ously). Essentially, the VIP scores describe the relative im-
portance of each wavenumber in the model by taking into
account the y-variance (functional group quantity), explained
by the model as weighted onto each PLS factor. The models
were evaluated using the VIP scores by determining whether
the important (and unimportant) wavenumbers in the models
corresponded to known functional group absorption bands
expected in ambient aerosols. See Sect. S12 for the equation
used to derive the VIP scores for the total functional group
OM.

Reference measurements to validate functional group con-
centrations directly do not exist: our measurements represent
the first time these functional groups have been quantified
in southeastern US aerosol samples to our knowledge. In-
stead, we evaluated our predictions against residual OM and
TOR OC. The residual OM was calculated by subtracting the
weighted sum of the major inorganic chemical constituents
and elemental carbon from PM; 5 mass for each SEARCH
sample using the equation described by Hand et al. (2012).
A particle water correction was made (Dabek-Zlotorzynska
et al., 2011; Simon et al., 2011). Metrics used between mea-
sured and reference OM or OC were coefficient of determi-
nation R2, bias-corrected error (also known as the median
absolute deviation, as previously described by Weakley et
al., 2016), and orthogonal least-squares regression slope. Be-
cause the mass recovery was expected to be less than 100 %,
bias was not a relevant metric. The 95 % confidence intervals
were calculated around the regression slope by bootstrap-
ping. The regression slopes and confidence intervals gave an
estimate of the mass recoveries of OM and OC, relative to
each reference method.

Another method for evaluating the model performance
was comparing the data in a van Krevelen diagram to aerosol
mass spectrometry data collected in the southeastern US. A
van Krevelen diagram describes the overall elemental com-
position of OM in the two dimensional space of atomic H/C
versus atomic O/C. It should be noted that the material col-
lected in the SEARCH network is PMj 5, and not PM, as
measured using aerosol mass spectrometry; however, the dif-
ference in sources contributing to OM between the two frac-
tions may be small (Schum et al., 2018b). In the future, PM;
measurements could be considered for studying the compar-
ison of FT-IR spectrometry and aerosol mass spectrometry
measurements.

2.5.3 Method detection limits

The method detection limit (MDL) of each functional group
concentration was estimated as 3 times the standard devia-
tion of all laboratory and field blank functional group con-
centrations measured in the test set of standards. The MDL
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of the functional group OM and OC concentrations were es-
timated as the root of the sum of squares of the blank OM
and OC concentrations predicted in the test sets. No samples
were excluded from the results or plots based on the OM or
OC MDLs. All ambient sample functional group concentra-
tions predicted below the corresponding MDL were replaced
with the value of MDL 2. This censoring technique has been
applied in the past for multivariate analysis of environmen-
tal data (Polissar et al., 1998). When data were left uncen-
sored, some values were negative, and therefore ratios such
as the OM/OC were misrepresented. Thus, although censor-
ing of environmental data has obvious drawbacks (Helsel,
2005), the MDL-2 replacement and use of robust metrics
such as median and percentiles were determined to provide
the most accurate summary data. Samples with three or more
functional group concentrations below the respective MDLs
were not included in the O/C and H/C ratios (used in the
van Krevelen diagram). This was done because in these cases
the ratio was dominated by only one or two functional group
contributions, and appeared as a straight line of datapoints on
the van Krevelen diagram (and was not informative). These
samples were, however, left in the dataset for all other figures
and metrics so that the data were not biased toward higher
functional group or OM concentrations.

2.6 Model uncertainties

The precision of the functional group measurement method
was evaluated using two approaches, which attempted to
evaluate some of the most substantial potential sources of
uncertainty in the method. The first approach was the com-
parison of functional group concentrations measured from
two colocated sampling sites within the SEARCH network
(“sampling uncertainty”). The second approach was the cal-
culation of confidence intervals (bootstrapped) around the
functional group concentrations measured using a set of 18
model predictions, each of which had one organic chemical
standard removed from the models (“chemical selection un-
certainty”).

The sampling uncertainty accounted for the sensitivity of
the FT-IR spectrometry analysis procedure to differences in
filter substrates, FT-IR analysis handling, and SEARCH net-
work sampling and handling procedures. Sampling uncer-
tainty was calculated (Hyslop and White, 2008, 2009) using
measured functional group concentrations from the JST site
and its colocated site, cJST. The colocated sampler was used
to collect PM> 5 for only a subset of dates (2009-2011, Oc-
tober 2015, and 2016). This uncertainty was used throughout
the study as the most complete estimate of method uncer-
tainty, since it included most possible sources of uncertainty,
aside from those arising from selection of model inputs and
parameters.

The chemical selection uncertainty accounted for the pos-
sible impact of excluding a particular atmospherically im-
portant chemical from our models, within the bounds of our
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chemical list. We performed this “leave one out” analysis
with the expectation that the sensitivity of the models would
be similar between chemicals in the current models as well
as some hypothetical, atmospherically important chemicals
not included in the models. The chemical selection uncer-
tainty was calculated as follows. A total of 18 sets of mod-
els were constructed, each excluding one organic chemical.
Ambient functional group concentrations were measured us-
ing all models. For each functional group, the concentrations
measured by all models were aggregated into one vector. The
uncertainty over all samples and models was then determined
using the sampling uncertainty equations between the “base
case” concentrations (calculated with all chemicals included)
and the “leave one out” concentrations.

3 Results and discussion

In the results that follow, we highlight how we addressed the
multiple challenges of developing robust calibration models
for measuring functional groups and OM concentrations in
SEARCH ambient samples. In Sect. 3.1, the selected set of
atmospherically relevant laboratory standards and the func-
tional groups quantified are discussed. In Sect. 3.2, issues of
molecular environment are qualitatively evaluated, including
assessing humidity impacts and particle water absorbance.
The accuracy of the models is dependent on model parame-
ters and inputs; the model results were evaluated in Sect. 3.3
by confirming that predictive model spectral features were
atmospherically relevant and predicted laboratory standards
concentrations were accurate. Although functional group and
OM concentrations cannot be directly compared to external
(other method) measurements, Sect. 3.4 highlights compar-
isons used to evaluate and provide additional confidence in
the model outputs. These include the fraction of OM quan-
tifiable considering the portion that absorbs in the modeled
spectral region (mass recovery), OM/OC ratios, and a van
Krevelen diagram. Sect. 3.5 summarizes some additional un-
certainties in the model and future work needed to address
these.

3.1 Chemicals used in the calibration models to
concisely represent atmospheric composition

Known atmospheric OM molecules are comprised mainly
of a small number of functional groups, which include C-
H, alcohol O-H, and various forms of C=0O groups. Rele-
vant C=0 groups include carboxylic acids and carboxylates,
as well as esters, ketones, and lactones. Multiple molecules
that contain each of five important functional groups (aCH,
COOH, 0xOCO, naCO, and aCOH) were included in the cal-
ibration models in this work. Selections were made based on
the known presence of a molecule in atmospheric OM or be-
cause the molecule exemplified the spectra of a functional
group (Fig. 1; Table 1). Mass contributions from organic S
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and N comprise a smaller portion of ambient OM (Liu et al.,
2009; Stone et al., 2012) and were not included in this work.
Substantial contributions of organosulfates to southeastern
aerosol composition are possible (Hettiyadura et al., 2015),
and the OM/OC ratios of small organosulfate molecules are
high; therefore, future models may consider such chemicals.
The following paragraphs outline the atmospheric relevance
and spectral features of each functional group reported in the
current models.

The C-H bond is ubiquitous in atmospheric organic
molecules and is present in nearly all chemicals in the models
(Table 1; Fig. 1). Fresh atmospheric emissions often contain
abundant C-H bonds (e.g., alkanes from industrial and bio-
genic sources; Rogge et al., 1993), though C-H as a func-
tional group should not be attributed only to fresh emis-
sions since it is also plentiful in oxidized material (Schum
et al., 2018b). Although minor in comparison to C=0 or
O-H stretching bands, there are some variations in the C-H
stretching bands (e.g., -CH»- at 2926 asymmetric and 2853
symmetric +10cm™! for straight-chain alkanes, or 3085
2927 cm~! asymmetric and 3028-2854 cm ™! symmetric in
cyclic molecules; Mayo et al., 2003). A variety of C-H bonds
were therefore selected for the models, including ring struc-
tures, short-chain and long-chain molecules (additional in-
sight on the variation in C-H bond absorption will be dis-
cussed in forthcoming work, Amir Yazdani, personal com-
munication, 2018).

Saturated and unsaturated C-H bonds were quantified sep-
arately to distinguish between any differences in sources
(e.g., Moretti et al., 2008). However, the concentrations mea-
sured using the unsCH model were not reported because a
majority of sample concentrations measured were below the
unsCH MDL. These measurements are realistic: low unsCH
compared to aCH concentrations have also been observed
in work using nuclear magnetic resonance (Moretti et al.,
2008) as well as in previous FT-IR functional group cali-
bration work (Guo et al., 2015; Liu et al., 2012; Russell et
al., 2009b, 2011). Observed absorption coefficients of un-
sCH bonds were also low, consistent with theory (Mayo et
al., 2003).

Carbonyls are a particularly informative functional group
in infrared spectra of ambient OM due to their strong absorp-
tion coefficients and high abundance in the atmosphere. A
strong, broad C=0 stretching band at ~ 1700-1800cm™" is
observed in ambient OM spectra (Takahama et al., 2013). In
particular, molecules containing carboxylic acids may con-
tribute the majority of OM mass (Decesari et al., 2007), the
most abundant of which are typically the C,—C4 dicarboxylic
acids (Kawamura and Bikkina, 2016). Six carboxylic acids
were included in the calibration models. As in our previous
work (Ruthenburg et al., 2014), malonic (C3 dicarboxylic
acid) and suberic acids (Cg dicarboxylic acid) were included.
The latter represents longer-chain carboxylic acids because
it is spectrally similar to Cj¢ and C;g monocarboxylic acids
(National Institute of Advanced Industrial Science and Tech-
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nology, 2018). Oxalic (C; dicarboxylic) and succinic (C4 di-
carboxylic) acids, which are often the most abundant organic
species quantified in OM (Kawamura and Bikkina, 2016),
were added to the current models. As a representative aro-
matic carboxylic acid, terephthalic acid was selected, origi-
nating from oxidation of burning plastics or other industrial
activities (Wang et al., 2012). D-alanine, an amino acid, was
also included.

Amines and amino acids have been studied in functional
group calibrations (Kamruzzaman et al., 2018; Liu et al.,
2009). Amines and amino acids could contribute ~ 5 %—
10 % of organic aerosol concentrations and come from a va-
riety of anthropogenic and biogenic sources (Russell et al.,
2011). D-Alanine was included in the current models, dif-
fering from other carbonyl-containing spectra by its down-
shifted carboxylic C=0 stretching band (due to the electron
donating power of the adjacent N atom) and C-N stretching
band in the same spectral region. These amino acid bands
overlap with those of carboxylate C=0, but multivariate re-
gression factors can account for other features of these func-
tional groups to distinguish between them.

