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Abstract. This paper presents a methodology for ice wa-
ter content (IWC) retrieval from a dual-polarization side-
looking X-band airborne radar. Measured IWC from aircraft
in situ probes is weighted by a function of the radar differ-
ential reflectivity (Zdr) to reduce the effects of ice crystal
shape and orientation on the variation in IWC – specific dif-
ferential phase (Kdp) joint distribution. A theoretical study
indicates that the proposed method, which does not require a
knowledge of the particle size distribution (PSD) and number
density of ice crystals, is suitable for high-ice-water-content
(HIWC) regions in tropical convective clouds. Using datasets
collected during the High Altitude Ice Crystals – High Ice
Water Content (HAIC-HIWC) international field campaign
in Cayenne, French Guiana (2015), it is shown that the pro-
posed method improves the estimation bias by 35 % and in-
creases the correlation by 4 % on average, compared to the
method using specific differential phase (Kdp) alone.

1 Introduction

Ice water content (IWC) and its spatial distribution inside
clouds are known for the significant effects they exert on the
Earth’s energy budget and hydrological cycle (e.g. Stocker
et al., 2013). Aside from its significant effect on the atmo-
spheric processes, high ice water content (IWC> 1 g m−3),
which is resultant from a high concentration of small ice
crystals in tropical mesoscale convective systems, has been
linked to aircraft incidents and accidents (Lawson et al.,
1998; Mason et al., 2006; Grzych and Mason, 2010; Strapp
et al., 2016). Since early 1990s, over 150 engine rollback
and power-loss events have been attributed to the ingestion

of ice particles produced in convective clouds (Grzych and
Mason, 2010). Many studies have been undertaken to under-
stand the details of the meteorological processes responsible
for producing areas of HIWC. Equally important, methods
using multiplatform observations from ground, airborne, and
space supplemented by weather models are being developed
for improving detection and avoidance of high-IWC regions
that would be potentially hazardous for aviation (Strapp et
al., 2016).

Conventional methods of deducing IWC from radar mea-
surements assume a statistical relationship between the radar
reflectivity factor (Z) and IWC. Such relationships are usu-
ally obtained based on IWC and Z calculated from in
situ measurements of particle size distributions (PSDs) and
a size-to-mass parameterization (m(D)) (e.g. Heymsfield,
1977; Hogan et al., 2006). In recent studies (Protat et al.,
2016), IWC was measured directly by bulk microphysical
probes and Z was measured from either an airborne or
ground-based radar. However, all of these studies show large
uncertainties in the IWC–Z relationship despite the intro-
duction of additional constraints such as air temperature (T )
or the inclusion of refined m(D) in the IWC calculations
(Fontaine et al., 2014; Protat et al., 2016).

Lu et al. (2015) conducted an extensive simulation on both
millimetre- and centimetre-wavelength radar and concluded
that the IWC–Z relationship is very sensitive to ice crys-
tal PSDs (from 1 to 2 orders of magnitude in variability)
and as such is not recommended for IWC retrievals. An-
other approach employs polarimetric observations. The non-
spherical geometry of ice crystals provides information on
the types and habits of ice crystals (Matrosov et al., 1996;
Wolde and Vali, 2001). It has been shown that the radar-
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specific differential phase (Kdp) is less dependent on PSD;
hence, it is potentially useful for IWC retrieval (Vivekanan-
dan et al., 1994; Lu et al., 2015). Aydin and Tang (1997)
suggested the possibility of combining Kdp and differential
reflectivity ratio (Zdr) for IWC estimation for clouds com-
posed of pristine ice crystals. However, even for the polari-
metric approach, knowledge about ice crystal mass density
(ρ) and axis ratio is still needed to obtain accurate estimates
of IWC. Simulation results (Lu et al., 2015) show that if only
the general type of ice crystals is known, errors in IWC re-
trieval based on Kdp are within 30 % of their true values.
Unfortunately, the aforementioned parameters (ρ and parti-
cle axis ratio) are, in general, unknown and additional as-
sumptions are often invoked. Ryzhkov et al. (1998), for in-
stance, took into consideration ice crystal shapes and size–
density parameterization of scatterers to reduce the uncer-
tainty in IWC estimates. Modelling work (Ryzhkov et al.,
1998) shows that for average-sized pristine and moderately
aggregated ice crystals, the ratio between the reflectivity dif-
ference ZDP = ZH −ZV and Kdp is practically insensitive
to the shape and density of the ice particles and is a good
estimator of their mass.

In this paper we present a new method for assessment of
IWC based on the Kdp and Zdr measurements from a side-
looking X-band airborne radar in tropical mesoscale convec-
tive systems (MCSs). The IWC will be weighted with a func-
tion of Zdr to minimize the dependency of the IWC–Kdp re-
lationship on the particle shape and orientation, hence im-
proving the IWC estimation errors without knowledge of the
PSD or density of the ice particles. The proposed method
is examined using datasets collected during the High Alti-
tude Ice Crystal – High Ice Water Content (HAIC-HIWC)
international field campaign in Cayenne, French Guiana, in
May 2015. The campaign was carried out to enhance the
knowledge of microphysical properties of high-altitude ice
crystals and mechanisms of their formation in deep tropical
convective systems in order to address aviation safety issues
related to engine icing (Strapp et al., 2016).

