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Abstract. Single-particle mass spectrometry (SPMS) instru-
ments characterize the composition of individual aerosol par-
ticles in real time. Their fundamental ability to differentiate
the externally mixed particle types that constitute the atmo-
spheric aerosol population enables a unique perspective into
sources and transformation. However, quantitative measure-
ments by SPMS systems are inherently problematic. We in-
troduce a new technique that combines collocated measure-
ments of aerosol composition by SPMS and size-resolved ab-
solute particle concentrations on aircraft platforms. Quantita-
tive number, surface area, volume, and mass concentrations
are derived for climate-relevant particle types such as min-
eral dust, sea salt, and biomass burning smoke. Additionally,
relative ion signals are calibrated to derive mass concentra-
tions of internally mixed sulfate and organic material that are
distributed across multiple particle types.

The NOAA Particle Analysis by Laser Mass Spectrometry
(PALMS) instrument measures size-resolved aerosol chemi-
cal composition from aircraft. We describe the identification
and quantification of nine major atmospheric particle classes,
including sulfate–organic–nitrate mixtures, biomass burning,
elemental carbon, sea salt, mineral dust, meteoric material,
alkali salts, heavy fuel oil combustion, and a remainder class.

Classes can be sub-divided as necessary based on chemical
heterogeneity, accumulated secondary material during aging,
or other atmospheric processing. Concentrations are derived
for sizes that encompass the accumulation and coarse size
modes. A statistical error analysis indicates that particle class
concentrations can be determined within a few minutes for
abundances above ∼ 10 ng m−3. Rare particle types require
longer sampling times.

We explore the instrumentation requirements and the lim-
itations of the method for airborne measurements. Reducing
the size resolution of the particle data increases time resolu-
tion with only a modest increase in uncertainty. The principal
limiting factor to fast time response concentration measure-
ments is statistically relevant sampling across the size range
of interest, in particular, sizes D < 0.2 µm for accumulation-
mode studies andD > 2 µm for coarse-mode analysis. Perfor-
mance is compared to other airborne and ground-based com-
position measurements, and examples of atmospheric min-
eral dust concentrations are given. The wealth of informa-
tion afforded by composition-resolved size distributions for
all major aerosol types represents a new and powerful tool to
characterize atmospheric aerosol properties in a quantitative
fashion.
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1 Introduction

Particle mass spectrometry is a valuable method for charac-
terizing atmospheric aerosol composition from airborne plat-
forms. Instrumental techniques can be broadly categorized
into bulk methods, where all aerosol within a size range are
collected and characterized as a population (Canagaratna et
al., 2007; Pratt and Prather, 2012), and single-particle meth-
ods that characterize individual particles as a subset of the
aerosol population, with a few hybrid methods also demon-
strated (Cross et al., 2009; Freutel et al., 2013). Single-
particle mass spectrometry (SPMS) instruments (Hinz and
Spengler, 2007; Murphy, 2007) have been used for over
25 years to characterize the chemical composition of at-
mospheric aerosol from ground sites and aircraft platforms.
The NOAA Particle Analysis by Laser Mass Spectrome-
try (PALMS) instrument first flew in 1998 (Thomson et al.,
2000), and several other SPMS instruments have successfully
flown on airborne platforms (Brands et al., 2011; Coggiola
et al., 2000; Pratt et al., 2009a; Trimborn et al., 2000; Ze-
lenyuk et al., 2015). Their high sensitivity to a wide vari-
ety of aerosol species, size-resolved capability, and ability to
characterize internally and externally mixed aerosol species
make SPMS instruments well suited to airborne studies of
atmospheric aerosol composition.

PALMS measures aerosol composition by evaporating in-
dividual particles and ionizing their chemical constituents
using a single pulse from a powerful laser, then analyzes
the ions with a time-of-flight mass spectrometer. PALMS
and other SPMS instruments that use single-step laser
desorption–ionization (LDI) are not inherently quantitative
because ion formation is not a well-controlled process and
gives rise to considerable particle-to-particle variability in
both total and relative ion signals (Hinz and Spengler,
2007; Murphy, 2007). Many bulk aerosol mass spectrome-
ters (Canagaratna et al., 2007; Tobias et al., 2000) and some
SPMS instruments (Passig et al., 2017; Simpson et al., 2009;
Sykes et al., 2002) use a two-step particle desorption and ion-
ization process that can more readily quantify particle sub-
components. Very high laser irradiances generate plasmas
that can also improve consistency in ion signals but at the
expense of losing all molecular information (Wang and John-
ston, 2006).

SPMS instruments have not typically calibrated the abso-
lute ion signal intensity to aerosol mass abundance due to
ionization variability. Also, SPMS particle detection usually
relies on optical scattering, so that the overall detection effi-
ciency is a strong and variable function of particle size. Nev-
ertheless, a number of studies have used SPMS techniques
to quantify various aerosol species. Relative abundance mea-
surements of internally mixed aerosol sub-components have
been reported for metals (Cziczo et al., 2001; Healy et
al., 2013; Murphy et al., 2007; Zawadowicz et al., 2015),
organosulfate species (Froyd et al., 2010; Liao et al., 2015),
elemental carbon (EC; Healy et al., 2012), and non-refractory

material such as ammonium and nitrate (Healy et al., 2013),
or sulfate and organic material (Healy et al., 2013; Jeong et
al., 2011; Middlebrook et al., 1998; Murphy et al., 2006; Ze-
lenyuk et al., 2008; Zhou et al., 2016). Some groups have
scaled SPMS data rates to aerosol reference instruments, ei-
ther under controlled conditions prior to deployment (Shen et
al., 2019) or more commonly co-located in the field, to derive
total number or mass concentrations (Bein et al., 2006; Pratt
et al., 2009a; Qin et al., 2006) or concentrations for specific
particle types and sub-components (Gemayel et al., 2017;
Healy et al., 2012, 2013; Jeong et al., 2011; Reinard et al.,
2007; Shen et al., 2019). Many of these scaling studies invoke
potentially large assumptions such as constant SPMS detec-
tion efficiencies or a single density applied to all particles
that can strongly affect derived concentrations. Uncertainty
estimates in these derived concentrations are rarely reported
(Shen et al., 2019), and a complete analysis of all principal
error sources has not been previously undertaken. To date
these methods have been restricted to ground-based sampling
under relatively high aerosol loadings (∼ 1–100 µg m−3) and
have employed long sample times ≥ 1 h. Few coarse-mode
concentrations have been reported (Gunsch et al., 2018; Qin
et al., 2006), and in particular, studies using SPMS to de-
termine absolute concentrations of mineral dust are nearly
absent (Shen et al., 2019).