Although southeastern ambient aerosol particles may be
acidic (Guo et al., 2015), concentrations of oxalate exceed-
ing those of oxalic acid have been observed in ambient sam-
ples (Yang and Yu, 2008). Ammonium and sodium oxalates
were therefore included in the models as example carboxy-
late salts, calibrated separately from the carboxylic acid func-
tional group as oxalate carbonyl (0xOCO). The FT-IR spec-
tra of ammonium and sodium oxalates were different from
the spectra of oxalic and most other carboxylic acids, in
that the C=0 stretching bands of carboxylate salts are be-
low 1700cm™"! (Fig. 1). Longer chain carboxylates such as
succinates could contribute additional OM. The spectrum of
ammonium oxalate also contains two N-H stretching bands
overlapping with O-H stretching bands and carboxylic sum
tones at 3500-3100cm™!, allowing the models to account
for ammonium carboxylate interferences to measured COOH
and aCOH concentrations.

Other, nonacid (and non-oxalate) carbonyls including es-
ters, cyclic esters, and ketones could be abundant in atmo-
spheric aerosol. Cyclic esters (lactones) within large, multi-
functional molecules have been observed in ambient aerosol
(Kahnt et al., 2018), and oxo-carboxylic acids such as cis-
pinonic and pyruvic acids are frequently observed in ambi-
ent OM (Kawamura and Bikkina, 2016). These nonacid car-
bonyls were quantified in the models as “naCO”, separate
from carboxylic acids and oxalate, as in the work of Russell
and co-workers (Frossard and Russell, 2012). The naCO was
expanded in the present models to include not only a long-
chain ketone and ester but also a lactone (D-glucono-delta-
lactone) and a large, conjugated ketone-containing molecule
(tannic acid). An aldehyde-containing molecule was also
tested in the models, but the solubility of the particular chem-
ical used (divanillin) limited the maximum mass collected
onto filters (see also Sect. S4). The lactone was chosen to rep-
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Figure 1. FT-IR spectra of all laboratory standards (calibration and test sets). The C-H, O-H, and N-H stretching region is plotted separately
(a) from the C=0 and C = C stretching region (b). An example ambient SEARCH sample spectrum is plotted for comparison (bottom
subplot; 13 October 2013 from Birmingham, AL). Spectra are baseline-corrected via smoothing splines (Kuzmiakova et al., 2016), and each
subplot is scaled to the maximum absorbance for each wavenumber range.

resent cyclic carbonyl structures such as carbohydrates and
furanones (Hamilton et al., 2004). Tannic acid was included
in the naCO functional group to represent larger, humic-like
molecules. Its spectrum is characterized by a broad C=0
stretching band due to the movement of electrons through
its multi-ring, oxygenated aromatic structure (Fig. 1; Ta-
ble 1), similar to spectra of observed atmospheric humic-like
material (Chen et al., 2016). The molecule is large relative
to atmospheric components observed using typical ion and
gas chromatography methods (Gao et al., 2006) and has a
known chemical structure (unlike other humic-like candidate
molecules). Note that tannic acid contains no COOH moi-
eties but instead contains ester and ketone naCO, unsCH,
aCH, and phenolic aCOH.

Along with nonacid carbonyls, alcohol OH (aCOH) is of-
ten recognized as an intermediate within oxidation schemes
because the C atom is not maximally oxidized (Heald et al.,
2010). A variety of alcohol-containing molecules were in-
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cluded in the models, typified by broad hydrogen bonded
O-H stretching bands ~ 3500-3100cm™! (Fig. 1). meso-
Erythritol was included as a representative isoprene oxida-
tion product, which is understood to be important in the
southeast (Claeys et al., 2004). Phenols were represented by
4-nitrocatechol, which is most often associated with biomass
burning and pesticide emissions (Harrison et al., 2005; tannic
acid also contains phenol). Along with 4-nitrophenol, lev-
oglucosan is an abundant tracer for biomass burning emis-
sions (Mayol-bracero et al., 2002); it was also included in
our previous work (Ruthenburg et al., 2014). Glucose was
spectrally similar to levoglucosan but was included to repre-
sent carbohydrates from other sources such as fungal spores
(Caseiro et al., 2007). Although there is little literature dis-
cussing long-chain alcohols in atmospheric aerosol, they are
indeed present at low quantities (Rogge and Hildemann,
1994). 1-Docosanol was therefore included, as in the work
of Ruthenburg et al. (2014).
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Three types of interferent molecules were included in each
of the functional group models: inorganic salts, particle wa-
ter, and interfering organic species. Ammonium nitrate and
ammonium sulfate are abundant in atmospheric aerosol, and
overlap spectrally (N-H stretching) with strongly absorbing
organic molecule features, such as O-H and C-H stretch-
ing bands. Therefore, these inorganic salts were included as
interferents in the models (ammonium nitrate was not in-
cluded in the Ruthenburg et al., 2014 models). Water also
contributes some O-H stretching to aerosol spectra (Frossard
and Russell, 2012), so a hygroscopic inorganic salt with neg-
ligible inorganic absorption stretches, magnesium chloride
(MgCl,), was also included in the models. To our knowledge,
particle water has not been previously accounted for as an in-
terferent in functional group measurements by PLS calibra-
tion of FT-IR spectra, although water interference has been
discussed and explored in peak fitting calibrations (Faber et
al., 2017; Frossard and Russell, 2012). The result of includ-
ing particle water as an interferent in the calibration models
(collected as MgCl,) was the contribution of spectral features
to the models associated with particle water (demonstrated in
the VIP scores; see Sect. S12). No substantial changes in the
measured functional group concentrations (including that of
aCOH) or the predicted OM concentrations were observed
due to the inclusion of particle water standards (Sect. S6).
This is probably because the humidity in the FT-IR spec-
trometer sample chamber is low (0 %—10 %). Particle water
was therefore limited to liquid water in un-effloresced highly
hygroscopic particles, hydrate water, or as embedded water
under aerosol material layers (Frossard and Russell, 2012).

Addressing uncertainty in model chemical selection

While the chemicals used in the calibration models were se-
lected carefully, using current literature of atmospheric com-
position, such a concise list will inherently bring about some
uncertainty. To demonstrate the robustness of our models
to chemical selection, we examined the effect of leaving
one chemical at a time out of our calibration models (see
Sects. 2.6 and S18). The resulting precision related to chem-
ical selection was within the same range as that calculated
for sampling uncertainty (10 %-30 % bias in median func-
tional group concentrations; Sect. 3.2.2). The greatest change
in predicted functional group concentrations was observed
for 0oxOCO: when either ammonium or sodium oxalate was
left out during model construction, the oxOCO model was
not robust to the change. This was likely due to the small
number of chemicals included in the functional group model
(only two) and enhanced by the difference between the spec-
tra of these two chemicals, which contained broad features
that overlapped with those of other functional groups. The
predicted median OM concentration decreased by ~ 25 %
when 0xOCO was not included as a functional group in the
models, a change that was attributed not only to the influ-
ence of these two spectrally distinct standard chemicals but
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also to the influence of 0xOCO standards as “interferents”
in models of other functional groups. Interpretation of the
predictive spectral features (VIP scores; see Sect. 3.3.1) sug-
gested that the spectral features of oxOCO that overlap with
those of other functional groups, when unaccounted for in the
models, obscured those features from being fully captured by
the models. Thus, by including the additional spectral infor-
mation of oxOCO standards as interferents in the other func-
tional group models, other functional groups were more fully
and clearly measured.

3.2 Molecular environment considerations

Aspects of the environment within and around collected stan-
dard particles were examined to discern whether the condi-
tions were relevant to simulated ambient aerosol samples.
In particular, three types of molecular-level interactions with
the particles of the collected laboratory standards were con-
sidered: (1) hydrogen bonding patterns within pure chemi-
cals, (2) hydrogen and ionic bonding within mixtures of two
different chemicals, and (3) changes of pure chemicals due
to exposure to water.

The organization and orientation of polar organic
molecules within solid particles is dictated in part by the
intermolecular or intramolecular hydrogen bonding interac-
tions between H and O atoms (and possibly other electroneg-
ative atoms). These hydrogen bonding patterns can strongly
influence infrared spectra, causing splitting, broadening, or
frequency shifts in absorption bands (Davey et al., 2006).
Dimeric or polymeric hydrogen bonding structures of car-
boxylic acid standards in the present work were confirmed by
the broad O-H stretching band between approximately 3200
and 2600cm™~! (with overlaid sum tone absorption bands)
and the presence of out-of-plane O-H wagging bands be-
tween 950 and 850 cm ™! (Mayo et al., 2003). Similar hydro-
gen bonding O-H stretching bands were observed for most
alcohols, at higher frequencies due to their weaker hydro-
gen bonding than carboxylic acids (Mayo et al., 2003). If O-
H bonds are unassociated with other polar groups, free O-H
stretching peaks are present in an FT-IR spectrum (Davey et
al., 2006; Mikhailov et al., 2009). This was observed in the
standards of single, pure chemicals containing multiple po-
lar, oxygenated functional groups, including tartaric acid (not
included in models; see discussion and spectra in Sect. S4)
and 4-nitrocatechol spectra. Free O-H stretching bands were
not clearly observed in the SEARCH ambient sample spectra
but could have contributed low absorbance within the sam-
ple mixture. Hydrogen bonding within the likely amorphous
solid structures of ambient particles (Mikhailov et al., 2009)
and the dimeric or polymeric polar protic chemical used in
the calibration were generally consistent.

Laboratory standard filters used for (quantitative) calibra-
tion included one chemical on each filter, but hydrogen or
ionic bonding interactions between the many chemicals in
ambient aerosol samples were expected. We therefore gen-
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erated laboratory standards with mixtures of pure chemi-
cals, including combinations of two carboxylic acids (mal-
onic with terephthalic acid and malonic acid with succinic
acid), carboxylic acids with alcohols (succinic or malonic
acids with meso-erythritol and malonic acid with levoglu-
cosan), and an inorganic salt with carboxylic acids (ammo-
nium nitrate with terephthalic acid, succinic acid, or malonic
acid). Hydrogen bonding interactions were observed (see
Sect. S7, Fig. S8) in some mixtures, such as those of meso-
erythritol with malonic and succinic acids, which resulted
in the splitting or broadening of the O-H stretching band of
meso-erythritol (likely due to the formation of additional hy-
drogen bonding environments). No substantial changes to the
C=0 stretching bands were observed. No interactions were
visible in the FT-IR spectra between inorganic salts and car-
boxylic acids or between some of the mixed polar protic
species, such as malonic acid with terephthalic acid. Oxalate
standards, as discussed earlier in Sect. 3.1, accounted for car-
boxylate salt (ionic bonded OM) contributions to OM con-
centrations. Based on these observations, models constructed
with pure chemical standards could be misattributing some
spectral features (adding some error and scatter or bias via
overprediction or underprediction) but, seemingly, only for
some functional groups and some molecular interactions.