2 Background

2.1 Polarimetric parameters characterizing ice crystals

In conventional single-polarization Doppler radar, measured
radar reflectivity and radial velocity are used to assess cloud
and precipitation spatial variability, precipitation rate, and
characteristic hydrometeor types. In dual-polarization radar
systems, measurements are made at more than one polariza-
tion state (Bringi and Chandrasekar, 2001). Such systems can
be configured in several ways depending on the measurement
goals and the choice of orthogonal polarization states. In this
study, the results and discussions will be limited to the con-
sideration of the linear horizontal and vertical (H/V ) polar-
ization basis. The intrinsic backscattering properties of the

hydrometeors for the two polarization states enable the char-
acterization of microphysical properties such as size, shape,
and spatial orientation of the cloud/precipitation particles in
the radar resolution volume. Hence, using polarization, it is
generally possible to achieve more accurate classification of
hydrometeor types and estimate hydrometeor amounts such
as rainfall rate. Polarimetric backscattering properties of hy-
drometeors depend on many factors such as radar wave-
length, radar elevation angle, particle size, shape, orientation,
etc. In this section, we summarize how the differential re-
flectivity (Zdr, dB) and the specific differential phase (Kdp,
◦ km−1) are measured by a polarimetric Doppler radar in the
Rayleigh scattering regime and at low radar elevation angles.

In general, the differential reflectivity of an ensemble of n
particles of sizeD and axis ratio r is given by Eq. (1) (Eq. 7.4
in Bringi and Chandrasekar, 2001),

Zdr = 10log10

[
|Shh (r,D)|

2

|Svv (r,D)|
2

]
, (1)

where Shh and Svv are the diagonal elements of the backscat-
tering matrices in the forward-scatter alignment (FSA) con-
vention.

The specific differential phase is defined as (Eq. 7.6 in
Bringi and Chandrasekar, 2001)

Kdp =
2πn
k
Re
[
fhh (r,D)− fvv (r,D)

]
, (2)

where n is the number concentration in reciprocal litres, k
is wavenumber in reciprocal metres, Re[] stands for the real
part of a complex number, and fhh and fvv are the forward-
scattering amplitudes in m at horizontal and vertical polar-
ization, respectively. Equation (2) shows that Zdr does not
change with increasing number of ice particles while Kdp
is proportional to n. Consequently, for a large number of
small particles with the axis ratio close to unity (r ≈ 1),
Zdr→ 0 dB and the second term in Eq. (2) becomes small
but Kdp can still be large.

In a simple form of the calculations of Zdr and Kdp of ice
crystals, it is customary to approximate columns as homo-
geneous prolate spheroids and plates as homogeneous oblate
spheroids. In the case of side incidence, the elevation angle
is assumed to be close to zero and there is no (or very small)
canting in the vertical plane. In the absence of wind shear and
turbulence, and assuming a perfectly aligned spheroid model,
Zdr andKdp can be expressed as functions of ice particle size,
axis ratio, and the relative permittivity of the particle (ε). For
example, for oblate spheroid ice particles with a particle size
distribution, N(D) (Eq. 7.5–7.8 in Bringi and Chandrasekar,
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2001),

|Shh (r,D) | ≈
k2

4π
V (D)|ε− 1|[

1+ 1
2 (1− λo) |ε− 1|

] , (3)

|Svv (r,D) | ≈
k2

4π
V (D)|ε− 1|

[1+ λo|ε− 1|]
, (4)

Zhh,vv =
λ4

π5K2
p

∫
4π |Shh,vv|2N (D)dD, (5)

Kdp =
k

2

∫
V (D)N (D)dD, (6)

where Kp is dielectric factor of water at 0 ◦C (K2
p = 0.93);

V (D) is the particle volume; λo is the depolarizing factor,
which is only a function of the axis ratio r = b/a (for oblate
particles; a is the semi-major axis length; and b is the semi-
minor axis length (a > b)). The depolarizing factor is defined
as

λo =λ(oblate)=
1+ f 2

f 2

(
1−

1
f

tan−1f

)
;

f 2
=

1
r2 − 1 . (7)

A similar equation for Kdp can also be derived for prolate
spheroid ice particles with symmetry axis parallel to the hor-
izontal plane (Hogan et al., 2006).

On the other hand, the IWC can be defined in terms of the
size distribution,

IWC=
∫
ρ (D)V (D)N (D)dD, (8)

where ρ(D) is the mass density of ice crystals with size D.

2.2 Polarimetric methods for IWC retrieval

An inspection of Eqs. (3) and (4) suggests that for small
ice crystal particles, the radar cross section (σhh,vv =
4π
∣∣Shh,vv∣∣2) is roughly proportional to the square of the ice

particle mass (ρ2
i (D)V (D)

2), a conclusion also confirmed
by results from simulated data (Lu et al., 2015). In addition,
according to Lu et al. (2015), for particles with sizes compa-
rable to or larger than the radar wavelength, there is no clear
relationship between the radar cross section and ice particle
mass due to the Mie resonance effects. In either case, σhh,vv
is not directly proportional to the particle mass. Hence, the
Z–IWC relationship depends strongly on the particle size
distribution and the radar frequency. Consequently, using Z
only to estimate IWC without knowledge of the PSD can lead
to errors as large as 1 order of magnitude. On the other hand,
Eq. (6) indicates that if the terms in square brackets (α) are
proportional to the ice density (ρ(D)), then the Kdp–IWC
relationship is independent of PSD. The proportionality con-
stant depends on several factors such as the ice crystal type,
orientation, and the measurement elevation angle. It is shown

that the variability of this proportionality constant signifi-
cantly increases at large elevation angles (Lu et al., 2015).
Furthermore, when the exact ice crystal type is known, aver-
aged relative error in the estimated IWC using Kdp can be as
small as 10 %, regardless of whether PSD is known or not. If
the ice crystal types are unknown but can be generally cate-
gorized, the errors can be higher, but mostly less than 30 %.
These numbers were averaged from elevations in the interval
[0–70◦]. If IWC is estimated usingKdp at small elevation an-
gles (less than 10◦) such as from a side-looking antenna, we
would expect better results.