Mineral dust is one of the most abundant aerosol types
in the atmosphere. Dust contributes a substantial fraction to
global aerosol optical depth by scattering and absorbing ra-
diation. Dust’s role as a leading cirrus cloud nucleating agent
(Cziczo et al., 2013) further elevates its importance for the
climate system. However, dust measurement techniques for
airborne studies, particularly fast-response online methods,
are lacking. Online bulk mass spectrometry techniques are
typically not sensitive to refractory particles such as dust.
Also, instruments and aircraft inlets must be optimized to
sample coarse-mode aerosol up to several microns in size.
Electron microscopy (EM) techniques with associated ele-
mental analysis remain valuable offline single-particle meth-
ods to detect and quantify components associated with min-
eral dust (Kandler et al., 2009; Levin et al., 2005; Lieke
et al., 2011; Matsuki et al., 2010) and other less volatile
aerosol such as sulfate, sea salt, industrial metals, and some
carbonaceous particles (Pósfai et al., 2003; Sheridan et al.,
1994). Computer-controlled EM analysis can now charac-
terize thousands of particles and generate population statis-
tics of size, morphology, and detailed chemical composition
(Ault and Axson, 2017; Craig et al., 2017). However, contin-
uous measurements at high time resolution remain impracti-
cal, the derivation of dust mass concentrations under back-
ground aerosol levels is challenging, and like most offline
methods, volatile or reactive aerosol species can change prior
to analysis.

A measurement gap remains for fast-response detection of
mineral dust and other refractory or coarse-mode particles.
Additionally, size-resolved measurements and characteriza-
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tion of particle mixing state, i.e., the distribution of chemical
constituents within single particles or across different parti-
cle types, are tractable by few methods. SPMS instruments
are uniquely capable of detecting both refractory and non-
refractory particles in real time. PALMS and other SPMS
instruments with sufficient laser power observe a chemical
fingerprint for every type of aerosol particle in the atmo-
sphere, minimizing chemical bias. Lower laser power and/or
a longer ionization wavelength can result in biases against
particles such as sulfate (Wenzel et al., 2003). SPMS instru-
ments are particularly adept at characterizing some climate-
relevant aerosol types, including mineral dust, biomass burn-
ing smoke, sea salt, and biological particles with high sensi-
tivity and selectivity.

We present a new method that combines PALMS com-
position with independently measured particle size distribu-
tions to determine absolute number, surface area, volume,
and mass concentrations of mineral dust, biomass burning,
sea salt, and other common atmospheric particle types, with
fast time response applicable to aircraft sampling where to-
tal mass concentrations are often > 100 times lower than at
ground level. Low detection limits on the order of 10 ng m−3

for principal particle types are typical over a few minutes
of sampling time. A unique capability of this technique is
the derivation of number concentration for specific particle
types, which is particularly important for aerosol–cloud in-
teraction studies. Size-resolved aerosol composition is mea-
sured over a wide size range that spans the accumulation and
coarse modes under most atmospheric conditions. Addition-
ally, we determine bulk-like mass concentrations for sulfate
and organic material that are distributed across multiple par-
ticle types. The quantification methods described here are de-
veloped specifically for the PALMS instrument, but they are
designed to act as a framework for quantifying particle types
using other well-characterized SPMS instruments. We sum-
marize the principal sampling considerations and measure-
ment criteria for deriving particle type concentrations, and
we conclude with general recommendations for implement-
ing the method in airborne composition studies. Estimations
for principal sources of uncertainty are detailed in the Ap-
pendix.

2 Measurement methods

Brief descriptions of the airborne aerosol sampling methods
employed over several aircraft campaigns are given below,
followed by descriptions of aerosol instrumentation for mea-
suring composition and size distributions.

2.1 Airborne aerosol sampling

Aerosol properties were measured aboard the NASA DC-
8 aircraft during three campaigns: DC3, SEAC4RS, and
ATom. The Deep Convective Clouds and Chemistry (DC3)

campaign was based in Salina, Kansas, in April–May 2012
and targeted convective outflow from isolated storm systems
(Barth et al., 2015). The Studies of Emissions and Atmo-
spheric Composition, Clouds and Climate Coupling by Re-
gional Surveys (SEAC4RS) campaign was based in Hous-
ton, Texas, in August–September 2013, and sampled a vari-
ety of continental environments including regions with high
biogenic activity, urban emissions, wildfires, and convective
outflow (Toon et al., 2016). The NASA Atmospheric To-
mography (ATom) campaign consisted of four seasonal de-
ployments from 2016 to 2018 to map the troposphere with
near pole-to-pole coverage in north–south transects along the
Pacific and Atlantic basins (Wofsy et al., 2018). Measure-
ments during the New England Air Quality Study (NEAQS)
campaign were taken aboard the NOAA WP-3D aircraft
based in Portsmouth, New Hampshire, in July–August 2004,
with flights targeting anthropogenic emissions from the east-
ern US (Fehsenfeld et al., 2006). During the NASA Mid-
latitude Airborne Cirrus Properties Experiment (MACPEX)
campaign the WB-57 aircraft was based in Houston, Texas,
in March–April 2011 and sampled tropospheric continen-
tal and stratospheric background air near cirrus cloud sys-
tems (https://espo.nasa.gov/macpex/, last access: 26 Octo-
ber 2019). Cloudy flight segments are excluded from all
aerosol data (Murphy et al., 2004b).

The airborne sampling methodology for ATom DC-8 de-
ployments is detailed in Brock et al. (2019). Instruments are
described in Sect. 2.2. For all DC-8 deployments most instru-
ments used the University of Hawaii aircraft inlet operated at
isokinetic conditions. This inlet was previously characterized
to transmit aerosol particles ≥ 5.0 µm aerodynamic diame-
ter at low altitude and ≥ 3.2 µm at 12 km altitude with 50 %
efficiency (McNaughton et al., 2007). PALMS and particle
size spectrometers subsample a minor flow from the main
inlet flow. The PALMS instrument flow was 0.75 L min−1,
and particle spectrometer flows were 0.05–0.1 L min−1. Par-
ticle spectrometer flows were actively dried using Nafion
driers (Perma Pure), typically to < 40 % relative humidity.
Residence times between the aircraft inlet and instrumenta-
tion were 0.5–3.5 s. The AMS instrument used a dedicated
HIMIL aircraft inlet (Stith et al., 2009) with residence times
typically < 0.5 s and no active drying. The SAGA filter sam-
plers used the University of New Hampshire aircraft inlet that
has similar particle transmission characteristics to the Uni-
versity of Hawaii inlet (McNaughton et al., 2007). Aboard
the NOAA WP-3D during NEAQS aerosol particles were
sampled using a low-turbulence inlet operated isokinetically
(Wilson et al., 2004) and transmitted to size spectrometers
inside the cabin. In the WB-57 during MACPEX the FCAS
instrument sampled particles using an anisokinetic inlet (Jon-
sson et al., 1995). PALMS was located inside a wing pod for
NEAQS and inside the WB-57 nose for MACPEX, and for
both campaigns PALMS sampled aerosol using a forward-
facing anisokinetic tube that enhanced large particle concen-
trations.
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A virtual impactor was added upstream of PALMS for the
DC-8 ATom deployments to enhance supermicron particle
concentration. The design is based on Loo and Cork (1988)
and is scaled to achieve an enhancement of at least 50 % of
the flow ratio above ∼ 2.0 µm. The virtual impactor was op-
erated at total-to-minor flow ratios of 5.6–11. Figure S1 in the
Supplement shows the virtual impactor design and its con-
centration enhancement for lab-generated aerosol.