The influence of water exposure on laboratory standards
was examined to demonstrate possible differences between
ambient and laboratory-generated particles. Although chem-
ical effects were anticipated, including addition of water to
nonacid carbonyl groups to form gem-diols or changes in
hydrogen bonding structure after deliquescence, there was
no spectral evidence of either. Instead, an irreversible de-
crease in laboratory standard infrared absorption occurred
when hygroscopic species were exposed to humid conditions
(glucose, ammonium sulfate, and pyruvic acid; see Sect. S6
and Fig. S5). This was likely the result of a redistribution of
collected material away from the infrared beam: there was
no consistent and significant change in the weight of stan-
dard filters, and a similar decrease in infrared absorption was
not observed for the hydrophobic species squalene. Some
additional water vapor absorption was also observed. The
dry (~ 0 %-10 % relative humidity) environment of the FT-
IR spectrometer sample chamber was also examined by ex-
posing laboratory standards to a dry environment; no effect
on the spectra was observed. Particle water laboratory stan-
dards (MgCl,) were included in the calibration models, as
described earlier in Sect. 3.1, and effectively accounted for
the known portion of particle water (Dabek-Zlotorzynska et
al., 2011; Faber et al., 2017).
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3.3 Evaluation of model performance

3.3.1 Predictive features of laboratory standards found
in the models

We first evaluated model performance by interpreting the
spectral features in the models used to measure each func-
tional group. Variable Importance in the Projection (VIP)
scores of the predicted OM, shown in Fig. 2, demonstrate
the predictive spectral features from the laboratory standards
(see Sect. S12 for the calculation, including the method for
weighted summing of functional group contributions to VIP
scores). A value of one was chosen as a threshold for signifi-
cant VIP scores, after Chong and Jun (2005) and Weakley et
al. (2016).

Spectral features in the VIP scores matched those in
absorbing ambient OM but were absent where inorganic
species or Teflon absorb in the ambient sample spectra,
despite the thick filter material and low aerial density of
SEARCH aerosol samples relative to IMPROVE samples
(used in Ruthenburg et al., 2014). This suggests that the list
of chemicals assembled and used in the present calibration
models approximated atmospheric composition (a challenge
outlined in Sect. 1.3). In addition, including inorganic in-
terferents such as ammonium nitrate and ammonium sulfate
successfully allowed the models to avoid accounting for the
related spectral features as OM. Predictive features, as deter-
mined using the VIP scores and described below, include ab-
sorption bands associated with nonacid carbonyls, carboxylic
acids, oxalates, D-alanine, alcohols, methylene C-H, and un-
saturated C = C bonds.

Among the most prominent of the features in the VIP
scores are several oxygenated functional group bands. Sig-
nificant VIP scores (>1) are observed in the C=0O stretch-
ing region, corresponding to overlapping absorption bands in
the laboratory standards of ethyl palmitate, D-(+)-glucono-
delta-lactone and oxalic acid at ~ 1700cm™!, while at
1735cm™ !, malonic and succinic acids, D-(+)-glucono-
delta-lactone, tannic acid, and ethyl palmitate may contribute
variance. Features specifically associated with D-alanine (~
1625 and 1590 cm™!) and with oxalates (sodium oxalate at
1650 cm™! and ammonium oxalate at 1610cm™") were ob-
served at the low end of the C=O stretching region. Two
bands with ambiguous interpretation were observed at ~
3090 and ~3000cm~!. These two peaks could be asso-
ciated with malonic acid O-H stretching and overlaid sum
tones or with the N-H bonds of ammonium oxalate and/or
D-alanine. Between 3410 and 3310 cm ™!, the distinct, sharp
O-H stretching features of the 4-nitrocatechol spectra were
likely predictive and were observed near a VIP score of 1.

Aliphatic and unsaturated carbon backbone features were
identified among the significant spectral characteristics,
based on laboratory standard spectral features. The asymmet-
ric methyl (2950 cm™1), as well as asymmetric and symmet-
ric methylene (-CH,-; 2920 and 2850 cm™!) stretching bands
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Figure 2. Variable importance in the projection (VIP) scores generated from the calibration models, as a weighted sum of the functional
groups (Sect. S12, for calculation). An ambient spectrum is superimposed for comparison (95th percentile of all ambient spectra).

were prominent, as was the C = C aromatic bending band
(1510ecm™h).

Several features in the ambient spectra (demonstrated here
as the 95th percentile of ambient SEARCH spectra, dashed
grey trace in Fig. 2) were not visible in the VIP scores, in-
dicating that they were not predictive for OM. For example,
the symmetric N-H stretching peaks of inorganic (and possi-
bly carboxylate) ammonium at ~ 3200 and ~ 3050 cm™! are
visible in the ambient spectral trace but not the VIP scores.
Likewise, the fine water vapor absorption features above
3400 cm™~! and the PTFE absorption features at ~ 1780 and
1545 cm™! in the ambient spectra were not predictive. Note,
however, that the sloping baseline above ~ 3900 cm™! was
predictive, which could indicate that light scattering by the
particulate material on each filter (Weis and Ewing, 1996)
was a predictive feature of the laboratory standards.

3.3.2 Summary of functional group calibration model
metrics

Selecting appropriate model parameters based on our current
understanding was a major challenge in the current study and
was addressed through various model iterations and consid-
erations. The final model parameters and metrics of the re-
sults for the five functional groups reported (aCH, COOH,
0x0CO, naCO, and aCOH) are summarized in Table 2.

As noted in Sect. 2.5, the naCO concentrations could not
be calibrated directly because of spectral overlap and were
instead determined by partitioning excess noxCO relative to
COOH concentrations (Sect. S11). The final two rows of
the table give the prediction metrics for OM and OC, which
were derived from the five reported functional groups (see
Sect. 2.5). The dynamic ranges of laboratory standards used
in each functional group model were inclusive of, and simi-
lar to, the range of concentrations measured within the am-
bient samples: for example, aCH concentrations ranged from
0.002 to 1.2 ug m~3 in laboratory standards and from 0.02 to
0.46 ugm~3 in the samples (1st to 99th percentiles of sample
concentrations). This demonstrated the success of using pre-
vious literature and simulated annealing to select the max-
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imum functional group concentrations in the models (see
Sect. 2.5), one aspect of the major challenges anticipated in
this work. Likewise, other parameters such as the number and
type of non-interfering chemicals included in each model,
as well as the number of PLS model factors, were explored
in depth by examining the atmospheric likelihood of results
when iterating manually over those parameters. As described
in Sect. 2.5, many methods for selecting the number of PLS
factors were tested, and RMSECV was used because of its
flexibility and simplicity.

The correlations between the functional group moles mea-
sured via FT-IR spectrometry and gravimetric analysis for
laboratory standards were strong: R? > 0.93 for all cali-
brated functional groups. Normalized errors in prediction
for the test sets were 7 %—16 %, and slopes of the cross-
plots were 0.91-1.05 for all calibrated functional groups (see
Figs. S13 and S14). As expected, some ambient sample func-
tional group concentrations were below MDLs. However,
for all reported functional groups, the median concentration
measured in the ambient samples was greater than the MDL
(Table 2). The predicted median concentrations of OM and
OC in the ambient samples were well above the respective
MDLs and ~ 80 % of the ambient sample predicted con-
centrations were greater than the MDLs for OM and OC.
Note that the values discussed in this paragraph were calcu-
lated before the censoring of the data below functional group
MDLs, as discussed in Sect. 2.5.2.

Sampling uncertainty (Sect. 2.6) was 14 % (0.39 uygm—>)
for OM and 14 % (0.19 pg m~3) for OC (Table 2). These low
sampling uncertainty values demonstrated that (a) the filter
sampling, handling, and storage methods were reproducible
and that (b) the functional group calibration procedures were
reproducible.

3.4 Evaluation by comparison to other methods and
previous FT-IR spectrometry work

There are scarce measurements of functional groups to vali-
date the FT-IR-PLS method developed here. We address this
challenge by instead corroborating our measurements with
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Table 2. Summary of calibration model parameters and outputs. Functional groups calibrated but not reported in the final models are also

included, below the first horizontal line.

Functional Method Dynamic  Ratio Num. Factors ~ Standards test MDL Percentage of Median Sampling

group range ()% chems3 (RMSECV) set coef. of  (ug m~3)  ambient samples  concentration uncertainty
det. (R%) above MDL (%) in samples  (ugm™—3, %)*

(ugm™3)

Saturated Calibrated 0.002 to 1 13 20 0.99 0.26 94 0.90 0.15, 16 %

hydrocarbon 1.2

(aCH)

Carboxylic Calibrated 0.04 to 1 6 15 0.98 0.26 84 0.63 0.15,28 %

acids 33

(COOH)

Oxalate Calibrated 0.07 to 1 2 23 0.93 0.04 99 0.27 0.04, 18 %

carbonyl 0.65

(0xOCO)

Nonacid Partitioned - 1 - - - 0.04 92 0.25 0.08, 26 %

carbonyl

(naCO)

Alcohol Calibrated 0.04 to 0.5 7 25 0.98 0.24 88 0.60 0.13,25%

(aCOH) 7.0

Unsaturated Calibrated 0.002 to 0.5 4 25 0.99 0.08 12 0.04 0.03, 21 %

hydrocarbon 0.39

(unsCH)5

Non-oxalate Calibrated 0.04 to - 10 19 0.98 0.10 99 0.64 0.04, 18 %

carbonyl 2.6

(noxCO)

Organic matter ~ Predicted - - 20 - - 0.45 80 2.1 0.38, 14 %

(OM) as sum

Organic carbon  Predicted - - 20 - - 0.25 81 1.0 0.19, 14 %

(0C) as sum

1 Dynamic range of the standards included for each functional group, as well as the factors related to the number of chemicals and the standards test set coefficient of detection; (R?) could only be tabulated for
calibrated functional groups. The concentrations are estimated based on the volume of air collected at 16.7 L min~" for 24 h. 2 The ratio used in summing to OC is the ratio of the number of C atoms per functional
re 3 The e emi « » " re chemi ine i " i 4 fe ref ioi
group, represented as A. 2 The number of chemicals (“Num. Chems.”) corresponds to the number of pure chemicals that contained the particular functional group. * Values are reported with significant digits
determined based on the sampling uncertainty (last column) and the number of significant digits afforded by the high-precision balance used to weigh the lab standard filters. 5 Most unsCH concentrations in

ambient samples were below MDL and were not reported or used in predicting OM and OC concentrations.

multiple qualitative and quantitative metrics from separate
methods. We evaluate the model results by comparing to bulk
measurements including residual OM concentrations; TOR
OC concentrations; and ratios of OM/OC, O/C, and H/C
from other techniques. Expected trends between urban and
rural pairs, seasons, and functional groups, based on previ-
ous research, were also used.

3.4.1 Evaluating FT-IR measurements: mass recovery

The concentrations of functional group OM and OC were not
expected to be 100 % of the actual concentrations in ambi-
ent samples because some bonds do not absorb mid-infrared
light within the modeled range (4000-1500 cm™1). For ex-
ample, squalene (C3pHsp) contains five C atoms per molecule
with only C-C bonds; those five C atoms do not absorb in the
mid-infrared range, so squalene OC concentrations will be
underestimated by 17 %. Similarly, levoglucosan (C¢H1¢Os)
contains two O atoms within its rings; since the stretching re-
gion of C-O is at 1300-1000 cm™! (Pavia et al., 2009), where
PTFE also absorbs, functional group OM will underestimate
levoglucosan OM by ~ 20 %. Thus, in the prediction of OM
or OC in ambient samples, a “mass recovery” of approxi-
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mately 70 %—80 % OM or OC was expected (Takahama and
Ruggeri, 2017). In addition, since the composition of ambi-
ent samples varies, the mass recoveries were expected to dif-
fer, and thus to add scatter to the comparison of FT-IR OM
and OC concentrations to more routine measurements. Quan-
tifying a substantial fraction of the OM (and OC), despite the
lack of mid-infrared absorption of some relevant molecular
bonds, was a major challenge in this current work, addressed
by chemical and model input selection.

