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Abstract. We analyse gravity waves in the upper-
mesosphere, lower-thermosphere region from high-
resolution temperature variations measured by the Rayleigh
lidar and OH temperature mapper. From this combination
of instruments, aided by meteor radar wind data, the full set
of ground-relative and intrinsic gravity wave parameters are
derived by means of the novel WAPITI (Wavelet Analysis
and Phase line IdenTIfication) method. This WAPITI tool
decomposes the gravity wave field into its spectral compo-
nent while preserving the temporal resolution, allowing us to
identify and study the evolution of gravity wave packets in
the varying backgrounds. We describe WAPITI and demon-
strate its capabilities for the large-amplitude gravity wave
event on 16–17 December 2015 observed at Sodankylä,
Finland, during the GW-LCYCLE-II (Gravity Wave Life
Cycle Experiment) field campaign. We present horizontal
and vertical wavelengths, phase velocities, propagation
directions and intrinsic periods including uncertainties. The
results are discussed for three main spectral regions, rep-
resenting small-, medium- and large-period gravity waves.
We observe a complex superposition of gravity waves at
different scales, partly generated by gravity wave breaking,
evolving in accordance with a vertically and presumably
also horizontally sheared wind.

1 Introduction

The impact of atmospheric gravity waves (GWs) on the
energy and momentum budget, especially in the upper-
mesosphere, lower-thermosphere (MLT) region has long
been recognized (Lindzen, 1981; Holton, 1982, 1983; Vin-
cent and Reid, 1983). However, many mechanisms are not
fully understood today, for example regarding generation, in-
termittency, and interactions or breaking of GWs (see Fritts
and Alexander, 2003, for a review). Understanding of these
processes requires detailed case studies with a complete de-
scription of intrinsic gravity wave parameters and the atmo-
spheric background. A well-established and capable tech-
nique to observe mesospheric GWs is the imaging of OH
layer emissions, which provides compelling detail of the
spatial and temporal characteristics of GWs (Swenson and
Mende, 1994; Taylor et al., 1995; Nakamura et al., 2003;
Suzuki et al., 2007; Vargas et al., 2016). Analysis methods
applied to images of the OH layer in order to infer horizontal
wavelengths, ground-relative wave periods and phase speeds,
and propagation directions include filtering with selected
bandwidths, e.g. to enhance GW signatures, fitting routines
to specific (e.g. cyclic) wave structures (e.g. Hapgood and
Taylor, 1982), time-difference and correlation techniques
(Swenson et al., 1999; Tang et al., 2003), cross-spectral and
wavelet analysis (Frey et al., 2000), three-dimensional fast
Fourier transform (Matsuda et al., 2014), and maximum en-
tropy methods (Sedlak et al., 2016). In order to retrieve hor-
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izontal wavelengths larger than the field of view (FOV) of
the imager, Takahashi et al. (2009) and Fritts et al. (2014)
analysed keogram representations of airglow imager data. In
addition to process studies, also large-period observations of
OH layer emissions with imaging instruments are employed
to derive statistics and seasonal variations in GW parameters
at different locations (Walterscheid et al., 1999; Nakamura
et al., 1999; Suzuki et al., 2004; Li et al., 2016, 2018; Sh-
iokawa et al., 2009).

The detection of GWs by means of OH layer intensity
observations depends on the (usually unknown) width and
height of the OH layer as well as the GW period and verti-
cal wavelength (Gardner and Taylor, 1998; Dunker, 2018).
To obtain intrinsic periods, OH imaging data are often com-
bined with meteor radar observations of the ambient wind
(e.g. Nyassor et al., 2018). Mangognia et al. (2016) pro-
posed a multi-channel instrument to deduce vertical wave-
lengths which must otherwise be determined from the disper-
sion relation or in combination with other observation tech-
niques. Especially sodium lidar instruments, providing verti-
cal soundings of vertical wind and temperature in the sodium
layer located above the OH layer, were essential in order
to derive vertical wavelengths, phase speeds and momentum
fluxes in the MLT region (Swenson et al., 1999; Jia et al.,
2016). This technique allowed for the study of GW disper-
sion, refraction or breaking in the MLT region (Smith et al.,
2005; Yuan et al., 2016). Isler et al. (1997) and Hecht et al.
(1997) also incorporated wind measurements by MF radar to
investigate ducting, evanescence and breaking of GWs.

Lidar soundings of the middle atmosphere are ideally
suited for studying gravity waves at high vertical and tem-
poral resolution (e.g. Hostetler and Gardner, 1994; Lu et al.,
2009; Baumgarten et al., 2015; Zhao et al., 2017; Fritts et al.,
2018). In the stratosphere and lower mesosphere, climatolo-
gies of gravity wave potential energy densities were de-
rived from lidar backscatter (Wilson et al., 1991; Sivakumar
et al., 2006; Sica and Argall, 2007; Thurairajah et al., 2010;
Alexander et al., 2011; Mzé et al., 2014; Kaifler et al., 2015;
Kogure et al., 2018). Due to limitations in power and/or ef-
ficiency of Rayleigh lidars, often a gap remains in the upper
mesosphere between the top altitude of Rayleigh-lidar tem-
perature profiles and coincident sodium lidar measurements.
Recent developments in Rayleigh-lidar technology allow for
high-resolution temperature and GW measurements at alti-
tudes above ∼ 85 km within the OH layer (Kaifler et al.,
2017, 2018). Also, modern OH imaging instruments utilize
different OH emission lines to perform spectroscopy in order
to derive the spatial temperature field, thus facilitating syn-
ergy of OH layer imaging and vertical lidar soundings that
has not been possible before.

In recognition of the prospects of multi-instrument ap-
proaches for middle atmosphere GW studies, several field
campaigns combining a large number of ground-based and
airborne instruments have been undertaken in recent years,
e.g. the GW-LCYCLE-1 (Gravity Wave Life Cycle Exper-