2.2 Aerosol size and composition measurements

The NOAA PALMS instrument (Thomson et al., 2000) char-
acterizes the size and chemical composition of individual
aerosol particles from about 0.15 to 5 µm in diameter. Par-
ticles pass through an aerosol focusing lens (Schreiner et al.,
2002) and enter a vacuum where they pass through two con-
tinuous laser beams and scatter light. The transit time be-
tween the beams provides the particle velocity, which is used
to determine particle aerodynamic diameters based on labo-
ratory calibrations using polystyrene latex sphere size stan-
dards (Duke Scientific). A scatter signal triggers a 193 nm
pulse from an excimer laser that ablates and ionizes a single
particle. Either positive or negative ions are analyzed with a
time-of-flight mass spectrometer, with the polarity switched
every few minutes during flight. Single-particle mass spec-
tra are post-processed to classify each particle into a com-
positional type and calculate the relative abundance of parti-
cle sub-components (Froyd et al., 2009; Hudson et al., 2004;
Murphy et al., 2003).

An important consideration when measuring fractional
and absolute abundance from single-particle analysis is the
estimation of potential sampling biases due to particle com-
position or physical properties. In one example, if a certain
particle type does not produce detectable ions when hit by
the ionization laser, a systematic bias would occur that would
underestimate the concentration of that particle type. Addi-
tionally, particle mass spectrometers can exhibit a low bias
for non-spherical particles due to diverging particle trajec-
tories (Huffman et al., 2005; Vaden et al., 2011). Many as-
pects of the PALMS instrument design reduce these potential
biases (Murphy, 2007). The very close proximity of detec-
tion and ionization beams (center separation ∼ 100 µm) en-
ables PALMS to obtain positive ion mass spectra for > 90 %
of particle triggers. In addition, the particle transit distance
between the vacuum entrance and the ionization region is
shorter than most other SPMS systems. This high targeting
efficiency and compact detection region in PALMS mini-
mizes chemical biases from particles of different shape or
density that could have diverse trajectories. The PALMS ion-
ization laser produces a mass spectrum for all known particle
types in the atmosphere. Even pure sulfuric-acid–water par-
ticles, which are notoriously difficult to ionize due to their
low absorption properties, generate sufficient ions in PALMS
for particle classification. For the data presented here, parti-
cles were exposed to > 2500 MW cm−2 of laser fluence at

193 nm, which is above the ion formation threshold for rel-
atively pure sulfuric acid (Thomson et al., 1997). For or-
ganics and sulfate–organic mixtures, ion production is self-
limiting due to space-charge repulsion, and total ion current
in PALMS is relatively insensitive to laser power. Lastly, par-
ticles in the accumulation mode are nearly or completely ab-
lated by the excimer laser (Murphy, 2007). Consequently,
PALMS mass spectra represent the composition of the entire
particle so that classification routines and relative measure-
ments of chemical sub-components are not biased to phys-
ical inhomogeneities such as coatings, phase separation, or
surface-enhanced species. It should be noted that although
coarse-mode sea salt mineral dust particles do not fully ablate
and therefore may give an incomplete picture of the particle
composition, the mass spectral signatures are still unique to
those particle types, and they are classified accurately. We
therefore assume that detection biases due to particle chem-
ical or physical properties yield systematic errors that are
small compared to other sources of error (see Appendix A).

Several optical particle spectrometer instruments were
used for size distribution measurements. During NASA
DC-8 sampling campaigns, the Laser Aerosol Spectrome-
ter (LAS 3340, TSI, Inc) measured concentrations for par-
ticles from 0.1 to about 5 µm, above which the aircraft inlet
transmission truncated the size distribution. Also on the DC-
8, an Ultra-High Sensitivity Aerosol Spectrometer (Droplet
Measurement Technologies) measured particles from 0.06
to either 0.5 or 1.0 µm, above which the LAS data were
used. On the NOAA P-3 aircraft, the combination of a Lasair
model 1001 (Particle Measurement Systems) and a custom-
built white light optical particle counter (WLOPC) mea-
sured particle concentrations from 0.12 to about 8 µm. On
the NASA WB-57 aircraft, a custom-built Focused Cavity
Aerosol Spectrometer (FCAS II) measured particles from
about 0.07 to 1.5 µm dry diameter (Jonsson et al., 1995; Wil-
son et al., 2008). All sizes are reported as ammonium sul-
fate diameters, and all concentrations are reported at standard
conditions (1013 hPa and 273.15 K).

During DC-8 sampling campaigns a high-resolution time-
of-flight aerosol mass spectrometer (HR-ToF-AMS; Aero-
dyne Research; Canagaratna et al., 2007; Nault et al., 2018)
measured non-refractory, bulk aerosol mass composition at
1 Hz resolution with 100 % transmission for vacuum aerody-
namic diameter 100 <Dva < 500 nm (50 and 770 nm at 50 %
efficiency; see DeCarlo et al., 2004, for the definition ofDva).
Raw mass spectra were analyzed at 1 min intervals, yield-
ing detection limits for organic and sulfate aerosol mass con-
centrations of 75 and 10 ng m−3, respectively, on average in
the free troposphere. During DC-8 campaigns, soluble ions
were also measured using the Soluble Acidic and Gases and
Aerosols (SAGA) offline ion chromatography from aerosol
filters (Dibb et al., 1999). Typical sampling times were 5–
15 min with detection limits of ∼ 10 ng m−3. Filter data are
excluded when cloudy periods exceed 20 % of the sample
time or over altitude ranges exceeding 3 km.
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3 Deriving absolute concentrations

3.1 Composition-resolved size distributions from
SPMS combined with particle size spectrometers

The general method of deriving quantitative abundance from
single-particle composition data is introduced here and out-
lined in Fig. 1, with details described in the following sec-
tions. The approach combines size-resolved, single-particle
composition from the PALMS instrument with a concurrent
measurement of size-resolved absolute number concentra-
tion. Typically, an optical particle spectrometer (OPS) is used
to measure the aerosol size distribution across the accumu-
lation and coarse modes, although other sizing techniques
based on electric mobility or aerodynamic diameter, or a
combination of techniques, can be employed. Mass spectra
of individual particles acquired with PALMS are classified
into one of several compositional categories. Aerodynamic
diameters, Da, for each particle are converted to volume-
equivalent (geometric) diameters, Dve, using particle densi-
ties and dynamic shape factors to match the OPS data. The
particle classes are binned into size ranges that align with
the particle size spectrometer. Then the fraction of each par-
ticle class within each size bin is multiplied by the aver-
age concentration within that bin. The resulting composition-
resolved size distribution is integrated to give absolute num-
ber, surface area, or volume concentrations for each particle
class. Mass concentrations for each particle type are deter-
mined by applying particle densities to the volume concen-
trations. Total sulfate and organic mass concentrations were
derived from the non-refractory particle types.