For a given radar volume, if the orientation of the ice crys-
tal changes, the Kdp value changes (Eq. 7) while the IWC
of the radar volume does not. Consequently, in the case of
spatial variability of ice crystal shapes and orientations, the
IWC estimation based solely on Kdp may be biased. To mit-
igate this problem, the measured IWC needs to be modified
to include the information of the ice particles’ orientation.
One way to do this is to weight the measured IWC by a func-
tion of ice crystal shapes and orientations before applying a
linear regression model to the Kdp–IWC relationship. In a
simple approach, the weighting function can be in a form of
ZaDR (ZDR is the linear version of Zdr and a is a constant
coefficient) as suggested in Aydin and Tang (1997) (derived
from their approximation IWC≈Ka

dpZ
b
DR, where a and b are

constant coefficients). Proceeding more rigorously, Ryzhkov
et al. (1998, 2018) demonstrated that both Kdp and differ-
ence reflectivity ZDP (ZDP = ZH−ZV ) are dependent on the
particles’ aspect ratios and orientation, whereas their ratio is
very robust with respect to those factors. Indeed, in simu-
lation and modelling work considering 12 different crystal
habits, Ryzhkov et al. (2018) showed that the ratio ZDP/Kdp
in combination with reflectivity can be used to estimate IWC.
In detail, for exponential size distribution and with an as-
sumption of ρ (D)= αD−β , β ≈ 1,

(
1−Z−1

DR

)
IWC is pro-

portional to Kdp. Also, according to Ryzhkov et al. (2018),
this approximation is almost insensitive to the ice habit, as-
pect ratio, and orientation of the ice particles, but is affected
by the degree of riming. Hence, it works better for clouds
with a low degree of riming. This condition might not be true
for all types of ice clouds, but might be suitable for HIWC
regions, which are often composed of a high concentration
of small ice particles (Leroy et al., 2016).

At ZDR ≈ 1 (or Zdr ≈ 0 dB), the weighting function(
1−Z−1

DR

)
is close to zero, and hence it can introduce large

errors in the estimates. Therefore, there should be a cer-
tain threshold for Zdr to determine how the weighting func-
tion would be calculated. In detail, if Zdr is less than a
threshold, the weighting function

(
1−Z−1

DR

)
is replaced by(

1−Z−1
DR-threshold

)
. In this paper, we use ZDR-threshold = 1.12

(see Sect. 6 for more detailed derivation of this threshold
value). This threshold is very close to a 1.15 threshold pro-
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Figure 1. Flow chart of IWC retrieval using (Kdp,ZDR) and in situ
data. In this paper, ZDR-threshold = 1.12.

posed by Ryzhkov et al. (1998) for “cold” storms for temper-
atures below −5 ◦C.

In summary, there are two polarimetric methods for IWC
retrieval, which will be investigated and compared in this pa-
per. They are expressed as

IWC= a1Kdp+ b1, (9)(
1−Z−1

DR

)
IWC= a2Kdp+ b2, (10)

where model parameters (ai,bi) will be estimated from mea-
sured data. A flow chart of IWC retrieval usingKdp and ZDR
is shown in Fig. 1.

3 Airborne measurements

During the Cayenne HAIC-HIWC project, the NRC Con-
vair CV-580 conducted 14 research flights in both continen-
tal and oceanic mesoscale convective systems (MCSs) with
high IWC. All the flights were conducted during daytime
only due to flight restrictions. Analysis of all the IR satel-
lite imageries show that the Convair flights were performed
close to the peak intensities of the targeted MCSs, which
had a typical lifetime of 7.5 and 4.5 h for oceanic and conti-
nental MCSs, respectively (Walter Strapp, personal commu-
nication, 2019). So the fact that the flights were conducted
only during the daytime did not prevent the flights from sam-
pling of the storms during their peak intensities. For this cam-
paign, the Convair aircraft was instrumented by the NRC and

Environment and Climate Change Canada with an array of
in situ cloud microphysics probes, atmospheric sensors, and
the NRC airborne W- and X-band (NAWX) Doppler dual-
polarization radars (Wolde and Pazmany, 2005). The unique
quasi-collocated in situ and radar data collected during the
HAIC-HIWC mission provided a means for developing tech-
niques for detection and estimation of high IWC that could
be adopted in operational airborne weather radars.