iment) campaign in northern Scandinavia in 2013 (Wagner
et al., 2017; Witschas et al., 2017) and the DEEPWAVE cam-
paign in New Zealand in 2014 (Fritts et al., 2016). Dur-
ing the winter of 2015–2016, the season when GWs of
high amplitude were able to propagate from the troposphere
to the mesosphere, the GW-LCYCLE-II aircraft campaign
took place in northern Scandinavia. During and beyond the
campaign period, the high-powered Compact Rayleigh Au-
tonomous Lidar (CORAL), the Advanced Mesospheric Tem-
perature Mapper (AMTM) and an All-Sky Interferometric
Meteor Radar (SKiYMET) were co-located at Sodankylä,
Finland. For the first time, common-volume observations at
resolutions below 1 h can thus be exploited for detailed stud-
ies of gravity waves in the MLT region. We develop a con-
sistent analysis method to derive the full set of GW parame-
ters by means of wavelet analysis and a phase line identifica-
tion (WAPITI – Wavelet Analysis and Phase line IdenTIfica-
tion) algorithm and apply it to the combined data set. Wavelet
analysis is a well-established method in atmospheric science
in general but also with respect to the study of atmospheric
GWs. It is applied to in situ, remote-sensing and satellite ob-
servations, and reanalysis data, with the goal of characteriz-
ing GW parameters, deriving global maps, or studying gen-
eration processes in the troposphere or stratosphere and tur-
bulence generation by breaking GWs (Stockwell et al., 1996;
Alexander and Barnet, 2007; Zhang et al., 2001; Dörnbrack
et al., 2018; Koch et al., 2005). The key advantage is the
preserved temporal resolution, allowing for the detection of
spatially and temporally localized wave packets. We present
a systematic spectral decomposition of AMTM keograms (a
two-dimensional representation of pixel columns and rows
evolving with time; see, e.g. Taylor et al., 2009) and lidar
data in order to detect and characterize GW packets observed
by the three instruments. Using this technique, co-existing,
interacting and evolving GW packets can be studied.

We demonstrate our analysis for the GW event on 16–
17 December 2015, when large-amplitude propagating GWs
were observed in the mesosphere. The instruments are de-
scribed in Sect. 2 together with their respective data sets. The
WAPITI algorithm developed to derive GW parameters like
horizontal and vertical wavelengths, propagation directions,
and phase velocities for waves of different scales is described
in Sect. 3. It is applied to the data sets of 16–17 Decem-
ber 2015 in Sect. 4, followed by a discussion of the spectral
characteristics of the identified waves in Sect. 5. Conclusions
are given in Sect. 6.

2 Instruments and data sets

During the GW-LCYCLE-II campaign in winter 2015–
2016, three instruments were co-located at Sodankylä, Fin-
land (67.4◦ N, 26.6◦ E), collecting complementary data sets.
CORAL provided vertical profiles of middle-atmospheric
temperature and GW perturbations (27–98 km). The AMTM
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imager detected GWs in the horizontal plane at the altitude
of the OH layer (∼ 86 km). The Sodankylä-Leicester Iono-
spheric Coupling Experiment (SLICE) meteor radar pro-
vided horizontal wind measurements in the upper meso-
sphere (82–98 km). Simultaneous observations of all three
instruments were obtained during 78 nights between Septem-
ber 2015 and April 2016. Here we selected the night of 16–
17 December 2015, when large-amplitude GWs occurred in
order to demonstrate our retrieval of the full set of GW pa-
rameters.

2.1 CORAL

CORAL was built by the German Aerospace Center (DLR)
and installed at the Finnish Meteorological Institute So-
dankylä site in September 2015. CORAL is a Rayleigh
backscatter lidar for the middle atmosphere. It incorporates
a 12 W laser operated at 532 nm wavelength as a transmit-
ter, a 63 cm diameter receiving telescope and two height-
cascaded receiving channels equipped with avalanche pho-
todiodes run in the photon-counting mode (Kaifler et al.,
2017, 2018). CORAL was designed with the capability for
remote control and automatic operation in order to maxi-
mize operation hours. During 6 months of operation, 492 h
of high-quality data were collected during nighttime. In the
absence of aerosols, the received photon counts are directly
proportional to the density of the atmosphere. Following
Hauchecorne and Chanin (1980) we infer atmospheric tem-
peratures by top-down integration of atmospheric density
profiles assuming hydrostatic equilibrium. This is first per-
formed for the nightly average profile smoothed with a fil-
ter of ∼ 2 km width using SABER measurements as a seed
value at the 100–110 km altitude. Then, in an iterative man-
ner, temperature profiles of subsequently higher resolutions
of 120, 60, 30, 20 and 10 min are obtained by seeding at
their top altitudes with the respective lower-resolution pro-
files. For this study, we use temperature data at the 2070 m
vertical and 10 min time resolution computed on a grid of
90 m× 1 min, which is intrinsic to the temperature retrieval.
Above ∼ 92 km the temporal resolution gradually decreases
from 10 min to 2 h due to longer integration times. The un-
certainties in absolute temperatures caused by photon noise
and in part by the temperature seeding process amount to
0.3 K between 25 and 50 km, 1.6 K between 50 and 75 km,
and 9.9 K between 75 and 100 km. Figure 1 shows the tem-
perature measurement of 16–17 December 2015. We see the
stratopause at 60 km, with strong wave activity above in the
mesosphere and periods of about 4 h. A more detailed de-
scription is given in Sect. 3.

Figure 1. Time–altitude section of temperature obtained by
CORAL on 16–17 December 2015. Above ∼ 92 km, the temporal
resolution decreases gradually, from 10 min to 2 h.

2.2 AMTM

The AMTM was built by Utah State University and yields
temperature maps based on detected IR radiation originating
from the OH layer (Pautet et al., 2014; Fritts et al., 2014).
This layer is commonly described as Gaussian-shaped, with
an average peak altitude of 86.8± 2.6 km and a full width
at half maximum (FWHM) of 8.6± 3.1 km, although the lo-
cal height and thickness can vary (Baker and Stair Jr, 1988).
The temperature is a function of the brightness ratio of two
spectral lines in the Meinel (3,1) rotation–vibration hydroxyl
bands, namely B[P1(2)]/B[P1(4)]. The spatial and temporal
resolution of the AMTM is 625 m at zenith and ∼ 30 s, and
the field of view is about 200 km× 160 km. Temperature un-
certainties are of the order of 1–2 K for clear sky conditions.
Due to strong contamination by sunlight, the AMTM oper-
ates only during darkness. To gain better insight into the tem-
poral evolution of the temperature maps, we analyse AMTM
data in the keogram representation. The AMTM’s FOV is
oriented in the cardinal directions, as shown in Fig. 2a. Con-
catenating pixel rows (columns) of successive temperature
maps at ∼ 30 s resolution results in a south–north (west–
east) keogram projecting GWs onto this particular direction.
AMTM data for 16–17 December 2015 in this representation
are shown in Fig. 2b. The position of the lidar laser beam is
in the zenith of the AMTM’s FOV, as indicated by the dashed
lines in Fig. 2b. For the analysis, we interpolated the AMTM
data sets on a 1 min grid to be able to compare them with
lidar data and to reduce noise.

2.3 Meteor radar

SLICE is a SKiYMET meteor radar (MR) and provides
measurements of horizontal wind speeds in the altitude
range of 82–98 km at a vertical and temporal resolution of
2.7 km× 1 h (Lukianova et al., 2018). The MR is operated
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Figure 2. (a) AMTM temperature map at 21:00 UT on 16 December 2015 with indicated pixel rows and columns used for keogram repre-
sentation. (b) South–north keogram of AMTM temperature measurements (top) and west–east keogram (bottom) on 16–17 December 2015.
The central dashed lines indicate the position of the lidar laser beam.

by the Sodankylä Geophysical Observatory. Wind data are
retrieved from the line-of-sight velocity of the ionized meteor
trails detected in a FOV of about 300 km in diameter (Hock-
ing et al., 2001). Figure 3a–c show zonal and meridional
wind speeds as well as the wind direction during the night
of 16–17 December 2015. The wind field is complex, with
both vertical and horizontal reversals and shears on small
scales. We therefore expect time-varying parameters of GWs
observed by CORAL and the AMTM.