Figure 2 shows two composition-resolved volume distri-
butions measured from aircraft that are representative of two
diverse atmospheric environments. Panels a and c give raw
spectra counts as a function of size for each PALMS com-
position class, as well as the OPS volume distribution. The
PALMS size bins are then aligned to the OPS, and fractional
abundances in each size bin are applied to the OPS volume
distribution to generate the panels b and d.

The composition-resolved size distributions in Fig. 2b
and d contain a wealth of information and represent a pow-
erful set of tools to investigate atmospheric aerosol proper-
ties. PALMS and other single-particle techniques show that
the atmosphere consists of an external mixture of particle
types, and in Fig. 2 the compositional size modes for these
particle types are clearly revealed. Three broad aerosol re-
gions are apparent in the volume distributions: the accu-
mulation mode at Dve < 0.5 µm consisting of mostly non-
refractory particle types, a coarse mode at Dve > 1 µm domi-
nated by mineral dust and sea salt, and the inter-mode min-
imum at 0.5 <Dve < 1 µm that is a mixture of accumulation-
and coarse-mode composition. Most particle classes extend
to sizes beyond their principal mode. For instance, sea salt
and mineral dust can also contribute significantly to submi-
cron aerosol volume. In many environments, an extension

Figure 1. Flow chart to derive particle type concentrations and bulk
sulfate and organic mass concentrations from SPMS and OPS data.

of the accumulation mode continues to > 1 µm where non-
refractory particle types contribute to supermicron volume
(Fig. 2d).

The practical limitations of this method mostly originate
from the need in airborne studies to derive statistically sig-
nificant composition measurements across the atmospheri-
cally relevant sizes within a reasonable sampling time (∼ 1–
5 min). The Fig. 2 examples required tens of minutes of
sampling to populate nearly the entire accumulation- and
coarse-mode size ranges with particle mass spectra. Al-
though PALMS size range encompasses most of the accumu-
lation and coarse volume modes, Fig. 2a and c show how the
outer ranges of each mode are not efficiently characterized.
The white areas in Fig. 2b and d represent aerosol volume
that is not allocated to any particle class. In most cases the un-
allocated volume is a minor fraction of the total, and the com-
position can be extrapolated to fill the entire mode, assum-
ing composition remains constant. The following sections
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Figure 2. Quantification of PALMS particle classes. (a, c) Raw PALMS counts for different particle classes (colors) overlaid on the aerosol
volume size distribution (dashed black). (b, d) For each diameter bin, the fractional contributions of each PALMS particle class are applied
to the total volume. Vertical dashed lines define four broad diameter bins that are used to generate concentration products at higher time
resolution (see text). The upper panels are from 39 min of sampling at low altitude over the Gulf of Mexico and contain influences from the
marine boundary layer, long-range mineral dust transport, and lower tropospheric pollution. The bottom panels represent the remote upper
troposphere with minor influences from continental and stratospheric sources, sampled over 27 min.

describe simplifying assumptions that allow faster measure-
ments of particle type concentration while maintaining rea-
sonable uncertainties. Uncertainties and limits of detection
for particle type concentrations are detailed in Appendix A.

3.2 Particle composition classes

Each PALMS particle mass spectrum is classified as one
composition type, e.g., mineral dust, sea salt, or sulfate–
organic–nitrate (SO) mixtures, according to dominant spec-
tral signatures. PALMS particle classification has been de-
scribed previously (Cziczo et al., 2001, 2004; Froyd et al.,
2009; Hudson et al., 2004), and definitions for nine principal
atmospheric particle types are updated here. Chemical signa-
tures, sizes, and other properties are listed in Table 1. These
particle classes are defined so as to broadly capture the main
chemical components or identify a distinct aerosol source. It
is important to note that PALMS and other SPMS particle
type definitions are flexible and can be tailored to a particu-
lar environment or objective. Only positive ion mass spectra
are used to categorize particles into these classes. The classi-
fication method uses empirical criteria based on relative peak

intensities, and a spectra clustering algorithm (Murphy et al.,
2003) is then used to refine particle sorting. Figure S2 shows
representative particle mass spectra for all classes in Table 1.

The most abundant classes under most tropospheric en-
vironments are the sulfate–organic–nitrate internal mixtures
and biomass burning (BB) particles. Particles classified as
SO can be composed of primary or secondary material from
a wide variety of sources but contain no biomass burning or
other clear chemical markers that denote a particular source.
Biomass burning particles are identified by a distinct potas-
sium signature, abundant organic signatures, and a lack of
crustal, marine, or industrial metals, based on the method of
Hudson et al. (2004). The crucial potassium signature is sta-
ble over weeks of aging, and due to PALMS extreme sensi-
tivity to alkali metals, the potassium signal is observed above
organic background peaks even when potassium constitutes
� 0.1 % of particle mass (Cziczo et al., 2001). The identi-
fication of these primary biomass burning particles is both
highly sensitive and selective and does not deteriorate with
particle aging. Single-particle information is critical to differ-
entiating biomass burning potassium from other potassium

Atmos. Meas. Tech., 12, 6209–6239, 2019 www.atmos-meas-tech.net/12/6209/2019/
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Table 1. PALMS principal atmospheric particle types.

Particle
type
(abbre-
viation)

Description Particle
densitya

Dynamic
shape
factorb

Predominant
size mode

Typical
abundance
within size
modec

Principal
positive
spectral
signatures

Dominant composition and
notes

Sulfate–

organic–

nitrate
(SO)

Internal mixture domi-
nated by of sulfate, or-
ganic, nitrate material

1.3–
1.8d

1 Accumulation 50 %–90 % C+, C+2 ,
CO+,
SO+,
HxSO+y ,
NH+4 ,
NO+,
organic
fragments

Typical background tropo-
spheric particles from a variety
of primary and secondary
sources. Sulfate can be acidic
or neutralized. The SO and
BB classes contain the vast
majority of sulfate and organic
aerosol mass.

Biomass
burning
(BB)

Emissions from
biomass and biofuel
burning.

1.25–
1.5d

1 Accumulation 10 %–30 % K+, C+,
C+2 , CO+,
organic
fragments

Mostly primary organic carbon
by mass and can contain inter-
nally mixed EC, Na, K, trace
metals, chloride, and secondary
material.