3.1 Airborne radar data

In this study, dual-polarization radar data from the NRC air-
borne X-band radar (NAX) (Fig. 2) side-looking antenna are
used. Some important radar parameters are given in Table 1.
More detailed information on the radar system can be found
in Wolde and Pazmany (2005). In the Cayenne project, the
radar complex I and Q samples are processed to powers and
complex pulse pair products according to the radar parame-
ter specification table, and the products are recorded in bi-
nary format. Due to the size of the aircraft radar radome, the
NAX dual-polarization parabolic side antenna is relatively
small (0.66 m), hence exhibiting some limitations in terms
of side lobe performance. The antenna orthomode transducer
(OMT)–feedhorn combination is relatively large compared
to the parabolic dish. The large feed structure creates some
significant side lobes at ±90◦ planes. As a result, when the
side lobes intercept targets with strong returns below the air-
craft, such as the earth surface or a storm melting layer, sig-
nificant returns from the side lobes will contaminate signals
coming via the antenna’s main lobe. In most situations, the
effect is more prominent at a range equal to or greater than
the distance where the antenna side lobes hit the ground.
At regions where signals are contaminated by ground clut-
ter via the side lobes, the data are intermittent and exhibit
large biases. Unfortunately, with the pulse pair data from
the Cayenne campaign, methods to separate clutter from the
precipitation signals are limited. To overcome this issue, a
method is developed to detect regions with strong clutter con-
tamination based on signal correlations between the nadir
and zenith returns. If the correlation coefficient exceeds a
predefined threshold, the corresponding side data in those re-
gions are discarded. If the width of the discarded data region
is relatively small (less than 300 m in radar range) it will be
filled through interpolation. In addition, due to the limitation
of the radar hardware, the measurements of dual-polarization
parameters are not useable below a range of 1000 m from
the aircraft, but reflectivity can be measured accurately from
450 m. Hence, in this work, radar profiles were extracted at a
horizontal distance of 1000 m from the aircraft. This is not an
ideal condition when the in situ data and the radar data are not
spatially coincident. However, in most scenarios the advan-
tage of having fine radar sampling volumes with a high order
of accuracy in time synchronization between in situ probes
overcomes the location offset. At large distances from cloud
boundaries and convective cores, the microphysics proper-
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Figure 2. The NRC Convair CV-580 and the dual-polarization side-
looking X-band radar.

Table 1. X-band radar parameters for the Cayenne campaign.

Parameter Value

Frequency 9.41 GHz±30 MHz
Side antenna beamwidth 3.5◦

Pulse width/range resolution 500 ns/75 m
Dwell time 0.136 s
Sampling resolution 75 m

ties of glaciated clouds can be considered spatially quasi-
uniform at scales of the order of a few hundred metres. This
is specifically relevant to the measurements in MCSs during
the HAIC-HIWC project. Moreover, there was no attenua-
tion correction applied to reflectivity and Zdr because in ice
precipitation regions and at close range attenuation at the X-
band is negligible.

For the Cayenne project, the in situ microphysical data are
processed at 1 Hz, which is lower than that of the radar data.
Hence, the radar data were decimated to match with temporal
resolution of the in situ data. At the Convair CV-580 average
ground speed of 100 ms−1, this results in a 100 m radar sam-
pling volume.

3.2 In situ data

For the project, the NRC Convair CV-580 was equipped with
state-of-the-art in situ sensors for measurements of aircraft
and atmospheric state parameters and cloud microphysics.
There were multiple sensors to measure bulk liquid water
content (LWC) and total water content (TWC), with hydrom-
eteor size distribution ranging from small cloud drops to
large precipitation particles. A detailed list of the Convair in
situ sensors used during the Cayenne HIWC-HIWC project is
provided in Wolde et al. (2016). Here we will briefly describe
the in situ microphysical sensors used in correlating the air-

Figure 3. The NRCKdp estimation algorithm for X-band radar flow
chart.

borne radar measurements with regions of HIWC. TWC was
measured by an Isokinetic probe (IKP2) that was specifically
designed to measure very high TWC (Davison et al., 2008).
Alternatively, IWC was estimated from the measured PSDs
with the D–M parameterization tuned using IKP2 measure-
ments. In the Cayenne Convair datasets, IWCs calculated
from PSDs and measured by IKP2 agreed quite well and the
difference between them in the HIWC regions on average did
not exceed 15 %. Because the IKP2 data were not available
in all flights, estimated IWC from PSDs (IWCPSD) has been
used in this work. Additionally, mean mass diameter (MMD)
was also used to characterize the microphysical properties of
the high-IWC regions and interpret X-band radar measure-
ments. MMD was calculated from composite particle size
distributions measured by SPEC 2D-S and DMT PIP 2-D
imaging probes.

As shown in Korolev et al. (2018) in the MCSs studied
during the Cayenne HAIC-HIWC project, the fraction of
mixed-phase clouds at −15 ◦C< T <−5 ◦C did not exceed
4.6 %, and in most mixed-phase cloud regions LWC� IWC.
Hence, we did not filter out the very small fraction of liquid
observed in our analysis; i.e. we assumed TWC= IWC. This
finding significantly simplifies the processing and interpreta-
tion of cloud microphysical measurements.

www.atmos-meas-tech.net/12/5897/2019/ Atmos. Meas. Tech., 12, 5897–5911, 2019



5902 C. M. Nguyen et al.: Determination of ice water content (IWC)

4 Kdp estimation algorithm for X-band airborne
weather radar

The radar specific differential phase (Kdp) is defined as the
slope of the range profile of the differential propagation
phase shift 8dp between horizontal and vertical polarization
states (Bringi and Chandrasekar, 2001). The measured differ-
ential phase shift between the two signals at theH and V po-
larizations,9dp, contains both8dp and differential backscat-
ter phase shift δdp. If δdp is relatively constant or negligible,
the profile of9dp can be used to estimateKdp. The estimated
phase9dp usually exhibits discontinuities due to phase wrap-
ping, statistical fluctuations in estimation, and the gate-to-
gate variation in δdp. Because the statistical fluctuations in
the estimates of 9dp will be magnified during the differenti-
ation, resulting in a large variance of the Kdp estimates, the
following considerations need to be addressed in the Kdp es-
timation algorithm.

Phase unfolding. Phase wrapping occurs when the total
8dp accumulation exceeds the unambiguous ranges. This de-
pends on the system differential phase8dp(0) and the cumu-
lative phase due to the medium. The NAX radar operates in
the simultaneous transmission mode (VHS) and the unam-
biguous range is 360◦. The system differential phase 8dp (0)
of NAX is about 64◦. For the Cayenne dataset, no observa-
tions were made when the phase was folded.
δdp “bump”. It seems that δdp was negligible in the HIWC

environment in the Cayenne campaign. We did not observe
the presence of significant changes in δdp over a short range.