Other methods of OM or OC characterization are under-
stood to have a mass recovery below 100 %. Similar to FT-
IR-PLS, the mass recovery of organics in aerosol mass spec-
trometry is 75 % for O/C ratios and 91 % for H/C ratios
(Aiken et al., 2008; assuming constant collection and relative
ionization efficiencies with particle composition). A study
comparing simultaneous characterization of OM composi-
tion found that the FT-IR spectrometry OM concentrations
were 20 %—40 % lower than those observed using aerosol
mass spectrometry, within the combined uncertainties of the
methods (~ 20 % for each method; Liu et al., 2018). Al-
though TOR OC mass recovery from the filters is expected to
be 100 % based on analysis of organic standards, the OC/EC
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split into thermal—optical carbon analysis methods may in-
troduce uncertainty into the TOR OC concentration (Chow
et al., 2004). Approximate corrections for TOR and quartz
sampling artifacts are made by various methods including
using denuders and backup filters and by subtracting blank
OC concentrations, as in the IMPROVE and SEARCH net-
works (Chow et al., 2015). Residual OM, as discussed earlier,
encompasses substantial uncertainties due to various inputs
such as particle water and nitrate sampling artifacts (Chow et
al., 2015). Each method used in the present work to evaluate
the FT-IR model results therefore has a mass recovery be-
low 100 % (as does the FT-IR-PLS calibration method) but
approximates the total OM or OC concentration.

The mass recoveries of OM and OC measured by FT-IR
spectrometry were evaluated by comparison with residual
OM and TOR OC, respectively. The OM mass recovery (ver-
sus residual OM) was 81 £5 % (+95 % confidence interval),
estimated as the orthogonal least-squares slope of the regres-
sion between the two OM estimates (Fig. 3).

The correlation between the functional group and resid-
ual OM concentrations was strong (R2 = 0.82), with a bias-
corrected error of 16 % (Fig. 3), demonstrating that the mod-
eled OM concentrations in the SEARCH ambient samples
were consistent with, and accounted for most of, residual
OM. Similarly, functional group OC accounted for 71 =8 %
of TOR OC and was correlated with TOR OC concentrations
(R% =0.74), with a bias-corrected error of 17 %. The mass
recovery observed in this work is similar to that in previous
FT-IR spectrometry measurements (Takahama and Ruggeri,
2017).

3.4.2 Evaluating FT-IR measurements: OM and
functional group concentrations

The median concentrations of OM estimated as the sum
of functional groups were within the range of those mea-
sured previously using aerosol mass spectrometry and FT-
IR spectrometry (~ 1-10 uyg m~3; Kamruzzaman et al., 2018;
Ruthenburg et al., 2014; Sun et al., 2011; Xu et al., 2015.).
The absolute median OM concentrations were greater at ur-
ban sites (JST, BHM) than at rural sites (CTR, YRK, OLF),
as anticipated. Overall, OM contributed ~ 35 % of PM> 5
mass in the 2009-2016 SEARCH samples, ranging typically
between 20 % and 60 % (interquartile range). Similarly, Gao
et al. (2006) found that ~ 32 %, ~ 37 %, and ~ 43 % of
PMj 5 mass at BHM, JST, and CTR, respectively, were con-
tributed by OM in summer 2004 (estimated using TOR OC
concentrations and OM/OC ratios of 1.6 at the urban sites
and 2.0 at CTR).

The concentrations of functional groups measured in am-
bient samples (Fig. 4, left panel) were as follows. Func-
tional group contributions to OM in SEARCH samples in-
cluded ~ 25 %-45 % aCH by mass. This large fraction was
expected since nearly every molecule in organic aerosol con-
tains aCH. The even larger contribution of oxygenated func-
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tional groups to OM agreed with expectations that south-
eastern US aerosol would be highly oxidized relative to
OM from other parts of the country (e.g., Simon et al.,
2011). Carboxylic acids, followed by alcohols, were the oxy-
genated functional groups that contributed most substantially
to the OM concentrations (~ 20 % COOH-30 % COOH and
~ 15 % aCOH-30 % aCOH). It is unsurprising that the lat-
ter functional groups were abundant in the samples, based
on previous work in general (Kawamura and Bikkina, 2016)
and in the southeastern US in particular (Gao et al., 2006).
The median contributions of COOH to OM concentrations
were lower at the urban sites than the rural sites, which can
be attributed to the fresher emissions typically sampled at
urban sites. Nonacid carbonyls also contributed 5 %-20 %,
and 0xOCO contributed 5 %—10 % of OM by mass; 0xXOCO
concentrations were equivalent to ~ 40 % of COOH concen-
trations (interquartile range 36 %—-54 %). Data from all an-
alyzed SEARCH years will be further detailed in a forth-
coming paper on trends in the southeastern US, but data
from 2013 are discussed briefly here to demonstrate model
improvements, since there are FT-IR spectrometry measure-
ments using previous FT-IR functional group models (Kam-
ruzzaman et al., 2018) in that year.

The functional group composition of OM at the IM-
PROVE site in Birmingham, Alabama, as measured us-
ing the previous FT-IR spectrometry models (Fig. 4b), was
compared to the colocated SEARCH BHM samples (con-
centrations measured using the current models). Median
OM concentrations at Birmingham were greater using the
current models (3.1+2.8ugm™3) than the 2014 models
(2.1£2.0ugm™3) by 48%. The greater OM concentra-
tions predicted by the current models can be explained
mainly by enhanced oxygenated functional group concen-
trations: while the contributions of aCH to OM concentra-
tions were lower at Birmingham using the current model
predictions (median concentrations were 1.20 ugm™3 versus
1.62ugm™ in 2013 current and previous models, respec-
tively), the oxygenated functional groups are all substantially
higher (1.91 ug m~ versus 0.46 ug m > respectively). In par-
ticular, oxOCO, which was not measured in the previous
work, accounted for ~ 10% of OM in the current models
(0.32ugm™3), adding substantially to the quantified mate-
rial.

Although there were no rural sites with data from both the
2014 models and the current models, samples from rural sites
in the southeastern US region were analyzed using the old
and new models (Fig. 4). Similar to the Birmingham site,
the predicted OM concentrations at rural sites were greater
when using the current models (2.4 +2.3 ugm™3) than the
2014 models (0.74 £ 0.67 ugm™3), again with a larger frac-
tion of OM contributed by oxygenated functional groups us-
ing the current model. The increase in OM and oxygenated
functional group concentrations at both urban and rural sites
were therefore attributed to the inclusion of a more extensive
variety of organic molecules, and in particular to the greater
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variety of oxygenated functional groups in the present mod-
els (Fig. 4).

3.4.3 Evaluating FT-IR measurements: OM/OC ratios

The ratio of OM/OC by mass is a common metric for the de-
gree of oxygenation of an ambient aerosol sample, and it is
also used to estimate total OM concentrations from measured
TOR OC concentrations (El-Zanan et al., 2009; Simon et al.,
2011; Turpin and Lim, 2001). The median OM/OC for all
sites and years (n = 1474 samples) was 2.1 £0.2. As shown
in Fig. 5, the distributions of OM/OC ratios were slightly
different between urban versus rural samples, and between
winter (January) versus summer (July) samples. The urban
versus rural differences may be muted because of a generally
well-mixed atmosphere in the southeastern US (Gao et al.,
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Figure 5. Histograms of OM/OC ratios predicted using functional
group measurements, separated into (a) urban (BHM and JST) Jan-
uary, (b) rural (CTR, YRK, and OLF) January, (c¢) urban July, and
(d) rural July. January is used to approximate winter; July is used to
approximate summer.

2006; Weber et al., 2007; Xu et al., 2015). Seasonal OM/OC
ratio differences in the region are also likely small due to the
narrow seasonal temperature variation (Hidy et al., 2014).
The greater values at rural sites (Yorkville 2.1 0.2 versus
Atlanta 2.0 0.2 and Centreville 2.1 £0.2 versus Birming-
ham 2.040.2) are in agreement with increased secondary or-
ganic aerosol contribution to OM downwind of urban emis-
sions sources.

The measured OM/OC ratios from the present models
are similar to those estimated in another study: El-Zanan et
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al. (2009) measured OM/OC = 2.16 +0.43 and OM/OC =
2.14£017 at JST between July 1998 and December 1999
(mean =+ standard deviation, using gravimetric analysis of
solvent extracts and mass balance of organic and total par-
ticulate masses, respectively). Multiple linear regression has
been applied to IMPROVE data to obtain OM/OC at various
locations and times and has resulted in varying values. Simon
et al. (2011) found lower median seasonal OM/OC ratios for
the southeastern US (between 1.64 and 1.89). An OM/OC of
1.8, used to calculate reconstructed fine mass concentrations
within IMPROVE network samples (Pitchford et al., 2007),
is also lower than the median OM/OC ratios estimated in
this study. However, in more recent work using multiple lin-
ear regression, Hand et al. (2019) estimated OM/OC ratios
in the southeastern US varying between 1.9 and 2.1 from
2012 to 2016, similar to the ratios presented in this present
work. The OM/OC values predicted using previous FT-IR
models (Kamruzzaman et al., 2018) were lower than those
of the other approaches summarized here and the current FT-
IR model results: OM/OC = 1.440.2 at urban Birmingham,
AL, and OM/OC = 1.6 £ 0.3 at four rural sites in the south-
east (2013 IMPROVE sites). The higher OM/OC ratios in the
current work are attributable to the added oxygenated chem-
icals used to construct the current models and the addition of
the oxOCO functional group.

Extremes in measured OM/OC ratios were often caused
by particularly high or low C-H stretching absorption inten-
sity. Spectra of many high OM/OC ratio samples (> 90th per-
centile of OM/OC) demonstrated low hydrocarbon charac-
ter; these were mostly rural (~ 90 %). Similarly, spectra of
low OM/OC ratio samples (< 10th percentile of OM/OC)
demonstrated high hydrocarbon character and were ~ 90 %
urban. Additionally, some extreme values of OM/OC were
characterized by low OM concentrations, corresponding to
functional group concentrations near or below MDLs.

3.4.4 Evaluating FT-IR measurements: O/C and H/C
ratios

A van Krevelen diagram was generated using the atomic ra-
tios of O/C and H/C from the functional groups quantified
using FT-IR spectrometry (Fig. 6). The range of mean O/C
and H/C ratios measured by aerosol mass spectrometry in the
southeastern US (Xu et al., 2015; summer 2013 data; desig-
nated by the black box in Fig. 6), was near the visual mode of
the FT-IR predicted values, indicating that the organic com-
position measured by FT-IR spectrometry is similar to that
captured by aerosol mass spectrometry. The similarities are
evident despite the fact that there are clearly methodologi-
cal differences between FT-IR spectrometry and other mass
spectrometry techniques used to characterize O/C and H/C
ratios in other aerosol populations (summarized in Chen et
al., 2015 and Heald et al., 2010). For example, the com-
position differs somewhat between PM» s (analyzed by FT-
IR spectrometry in this study) and PM; (as in aerosol mass
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Figure 6. Ratios of H/C and O/C measured in SEARCH ambient
samples using FT-IR spectrometry models, plotted in the van Krev-
elen space. The bold black box surrounds the data range collected
using aerosol mass spectrometry in the southeastern US during the
summer of 2013 (Xu et al., 2015).

spectrometry). However, sources are likely similar: Liu et
al. (2012) found similar sources of OM in PM; and PM, 5
2012). The agreement between results from the two methods
in Fig. 6 demonstrates that the overall chemical composition
captured by the FT-IR spectrometry and mass spectrometry
techniques is similar.