Elemental
carbon
(EC)

EC that is not heavily
coated by organic car-
bon

1.8 2.0 Accumulation < 1 % C+x , CxH+ EC signatures are hidden
by heavy organic coatings,
whereby the particle is instead
classified as SO.

Sea salt
(SS)

Sodium-rich particles
emitted from oceans

1.45e;
1.8e

when
heated

1; 1.08
when
heated

Coarse with
minor accumu-
lation

< 1 %
(30 %–
100 %
MBL)

Na+, Ca+,
K+,
Na2Cl+,
Sr+

Also includes sodium-rich par-
ticles emitted by dry lake beds.

Mineral
dust
(MD)

Crustal material 2.5 1.6–
1.8e

Coarse with
minor accumu-
lation

5 %–50 % Al+, Si+,
K+, Fe+,
Ca+, Ba+,
Rb+, Li+

Includes a variety of pure and
mixed mineralogies.

Meteoric
(MT)

Ablated, recondensed
meteoric material from
the stratosphere that
has accumulated sulfate

1.5–
1.7d

1 Accumulation 1 %
(5 %–40 %
strat)

Fe+, Ni+,
Mg+,
SO+,
HxSO+y

Mostly sulfuric acid by mass
until crossing below the
tropopause. Metallic mass
contribution is minor.

Alkali
salt
(KS)

Potassium-rich parti-
cles from continental
emissions

1.5e 1 Accumulation < 1 % K+, Na+,
Li+, Rb+

Potassium- and sodium-rich
particles, often with other
alkalis but low organic carbon
and without typical crustal
material.

Heavy
fuel oil
com-
bustion
(FO)

Vanadium-rich parti-
cles unique to heavy
fuel oil combustion

1.3–
1.6d

1 Accumulation 1 % V+, VO+,
C+, C+2 ,
organic
fragments

Mostly organic carbon and sul-
fate by mass with trace metals.
Typically from ship emissions.

Other
(OT)

Multiple particle types
that are not classified in
the above categories

1.4 1 Accumulation
and coarse

5 %–10 % Various A variety of identified and un-
known particle types, includ-
ing biological, metallic, pyri-
dinium, and others.

a Density at measurement conditions. b χv, within or near free molecular flow. c Mass fraction within the dominant size mode for background tropospheric air.; strat = lower stratosphere,
MBL = marine boundary layer. d Calculated based on organic-to-sulfate mass ratio. e Derived from optical–aerodynamic analysis.

sources that can confound bulk measurements (Legrand et
al., 2016; Sullivan et al., 2019). Although secondary aerosol
material is by definition distributed across many composition
classes, the SO and BB classes contain the vast majority of
sulfate, organic, ammonium, and nitrate aerosol mass.

A variety of minor but important particle types contributes
to the external aerosol mixture of the lower atmosphere. The
elemental carbon (EC) class include particles dominated by

C+n mass spectral signatures and are interpreted as mostly
EC by mass (presumably black carbon) since small amounts
of internally mixed organics will obscure the EC signatures.
Particles with minor EC content are therefore not distin-
guishable by PALMS and are instead classified as SO. Some
EC particles contain potassium, which suggests a biomass
burning source, and when accompanied by organic signa-
tures these particles are instead classified as BB. Sea salt
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is easily distinguished by a dominant sodium signal, often
with calcium, strontium, other alkalis, and sodium chloride
ion clusters, but without crustal metals. Mineral dust (MD)
spectra are identified from multiple crustal metal signatures
such as silicon, aluminum, iron, and calcium and often con-
tain trace amounts of alkalis, barium, tin, antimony, or lan-
thanides. This category is more heterogeneous than other
classes and contains many different sub-types of spectra, rep-
resenting a wide variety of mineralogies. Meteoric material
(MT) is identified by iron, nickel, and magnesium within par-
ticular intensity ratios (Cziczo et al., 2001) and without other
crustal material, and it is usually accompanied by strong sul-
fate signatures. The alkali salt (KS) category is reported here
for the first time. The spectra for this class contain potas-
sium and other alkali metals but no crustal material, and very
low organic signatures distinguish them from biomass burn-
ing particles. Despite the similarity to biomass burning parti-
cles they are not enhanced in smoke plumes. The spatial and
vertical patterns of these particles suggest primary continen-
tal emissions, but their exact source is still uncertain. Their
size is exclusively submicron, which suggests they are not a
type of mineral dust. The KS class constitutes 0.1 %–0.5 %
of accumulation-mode particles over the US and < 0.1 % in
the remote troposphere. Heavy fuel oil combustion particles
(FO) are readily identified by strong vanadium signatures
mixed with sulfate, organics, and sometimes iron or nickel
(Ault et al., 2010; Divita et al., 1996). Spectra not identi-
fied as any of the above composition types are compiled
into a class labeled as “Other” (OT), which contains a va-
riety of minor particle types. By far the most abundant sub-
type in OT is a sulfate–organic mixture with possible alkali
or metallic signatures that are small and difficult to distin-
guish from organic peaks. Other examples include spectra
with the pyridinium ion and other amine signatures, indus-
trial metals without obvious crustal components, and several
types of organic-rich particles with distinct signatures that
suggest unique but unknown sources. Primary biological par-
ticles are currently identified from negative ion spectra only
(Zawadowicz et al., 2017), and a separate particle class is
not implemented. In continental air they account for ∼ 1 %
of supermicron particles and < 0.1 % of all detected particles
(Zawadowicz et al., 2019).

All particle types acquire secondary material such as sul-
fate, ammonium, organics, and nitrate during atmospheric
transport and aging. This secondary accumulation does not
change particle assignments, except that heavy coatings may
partially obscure unique signatures, resulting in a particle
classified as “Other”. For example, a mineral dust particle
that contains secondary sulfate, nitrate, and organic material
will still be classified as mineral dust, and the derived dust
mass includes the secondary material. Similarly, BB parti-
cles may contain secondary material sourced from biomass
burning and non-biomass burning emissions. Laboratory cal-
ibrations of secondary mass spectral signatures could be used
to subtract secondary mass from primary particle types. In

some cases, the chemical component that identifies a parti-
cle’s source is a minor constituent. For example, particles in
the meteoric class are mostly sulfuric acid by mass, and the
metals from ablated meteorites only account for a few per-
cent of mass. Similarly, particles from heavy fuel oil com-
bustion are composed of mostly sulfate and organic material
but also contain traces of vanadium and other metals that de-
note their unique emission source.