Range filtering. In this work, the range scale was set at
500 m; thus the fluctuations at scales smaller than 500 m will
be suppressed.

Once the phase data are quality controlled, filtered, and
decimated to match the temporal resolution of the in situ
data, a heuristic algorithm similar to one reported in Rotem-
berg (1999) is applied to the data to extract the 9dp smooth
trend and then Kdp is computed from it. This approach does
not require an assumption of 8dp being a monotonically
increasing function as it is in some other existing Kdp re-
trieval algorithms (Wang and Chandrasekar, 2009); there-
fore, it would also work well with negative Kdp, which pos-
sibly appears in ice clouds. Our preliminary analysis shows
that the algorithm can provide estimates with standard de-
viation no greater than 1 ◦ km−1. The NRC Kdp estimation
algorithm is summarized in the flow chart below.

5 Results

In this section, results illustrating the performance of the
proposed polarimetric algorithms are presented. In addi-
tion to the polarimetric method, we also include results
from the conventional IWC–Z relations for comparison. Be-
cause the histogram of static temperature (not shown) indi-
cated a bimodal distribution with two centres at around −5

Figure 4. Panel (a) shows IR GOES-13 image with the overlaid seg-
ments of the Convair CV-580 flight track on 26 May 2015. Differ-
ent time segments of the flight track are shown by different colours.
Panel (b) shows X-band side reflectivity from a period of 11:07–
11:30 UTC corresponding to white, yellow, and purple segments in
(a). A break line at around 7.1 km is the location of contaminating
ground clutter via the side antenna’s side lobe (Sect. 3.1), which
was filtered out.

and −10 ◦C, two IWC–Z relations at T =−5 ◦C (IWC=
0.257Z0.391) and at T =−10 ◦C (IWC= 0.253Z0.596) were
obtained by fitting power-law curves to scatter plots of all
the data points at those two temperature levels (Wolde et al.,
2016).

5.1 Case study I: 26 May flight

In this case, a 20 min segment of the Convair flight inside
an Oceanic MCS on 26 May 2105 is selected for analysis.
The MCS was sampled north-northwest of Cayenne, French
Guiana, during early morning hours. Figure 4a shows IR
satellite imagery obtained during the flight where the air-
craft’s flight track is shown in different colours, which repre-
sent the aircraft’s location at different time segments. The
reflectivity field from the NAX side antenna is shown in
Fig. 4b. The selected period begins at a point when the air-
craft started to sample at the proximity of the convective core
of the storm with the lowest cloud-top brightness temperature
(white segment in the IR image). The brightness temperature
was increasing toward the end of the segment (magenta seg-
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Figure 5. Time series of (a) IWCPSD, MMD, (b) Kdp, Zdr, (c) ρhv, and ZH for 26 May Convair CV-580 flight.

ment). The aircraft flew between 6.9 and 7.2 km altitude and
the static air temperature (Ts) varied from −12.8 to −8.2 ◦C.
In addition to the radar data, IWCPSD and MMD time series
from particle probes are shown in Fig. 5. The IWC estimates
from radar data have been decimated to match with the tem-
poral resolution of the in situ data.

The aircraft sampled two regions: a convective region be-
fore 11:23 UTC and a stratiform region after 11:25 UTC
(Fig. 4b), with IWC in both regions mostly higher than
1.5 g m−3 (Fig. 5a). It is worth noticing that the reflectiv-
ity measurements along the flight path were fairly constant
at ∼ 20 dBZ and the MMD values were relatively small at
HIWC regions (IWC> 1.5 g m−3) (Fig. 5a). From Fig. 5,
it follows that (1) Kdp, in general, is highly correlated with
IWC; (2)Kdp increases at the regions dominated by small ice
crystals (between 11:08 to 11:16 and 11:24 to 11:27 UTC);
and (3) regions with larger MMD exhibit deceasing ρhv and
increasing Zdr. In Fig. 6, Zdr, ρhv, and IWC are expressed
as functions of Kdp. In this case, there is a break point at
Kdp ≈ 1.5 ◦ km−1 (and ZDR ∼ 1.12) where Zdr started in-
creasing and ρhv decreased with respect to Kdp. At Kdp <

1 ◦ km−1, Zdr was mainly flat and IWC linearly increased
with respect to Kdp (Fig. 6b). This suggests the pristine ice
crystals’ axis ratio might be fairly constant, but the parti-
cle number density increased, resulting in an enhancement
in both Kdp and IWC (shown by a linear IWC–Kdp relation-
ship). From Kdp > 1 ◦ km−1, the Zdr increment with respect
to Kdp was greater, but the IWC increase does not follow the

same degree as in the previous segment. If a linear IWC–Kdp
relationship derived from the first segment (Kdp < 1 ◦ km−1)
is applied to the second portion, IWC will be overestimated.
It is not easy to identify the exact reasons of this observa-
tion. Many factors could contribute to this circumstance such
as changes in ice crystals’ size, shape, orientation (e.g. par-
ticles with higher axis ratio that are aligned in the horizon-
tal plane), or particle density. In this work we used Kdp and
Zdr to mitigate this dependency and improve estimation of
IWC. In Fig. 6b and c, measured IWC and

(
1−Z−1

DR

)
IWC

are shown as solid black lines and their linear fitting curves
(red lines) are superimposed. The R2 goodness-of-fit param-
eter indicates that a linear regression fits