Aerosol evaluated in this study was less oxidized at the
urban sites than the rural sites, as expected: the urban sites
had higher H/C and lower O/C ratios (yellow and green
in Fig. 6) than the rural sites. A regional oxidized aerosol
character was suggested by the similarity between the van
Krevelen spaces occupied by the three rural sites. The spread
in O/C and H/C values in Fig. 6 was reflective of com-
position and was within the range observed in previous at-
mospheric aerosol studies (Chen et al., 2015); some scat-
ter was expected over the variety of seasons, sources, and
oxidation processes encompassed by this dataset. Extreme
data points within the van Krevelen space (H/C < 1.2 and/or
0O/C > 1.2) generally corresponded to spectra with high Si
concentrations (measured in the SEARCH network via X-
ray fluorescence; see discussion in Sect. S14), low organic
feature absorption (below median C-H and C=0 stretching
absorption) and/or a low OC concentration (FT-IR spectrom-
etry or TOR). Although high Si concentrations apparently
coincided with extreme O/C (high) and H/C (low) values,
these samples were kept in the dataset because there was no
other indication of compromised prediction for these sam-
ples. Elevated (>95th percentile) Si concentrations were of-
ten observed during summer Saharan dust transport events
(Hand et al., 2017), and narrow SiO-H stretching bands are
observed in FT-IR spectra between 3600 and 3700 cm™".

The overall slope of all sites and years of SEARCH sam-
ples in the van Krevelen space is —0.72 (orthogonal least
squares), which is similar to the slope measured over mul-
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tiple, globally spaced field campaigns using aerosol mass
spectrometry (—0.6; —1 to —0.7 in individual campaigns;
Chen et al., 2015). The observed overall slope is intermediate
between a van Krevelen space slope of —1 and —0.5, which
could, respectively, approximate replacing a methyl group
with a carboxylic acid group (the addition of two O and re-
moval of two H atoms), and fragmentation of a C-C bond and
formation of two carboxylic acid groups (Ng et al., 2011).
The pattern of the current long-term dataset, which demon-
strates atmospheric organic chemical composition integrated
over many sources and atmospheric processes, is therefore
consistent with common oxidation mechanisms observed in
previous studies.

3.5 Method limitations and future work

The expansion of the list of chemicals included in the cur-
rent calibration models from previous work was overall suc-
cessful relative to the techniques and other study results dis-
cussed in the previous sections. These improvements suggest
that further expanding and refining the calibration standards
may make functional group measurements more accurate, in-
crease the number of functional groups that can be measured,
and improve OM recovery. Other chemicals suggested for
addition to the models include those used for aerosol mass
spectrometry calibration (Aiken et al., 2008; Canagaratna et
al., 2015). Additionally, several oxygenated chemicals with
multiple functional groups proved difficult to collect in rel-
evant chemical form and quantity for atmospheric aerosol
(e.g., tartaric acid; see Sect. S4 and Fig. S4) but should be
revisited as atmospherically important species and groups.
Other potentially important groups to consider include alde-
hydes and anhydrides (see Sect. S4). Since it was discovered
herein that high silicate (dust) concentrations might degrade
the quality of functional group predictions, building calibra-
tions of suspended dust particles could be considered in the
future.

Although the extended calibration designed in this work
captures variation in the OM speciation beyond that of previ-
ous work, there are additional functional groups that should
be considered in further work. Kamruzzaman et al. (2018)
demonstrated the importance of amine N-H and C-N bonds
in OM calculations, and organosulfate O-S and O-C bonds
are additionally likely to be influential (Stone et al., 2012).

The observed interactions between some polar protic
species are acknowledged and should be considered in fu-
ture work. However, the uncertainties in quantitative multi-
chemical laboratory standards prevented us from including
them in the current models. The challenges observed in our
explorations have included (1) an inability to measure the
weight of each chemical collected from particles generated
from a solution with both chemicals and (2) volatilization
during sequential collection of chemicals. Multicomponent
laboratory standards could be a way to include atmospheric
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chemical interactions in FT-IR spectrometry models if the
above challenges can be overcome or sufficiently minimized.

There are additional sources of uncertainty within the
model parameters that should be further addressed. Taka-
hama and Ruggeri (2017) demonstrated that the C/functional
group ratio (A) values applied to calculate OM and OC con-
centrations herein are likely realistic but have some uncer-
tainty and are known to vary for different chemicals. Al-
though the number of standards per chemical, the number
of factors in each PLS model, the dynamic range of stan-
dards included in each model, and other inputs have been
selected carefully, the correct values of these inputs cannot
be exactly known. The chemical selection uncertainty ad-
dressed in Sect. 3.3.2 cannot entirely capture the variabil-
ity in model results due to the possible mis-specification of
chemicals used in the models and could be further discussed.
Despite these challenges, the agreement between our results
and many available expected or reference values demon-
strates that the results are reasonable (e.g., OM and OC con-
centrations with previous work, given mass accuracy expec-
tations, realistic trends in urban versus rural concentrations,
and the atomic ratios O/C and H/C).

4 Conclusions

A method of directly estimating OM concentrations and
OM/OC ratios with functional group composition has been
advanced and evaluated. A multivariate calibration for quan-
tifying five organic functional groups was built using FT-IR
spectra and gravimetric weights of chemical standard filters.
Spectra and weights of 18 organic chemicals and three in-
terferent chemicals (ammonium sulfate, ammonium nitrate
and particle water) were included in the calibration models.
Various uncertainties in the method were explored, such as
humidity and hydrogen bonding differences between stan-
dard spectra. Ambient aerosol composition was quantified
from nearly 1500 SEARCH network samples. An estimate
of sampling uncertainty was calculated as precision between
measurements from colocated sites (0.38 ugm™3 or 14 % of
OM). The method gave results comparable to more intensive
methods or methods that are destructive to the samples, such
as OM concentration via summation of various analytical re-
sults (residual OM), OC concentration via TOR, O/C ratio
via aerosol mass spectrometry, and OM/OC via filter extrac-
tion and chromatography analyses (functional group models
accounted for 81 +35 % of residual OM, R? = 0.82, and 71 +
8 % of TOR OC, R? = 0.74). Predictive features in the model
excluded inorganic absorption features prominent in atmo-
spheric aerosol FT-IR spectra (for example, bands due to
ammonium sulfate and ammonium nitrate). Estimated func-
tional group composition contained predominantly aliphatic
C-H and carboxylic acid groups, followed by alcohol groups.
Oxalates were quantified separately from carboxylic acids
and contributed 5 %—-10 % of OM mass (~ 40 % as much
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as carboxylic acids). Urban and rural SEARCH site compo-
sitions were distinct, with a smaller aliphatic C-H fraction,
greater oxygenated functional group fraction, and lower OM
concentration at rural sites. Further analysis of the SEARCH
network data, including trends in OM concentration and
composition observed between 2009 and 2016, will be ex-
plored in a forthcoming paper.

Data availability. The functional group, OM, and OC concentra-
tions with uncertainties, as well as raw spectra, are available at
https://doi.org/10.25338/B8SG73 (Dillner et al, 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-12-5391-2019-supplement.

Author contributions. AMD and SLS conceived of the project. AJB
performed the laboratory work, developed the calibration models,
performed the data analysis, and wrote and edited the paper. ST pro-
vided mentoring to AJB on the modeling, data analysis, and writ-
ing and editing of the manuscript. ATW, BMD, CB, and MR pro-
vided input on the data analysis and modeling and reviewed the pa-
per. CDF and MES provided laboratory and quality control support.
ESE provided SEARCH network filters and data and contributed to
the manuscript. AMD provided mentoring and supervision of the
laboratory, modeling, and data analysis efforts and reviewed and
edited the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Funding for this project was generously pro-
vided by the Electric Power Research Institute, with equipment
and logistical support from Atmospheric Research & Analysis,
Inc. The authors would like to acknowledge the contributions of
Kelsey Seibert, who provided extensive lab management and data
support for this work. Many undergraduate students were also in-
volved in this project, including Nathaniel Hopper, Matthew Coates,
Alex Williams, and Kimberly Bowman.

Financial support. This research has been supported by the Elec-
tric Power Research Institute (grant no. 10003745).

Review statement. This paper was edited by Charles Brock and re-
viewed by Qingcai Chen and one anonymous referee.

References

Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Hug-
gman, A. J., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel,

www.atmos-meas-tech.net/12/5391/2019/

J. R, Super, D., Sun, Y., Zhang, Q., Trimborn, A., Northway,
M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra,
M. R, Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A.,
Baltensperger, U., Jimenez, J. L., Huffman, J. A., Docherty, K.
S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Super, D., Sun, Y.,
Zhang, Q., Trimborn, A., Northway, M., Zieman, P. J., Cana-
garatna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H.,
Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and
Jimenez, J. L.: O/C and OM/OC Ratios of Primary, Secondary,
and Ambient Organic Aerosols with High-Resolution Time-of-
Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42,
4478-4485, https://doi.org/10.1021/es703009q, 2008.

Allen, D. T., Palen, E. J,, Haimov, M. I, Hering, S. V,
Young, J. R., Allen, D. T. Palen, E. J., Haimov, M.
L., Hering, S. V, Calibration, F., Allen, D. T., Palen, E.
J., Mitchell, 1., Hering, S. V., and Young, J. R.: Fourier
Transform Infrared Spectroscopy of Aerosol Collected in a
Low Pressure Impactor (LPI/FTIR): Method Development
and Field Calibration, Aerosol Sci. Tech., 21, 325-342,
https://doi.org/10.1080/02786829408959719, 1994.

Burki, C., Reggente, M., Dillner, A. M., Hand, J. L., Shaw, S. L.,
and Takahama, S.: Analysis of functional groups in atmospheric
aerosols by infrared spectroscopy: method development for prob-
abilistic modeling of organic carbon and organic matter concen-
trations, in Preparation, 2019.

Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler,
S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L.
R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T,
and Worsnop, D. R.: Elemental ratio measurements of organic
compounds using aerosol mass spectrometry: characterization,
improved calibration, and implications, Atmos. Chem. Phys., 15,
253-272, https://doi.org/10.5194/acp-15-253-2015, 2015.

Caseiro, A., Marr, 1. L., Claeys, M., Kasper-giebl, A., Puxbaum,
H., and Pio, C. A.: Determination of saccharides in atmospheric
aerosol using anion-exchange high-performance liquid chro-
matography and pulsed-amperometric detection, J. Chromatogr.
A, 1171, 37-45, https://doi.org/10.1016/j.chroma.2007.09.038,
2007.

Chen, Q., Heald, C. L., Jimenez, J. L., Canagaratna, M. R., He, L.-
Y., Huang, X.-F., Campuzano-Jost, P., Palm, B. B., Poulain, L.,
Kuwata, M., Martin, S. T., Abbatt, J. P. D., Lee, A. K. Y., and
Liggio, J.: Elemental Composition of Organic Aerosol: The Gap
Between Ambient and Laboratory Measurements, Geophys. Res.
Lett., 42, 1-8, https://doi.org/10.1002/2015GL063693, 2015.