3 Analysis

In the following, we present our newly developed WAPITI
algorithm used to retrieve observed and intrinsic GW param-
eters based on three complementary data sets at mesospheric
altitudes. From AMTM temperature data, we obtain horizon-
tal wavelengths as well as propagation directions at the alti-
tude of the OH layer. Vertical wavelengths and directionality
of the vertical propagation are derived from CORAL vertical
temperature profiles. In combination with meteor radar wind
speeds, we estimate intrinsic periods. As a cross check, we
use the dispersion relation to retrieve vertical wavelengths
based on horizontal wavelengths and intrinsic periods and
compare the result with vertical wavelengths retrieved from
lidar data.

3.1 Spectral filtering of temperature data

The AMTM provides data in a temporally resolved keogram
representation in horizontal dimensions x and y, while
CORAL observations yield time series of temperature at dif-
ferent altitudes z. Following Torrence and Compo (1998)
we apply a wavelet transformation with 6th-order Morlet
wavelets to all the time series within the common FOV of
both instruments, i.e. for the lidar position at OH layer alti-
tudes.

The discrete periods used for the wavelet transformations
are given by

τj =
4π · dt · 2j/8+1

ω0+

√
2+ω2

0

. (1)

Here, the non-dimensional frequency, ω0 = 6, is the order
of the wavelet. The time resolution is represented by dt =
1 min, and j is the index of the wavelet, ranging from 0 to
71, selecting periods between 2 min and 16.2 h. The resulting
wavelet spectra show spectral power based on squared ampli-
tudes of temperature perturbations as a function of the time
and observed period (Fig. 4). The cone of influence (COI),
inside of which edge effects due to the finite time series
may result in an underestimation of spectral power, is indi-
cated by a hatched region. Significance levels of 95 %, 50 %
and 20 % calculated relative to red-noise spectra are shown
as contour lines to highlight potential GW structures within
each spectrum. To assess the effect of temperature uncertain-
ties in the wavelet spectrum, we perform Monte Carlo sim-
ulations. We add 100 Gaussian-distributed samples of white
noise with a standard deviation of the temperature measure-
ment uncertainty to the actual temperature time series and
apply a wavelet transformation. One standard deviation range
is shown with dashed lines together with the global wavelet
spectra (Fig. 4b, c, e).

Alexander (1998) applies instrumental filter functions to
model data in order to make GW spectra from model output
and measurements comparable. In order to compare wavelet
spectra of CORAL and the AMTM, we weighted lidar tem-
peratures between 78 and 95 km with a Gaussian distribu-
tion with a FWHM of 8.6 km centred at 86.8 km. Figure 4a
shows the natural logarithm of the squared absolute value of
the spectral amplitude of the CORAL temperature time series
averaged over the OH layer. An impression of the spectral
variability with height is given in Fig. 4c, where we present
global wavelet spectra at different altitudes. The Monte Carlo
simulation revealed increasing noise levels in global wavelet
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Figure 3. (a) Zonal wind, (b) meridional wind and (c) wind direction observed by the SLICE meteor radar on 16–17 December 2015.

spectra with smaller periods, especially below 0.5 h. Hence,
we decided to focus on the spectral range between the 0.5 and
8 h observed period. Figure 4d displays the wavelet spectrum
for the zenith time series of AMTM temperature (dashed
lines in Fig. 2b). A detailed description of the spectra is given
in Sect. 4.

We analyse wavelet power at 32 discrete periods in which
τj > 30 min and reconstruct the respective temperature per-
turbations for each spatial dimension x, y (AMTM) and z
(CORAL). If GWs with periods τj are present in the data
set, they are observed as a pattern of phase lines of signifi-
cant amplitude in the wavelet reconstruction. Two examples
are shown in Fig. 5b and c. Periods not supported by the data
exhibit very small reconstructed temperature perturbations.
From the progression of phase lines, we derive phase veloci-
ties in each direction.

3.2 Phase line identification

In order to detect phase lines in the reconstructed data, we
need to identify points belonging to the same phase, e.g.
points along wave crests or troughs. They are detected by
looking for a change of sign in the derivative of the temper-
ature time series with respect to time. In order to allow for
a robust phase line detection, the wavelet reconstructions are
smoothed with a boxcar window with a width of 5 km in the
spatial domain for keograms and 2 km for vertical profiles
and τj/4 in the time domain. The identified extrema are con-

nected in space in order to determine the phase angle in the
zenith position by a linear fit to phase lines.

Figure 5a illustrates the phase line detection of our
WAPITI algorithm. To isolate a number of i phase lines,
we find points of time ti(r) which follow the position of
wave crests and troughs in each data set. For example, the
first maximum in the zenith time series occurs at t1(r0). In
the time series adjacent to r0 we find the maximum which
is closest to t1 and at most 1t < τj/2 apart. This maxi-
mum is identified as belonging to the phase line i = 1. This
step is repeated for all r values within the window 1r =

12kmh−1τj + 20 km for keograms and 1r = 8.6 km for the
lidar data set. The window width for lidar data contains the
average thickness of the OH layer. We choose a dynamic
range for keograms; i.e. the range increases with the selected
period τj because larger structures tend to be more coherent.
In a second step we fit a linear function ti(r)= air + bi to
the detected phase lines and calculate the 1σ uncertainty es-
timates1ai and1bi . The coefficient ai has the dimension of
an inverse velocity, while bi is a constant time parameter.

Examples of reconstructed time series and detected phase
lines are shown in Fig. 5b and c. Increased amplitudes indi-
cate the presence of GWs with the selected τj . The matching
of temperature reconstructions and estimated phase lines is
very good for short as well as for large periods.
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Figure 4. (a) Wavelet power spectrum of Gaussian-weighted lidar time series and (b) global wavelet spectrum including standard deviation.
(c) CORAL global wavelet spectra including standard deviations for six altitudes between 82 and 92 km. (d) Wavelet power spectrum of the
zenith time series of the AMTM and (e) global wavelet spectrum including standard deviation. The hatched areas mark the COI. Solid lines
indicate the 20 %, 50 % and 95 % significance levels. Three period ranges with dominant waves are indicated by numbers on the right axis.