(
1−Z−1

DR

)
IWC bet-

ter in comparison to IWC.
To gauge the performance of the polarimetric methods,

results from the conventional IWC–Z estimator are also in-
cluded in Fig. 7a. This figure shows the measured IWC along
the Convair’s flight path depicted in black, IWC–Z results
in green, and IWC estimates using polarimetric methods in
blue and red for Kdp-only and (Kdp, ZDR) algorithms, re-
spectively. One can observe that the two polarimetric meth-
ods agree well with measured IWC while the IWC estimates
from just using radar reflectivity exhibit biases as large as
1 order of magnitude. The large errors in the IWC–Z esti-
mator are due to the presence of mixtures of large aggre-
gates and small ice crystal regions as indicated in the PIP
images (not shown) in clouds. Large aggregates have a dom-
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Figure 6. Zdr and ρhv (a), IWCPSD (b), and
(

1−Z−1
DR

)
IWC (c) as

functions of Kdp. In panels (b) and (c), mean values and frequency
distributions are computed from data points in each Kdp bin of 0.1
and 0.05 ◦ km−1, respectively. Regression parameters (a1,b1) for
the Kdp-only method and (a2,b2) for the (Kdp,ZDR) method are
estimated from the mean values using a simple linear fitting algo-
rithm.

inant contribution into the radar reflectivity, which explains
the positive biases of the IWC–Z estimates. On the other
hand, Kdp is not biased toward large aggregates. The mag-
nitude of Kdp in aggregates with MMD> 2 mm is usually
smaller than 0.4 ◦m−1 and in small ice particles (MMD in the
range 0.3–1 mm) Kdp is between 0.6 and 1 ◦ km−1 (Fig. 8a).
It follows that estimators utilizing Kdp information would
overcome the large aggregate effects in radar volumes. It is
worth noting that the two algorithms capture the IWC vari-
ation at the end of the segment well. If the in situ measure-
ments are considered as the ground truth, the estimation bi-
ases are computed and shown in Fig. 7b. On average, biases
are 0.082 and 0.018 g m−3, and the root-mean-square differ-
ences (hereinafter referred to as the rms differences) are 0.49
and 0.48 g m−3 for the Kdp alone and (Kdp, ZDR) methods,
respectively. The correlation coefficients between IWCPSD
and estimated IWCs are 0.66 and 0.70 for the two methods.
In this case study, the inclusion of Zdr improves the accuracy
of the IWC estimates.

5.2 Case study II: 23 May flight

For this case, a segment of the Convair flight on 23 May 2015
inside an MCS north of the Surinam coast and over French
Guiana (Fig. 9a) is selected. The flight segment consists of
a HIWC region of a very high concentration of small ice
particles and a region of mixed moderately large aggregates
and pristine ice crystals. This affords an excellent example to
gauge the performance of the algorithms. In Fig. 9a, the se-
lected segment is displayed in purple. The radar reflectivity
field from the side antenna is shown in Fig. 9b. In this seg-
ment, the aircraft’s altitude was between 6.74 and 6.78 km
and Ts ranged from −11 to −8 ◦C.

In addition to the radar data, IWCPSD and MMD time
series from particle-imaging probes are shown in Fig. 10.
The aircraft sampled two small cores where IWC was higher
than 1 g m−3 (∼ 18:30 and ∼ 18:34 UTC). At these high
IWC cores, the clouds were dominated by small ice particles
(Fig. 11a) and MMD was in the 400 µm range. In contrast,
for the flight segment between 18:36 and 18:44 UTC, when
the temperature was higher, the aircraft sampled a mixture
of large aggregates with sizes exceeding 6 mm and small ice
particles (Fig. 11b), where the IWC was less than 0.5 g m−3.

The IWC estimates from the methods are depicted in
Fig. 12a. In the regions around the two HIWC peaks, re-
sults from the three estimators agree quite well with IWCPSD.
There are small biases in the outcomes of the two polari-
metric algorithms that can be attributed to the errors of fit-
ting linear regression models to the data and/or the differ-
ence in the sampling locations of the radar and the in situ
data (Sect. 3.1). In the region after 18:38 UTC, the IWC–Z
results show very large errors due to the presence of aggre-
gates in the clouds. The large aggregates dominate the mea-
surements of radar reflectivity, resulting in positive biases of
the IWC–Z estimates (Fig. 12b). The errors for this case are
as large as 300 % in most estimates. In contrast, both the po-
larimetric methods provide much better results compared to
the conventional IWC–Z method. They capture the variation
in IWC at smaller scales (around 18:33:58 UTC) and larger
scales (around 18:41:54 UTC) well. This again confirms that
these algorithms are robust to the variation in ice crystal type,
shape, and distribution. The rms differences and correlation
coefficients for the Kdp-only and (Kdp, ZDR) methods are
(0.84 g m−3, 0.41) and (0.79 g m−3, 0.55), respectively. The
combination of Kdp and ZDR provides better results, which
can be seen at the edges of the second IWC peak (indicated
by ellipses) in Fig. 12a. At those regions, MMD (Fig. 10) and
Zdr (not shown) values are large. This may be an indication
of ice crystals with a high axis ratio aligned in the horizon-
tal plane. When this happens, the algorithm based on Kdp
alone will overestimate IWC. On the other hand, the product(

1−Z−1
DR

)
IWC already includes the particles’ shape and ori-

entation effects; thus, estimates based on it should yield bet-
ter results. When large particles dominated the volume (af-
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Figure 7. Panel (a) shows IWCPSD (black line), estimated IWC using reflectivity (dashed green line), Kdp alone (blue line), and the (Kdp,
ZDR) combination (red line) for the 26 May case. Panel (b) shows estimation biases for the three estimators. Average biases for IWC(Z),
IWC(Kdp), and IWC(Kdp,ZDR) are 0.60, 0.082, and 0.018 g m−3 and rms differences are 0.98, 0.49, and 0.48 g m−3 for the three algorithms,
respectively.