3.3 Simplifying the size distribution

It is infeasible to retain the raw size resolution of the OPS
for the integrated concentration analysis, since some com-
mon commercial instruments report up to 50 size bins per
decade of diameter. For example, to achieve a minimal com-
positional representation with > 5 particle spectra in each size
bin would require > 5000 spectra if acquired evenly across
the instrument’s size range. Accounting for inefficient acqui-
sition at the extreme size limits of the instrument and with
typical single-particle mass spectra data rates of a few hertz,
this would require sampling times > 1 h to display composi-
tion at the native resolution of the OPS. Therefore, raw size
bins of the optical spectrometer must be combined into fewer
bins to improve time resolution but at some expense in accu-
racy of the derived concentrations. Ideally, size bins are de-
fined such that the composition is homogeneous within each
combined bin, in which case this simplification is rigorous
and introduces no error to the derived number, surface area,
and volume concentrations. Induced error should be mini-
mized by defining size bins such that neither the concentra-
tion nor particle type fractions have strong gradients across
a bin limit. Concentration products cannot be determined if
zero PALMS spectra are acquired within any one size bin
that contributes significantly to the integrated concentration
from the OPS. In practice, composition gradients across size
bins and statistical noise at the size range extremes generate
systematic error that increases as size bins are combined and
the size distribution simplified.

To estimate the systematic errors associated with this ap-
proach, integrated volumes were calculated for a number
of cases where composition was constant over an extended
flight period. For each case PALMS particle class volumes
were first determined at a high size resolution of ∼ 20 bins
per decade of diameter. Nearest-neighbor diameter bins were
then combined, and integrated particle volumes were recal-
culated for each particle class at the lower size resolution.
When the total number of bins was reduced to three or four,
the diameter limits were empirically defined based on vol-
ume modes and composition gradients, e.g., one or two bins
across the accumulation mode from about 0.06 to 0.5 µm,
one across the inter-mode minimum at 0.5–1.1 µm, and one
coarse-mode bin at 1.1–5 µm (vertical grey lines in Fig. 2b
and d). The high-resolution analysis is treated as a refer-
ence value, and the average deviation of derived volumes as
a function of final bin count is plotted in Fig. 3a for diverse
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cases across several flight campaigns. Typical deviations are
5 %–25 % when the size distribution is represented by three
or four bins.

For sampling times of a few minutes, reducing the size
resolution improves the data coverage (Fig. 3b). For each
flight campaign, the number of sampling periods with suffi-
cient statistics to generate concentration products are plotted
relative to the two-bin case. To generate concentration prod-
ucts, every diameter bin that contributes significantly to the
total volume must include ≥5 PALMS spectra. The three-
or four-bin approach offers a good trade-off between reason-
able time resolution and data coverage (65 %–85 % for three
bins) while still yielding particle volume and mass concen-
trations whose systematic errors are less than or equal to typ-
ical volume uncertainties of a particle spectrometer (Kupc et
al., 2018). Small particle detection efficiency (see Sect. 3.6)
was worse for DC3 than for SEAC4RS, resulting in a steeper
reduction in data coverage between three and four diameter
bins. For DC3 the lower sensitivity to small particles results
in more sampling periods with less than five particles in the
smallest size bin, so that relative data coverage with four
diameter bins is 25 %–50 % compared to SEAC4RS with
65 %–75 %.

Figure 3a suggests that induced errors are not a simple
function of a particular atmospheric environment. Instead,
most of the variability for any given bin count is due to
sparse data within a single size bin or composition inhomo-
geneity across a size bin limit. The choice of size binning
and time resolution when deriving integrated products can
be altered based on both these conditions. Three size bins,
where one bin encompasses the entire accumulation mode,
are adequate for many tropospheric sampling environments
(Fig. 2b). When certain external mixtures are apparent, it
is recommended to split the accumulation mode into two
size bins. For instance, biomass burning particles and me-
teoric or other stratospheric particles occupy the larger end
of the accumulation mode, D > 200 nm, whereas secondary
sulfate–organic particles typical of the upper troposphere can
be smaller, ∼ 60–150 nm (Fig. 2d).

The PALMS size range encompasses the majority of
accumulation- and coarse-mode size ranges under most at-
mospheric conditions (Fig. 2). Exceptions include the marine
boundary layer and strong mineral dust plumes that often
contain particles larger than ∼ 4 µm, and very clean upper
tropospheric conditions, where number and volume contri-
butions can be significant for sizes below the PALMS range,
e.g., Dve < 150 nm. In the latter case for example, the lower
size bin limits for the concentration analysis can be set to
fully include the lower end of the accumulation mode, e.g.,
Dve(bin1) = 60–250 nm. The PALMS composition averages
applied to that bin will be biased to the larger end of the
bin (Dve ∼ 150–250 nm), but PALMS fractions are applied
to the entire bin as usual. The total concentration is still accu-
rately measured by the particle spectrometer, but the PALMS
composition is effectively extrapolated to sizes outside of the

Figure 3. (a) Error in integrated volume introduced by reducing the
size resolution of the analysis. Integrated volume was calculated for
every PALMS particle class over several long flight segments with
externally mixed but constant composition. Volumes computed at
full diameter resolution (25–29 bins) provide a reference, and the
average deviation for populous particle classes (contributing > 5 %
of volume) is plotted as bins are combined. (b) Lines show the rel-
ative data coverage, defined as the number of time periods with > 5
particles in every diameter bin, using three different raw sampling
times for two flight campaigns.

PALMS size range. The inherent assumption is that the com-
position across the lower half of the accumulation mode is
homogeneous. While this extrapolation can be appropriate
for many tropospheric and stratospheric environments, care
should be taken in cases where the accumulation mode is
weak and shifted to small diameters, such as very clean upper
tropospheric conditions, or in heterogeneous environments,
such as active aerosol emission sources mixing with back-
ground air.
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3.4 Response of optical particle spectrometers (OPSs)
to composition

The optical scattering response of an aerosol particle de-
pends on its size, shape, refractive index, and the light col-
lection geometry of the spectrometer instrument. Size distri-
butions derived from optical particle spectrometers are based
on the assumption of a fixed refractive index and spherical
shape to translate the optical response of the measured parti-
cle population into volume-equivalent diameter, Dve ≡Dopt.
A typical atmospheric air mass contains an external mixture
of several diverse particle types. Fortunately, the real refrac-
tive indices for background tropospheric environments have
been observed to fall within a narrow range (n≈ 1.50–1.56
at mid-visible wavelengths) such that ambient particle size
measurements are not strongly affected by this assumption
(Hand and Kreidenweis, 2002; Liu et al., 2008; Müller, 2002;
Espinosa et al., 2017; Shingler et al., 2016; Yamasoe et al.,
1998). Ammonium sulfate and ammonium nitrate (n= 1.53
and 1.56 at λ= 532 nm, respectively) are common inorganic
constituents. Visible refractive indices (n-ki) have been de-
rived for mineral dust aerosol from a variety of field mea-
surements and typically range from about n= 1.52–1.58 and
k ∼ 0.001–0.01 (Balkanski et al., 2007; Dubovik et al., 2002;
Kandler et al., 2011; McConnell et al., 2010; Müller et al.,
2010; Petzold et al., 2009; Schladitz et al., 2009), with ab-
sorption increasing at shorter visible wavelengths. Pure min-
eral samples can exhibit higher variability. Many retrievals
for ambient organic aerosol material fall within typical inor-
ganic refractive indices (Aldhaif et al., 2018; Kassianov et
al., 2014; Espinosa et al., 2017; Shingler et al., 2016), al-
though some laboratory surrogate species and a few atmo-
spheric organics can have a wider range, n≈ 1.47–1.65 (Di-
nar et al., 2007; Dubovik et al., 2002; Hoffer et al., 2006;
Rizzo et al., 2013; Schkolnik et al., 2007). Sulfuric acid,
which is abundant in the stratosphere and sporadically in the
troposphere, has a much lower refractive index of n= 1.44
at 532 nm (Luo et al., 1996). Sulfuric acid aerosol also retain
water (n= 1.33 at 532 nm; Daimon and Masumura, 2007)
even at low RH, making it a predominant outlier to typical
refractive indices. Kupc et al. (2018) investigated the poten-
tial systematic error in prescribing the wrong refractive in-
dex to a representative upper tropospheric aerosol popula-
tion. The difference in aerosol volume assuming pure ammo-
nium sulfate (n= 1.54) versus sulfuric acid (n= 1.44) was
only 12 %, which is lower than a typical aggregate volume
uncertainty.