3.3 Horizontal wavelength and direction of
propagation

The observed horizontal wavelength λh can be retrieved di-
rectly from the OH airglow images. However, in this case,
the maximum wavelength is of the order of the dimension of
the FOV (∼200 km). Larger horizontal wavelengths can be
retrieved from the detected phase lines from above. Then, λh
is given by the product of the phase velocity c and the period
of the GW τ . Hence, in order to retrieve the phase velocities
ci in each direction at time ti(r0), we calculate the inverse of
the derivative of the linear fit ti(r) with respect to space,

ci(ti(r0))=

(
dti(r)

dr

)−1

=
1
ai
. (2)

To estimate the uncertainty of the phase velocity 1ci , we
calculate the propagated error of 1ai given by

1ci(ti(r0))= ci(ti(r0))
21ai . (3)

We now have an estimate for phase velocity and its uncer-
tainty at discrete points in time. As an approximation, we
assume that the fitted parameters vary linearly between these
discrete points. Consequently, ai , bi , 1ai and 1bi are lin-
early interpolated. To simplify the equations, we drop the

explicit time dependence from now on in the notation. We
obtain wavelengths λx and λy by

λx = τcx, (4)
λy = τcy . (5)

Uncertainties for these and following quantities are given
in Appendix A. We consider no uncertainty for the period of
the wavelet transformation defined in Eq. (1). We also note
that uncertainties in the spectral amplitude of the wavelet
spectrum do not lead to uncertainties in the reconstructed pe-
riod but to uncertainties in the amplitude of the reconstructed
signal. Thus, structures are conserved.

The horizontal wavelength is determined by λx and λy
(Eq. 5), as illustrated in Fig. 6a:

λh =
λyλx√
λ2
y + λ

2
x

. (6)

As the phase velocities can have positive and negative signs,
λh can be positive or negative depending on the propagation
direction. However, the direction of propagation is usually
expressed as an angle relative to north, thus making the in-
formation encoded in the sign of the horizontal wavelength
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Figure 5. (a) Sketch illustrating the phase line detection of the WAPITI algorithm. The grid represents data resolved in space and time. Grey
boxes represent local temperature maxima in each time series ri . Blue arrows point to adjacent maxima that are affiliated with a phase line.
Red arrows point to adjacent maxima that are too far away and therefore do not belong to the considered phase line. Solid arrows describe
the first step in the algorithm, and sketched time intervals refer to these solid arrows. Dotted arrows describe further steps of the algorithm.
(b) Phase line identification applied to reconstructed temperature perturbations in lidar data with a period of 4.0 h and (c) in airglow data
with a period of 0.7 h. Solid black lines are fitted linear functions.

Figure 6. (a) Sketch to illustrate the relation between wavelengths. λh is defined as the height of a right triangle (red) with sides λx and
λy . (b) Definition of the propagation angle. The horizontal direction of propagation is given by the relation of wavelengths in the x and y
direction. Coloured arrows describe different propagation directions.
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redundant. Following this convention, we drop the sign and
consider absolute values only.

The propagation angle θ is defined clockwise starting at
0◦, with θ = 0◦ being north. Figure 6b illustrates propaga-
tion directions in the horizontal plane. For λx > 0 the wave
propagates eastward and θ = π

2 + tan−1
(
−
λx
λy

)
. For λx < 0

the wave propagates westward and θ = 3
2π + tan−1

(
−
λx
λy

)
.

With knowledge of wave propagation and wind direction, we
calculate the background wind u0 in the direction of propa-
gation, which is needed for the estimation of intrinsic param-
eters.

3.4 Intrinsic period

The observed phase velocity of a GW is given by c = cI+u0
(Nappo, 2002), with cI being the intrinsic phase velocity and
u0 being the background wind. Furthermore, cI =

λh
τI

, with τI
being the intrinsic period and λh being the horizontal wave-
length. If we rearrange this definition and solve for the intrin-
sic period τI, we obtain

τI =
λh

c− u0
. (7)

The background wind projected onto the GW propagation
direction is calculated as

u0(θ)= U sin(θ)+V cos(θ), (8)

with U and V being the zonal and meridional wind compo-
nents. Both components are weighted with a Gaussian dis-
tribution over an altitude range of 82–95 km, with a FWHM
of 8.6 km centred at 86.8 km and averaged over this range.
For u0 = 0, the intrinsic period equals the observed period.
Assuming a constant horizontal wavelength, i.e. no horizon-
tal gradients in the horizontal wind (Marks and Eckermann,
1995), the intrinsic period becomes larger than the observed
period if the background wind is oriented in the same di-
rection as the observed phase velocity and 0< u0 < c. The
intrinsic period becomes smaller than the observed period if
the background wind is oriented against the observed phase
velocity and u0 < 0. The intrinsic frequency � of vertically
propagating GWs is limited to f < �<N (Nappo, 2002),
with N being the Brunt–Väisälä frequency and f being the
Coriolis parameter. We estimate the range for τI at 5 min<
τI < 13 h for typical values ofN and f at 67.4◦ N. For u0 = c

the intrinsic period becomes infinite, and the wave reaches a
critical level and breaks. The uncertainty for the intrinsic pe-
riod is given in Appendix A.

3.5 Vertical wavelength

The vertical wavelength λz is derived using two independent
methods. From the phase line detection applied to lidar data,
we derive the vertical phase velocity cz. Multiplying it by the
period τ yields the vertical wavelength λz. The uncertainty

1λz = τ1cz is given by the 1σ uncertainty estimate from the
linear fit applied during the phase line detection. Like the ob-
served horizontal phase velocity, the observed vertical phase
velocity can have both signs as well. For upward-propagating
waves, cz < 0, and for downward-propagating waves, cz > 0.
According to Dörnbrack et al. (2017) this condition holds for
u0 >−cI. Otherwise waves appear to be propagating upward
in lidar data, while they are in reality propagating downward
and vice versa.

The second approach uses the dispersion relation and the
parameters retrieved from AMTM data to derive a vertical
wavelength. In Sect. 4 we show both results for λz, which we
discuss in Sect. 5. The dispersion relation reads

m2
=

N2

(c− u0)2
+

u′′0
(c− u0)

−
1
Hs

u′0
(c− u0)

−
1

4H 2
s
− k2, (9)

where m is the vertical wave number and Hs is the scale
height (Nappo, 2002). Primes indicate the derivative with re-
spect to z. We substitute cI =

λh
τI
= c−u0, and when we solve

the dispersion relation for λz, we get

λz =
2π√(

NτI
λh

)2
+
u′′0τI
λh
−

u′0τI
Hsλh
−

(
1

2Hs

)2
−

(
2π
λh

)2
. (10)

We derived expressions for λh and τI in previous sections.Hs
is defined asHs = RT/g, withR = 287Jkg−1 K−1 being the
universal gas constant for dry air and g = 9.81ms−2 being
the acceleration due to gravity. The Brunt–Väisälä frequency
N is defined as

N =

√
g

T

(
∂T

∂z
+
g

cp

)
, (11)

with cp = 1.005kJkg−1 K−1 being the specific heat capacity
for air at constant pressure. We calculate the nightly mean
of N in the altitude range of 82–91 km based on background
temperature profiles which are obtained by low-pass filtering
of lidar temperature profiles following Ehard et al. (2015).
We deriveN = 0.0202±0.0016s−1 andHs = 5.60±0.08 km
at OH layer altitudes. We assume N and Hs to be constant
and also assume a uniform wind in the horizontal plane, i.e.
a constant λh. The derivatives of horizontal wind with respect
to altitude u′0 and u′′0 are determined between 82 and 95 km
and averaged over this altitude range in the same way as for
the Gaussian-weighted average of the background wind (see
Sect. 3.4). In the next section, we apply our WAPITI algo-
rithm to GWs observed on the 16–17 December 2015.