Figure 8. Kdp (a) and Zdr (b) as functions of median mass diameter (MMD). Over 17 000 data points from seven selected flights (Sect. 6)
during the Cayenne campaign are used.
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Figure 9. Similar to Fig. 4 but for the 23 May case.

ter 18:36:14 UTC) Zdr become small (Fig. 8b), and then the(
Kdp,ZDR

)
estimator provides no advantage over the Kdp-

only estimator.

6 Experimental evaluation

In the previous section, two case studies were analysed in
detail. In both cases, results from the polarimetric methods
show a much better agreement with in situ measurements
compared to the IWC estimates from the radar reflectivity
factor, especially when larger particles dominate the radar
volume. In addition, applying a function of ZDR to IWC be-
fore fitting a linear regression model to the data improves
the estimation accuracy and correlation. In this section, more
data from different flights collected during the mission were
analysed and summarized. Out of total 14 campaign flights,
there were seven flights with good data quality (radar and in
situ) and with an applicable number of high-IWC data points,
and data from those flights were used this analysis.
ZDR threshold (Sect. 2.2) is determined from all selected

data (17 699 points in total). In order to find an optimal ZDR
threshold from the available data, average bias and rms of
IWC estimates are expressed as a function of the ZDR thresh-
old (Fig. 13). ZDR threshold was changed within [1.01, 1.2]
with 0.1 increments, and bias and rms were computed for
each value of ZDR threshold. In Fig. 13, average bias and rms

Figure 10. IWCPSD and MMD time series for the 23 May case.

Figure 11. Samples of 2-D imagery from the SPEC 2D-S (a) and
DMT PIP (b) probes at two time stamps as in Fig. 10. The width of
the 2D-S image strip is 1.28 mm and that of the PIP is 6.4 mm. The
aircraft’s altitude was 6.75 km at A and 6.74 km at B.

of IWC estimates from theKdp-only algorithm, which are in-
dependent of ZDR threshold, are also displayed (blue lines).
It follows that the average biases for the two methods are very
small (within ±0.08 g m−3) and the (Kdp, ZDR) method pro-
vides unbiased estimates at a ZDR threshold of 1.06. How-
ever, rms of the (Kdp,ZDR) method is quite large at a small
ZDR threshold and reduces with an increasing ZDR thresh-
old. It becomes saturated at 0.498 g m−3, which is slightly
below the rms of theKdp-only algorithm. Considering all the
factors, we selected an optimal ZDR threshold of 1.12, where
rms values of the two methods are equal but the average bias
is smaller with the (Kdp,ZDR) method.

In Fig. 14, IWC and
(

1−Z−1
DR

)
IWC are expressed as

functions of Kdp for selected flights. Linear fits to all the
data from selected flights are also shown. The respective
y axes are scaled to the maximum value of IWC and(

1−Z−1
DR

)
IWC for comparison. For most cases, the linear

relationships are well approximated up to Kdp = 2 ◦ km−1.
At larger Kdp, IWC saturates at 2.5 g m−3 and the IWC–Kdp
relationship departs from the linear trend. Due to the limited
amount of data of large measured Kdp and IWC, identifying
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Figure 12. Similar to Fig. 7 but for the 23 May case. Average biases for IWC(Z), IWC(Kdp), and IWC(Kdp, ZDR) are 1, −0.189, and
−0.222 g m−3 and rms differences are 1.34, 0.84, and 0.79 g m−3 for the algorithms, respectively.

Figure 13. Average bias and rms as a function of ZDR threshold for all data from the seven selected flights.

the major reasons for this saturation is not attempted. In these
scenarios, applying a more sophisticated method (such as a
parametric model) will likely reduce errors at high Kdp, but
this is beyond the scope of this paper. Here, a simple linear

regression model (based on the approximation in Eq. 13) is
used and errors are computed from all data points.

It is also worth noting that the deviation of the
(

1−Z−1
DR

)
IWC–Kdp curves from the linear fit is smaller compared
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Figure 14. IWCPSD (a) and (1-Z−1
DR)IWC (b) as functions of Kdp for the seven selected flights. Linear fits (dash lines) are also plotted using

coefficients computed from all data point (Table 2).

Table 2. Polarimetric method performance for selected flights during the Cayenne 2015 campaign. The MCS types and scales from Strapp
et al. (2016) are also listed.

Kdp only Kdp and Zdr MCS type/size in
nautical miles

Flight (a1,b1) Bias Rms Corr. (a2,b2) Bias Rms Corr.
(g m−3) (g m−3) coeff. (g m−3) (g m−3) coeff.