Chen, Q., Ikemori, F., Higo, H., Asakawa, D., and Mochida, M.:
Chemical Structural Characteristics of HULIS and Other Frac-
tionated Organic Matter in Urban Aerosols: Results from Mass
Spectral and FT-IR Analysis, Environ. Sci. Technol., 50, 1721-
1730, https://doi.org/10.1021/acs.est.5b05277, 2016.

Chong, I. G. and Jun, C. H.: Performance of some
variable selection methods when multicollinearity is
present, Chemom. Intell. Lab. Syst., 78, 103-112,

https://doi.org/10.1016/j.chemolab.2004.12.011, 2005.

Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., Moos-
miiller, H., and Fung, K.: Equivalence of elemental carbon
by thermal/optical reflectance and transmittance with different
temperature protocols, Environ. Sci. Technol., 38, 44144422,
https://doi.org/10.1021/es034936u, 2004.

Atmos. Meas. Tech., 12, 5391-5415, 2019


https://doi.org/10.25338/B8SG73
https://doi.org/10.5194/amt-12-5391-2019-supplement
https://doi.org/10.1021/es703009q
https://doi.org/10.1080/02786829408959719
https://doi.org/10.5194/acp-15-253-2015
https://doi.org/10.1016/j.chroma.2007.09.038
https://doi.org/10.1002/2015GL063693
https://doi.org/10.1021/acs.est.5b05277
https://doi.org/10.1016/j.chemolab.2004.12.011
https://doi.org/10.1021/es034936u

5412

Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X., and Wat-
son, J. G.: Mass reconstruction methods for PM2.5: a review, Air
Qual. Atmos. Hlth., 8, 243-263, https://doi.org/10.1007/s11869-
015-0338-3, 2015.

Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashyn-
ska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P.,
and Maenhaut, W.: Formation of Secondary Organic Aerosols
Through Photooxidation of Isoprene, Science, 303, 1173-1176,
https://doi.org/10.1126/science.1092805, 2004.

Coury, C. and Dillner, A. M.: A method to quantify organic func-
tional groups and inorganic compounds in ambient aerosols us-
ing attenuated total reflectance FTIR spectroscopy and multivari-
ate chemometric techniques, Atmos. Environ., 42, 5923-5932,
https://doi.org/10.1016/j.atmosenv.2008.03.026, 2008.

Coury, C. and Dillner, A. M.: ATR-FTIR characterization
of organic functional groups and inorganic ions in ambi-
ent aerosols at a rural site, Atmos. Environ., 43, 940-948,
https://doi.org/10.1016/j.atmosenv.2008.10.056, 2009.

Cziczo, D. J. and Abbatt, J. P. D.: Infrared Observations of the Re-
sponse of NaCl, MgCl, , NH4HSO,4, and NH4NO3 Aerosols to
Changes in Relative Humidity from 298 to 238 K, J. Phys. Chem.
A, 104, 2038-2047, https://doi.org/10.1021/jp9931408, 2000.

Dabek-Zlotorzynska, E., Dann, T. F., Kalyani Martinelango, P.,
Celo, V., Brook, J. R., Mathieu, D., Ding, L., and Austin, C.
C.: Canadian National Air Pollution Surveillance (NAPS) PM> 5
speciation program: Methodology and PM» 5 chemical compo-
sition for the years 2003-2008, Atmos. Environ., 45, 673-686,
https://doi.org/10.1016/j.atmosenv.2010.10.024, 2011.

Davey, R. J., Dent, G., Mughal, R. K., and Parveen, S.: Concern-
ing the relationship between structural and growth synthons in
crystal nucleation: Solution and crystal chemistry of carboxylic
acids as revealed through IR spectroscopy, Cryst. Growth Des.,
6, 1788-1796, https://doi.org/10.1021/cg060058a, 2006.

Debus, B., Takahama, S., Weakley, A. T., Seibert, K., and Dillner,
A. M.: Long-Term Strategy for Assessing Carbonaceous Particu-
late Matter Concentrations from Multiple Fourier Transform In-
frared (FT-IR) Instruments: Influence of Spectral Dissimilarities
on Multivariate Calibration Performance, Appl. Spectrosc., 73,
271-283, https://doi.org/10.1177/0003702818804574, 2019.

Decesari, S., Mircea, M., Cavalli, F, Fuzzi, S., Moretti, F.,
Tagliavini, E., and Facchini, M. C.: Source Attribution of
Water-Soluble Organic Aerosol by Nuclear Magnetic Reso-
nance Spectroscopy, Environ. Sci. Technol., 41, 2479-2484,
https://doi.org/10.1021/es0617111, 2007.

Dillner, A. M., Boris, A. J.,, Takahama, S., Weakley, A.
T., Debus, B., Frederickson, C. D., Esparza-Sanchez, M.,
Burke, C., Reggente, M., Shaw, S. L., and Edgerton, E.
S.: Organic functional group and organic matter concentra-
tions from FT-IR measurements of particulate matter sam-
ples in the Southeastern Aerosol Research and Characteriza-
tion (SEARCH) network from 2009-2016, UC Davis, Dataset,
https://doi.org/10.25338/B8SG73, 2019.

Edgerton, E. S., Hartsell, B. E., Saylor, R. D., Jansen, J.
J., Hansen, D. A. and Hidy, G. M.: The Southeastern
Aerosol Research and Characterization Study, part II: Filter-
based measurements of fine and coarse particulate matter
mass and composition, J. Air Waste Manage., 55, 1527-1542,
https://doi.org/10.1080/10473289.2005.10464744, 2005.

Atmos. Meas. Tech., 12, 5391-5415, 2019

A. J. Boris et al.: Quantifying organic matter and functional groups

El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., and Hansen,
D. A.: Analytical determination of the aerosol organic mass-
to-organic carbon ratio, J. Air Waste Manage., 59, 58-69,
https://doi.org/10.3155/1047-3289.59.1.58, 2009.

Faber, P., Drewnick, F., Bierl, R., and Borrmann, S.: Complemen-
tary online aerosol mass spectrometry and offline FT-IR spec-
troscopy measurements: Prospects and challenges for the analy-
sis of anthropogenic aerosol particle emissions, Atmos. Environ.,
166, 92-98, https://doi.org/10.1016/j.atmosenv.2017.07.014,
2017.

Frossard, A. A. and Russell, L. M.: Removal of sea salt hydrate wa-
ter from seawater-derived samples by dehydration, Environ. Sci.
Technol., 46, 1332613333, https://doi.org/10.1021/es3032083,
2012.

Gao, S., Surratt, J. D., Knipping, E. M., Edgerton, E. S., Shahgholi,
M., and Seinfeld, J. H.: Characterization of polar organic com-
ponents in fine aerosols in the southeastern United States: Iden-
tity, origin, and evolution, J. Geophys. Res., 111, D14314,
https://doi.org/10.1029/2005JD006601, 2006.

George, K. M., Ruthenburg, T. C., Smith, J., Yu, L., Zhang,
Q., Anastasio, C., and Dillner, A. M.: FT-IR quantification of
the carbonyl functional group in aqueous-phase secondary or-
ganic aerosol from phenols, Atmos. Environ., 100, 230-237,
https://doi.org/10.1016/j.atmosenv.2014.11.011, 2015.

Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite
Jr., J. R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L.,
Nenes, A., and Weber, R. J.: Fine-particle water and pH in the
southeastern United States, Atmos. Chem. Phys., 15, 5211-5228,
https://doi.org/10.5194/acp-15-5211-2015, 2015.

Haagen-Smit, A. J.: Chemistry and Physiology of Los
Angeles Smog, Ind. Eng. Chem., 44, 1342-1346,
https://doi.org/10.1021/ie50510a045, 1952.

Hallar, A. G., Lowenthal, D. H., Clegg, S. L., Samburova, V.,
Taylor, N., Mazzoleni, L. R., Zielinska, B. K., Kristensen, T.
B., Chirokova, G., McCubbin, I. B., Dodson, C., and Collins,
D.: Chemical and hygroscopic properties of aerosol organics at
Storm Peak Laboratory, J. Geophys. Res.-Atmos., 118, 4767—
4779, https://doi.org/10.1002/jgrd.50373, 2013.

Hamilton, J. F., Webb, P. J., Lewis, A. C., Hopkins, J. R., Smith,
S., and Davy, P.: Partially oxidised organic components in urban
aerosol using GCXGC-TOF/MS, Atmos. Chem. Phys., 4, 1279—
1290, https://doi.org/10.5194/acp-4-1279-2004, 2004.

Hand, J. L., Schichtel, B. A., Pitchford, M., Malm, W. C., and Frank,
N. H.: Seasonal composition of remote and urban fine particulate
matter in the United States, J. Geophys. Res.-Atmos., 117, 1-22,
https://doi.org/10.1029/2011JD017122, 2012.

Hand, J. L., Gill, T. E., and Schichtel, B. A.: Spatial and seasonal
variability in fine mineral dust and coarse aerosol mass at remote
sites across the United States, J. Geophys. Res., 122, 3080-3097,
https://doi.org/10.1002/2016JD026290, 2017.

Hand, J. L., Prenni, A. J., Schichtel, B. A., Malm, W. C., and
Chow, J. C.: Trends in remote PM, 5 residual mass across
the United States: Implications for aerosol mass reconstruc-
tion in the IMPROVE network, Atmos. Environ., 203, 141-152,
https://doi.org/10.1016/j.atmosenv.2019.01.049, 2019.

Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kan-
dasamy, N., Hidy, G. M., Blanchard, C. L., Hansen, D. A., Edger-
ton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G.
M., The, C. L. B., Hansen, D. A., Edgerton, E. S., Hartsell, B.

www.atmos-meas-tech.net/12/5391/2019/


https://doi.org/10.1007/s11869-015-0338-3
https://doi.org/10.1007/s11869-015-0338-3
https://doi.org/10.1126/science.1092805
https://doi.org/10.1016/j.atmosenv.2008.03.026
https://doi.org/10.1016/j.atmosenv.2008.10.056
https://doi.org/10.1021/jp9931408
https://doi.org/10.1016/j.atmosenv.2010.10.024
https://doi.org/10.1021/cg060058a
https://doi.org/10.1177/0003702818804574
https://doi.org/10.1021/es061711l
https://doi.org/10.25338/B8SG73
https://doi.org/10.1080/10473289.2005.10464744
https://doi.org/10.3155/1047-3289.59.1.58
https://doi.org/10.1016/j.atmosenv.2017.07.014
https://doi.org/10.1021/es3032083
https://doi.org/10.1029/2005JD006601
https://doi.org/10.1016/j.atmosenv.2014.11.011
https://doi.org/10.5194/acp-15-5211-2015
https://doi.org/10.1021/ie50510a045
https://doi.org/10.1002/jgrd.50373
https://doi.org/10.5194/acp-4-1279-2004
https://doi.org/10.1029/2011JD017122
https://doi.org/10.1002/2016JD026290
https://doi.org/10.1016/j.atmosenv.2019.01.049

A. J. Boris et al.: Quantifying organic matter and functional groups

E., Jansen, J. J., Kandasamy, N., Hidy, G. M., and Blanchard,
C. L.: The Southeastern Aerosol Research and Characterization
Study?: Part 1 — Overview, J. Air Waste Manage., 53, 1460-1471,
https://doi.org/10.1080/10473289.2003.10466318, 2003.