4 Results

During the night of 16–17 December 2015, strong GW sig-
nals were detected by the AMTM and CORAL above So-
dankylä, Finland. The wavelet spectra (Fig. 4) reveal a broad
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distribution of observed periods with high spectral power
throughout the night. In the lidar data, we find three re-
gions with significance levels > 95 %. The most prominent
region lies at the ∼ 4 h observed period between 17:00 and
02:00 UT. Another region lies close to the 2 h observed pe-
riod at 00:00 UT, while the third region consists of three
peaks between the 0.5 and 1.0 h observed period and 23:00–
05:00 UT (Fig. 4a). In AMTM data we see GW ampli-
tudes with significance levels > 95 % from 19:00 UT until
the end of the night. Dominant GWs exhibit observed peri-
ods in the range of 1.5–6.5 h (Fig. 4d). We calculate global
wavelet spectra (Fig. 4b, c, e) and divide them into three re-
gions based on local maxima in spectral power. Region (I)
is defined from the 30–60 min observed period and contains
small-period GWs. The second region ranges from 1.0 to
2.8 h. Region (III) comprises periods of 2.8–6.5 h. We restrict
our analysis to periods below 6.5 h due to the finite data sets
and the respective COI. Amplitudes in AMTM data at longer
wavelengths are too small for reliable detection of phase lines
by our algorithm. The insensitivity of our method to changes
at scales above 6.5 h at the same time ensures our focus on
GWs and attributes the action of tides and planetary waves
to the GW background. We keep in mind that both may in-
teract and alter the GW parameters. In general, the spectra of
AMTM and CORAL are in good agreement. However, am-
plitudes in the lidar spectrum are larger.

As stated in Sect. 3 we retrieved wavelengths and propa-
gation angles for 32 reconstructed periods such that the GW
parameters can be displayed as a function of the time and ob-
served period. To give an overview, the retrieved parameters
in the three spectral regions defined above are organized in
probability density distributions next to the full spectra. We
do a kernel density estimation (KDE) for this purpose. Each
value is represented as a normalized Gaussian distribution,
with a standard deviation given by its uncertainty. Finally all
Gaussian distributions are added and divided by the number
of values taken into account in order to normalize the proba-
bility density distribution. Values with small uncertainties are
represented as peaks with a small FWHM, while values with
large uncertainties are represented as flat and broad peaks
in the distribution. In comparison to a standard histogram the
KDE takes the uncertainty of each value into account. Hence,
the distribution is independent of a chosen bin size, and each
peak is reliable. In the background we show the total density
distribution of each parameter comprising all values within
the 20 % significance contour line in light grey. This enables
us to investigate how each spectral region contributes to the
total distribution. Additionally we hatched the parts of each
distribution which show parameters within the COI to be
aware of their contribution. Figure 7a and b show horizontal
wavelengths retrieved from AMTM data. We see a large vari-
ation in λh, ranging from 75 to 2000 km. The uncertainties lie
of the order of a few percent in significant regions. Figure 7c
shows horizontal propagation directions of the waves iden-
tified by the WAPITI algorithm. The density distributions in

Fig. 7d show waves predominantly propagating in northward
directions. Figure 8a and b display the wind every wave is
exposed to, i.e. wind speed in the direction of propagation.
Most waves propagate against the mean flow, resulting in
negative wind speeds of up to −80 m s−1. Figure 8c and d
show estimated intrinsic periods based on wind speeds. Due
to the motion in opposite directions, the majority of intrinsic
periods are Doppler-shifted to larger observed periods. Verti-
cal wavelengths retrieved from lidar data are shown in Fig. 9a
and b, where we find values of 6–50 km. A background wind
field varying in space and time has an impact on the observed
period of GWs and hence affects the temperature reconstruc-
tions. Therefore phase lines in our data sets are bent, and
we find locally large wavelengths. Vertical wavelengths be-
tween 1 and 50 km are retrieved using the dispersion relation
(Fig. 9c and d).

Tables 1 and 2 summarize the range of GW parameters
of a number of likely GW packets across the three spectral
ranges for the discussion.

5 Discussion

Before we discuss the presented results of our analysis, we
want to point out the assumptions and limitations in this case
study. As we mentioned in Sect. 2, the OH layer peak alti-
tude is on average located at 86.6 km and has a thickness of
8.6 km. Because no satellite soundings of OH are available
for the period of the case study, we use these climatological
values. However, we note that the actual peak altitude and
thickness of the OH layer may deviate from the climatolog-
ical mean, leading to uncertainties in the wavelet spectra, as
we average Gaussian-weighted lidar temperatures over the
altitude range of the OH layer. The same holds true for av-
eraged wind data. Wind speeds are systematically averaged
over an area of ∼ 300 km in diameter. We take this into ac-
count by asserting large uncertainties to the retrieved wind
speeds (see Appendix A). Another limitation is that lidar
measurements are restricted to the centre of the OH imager’s
FOV, with decreasing resolution towards higher altitudes. We
highlighted the congruent altitude range of the three instru-
ments’ data. However, resolutions and observational volumes
differ. We chose a 20 % significance level to maximize the
overlapping areas in lidar and AMTM wavelet spectra, espe-
cially for short periods, as Fig. 5c has proven that also at this
significance level, detectable and coherent structures can be
retrieved.

Dörnbrack et al. (2017) showed that upward-propagating
waves appear to be propagating downward in lidar data
for u0 <−cI. In the majority of cases this condition is
not fulfilled, and the intrinsic vertical propagation direc-
tion matches the observed vertical propagation direction
(upward–downward).
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Table 1. GW parameters derived from AMTM and SLICE data for selected dominant GW packets. The ranges describe the FWHM of peaks
in each density distribution. Values for τ and time refer to identified peaks in the propagation direction.

Table 2. Vertical wavelengths derived from CORAL data. The
ranges describe the FWHM of peaks in the density distribution.