15 May morning (1.11, 0.20) −0.007 0.45 0.49 (0.14, 0.01) 0.009 0.42 0.60 Offshore/60
16 May morning (0.90, 0.14) −0.117 0.46 0.85 (0.15, 0.008) −0.013 0.47 0.84 Offshore/70
16 May afternoon (0.94, 0) −0.051 0.34 0.80 (0.11, 0) −0.019 0.30 0.82 Oceanic adverted

overland/60
20 May morning (0.75, 0.9) 0.012 0.58 0.56 (0.10, 0.08) 0.005 0.61 0.56 Coastal
23 May afternoon (1.07, 0.41) −0.189 0.84 0.41 (0.19, 0.04) −0.222 0.79 0.55 Offshore, and

overland/100
26 May morning (0.94, 0.7) 0.082 0.49 0.66 (0.12, 0.07) 0.018 0.48 0.70 Offshore MCS
26 May afternoon (0.88, 0.18) −0.046 0.37 0.72 (0.11, 0.02) −0.048 0.34 0.78 Offshore MCS

All∗ −0.070 0.53 0.69 −0.045 0.52 0.72

∗ For all data points, optimal fitting parameters (0.88, 0.45) were used for the Kdp-only algorithm and (0.13, 0.04) were used for the (Kdp, Zdr) algorithm.

to that of the original IWC–Kdp curves. This spread in the
IWC–Kdp relationship can be attributed to the properties of
ice crystals and the medium’s state. In other words, when
the dependency of the IWC–Kdp relationship on ice crystal
shape and orientation was removed (or partially removed),
the spread in the IWC–Kdp relationship around the linear fit
should be smaller. This is a very important outcome which
helps to reduce estimation errors when a single estimator is
used for all the cases. Results for IWC estimates are shown
in Table 2 for the two polarimetric methods only. In each
row, statistical error analysis is shown for each flight with the
optimal fitting model derived from data of that flight. Infor-

mation about MCS of selected flights is also provided. The
last row displays results computed from all selected data of
17 699 points. In all cases, improvement in IWC estimation
when Zdr information is utilized in the algorithm is clear.
For all data, the bias changes from −0.07 to −0.045 g m−3

and correlation coefficient increases from 0.69 to 0.72. The
standard deviations of the fitting coefficients (a1,b1) for the
Kdp-only method and for (a2,b2) for the (Kdp, ZDR) method
are (0.12, 0.33) and (0.032, 0.033), respectively. The uncer-
tainty of the retrieval depends on the uncertainty in the fit-
ting parameters as well as the values of Kdp and ZDR and
their measurement accuracy. Typical values of Kdp and ZDR
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Figure 15. (a) Combined IWC time series data from the selected flights: measured IWC (black line), estimated IWC using Kdp alone (blue
line), and estimated IWC using Kdp and ZDR (red line). (b) Estimation errors for the two estimators. For all study cases, the aircraft flew in
the range of [5.6, 7.5] km and most of the data points were within a temperature range of (−10 ◦C±25 ◦C).

for HIWC regions (MMD between 0.3 and 1 mm) are about
1 ◦ km−1 and 1.12 (Fig. 8). At those typical values, standard
deviation of IWC estimates using the (Kdp,ZDR) algorithm
is 0.6 g m−3.

Figure 15 shows time series of IWCPSD from the seven
flights and estimated IWC from the two algorithms. As men-
tioned before, for each algorithm, a single set of fitting
parameters is used for the combined data. Evidently, the
method utilizing Zdr yields better results in terms of estima-
tion bias and correlation (Table 2). In Fig. 16, estimation bias
and standard deviation are expressed as a function of IWC.
It can be seen that inclusion of Zdr improves estimation bias
at all IWC points. On average, an improvement of 35 % in
average bias was achieved. As observed in Fig. 16, larger bi-
ases happen at IWC greater than 2 g m−3. This is attributed
to strong departures from the linear model in the joint IWC–
Kdp distribution. The inclusion of Zdr has been proven to
be able to mitigate these large errors but not completely fix
the problems. To improve the radar-derived IWC estimates

further, more additional data processing (such as hydrome-
teorology classification) and more sophisticated regression
models are needed.

7 Conclusions

Accurate detection and estimation of HIWC in tropical
mesoscale convective systems are critical for reducing haz-
ards caused by the ingestion of ice particles into the engines
of commercial aircraft. The objective of this paper is to find
a method to improve IWC retrieval from a side-looking X-
band dual-polarization airborne radar. It is shown that the
use of the specific differential phase (Kdp) and differential
reflectivity ratio (Zdr) significantly reduces errors in IWC
retrieval over the conventional IWC–Z method. In general,
the IWC–Kdp relationship can be approximated by a linear
model, and IWC retrieval using Kdp captures the IWC vari-
ation very well, regardless of the information of PSD. One
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Figure 16. Bias and rms difference as a function of IWC derived
from the seven selected flights. Mean values and standard deviation
are computed from data points in each IWC bin of 0.2 g m−3.

major drawback of theKdp algorithm is that it provides large
estimation biases when the ice particle’s aspect ratio and ori-
entation are changing. To mitigate this effect, Zdr is used to
reduce the dependency of IWC on the variation in ice parti-
cles’ shapes and orientation. We proposed a method in which
IWCs are weighted by a function ofZdr before applying a lin-
ear model to the IWC–Kdp joint distribution. This approach
uses an assumption of a low degree of riming within the radar
volume. This is suitable for HIWC regions, which are often
composed of a very high density of small ice particles. Zdr at
regions of mixtures of small pristine ice crystals and larger
particles such as aggregates is generally low and will not be
used in the weighting function. Results from selected Con-
vair CV-580 flights from the Cayenne campaign show that
the proposed method is able to improve estimation biases
by 35 % and correlation by 4 %, on average. In our analy-
sis, a single set of fitting parameters is applied for all the data
points. The results can be improved further by including ad-
vanced data processing techniques such as ice crystal type
classification or using a more sophisticated regression model
for the modified IWC–Kdp joint distribution.

Most of HIWC data points used in this are measured at a
narrow window of the temperature range (−10 ◦C±2.5 ◦C).
More data are needed to study the temperature variability of
the proposed method.
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