Harrison, M., Barra, S., Borghesi, D., Vione, D., Ar-
sene, C., and Iulianolariu, R.: Nitrated phenols in the
atmosphere: a review, Atmos. Environ.,, 39, 231-248,
doi:10.1016/j.atmosenv.2004.09.044, 2005.

Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo,
P. F, Aiken, A. C., Chen, Q., Martin, S. T., and Farmer, D. K.: A
simplified description of the evolution of organic aerosol com-
position in the atmosphere, Geophys. Res. Lett., 37, L08803,
https://doi.org/10.1029/2010GL042737, 2010.

Helsel, D. R.: More Than Obvious: Better Methods for Interpret-
ing Nondetect Data, Environ. Sci. Technol., 39, 419A—423A,
https://doi.org/10.1021/es053368a, 2005.

Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes,
E., Richards, K., and Humphry, T.: Determination of atmospheric
organosulfates using HILIC chromatography with MS detection,
Atmos. Meas. Tech., 8, 2347-2358, https://doi.org/10.5194/amt-
8-2347-2015, 2015.

Hidy, G. M., Blanchard, C. L., Baumann, K., Edgerton, E., Tanen-
baum, S., Shaw, S., Knipping, E., Tombach, I., Jansen, J., and
Walters, J.: Chemical climatology of the southeastern United
States, 1999-2013, Atmos. Chem. Phys., 14, 11893-11914,
https://doi.org/10.5194/acp-14-11893-2014, 2014.

Hoaglin, D. C. and Welsch, R. E.. The Hat Matrix
in Regression and ANOVA, Am. Stat, 32, 17-22,
https://doi.org/10.1080/00031305.1978.10479237, 1978.

Hyslop, N. P. and White, W. H.: An evaluation of interagency mon-
itoring of protected visual environments (IMPROVE) collocated
precision and uncertainty estimates, Atmos. Environ., 42, 2691—
2705, https://doi.org/10.1016/j.atmosenv.2007.06.053, 2008.

Hyslop, N. P. and White, W. H.: Estimating precision using du-
plicate measurements, J. Air Waste Manage., 59, 1032-1039,
https://doi.org/10.3155/1047-3289.59.9.1032, 20009.

Kahnt, A., Vermeylen, R., linuma, Y., Safi Shalamzari, M., Maen-
haut, W., and Claeys, M.: High-molecular-weight esters in o-
pinene ozonolysis secondary organic aerosol: structural char-
acterization and mechanistic proposal for their formation from
highly oxygenated molecules, Atmos. Chem. Phys., 18, 8453—
8467, https://doi.org/10.5194/acp-18-8453-2018, 2018.

Kamruzzaman, M., Takahama, S., and Dillner, A. M.: Quantifica-
tion of amine functional groups and their influence on OM/OC
in the IMPROVE network, Atmos. Environ., 172, 124-132,
https://doi.org/10.1016/j.atmosenv.2017.10.053, 2018.

Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and
related compounds in atmospheric aerosols: Molecular distribu-
tions, sources and transformation, Atmos. Res., 170, 140-160,
https://doi.org/10.1016/j.atmosres.2015.11.018, 2016.

Kuzmiakova, A., Dillner, A. M., and Takahama, S.: An automated
baseline correction protocol for infrared spectra of atmospheric
aerosols collected on polytetrafluoroethylene (Teflon) filters, At-
mos. Meas. Tech., 9, 2615-2631, https://doi.org/10.5194/amt-9-
2615-2016, 2016.

Ledesma, S., Ruiz, J., and Garcia, G.: Simulated Annealing Evolu-
tion, in: Simulated Annealing: Advances, Applications and Hy-
bridizations, edited by: Tsuzuki, M. S. G., InTech, 2012.

www.atmos-meas-tech.net/12/5391/2019/

5413

Liu, J., Russell, L. M., Ruggeri, G., Takahama, S., Claflin, M. S.,
Ziemann, P. J., Pye, H. O. T., Murphy, B. N, Xu, L., Ng, N. L.,
McKinney, K. A., Budisulistiorini, S. H., Bertram, T. H., Nenes,
A., and Surratt, J. D.: Regional Similarities and NOx-Related
Increases in Biogenic Secondary Organic Aerosol in Summer-
time Southeastern United States, J. Geophys. Res.-Atmos., 123,
10620-10636, https://doi.org/10.1029/2018JD028491, 2018.

Liu, S., Takahama, S., Russell, L. M., Gilardoni, S., and Baum-
gardner, D.: Oxygenated organic functional groups and their
sources in single and submicron organic particles in MILA-
GRO 2006 campaign, Atmos. Chem. Phys., 9, 6849-6863,
https://doi.org/10.5194/acp-9-6849-2009, 2009.

Liu, S., Ahlm, L., Day, D. A., Russell, L. M., Zhao, Y., Gentner,
D. R., Weber, R. J., Goldstein, A. H., Jaoui, M., Offenberg, J.
H., Kleindienst, T. E., Rubitschun, C., Surratt, J. D., Sheesley,
R. J., and Scheller, S.: Secondary organic aerosol formation
from fossil fuel sources contribute majority of summertime or-
ganic mass at Bakersfield, J. Geophys. Res.-Atmos., 117, 1-21,
https://doi.org/10.1029/2012JD018170, 2012.

Malm, W. C. and Hand, J. L..: An examination of the
physical and optical properties of aerosols collected in
the IMPROVE program, Atmos. Environ., 41, 3407-3427,
https://doi.org/10.1016/j.atmosenv.2006.12.012, 2007.

Maron, M. K., Takahashi, K., Shoemaker, R. K., and
Vaida, V.. Hydration of pyruvic acid to its geminal-
diol, 2,2-dihydroxypropanoic acid, in a water-restricted
environment, Chem. Phys. Lett., 513, 184-190,
https://doi.org/10.1016/j.cplett.2011.07.090, 2011.

Mayo, D. W., Miller, F. A., and Robert W, H.: Course Notes on
the Interpretation of Infrared and Raman Spectra, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2003.

Mayol-Bracero, O. L., Guyon, P, Graham, B., Roberts, F., Andreae,
M. O., Decesari, S., Facchini, M. C., Fuzzi, S., and Artaxo, P.:
Water-soluble organic compounds in biomass burning aerosols
over Amazonia 2. Apportionment of the chemical composition
and importance of the polyacidic fraction, J. Geophys. Res., 107,
8091, https://doi.org/10.1029/2001JD000522, 2002.

Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Poschl, U.:
Amorphous and crystalline aerosol particles interacting with wa-
ter vapor: conceptual framework and experimental evidence for
restructuring, phase transitions and kinetic limitations, Atmos.
Chem. Phys., 9, 9491-9522, https://doi.org/10.5194/acp-9-9491-
2009, 2009.

Moretti, F., Tagliavini, E., Decesari, S., Facchini, M. C., Rinaldi,
M., and Fuzzi, S.: NMR determination of total carbonyls and
carboxyls: A tool for tracing the evolution of atmospheric oxi-
dized organic aerosols, Environ. Sci. Technol., 42, 4844-4849,
https://doi.org/10.1021/es703166v, 2008.

Naes, T., Isaksson, T., Fearn, T., and Davies, T.: A User-Friendly
Guide to Multivariate Calibration and Classification, NIR Publi-
cations, Chichester, 2002.

National Institute of Advanced Industrial Science and Technology:
SDBSWeb, available at: https://sdbs.db.aist.go.jp (last access:
9 December 2019), 2018.

Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Se-
infeld, J. H., and Worsnop, D. R.: Changes in organic aerosol
composition with aging inferred from aerosol mass spectra, At-
mos. Chem. Phys., 11, 6465-6474, https://doi.org/10.5194/acp-
11-6465-2011, 2011.

Atmos. Meas. Tech., 12, 5391-5415, 2019


https://doi.org/10.1080/10473289.2003.10466318
https://doi.org/10.1029/2010GL042737
https://doi.org/10.1021/es053368a
https://doi.org/10.5194/amt-8-2347-2015
https://doi.org/10.5194/amt-8-2347-2015
https://doi.org/10.5194/acp-14-11893-2014
https://doi.org/10.1080/00031305.1978.10479237
https://doi.org/10.1016/j.atmosenv.2007.06.053
https://doi.org/10.3155/1047-3289.59.9.1032
https://doi.org/10.5194/acp-18-8453-2018
https://doi.org/10.1016/j.atmosenv.2017.10.053
https://doi.org/10.1016/j.atmosres.2015.11.018
https://doi.org/10.5194/amt-9-2615-2016
https://doi.org/10.5194/amt-9-2615-2016
https://doi.org/10.1029/2018JD028491
https://doi.org/10.5194/acp-9-6849-2009
https://doi.org/10.1029/2012JD018170
https://doi.org/10.1016/j.atmosenv.2006.12.012
https://doi.org/10.1016/j.cplett.2011.07.090
https://doi.org/10.1029/2001JD000522
https://doi.org/10.5194/acp-9-9491-2009
https://doi.org/10.5194/acp-9-9491-2009
https://doi.org/10.1021/es703166v
https://sdbs.db.aist.go.jp
https://doi.org/10.5194/acp-11-6465-2011
https://doi.org/10.5194/acp-11-6465-2011

5414 A. J. Boris et al.: Quantifying organic matter and functional groups

Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R.: In-
troduction to Spectroscopy, Fourth, Brooks/Cole Cengage Learn-
ing, Belmont, CA, 2009.

Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D.,
and Hand, J.: Revised algorithm for estimating light extinction
from IMPROVE particle speciation data, J. Air Waste Manage.,
57, 1326-1336, https://doi.org/10.3155/1047-3289.57.11.1326,
2007.

Polidori, A., Turpin, B. J., Davidson, C. 1., Rodenburg,
L. A., and Maimone, F.. Organic PMjs: Fractionation
by Polarity, FTIR Spectroscopy, and OM/OC Ratio for
the Pittsburgh Aerosol, Aerosol Sci. Tech., 42, 233-246,
https://doi.org/10.1080/02786820801958767, 2008.

Polissar, A. V, Hopke, P. K., Paatero, P., Malm, W. C., and Sisler, J.
F.: Atmospheric aerosol over Alaska. II. Elemental composition
and sources, J. Geophys. Res., 103, 19045-19057, 1998.

Reff, A., Turpin, B. J., Porcja, R. J., Giovennetti, R., Cui, W.,
Weisel, C. P., Zhang, J., Kwon, J., Alimokhtari, S., Morandi,
M., Stock, T., Maberti, S., Colome, S., Winer, A., Shendell,
D., Jones, J., and Farrar, C.: Functional group characteriza-
tion of indoor, outdoor, and personal PMj 5: Results from
RIOPA, Indoor Air, 15, 53-61, https://doi.org/10.1111/j.1600-
0668.2004.00323.x, 2005.

Reff, A., Turpin, B. J., Offenberg, J. H., Weisel, C. P., Zhang, J.,
Morandi, M., Stock, T., Colome, S., and Winer, A.: A func-
tional group characterization of organic PM2.5 exposure: Re-
sults from the RIOPA study, Atmos. Environ., 41, 4585-4598,
https://doi.org/10.1016/j.atmosenv.2007.03.054, 2007.