Few atmospheric particle types are strongly absorbing, and
the complex index of refraction (k) for an ambient popula-
tion is assumed to be zero. Several exceptions follow. Par-
ticles containing elemental carbon (EC), presumably in the
form of black carbon (BC), typically account for < 1 % of
accumulation-mode mass in the background atmosphere but
up to ∼ 10 % inside wildfire plumes (Andreae and Mer-
let, 2001). The refractive index of pure black carbon has

high variability, e.g., with n-ki = 1.74–0.44i (Hess et al.,
1998), 1.95–0.79i (Bond and Bergstrom, 2006), and 2.26–
1.26i (Moteki et al., 2010). Although their measured diame-
ters can be erroneous by > 10 % (Kupc et al., 2018), the net
error on total aerosol number and mass is typically much
lower due to their small relative population. Hematite min-
eral also has a unique refractive index (2.5–1.0i at 405 nm;
Sokolik and Toon, 1999), but PALMS data indicate that pure
hematite particles are extremely rare in the atmosphere.

Ammonium sulfate and ammonium nitrate are convenient
materials to calibrate optical particle spectrometers for use
in atmospheric sampling. If generating monodisperse aerosol
at coarse-mode sizes is impractical, polystyrene latex sphere
(PSL) size standards can be used, but their refractive index
(n= 1.59 at 532 nm; Ma et al., 2003) is not representative
of typical atmospheric aerosol. Therefore, the scattering re-
sponse of the sizing instrument to PSL particles must be con-
verted to atmospherically relevant particles using Mie the-
ory. Figure 4a shows Mie scattering intensities calculated for
the LAS instrument at λ= 663 nm for PSL and ammonium
sulfate particles. At each diameter, the scatter intensity for
a PSL particle is located on the ammonium sulfate intensity
curve, and the associated ammonium sulfate diameter is de-
termined. For a given scatter response the calibrated PSL di-
ameter can shift up to 20 % due to the different refractive
index of ammonium sulfate. The inset in Fig. 4a shows an
expanded region from D = 0.8 to 2.4 µm, where oscillations
render optical particle sizing more uncertain. These oscil-
lations introduce additional sizing uncertainty that is inher-
ent to all monochromatic particle spectrometers in the range
where, depending on the collection geometry, particle diam-
eters are about 1–2 times the laser wavelength. Scattering
intensity curves were smoothed so that each PSL diameter
yielded one unique ammonium sulfate diameter. A raw PSL
calibration curve is shown in Fig. 4b along with an ammo-
nium sulfate-equivalent calibration curve derived using the
diameter ratio curve. Also plotted in Fig. 4b are points from
laboratory measurements of monodisperse ammonium sul-
fate particles generated with a differential mobility analyzer
for D < 1 µm. Closure between the PSL-derived and mea-
sured ammonium sulfate response was not fully achieved.
However, rapidly effloresced ammonium sulfate particles are
slightly non-spherical, and as a result the volume-equivalent
diameter of the monodisperse ammonium sulfate aerosol is
smaller than the mobility diameter, Dve <Dmob. Agreement
between measured and derived ammonium sulfate calibra-
tion curves improved after correcting the calibration diame-
ters using shape factors of χt = 1.03 to 1.09, increasing with
size (Huffman et al., 2005; Zelenyuk et al., 2006b). We con-
firmed that the ammonium sulfate particles had fully efflo-
resced in the calibration system by observing an abrupt in-
crease in apparent optical size due to a change in the refrac-
tive index when the relative humidity was reduced below the
efflorescence point.
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Figure 4. Using Mie theory to translate the response of an opti-
cal particle spectrometer between particles of different refractive
index. (a) Calculated scatter intensities at λ= 663 nm for PSL and
effloresced ammonium sulfate (AS) particles in the LAS instru-
ment. PSL diameters are translated into ammonium sulfate diam-
eters of the same scatter intensity using the Mie response curves,
shown conceptually with grey arrows. The diameter ratio is plot-
ted on the right axis. Smoothing must be applied to the Mie curves
(inset in a, dashed line) in order to yield unique diameter transla-
tions. (b) A calibration curve derived from PSL particle standards
(dashed black) is translated into an ammonium sulfate calibration
curve (solid black) using Mie theory. Size-selected AS particles
yield a directly measured AS calibration curve (solid red) to com-
pare with the PSL-derived AS calibration curve.

Highly non-spherical particles such as some mineral dusts
and black carbon aggregates have different scattering intensi-
ties and phase functions compared to their volume-equivalent
spheres. The effect on the angular scattering pattern is not
consistent across different shapes and cannot be described
by any simple measure of asphericity (Curtis et al., 2008;
Mishchenko et al., 1997; Moteki et al., 2010; Peter and
Michael, 1988). In general, the wide variety of atmospheric

mineral dust morphologies will produce a diverse scattering
response for particles with the same Dve, with the princi-
pal effect of increasing the uncertainty in optically measured
diameters. The degree to which sizing accuracy is affected
depends on the degree and distribution of particle aspheric-
ity, surface roughness, the local steepness of the scattering
intensity curve, and the angular collection geometry of the
spectrometer. For particles that are freely rotating and not
aligned with the instrument sample flow, as is the case near
atmospheric pressure, optical mis-sizing may be minimized
because the scattering response is an average of multiple par-
ticle orientations. In the current treatment all particles are as-
sumed to be spheres for the purposes of optical sizing.

3.5 Particle densities and dynamic shape factors

PALMS measures the aerodynamic diameter, Da, for > 90 %
of the chemically analyzed particles. For each particle Da is
converted to a volume-equivalent diameter, Dve, using the
particle density ρ, dynamic shape factor χ , and the Cunning-
ham slip correction factor, Cc.