5.1 Small-period gravity waves

Spectral region (I) comprises GWs with observed periods be-
tween 0.5 and 1.0 h. Comparison of the global wavelet spec-
tra of CORAL (Fig. 4b) and the AMTM (Fig. 4e) yields coin-
ciding peaks at the∼ 0.7 h observed period. The difference in
spectral amplitudes mentioned above is reflected in the lev-
els of significance. The spectra in Fig. 4c show an increase in
spectral amplitude with altitude. As long as no wave break-
ing occurs, we expect increasing amplitudes with altitude due
to decreasing density. From comparing both spectra, we are
confident to see the same GWs with both instruments but
with different sensitivities at different times.

We find that the majority of horizontal wavelengths lie
between 114 and 166 km (Fig. 7b). When we compare the
distribution of region (I) with the total density distribu-
tion (grey background), we discover that almost all GWs
with smaller horizontal wavelengths (< 300 km) are located
within region (I). The density distributions reveal three pre-
ferred propagation directions (Fig. 7d). The FWHMs of
the three peaks are given in Table 1. We treat each peak
as a GW packet. A first packet propagates southeastward
at about 17:00 UT, and a second packet travels northwest-
ward at 20:00 UT. The latter either turns northeastward after
22:00 UT or a third packet appears. The background wind in

the propagation direction is negative at all times for all waves
(Fig. 8b), indicating wave propagation against the mean flow.
In accordance with the propagation against the background
wind, intrinsic periods are smaller than observed periods
(Fig. 8b). Again, almost all small-period GWs with intrin-
sic periods below 0.6 h are found in region (I). Our WAPITI
algorithm identifies mainly upward-propagating waves in li-
dar data, with the majority of vertical wavelengths between
17 and 25 km (Fig. 9b). The probability density distribution
shows another broader peak between 10 and 43 km, affili-
ated with downward-propagating waves. Figure 9a and b also
show vertical wavelengths larger than 50 km. We emphasize
that these large values are retrieved only in the altitude range
of the OH layer (82.5–91.1 km). Phase lines that are locally
very steep (e.g. due to vertical wind shear) seem to exhibit
very large vertical wavelengths. Upward- and downward-
propagating waves alternate throughout the night. The reason
for this may be refraction levels or vertical wind shear. The
calculated vertical wavelengths in Fig. 9d peak between 7
and 50 km. The peaks identified in lidar data overlap largely
with this range (Fig. 9b).

In summary, region (I) contains small-period waves trav-
elling predominantly northwestward against the background
wind, resulting in a Doppler shift of intrinsic periods to larger
observed periods. These small-period waves dominate the
density distributions for horizontal wavelengths < 300 km
and intrinsic periods < 0.6 h. In AMTM time-lapse videos,
we observe GW breaking at 21:00 UT. This coincides with
the appearance of large amplitudes in spectral region (I)
in the AMTM wavelet spectrum. One explanation could be
that small-period GWs are generated by longer-period GWs
breaking at 21:00 UT. Amplitudes in the CORAL spectrum
confirm the presence of large-period waves. Another possi-
bility is a change of background conditions (e.g. induced by
tides) at 21:00 UT in such a way that afterwards, small-period
GWs can be detected by the AMTM. The rapid change of
sign of the vertical wavelength shows that this region is dom-
inated by vertical wind shear, i.e. ∂u

∂z
6= 0. Alternating λz

may also be a sign for reflection of waves (ducted waves).
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Figure 7. (a) Horizontal wavelengths observed by the AMTM as
function of time and observed period. The hatched area represents
the COI. Contour lines mark the 20 %, 50 % and 95 % significance
levels. (b) Density distributions for significance levels > 20 % for
region I (red), region II (green) and region III (grey). The grey dis-
tribution in the background shows the total probability density dis-
tribution of all values with significance level> 20 %. Hatched areas
indicate values within the COI. (c) Same as (a) for propagation di-
rections based on horizontal wavelengths. (d) Density distributions
for each region as in (b). Dotted lines mark the cardinal directions.

The comparison of absolute values of vertical wavelengths
from the two retrievals shows that both methods are in good
agreement. However, vertical wavelengths retrieved by the
WAPITI algorithm have a narrower distribution than the val-
ues we derived from the dispersion relation. Discrete peaks
in the density distribution of the propagation direction help
to distinguish between GW packets.

Figure 8. (a) Same as Fig. 7a but for horizontal wind speeds in
the direction of horizontal propagation. (b) Density distributions
for each region as in Fig. 7b. The dotted line represents zero wind
speed. (c) Same as Fig. 7a but for intrinsic periods based on hori-
zontal wavelengths and the background wind. (d) Density distribu-
tions for each region as in Fig. 7b. Additionally, the distributions of
observed periods are given (dashed lines).

5.2 Medium-period gravity waves

Region (II) comprises observed periods between 1.0 and
2.8 h. The peaks in the global wavelet spectra of CORAL
(Fig. 4b) and the AMTM (Fig. 4e) are slightly shifted. For
CORAL, the peak lies at 1.8 h, while it is at 2.2 h for the
AMTM. This difference may result from the different sensi-
tivities of the instruments or the variability in the OH layer
thickness and altitude. In comparison to region (I) we find
a large overlapping area of statistical significance in both
spectra. Figure 4c shows a slight increase in spectral ampli-
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Figure 9. (a) Same as Fig. 7a but for vertical wavelengths derived
from lidar data. Positive vertical wavelengths indicate downward-
propagating waves (upward-slanted phase lines), and negative ver-
tical wavelengths indicate upward-propagating waves (downward-
slanted phase lines). (b) Density distributions for each region as in
Fig. 7b. (c) Same as Fig. 7a but for vertical wavelengths retrieved
from the dispersion relation. White gaps indicate a complex wave-
length. (d) Density distributions for each region as in Fig. 7b.

tude with altitude compared to region (I), suggesting growing
wave amplitudes.

Most of the horizontal wavelengths lie between 443 and
747 km (Fig. 7b). Taking the values within the COI into
account does not alter, in general, the shape of the peak.
When we compare the distribution of region (II) with the
total density distribution (grey background), we see that re-
gion (II) contributes to all wavelengths. However, its con-
tribution to larger wavelengths is weaker. Sometimes phase
lines are locally very steep in both keograms, and therefore
λh attains large values. One example is evident at 22:00 UT

for the 1.5 h observed period. After 23:00 UT, λh decreases
rapidly within 1 h, from 2000 to 200 km. This is a clear
sign for a gradient in the horizontal wind field, as ∂λh