Reggente, M., Dillner, A. M., and Takahama, S.: Analysis of func-
tional groups in atmospheric aerosols by infrared spectroscopy:
systematic intercomparison of calibration methods for US mea-
surement network samples, Atmos. Meas. Tech., 12, 2287-2312,
https://doi.org/10.5194/amt-12-2287-2019, 2019.

Rogge, W. and Hildemann, L.: Sources of fine organic aerosol. 6.
Cigarette smoke in the urban atmosphere, Environ. Sci. Technol.,
28, 1375-1388, https://doi.org/10.1021/es00056a030, 1994.

Rogge, W. F.,, Mazurek, M. A., Hildemann, L. M., Cass, G.
R., and Simoneit, B. R. T.: Quantification of urban organic
aerosols at a molecular level: Identification, abundance and
seasonal variation, Atmos. Environ. A-Gen., 27, 1309-1330,
https://doi.org/10.1016/0960-1686(93)90257-Y, 1993.

Russell, L. M.: Aerosol Organic-Mass-to-Organic-Carbon Ratio
Measurements, Environ. Sci. Technol., 37, 2982-2987, 2003.
Russell, L. M., Bahadur, R., Hawkins, L. N., Allan, J., Baum-
gardner, D., Quinn, P. K., and Bates, T. S.: Organic aerosol
characterization by complementary measurements of chemical
bonds and molecular fragments, Atmos. Environ., 43, 6100-

6105, https://doi.org/10.1016/j.atmosenv.2009.09.036, 2009a.

Russell, L. M., Takahama, S., Liu, S., Hawkins, L. N., Covert,
D. S., Quinn, P. K., and Bates, T. S.: Oxygenated fraction and
mass of organic aerosol from direct emission and atmospheric
processing measured on the R/V Ronald Brown during TEX-
AQS/GoMACCS 2006, J. Geophys. Res.-Atmos., 114, 1-15,
https://doi.org/10.1029/2008JD011275, 2009b.

Russell, L. M., Bahadur, R., and Ziemann, P. J.: Identifying organic
aerosol sources by comparing functional group composition in
chamber and atmospheric particles, P. Natl. Acad. Sci. USA, 108,
3516-3521, https://doi.org/10.1073/pnas.1006461108, 2011.

Atmos. Meas. Tech., 12, 5391-5415, 2019

Ruthenburg, T. C., Perlin, P. C., Liu, V., McDade, C. E., and Dillner,
A. M.: Determination of organic matter and organic matter to
organic carbon ratios by infrared spectroscopy with application
to selected sites in the IMPROVE network, Atmos. Environ., 86,
47-57, https://doi.org/10.1016/j.atmosenv.2013.12.034, 2014.

Schum, S. K., Zhang, B., DZepina, K., Fialho, P., Mazzoleni,
C., and Mazzoleni, L. R.: Molecular and physical characteris-
tics of aerosol at a remote free troposphere site: implications
for atmospheric aging, Atmos. Chem. Phys., 18, 14017-14036,
https://doi.org/10.5194/acp-18-14017-2018, 2018.

Simon, H., Bhave, P. V., Swall, J. L., Frank, N. H., and Malm,
W. C.: Determining the spatial and seasonal variability in
OM/OC ratios across the US using multiple regression, At-
mos. Chem. Phys., 11, 2933-2949, https://doi.org/10.5194/acp-
11-2933-2011, 2011.

Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.:
Characterization of organosulfates in atmospheric aerosols
at Four Asian locations, Atmos. Environ., 47, 323-329,
https://doi.org/10.1016/j.atmosenv.2011.10.058, 2012.

Sun, Y., Zhang, Q., Zheng, M., Ding, X., Edgerton, E. S., and Wang,
X.: Characterization and source apportionment of water-soluble
organic matter in atmospheric fine particles (PM» 5) with high-
resolution aerosol mass spectrometry and GC-MS., Environ. Sci.
Technol., 45, 4854-4861, https://doi.org/10.1021/es200162h,
2011.

Takahama, S. and Ruggeri, G.: Technical note: Relating func-
tional group measurements to carbon types for improved model-
measurement comparisons of organic aerosol composition, At-
mos. Chem. Phys., 17, 4433-4450, https://doi.org/10.5194/acp-
17-4433-2017, 2017.

Takahama, S., Johnson, A., and Russell, L. M.: Quantification of
Carboxylic and Carbonyl Functional Groups in Organic Aerosol
Infrared Absorbance Spectra, Aerosol Sci. Tech., 47, 310-325,
https://doi.org/10.1080/02786826.2012.752065, 2013.

Turpin, B. J. and Lim, H.-J.: Species Contributions to PM2.5
Mass Concentrations: Revisiting Common Assumptions for
Estimating Organic Mass, Aerosol Sci. Tech., 35, 602-610,
https://doi.org/10.1080/02786820152051454, 2001.

U.S. Environmental Protection Agency: Appendix L to Part 50—
Reference Method for the Determination of Fine Particulate Mat-
ter as PMj 5 in the Atmosphere, available at: https://gov.ecfr.io/
cgi-bin/ECFR (last access: 9 December 2019), 2011.

Wang, G., Kawamura, K., Cheng, C., Li, J., Cao, J., Zhang, R.,
Zhang, T., Liu, S., and Zhao, Z.: Molecular distribution and sta-
ble carbon isotopic composition of dicarboxylic acids, ketocar-
boxylic acids, and «-dicarbonyls in size-resolved atmospheric
particles from Xi’an City, China, Environ. Sci. Technol., 46,
4783-4791, https://doi.org/10.1021/es204322c, 2012.

Weakley, A. T., Takahama, S., and Dillner, A. M.: Ambient aerosol
composition by infrared spectroscopy and partial least-squares
in the chemical speciation network: Organic carbon with func-
tional group identification, Aerosol Sci. Tech., 50, 1096-1114,
https://doi.org/10.1080/02786826.2016.1217389, 2016.

Weber, R. J., Sullivan, A. P, Peltier, R. E., Russell, A., Yan, B.,
Zheng, M., de Gouw, J., Warneke, C., Brock, C., Holloway, J.
S., Atlas, E. L., and Edgerton, E.: A study of secondary or-
ganic aerosol formation in the anthropogenic-influenced south-
eastern United States, J. Geophys. Res.-Atmos., 112, D13302,
https://doi.org/10.1029/2007JD008408, 2007.

www.atmos-meas-tech.net/12/5391/2019/


https://doi.org/10.3155/1047-3289.57.11.1326
https://doi.org/10.1080/02786820801958767
https://doi.org/10.1111/j.1600-0668.2004.00323.x
https://doi.org/10.1111/j.1600-0668.2004.00323.x
https://doi.org/10.1016/j.atmosenv.2007.03.054
https://doi.org/10.5194/amt-12-2287-2019
https://doi.org/10.1021/es00056a030
https://doi.org/10.1016/0960-1686(93)90257-Y
https://doi.org/10.1016/j.atmosenv.2009.09.036
https://doi.org/10.1029/2008JD011275
https://doi.org/10.1073/pnas.1006461108
https://doi.org/10.1016/j.atmosenv.2013.12.034
https://doi.org/10.5194/acp-18-14017-2018
https://doi.org/10.5194/acp-11-2933-2011
https://doi.org/10.5194/acp-11-2933-2011
https://doi.org/10.1016/j.atmosenv.2011.10.058
https://doi.org/10.1021/es200162h
https://doi.org/10.5194/acp-17-4433-2017
https://doi.org/10.5194/acp-17-4433-2017
https://doi.org/10.1080/02786826.2012.752065
https://doi.org/10.1080/02786820152051454
https://gov.ecfr.io/cgi-bin/ECFR
https://gov.ecfr.io/cgi-bin/ECFR
https://doi.org/10.1021/es204322c
https://doi.org/10.1080/02786826.2016.1217389
https://doi.org/10.1029/2007JD008408

A. J. Boris et al.: Quantifying organic matter and functional groups 5415

Weis, D. D. and Ewing, G. E.: Infrared spectroscopic signatures
of (NH4),SOy4 aerosols, J. Geophys. Res.-Atmos., 101, 18709—
18720, https://doi.org/10.1029/96JD01543, 1996.

Went, F.: Blue Hazes in the Atmosphere, Nature, 4738, 641-643,
https://doi.org/10.1038/187641a0, 1960.

White, W. H., Roberts, P. T., and Laboratories, W. M. K.: On
the Nature and Origins of Visibility-Reducing Aerosols in
the Los Angeles Air Basin, Atmos. Environ., 11, 803-812,
https://doi.org/10.1016/0004-6981(77)90042-7, 1977.

Wold, S. and Sjostrom, M.: PLS-regression: A basic tool of chemo-
metrics, Chemom. Intell. Lab. Syst., 58, 109-130, 2001.

Xu, L., Suresh, S., Guo, H.,, Weber, R. J., and Ng, N. L.
Aerosol characterization over the southeastern United States us-
ing high-resolution aerosol mass spectrometry: spatial and sea-
sonal variation of aerosol composition and sources with a fo-
cus on organic nitrates, Atmos. Chem. Phys., 15, 7307-7336,
https://doi.org/10.5194/acp-15-7307-2015, 2015.

www.atmos-meas-tech.net/12/5391/2019/

Yang, L. and Yu, L. E.. Measurements of oxalic acid,
oxalates, malonic acid, and malonates in atmospheric
particulates, Environ. Sci. Technol., 42, 9268-9275,
https://doi.org/10.1021/es801820z, 2008.

Yu, X. Y., Lee, T., Ayres, B., Kreidenweis, S. M., Malm,
W., and Collett, J. L.: Loss of fine particle ammonium
from denuded nylon filters, Atmos. Environ., 40, 4797-4807,
https://doi.org/10.1016/j.atmosenv.2006.03.061, 2006.

Atmos. Meas. Tech., 12, 5391-5415, 2019


https://doi.org/10.1029/96JD01543
https://doi.org/10.1038/187641a0
https://doi.org/10.1016/0004-6981(77)90042-7
https://doi.org/10.5194/acp-15-7307-2015
https://doi.org/10.1021/es801820z
https://doi.org/10.1016/j.atmosenv.2006.03.061

	Abstract
	Introduction
	Challenges of quantifying atmospheric aerosol organic matter mass
	Using infrared absorption of functional groups to quantify aerosol OM
	Functional group calibration method improvements
	Summary of study goals

	Methods
	SEARCH network samples, network data, and field blanks
	Laboratory standard generation
	FT-IR spectrometry analysis: spectrum acquisition
	Outlier detection and handling
	Building and evaluating the functional group calibration models
	Bulk OC and OM concentration estimates
	Model evaluation: interpretation of model predictors and comparison with external measurements
	Method detection limits

	Model uncertainties

	Results and discussion
	Chemicals used in the calibration models to concisely represent atmospheric composition
	Molecular environment considerations
	Evaluation of model performance
	Predictive features of laboratory standards found in the models
	Summary of functional group calibration model metrics

	Evaluation by comparison to other methods and previous FT-IR spectrometry work
	Evaluating FT-IR measurements: mass recovery
	Evaluating FT-IR measurements: OM and functional group concentrations
	Evaluating FT-IR measurements: OM/OC ratios
	Evaluating FT-IR measurements: O/C and H/C ratios

	Method limitations and future work

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