∂t
∼

∂u
∂x

(Marks and Eckermann, 1995; Stober et al., 2018). As evi-
dent from Fig. 7c the propagation direction is first westward
and becomes northeastward later. Our explanation is that the
waves appear to rotate in AMTM data due to a horizontal
wind gradient. This leads to bent phase lines in the tem-
perature reconstructions which are identified as very large
horizontal wavelengths. The dominant propagation direction
is northward to northeastward. Later, waves turn westward.
The northward propagation results in negative wind speeds
(Fig. 8b). Only small spectral areas comprising waves with
an eastward component experience positive wind speeds.
Wind speeds from region (II) dominate the total density dis-
tribution (grey background) between−80 and−50 m s−1. As
we have seen in region (I), a propagation against the back-
ground wind leads to a Doppler shift of intrinsic periods to-
wards larger observed periods. This is in general also the
case in region (II), where the majority of waves with intrinsic
periods between 1.1 and 1.8 h are Doppler-shifted towards
observed periods between 1.0 and 2.8 h (Fig. 8c). Values
within the COI slightly broaden the distribution. Intrinsic pe-
riods from region (II) dominate the total density distribution
(grey background) between 0.6 and 2.1 h. Most of the verti-
cal wavelengths derived from lidar data lie between 11 and
36 km (Fig. 9b) and are affiliated with upward-propagating
waves. We identify two additional peaks between 6 and 8 km
(upward) and 16 and 45 km (downward). On the left-hand
side of Fig. 9a, we find that waves first propagate upward
and then turn downward at 22:00 UT and back upward at
∼ 02:00 UT. As mentioned in region (I) the change of prop-
agation direction indicates vertical wind shear or levels of
reflection (ducted waves). The distribution of vertical wave-
lengths estimated using the dispersion relation shows an even
broader peak, as in region (I), with values between 5 and
54 km (Fig. 9b). Vertical wavelengths within the COI in-
crease slightly the probability density at the position of the
peak. Absolute values of the density distribution of λz and
the FWHM of the respective peaks are in general agreement
(Fig. 9b and d and Tables 1 and 2). To note is the white gap
between 21:00 and 23:00 UT in Fig. 9c. In this area the con-
dition for a real λz is not fulfilled. Waves in this area either do
not propagate or the vertical wind shear is underestimated.

We state that the appearance of GWs in region (II) coin-
cides with a wave breaking event at 21:00 UT and a strength-
ening of the mean flow. The retrieved parameters show a
large variability which may follow from a non-uniform wind
speed distribution within the FOV of the AMTM and altitude
range of the OH layer. Interestingly not all parts of the GW
spectrum react in the same way to the changing background
wind.
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5.3 Large-period gravity waves

A wide range of observed periods from 2.8 to 6.5 h is
detected in spectral region (III). When we compare the
global wavelet spectra of CORAL (Fig. 4b) and the AMTM
(Fig. 4e) we find the most prominent peak at the 4.2 h ob-
served period in the CORAL spectrum and a slightly shifted
peak at 3.8 h in the AMTM spectrum. We assert that both
instruments are sensitive to waves in this spectral domain,
although there are some striking exceptions. The contour
line of the 20 % significance level in the AMTM spectrum
covers the whole night and comprises observed periods be-
tween 2.8 and 8.0 h. The statistically significant area in the
CORAL spectrum is more focused and comprises observed
periods between 2.8 and 6.0 h. Right at the position of max-
imum amplitude in the CORAL spectrum, we find a gap in
the spectrum of the AMTM. This gap results most probably
from waves with small vertical wavelengths which cannot
be detected by the AMTM. Another explanation is an OH
layer altitude that is higher or lower than assumed. Looking
at Fig. 4c we find a peak shifting from the 3.5 h observed pe-
riod at an 82 km altitude to 4.5 h at 90 km. This behaviour
might be indicative of separate waves at different altitudes,
or the same wave being Doppler-shifted to multiple observed
periods at different altitudes, which then implies a vertical
gradient in horizontal wind speed. Such a vertical gradient
is supported by SLICE meteor wind measurements (Fig. 3).
From ∂λz

∂t
∼

∂u
∂z

, we expect a changing vertical wavelength
with time, as we find a vertical gradient in horizontal wind
speed. Figures 9a and c show a changing λz.

We find a rather broad distribution of horizontal wave-
lengths, with a peak between 739 and 1032 km (Fig. 7b).
To note are two areas reaching at least a 2000 km horizon-
tal wavelength. A major peak is located at 01:00 UT and
the 4.4 h observed period, and a smaller peak is located
at 01:30 UT and the 3.3 h observed period. As mentioned
above, phase lines appear to be locally steep in the tem-
perature reconstructions likely due to a gradient in horizon-
tal wind. At the same time, waves appear to be rotating in
propagation direction. Both peaks in Fig. 7a show a rapid
turning of waves, with an angular change of > 90◦ within
2 h. Overall, considering the distribution of propagation di-
rections we identify three different GW packets (Fig. 7d).
The first comprises observed periods between 2.8 and 3.5 h
and propagates in a northward–northeastward direction be-
tween 18:00 and 01:00 UT. The second packet exhibits ob-
served periods between 3.5 and 4.5 h, propagates westward,
and turns northward during the night. Between the 4.5 and
6.0 h observed period, we find a third wave packet propa-
gating eastward and turning northward during the duration
of the measurement. Interesting to observe is the bidirec-
tionality of the GW packets, which is also reflected in the
distribution of wind speeds. Most of the waves propagate
against the wind, i.e. wind speeds are negative, but there is
also a large part of waves travelling with the wind (Fig. 8b).

The first GW packet experiences tailwind at 18:00 UT, but
at 19:00 UT the wind turns and strengthens negative values.
Negative winds are present for the second GW packet be-
tween 20:00 and 04:00 UT as well. The third packet expe-
riences positive and decreasing wind speeds between 18:00
and 01:00 UT. Values inside the COI modify the distribution
such that it changes from a plateau to a peak shape. Wind
speeds from region (III) dominate the total density distribu-
tion (grey background) between−50 and 80 m s−1. Figure 8b
shows that most of the waves outside the COI are Doppler-
shifted from small intrinsic periods between 2.5 and 3.1 h to
larger observed periods between 2.8 and 6.5 h. Intrinsic peri-
ods from region (III) dominate the total density distribution
(grey background) between 2.1 and 8.0 h. Based on lidar data
the WAPITI algorithm identifies a majority of vertical wave-
lengths between 19 and 22 km (Fig. 9a). Vertical wavelengths
from region (III) dominate the total density distribution (grey
background) for negative values. We find two smaller peaks
between 12 and 14 km (upward) and 24–40 km (downward).
This is in good agreement with values retrieved using the
dispersion relation (Fig. 9b). Due to large uncertainties in the
calculation of vertical wavelengths, the density distribution
is very broad. Hence, values for λz smaller than the OH layer
thickness are also retrieved. In Fig. 9c we find another white
gap, indicating a complex vertical wave number. This area
coincides with a domain of extremely large horizontal wave-
lengths (Fig. 7a) and fast wave rotation (Fig. 7c). As men-
tioned above, this is an indication for a gradient in the hor-
izontal wind field. Vertical wavelengths are relatively small
and slowly increasing, which is in agreement with the non-
detection by the AMTM in the beginning of the measurement
due to the lack of sensitivity to small vertical wavelengths.
At the same time the variation in λz provides evidence for a
vertical wind shear. We rearrange the ray-tracing equations
stated by Marks and Eckermann (1995), yielding

∂u

∂z
=
λh

λ2
z

dλz
dt
, (12)

with u being the horizontal wind speed in an arbitrary di-
rection. λh and λz are averaged at an observed period of 4 h
between 20:00 and 03:00 UT, i.e. a time span in which both
wavelet spectra exhibit large significance levels. The vertical
wavelength changes from −15 to −30 km within this time
span. Hence, ∂u

∂z
=

900 km
202 km2

15 km
7 h = 1.3 m s−1

km . When we multi-
ply this value by the thickness of the OH layer, we get a total
difference in wind speed of 1u= 11.5 m s−1. The mean ab-
solute wind speed retrieved from SLICE between 20:00 and
03:00 UT increases from 41 m s−1 at 82 km to 51 m s−1 at
90 km (Fig. 3). This value is in very good agreement with
our estimate. We conclude that with the help of our method,
we are able to derive vertical wind gradients and possibly
even horizontal gradients.

In region (III) we identify two GW packets moving in
opposite directions (westward and eastward) turning slowly
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northward. Both propagate upward. These changes of prop-
agation direction are most probably due to wind gradients.
The existence of large-period waves is one condition for the
supposed gravity wave breaking at 21:00 UT. Another cause
for gravity wave breaking at mesospheric altitudes could be
interaction with tides.

In summary, we demonstrated that our analysis is capa-
ble of determining the full set of GW parameters covering a
wide range of values that are known to be typical for gravity
waves. Typical values for λh in airglow data are in the range
of 10–200 km (Nakamura et al., 2003; Diettrich et al., 2005;
Matsuda et al., 2014; Lu et al., 2015; Nyassor et al., 2018).
By analysing keograms, Fritts et al. (2014) retrieve even
larger λh values reaching 4000 km. They decompose tem-
perature perturbations into a few dominant modes and find
a wide range of values for the horizontal wavelength (24–
∼ 4000 km), vertical wavelength (17.6–∼ 30 km), intrinsic
period (∼ 10 min–12 h), intrinsic phase velocity (33 to >

200 m s−1) and background wind (∼ 14–51 m s−1). Vertical
wavelengths retrieved from lidar data are typically between
2 and 20 km (Kaifler et al., 2017). Values for λz > 50 km are
an indication for ducted waves (Snively and Pasko, 2003).

6 Conclusions

In this study we combined three complementary data sets
obtained from co-located instruments. Vertical temperature
profiles by CORAL and the AMTM’s horizontal temperature
maps provide three-dimensional insight into the behaviour of
GWs in the MLT region. Additional wind information pro-
vided by the SLICE meteor radar made it possible to inves-
tigate the intrinsic propagation of these GWs. Our newly de-
veloped WAPITI algorithm combines spectral filtering using
wavelet analysis with a phase line identification algorithm.
Based on this method, we were able to retrieve observed as
well as intrinsic GW parameters with estimations of their un-
certainties as a function of time and ground-relative period.
This facilitates separation and characterization of GW pack-
ets without using the dispersion relation.

Although the sensitivities of the instruments differ, by
comparing wavelet spectra, we confirm that AMTM and
CORAL observed, in general, the same GWs. For the case
study on 16–17 December 2015, the night started with large-
scale waves between the 3 and 5 h ground-relative period.
At 21:00 UT wave breaking occurred, resulting in spectral
broadening and creation of small-period waves. The mean
flow turns in the southeastward direction and strengthens.
The detected GWs propagate predominantly against this
background wind in a northward direction, resulting in a
Doppler shift of about 1 h. The vertical wind shear caused a
steepening of phase lines, i.e. an increase in vertical wave-
lengths. Additionally we find very large horizontal wave-
lengths and wave rotation, indicating a horizontal wind shear
as well. We were not looking for isolated wave events but

investigated all data sets, interpreting the observations as a
superposition of several GWs. All retrieved parameters are
highly variable in time and observed period. This provides
evidence for a non-uniform wind field in space and time and
points out the complex interaction between waves and the
background flow. As only parts of the spectra are sensitive
to wind gradients, we conclude that small-period waves see
large-period ones as disturbances in the background. Only
the distribution of propagation directions exhibited multiple
discrete peaks which help to distinguish clearly between GW
packets. The GW parameters can be used to calculate mo-
mentum fluxes, to perform forward and backward ray trac-
ing, and to derive a horizontally resolved wind field. The
largest uncertainty of intrinsic parameters derived with our
method arises due to the unknown precise altitude and shape
of the OH layer. A reliable method to determine the precise
OH profile is needed in order to improve GW results and
to allow for better differentiation between GW packets. We
plan to automate our method and apply it to more case studies
and eventually to the whole data set, with the goal of studying
propagation and interaction of GWs with the mean flow from
a statistical point of view. In order to assess spatial properties
of GWs, we want to extend our analysis to the whole FOV of
the imager.

Code and data availability. Lidar, radar and AMTM data sets are
available as NetCDF files in HALO-DB at https://halo-db.pa.op.
dlr.de/mission/109 (last access: 4 November 2019), entries 6457 to
6469.
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Appendix A: Uncertainties

In this section, we present uncertainty calculations for the re-
trieved parameters’ horizontal wavelength, direction of prop-
agation, intrinsic period, wind in propagation direction, wind
shear, wind curvature and vertical wavelength derived from
the dispersion relation. The uncertainty of the intrinsic period
contains wind speed uncertainties 1u0, which comprises
three sources. First we average the Gaussian-weighted wind
speed over an altitude range of 82–95 km, with a FWHM of
8.6 km centred at 86.8 km. This is the average altitude and
thickness of the OH layer. As mentioned in Sect. 2.2, these
parameters are variable; therefore it is possible that the OH
layer is partly below 82 km or above 91 km, and we do not
average over the correct altitude range. Second, we calcu-
late the wind speed in the direction of propagation, which
is based on the estimated θ . As θ may be inaccurate, there is
some uncertainty in the projected wind speed as well. Finally,
for the wind measurements itself, we assume uncertainties of
10 m s−1. As we average over at least three independent val-
ues, the uncertainty is reduced to 5.6 m s−1:

1λx = τ1cx, (A1)
1λy = τ1cy, (A2)

1λh =

∣∣∣∣ ∂λh

∂λx

∣∣∣∣1λx + ∣∣∣∣ ∂λh

∂λy

∣∣∣∣1λy (A3)

=
|λy |1λx + |λx |1λy

(λ2
x + λ

2
y)

3/2 . (A4)

1θ =
|λy |1λx + |λx |1λy

λ2
y + λ

2
x

. (A5)

1τI =

∣∣∣∣ ∂τI

∂λh
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