Dve =

(
χρ0Cc(Da)

ρCc(Dve)

)β
Da (1)

In the limit of continuum flow β = 0.5, and for free molecu-
lar flow β = 1 (DeCarlo et al., 2004). Particles exit the aero-
dynamic focusing lens at approximately 35 hPa and accel-
erate into a vacuum region at ∼ 0.25 hPa where their aero-
dynamic size is measured by the time difference in scatter-
ing events from two laser beams spaced 33.1 mm apart. Dur-
ing acceleration, particles have Knudsen numbers of 1–20
and therefore experience flow that is near the free molec-
ular regime. A comprehensive model that considers transi-
tional flow is used to convert aerodynamic diameter mea-
sured by PALMS to Dve (Murphy et al., 2004a). For sub-
micron particles the model predicts β > 0.89, such that the
measured aerodynamic diameter is near the free molecular
limit (Da ∼Dva). As size increases beyond ∼ 1 µm, parti-
cle motion in the PALMS inlet becomes more transitional,
e.g., β = 0.75 for 3 µm. The dynamic shape factor under
these conditions for most particles is close to the vacuum
shape factor χv, which can deviate significantly from shape
factors measured at atmospheric pressure (Alexander et al.,
2016; Dahneke, 1973a, b). We further discuss free molecu-
lar shape factors for mineral dust below. Dry particle densi-
ties and shape factors for each composition class are listed in
Table 1. Particle density for each measured particle is deter-
mined using one of three methods: (1) prescribed based on
literature values for the observed particle type, (2) calculated
using prescribed values for pure particle sub-components and
their relative component abundance, or (3) estimated here us-
ing simultaneous optical and aerodynamic measurements.

Optical scattering intensities are measured in PALMS as
particles pass through two detection lasers. Scatter intensities
are not directly used for individual particle sizing for several
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reasons: (1) the particle stream is wider than the laser cross
section so that particles experience inconsistent laser inten-
sities, (2) Mie oscillations produce a relatively flat scattering
intensity from 0.5 to 1.0 µm, and (3) the photomultiplier sig-
nals begin to saturate at Dve > 0.6 µm. However, when av-
eraged over hundreds of particles, the scattering response
yields information about particle density, shape, and refrac-
tive index for submicron sizes (Moffet and Prather, 2005;
Murphy et al., 2004a). Figure 5 shows simultaneous PALMS
measurements of optical scattering intensity (Iscat) and aero-
dynamic diameter from one scattering laser for several differ-
ent particle classes. For a givenDve, a higher particle density
translates into larger Da values, yielding an Iscat–Da curve
further toward the right side of the graph. A larger shape fac-
tor will shift curves further to the left.

After converting each particle’s Da to Dve, the scattering
curves converge forDve < 0.5 µm (Fig. 5b). A single relation-
ship is expected between physical diameter and optical scat-
tering intensity for all spherical particle types with similar
refractive index. The Iscat–Da analysis in Fig. 5b helps vali-
date prescribed densities and shape factors for known parti-
cles and also provides guidance for unknown particle types.
Particle types with known density and shape factors, such
as pure sulfuric acid, ammonium sulfate, and known organic
species, act as internal standards.

All particles in the non-refractory classes (SO, BB, MT,
FO) are internal mixtures of sulfate, organic material, and
other minor components. Density is calculated for each par-
ticle in these classes as a weighted average of the pure com-
ponent densities using the measured organic-to-sulfate mass
fraction (see Sect. 3.7). Nitrate content is not considered in
deriving density because nitrate is difficult to differentiate
from ammonium and other nitrogen species in PALMS pos-
itive ion spectra. In regions where ammonium nitrate is the
dominant aerosol constituent, particle density and water con-
tent can be similarly calculated (Clegg et al., 1998) using an
estimated aerosol nitrate or total nitrogen calibration.

Density values for ammonium-sulfate–water and sulfuric-
acid–water solutions are calculated at the temperature and
RH of the instrument inlet (Clegg et al., 1998; Vehkamäki
et al., 2002; Wexler, 2002). Sulfuric acid can retain ∼
10 %–20 % water even under very dry (RH� 1 %) sam-
pling conditions, although additional water evaporation will
take place in the PALMS low pressure inlet and vacuum
region (Murphy, 2007; Zelenyuk et al., 2006a). The den-
sity for pure organic material is prescribed as 1.30 g cm−3

for SEAC4RS (Fig. 5) and other continental sampling cam-
paigns, approximately the middle of a range of typical val-
ues observed in continental air, 1.2–1.45 g cm−3 (Cross et al.,
2007; Turpin and Lim, 2001; Vaden et al., 2011; Zelenyuk
et al., 2010, 2015). Organic density increases with oxidation
level (Kuwata et al., 2012) as particles age in the atmosphere.
Consequently, for the ATom remote troposphere an Iscat–Da
analysis like Fig. 5 indicates higher average organic densi-
ties of 1.35–1.45 g cm−3. The density of organic material in

biomass burning has a similar range, 1.2–1.45 g cm−3 (Reid
et al., 2005; Zelenyuk et al., 2015; Zhai et al., 2017), and
1.25 g cm−3 is prescribed here for continental US sampling
and 1.35 g cm−3 for the ATom campaigns.

Refractive index differences affect the vertical position
of the curves and shift the size where the optical response
flattens out. Mie scattering intensity curves are plotted to
demonstrate the effect of refractive index in Fig. 5c. For
the PALMS wavelength and collection geometry, increasing
the real and decreasing the imaginary refractive index gives
increased scatter intensity for D < 0.5 µm. Large deviations
beyond the typical range of 1.44–1.54 for atmospheric con-
stituents are required to shift the response curve beyond typ-
ical variability. Elemental carbon stands out due to its large
real refractive index and strong absorption. For most particle
types, the Iscat–Da curves are far more sensitive to density
and shape parameters than the refractive index.

Elemental carbon (EC) particles are assumed to be com-
posed of black carbon (BC), and particle density is prescribed
at 1.8 g cm−3 based on the density for pure BC of 1.8–
2.1 g cm−3 (Bond and Bergstrom, 2006; Lide, 2016; Park et
al., 2004). Shape factors for EC particles in this size range
will vary widely depending on the morphology of aggregates.
Uncoated BC particles have χt values that range from 1.0 to
> 3.0 depending on size (Khalizov et al., 2012; Slowik et al.,
2007). χv = 2.0 is prescribed here, based on the assumption
that relatively pure EC may exist as chain aggregates that
have not fully collapsed into a quasi-spherical shape (Schnit-
zler et al., 2014). The density and shape factors for EC are
less well constrained than other particle classes since the
unique refractive index renders the Iscat–Da analysis ineffec-
tive (Fig. 5b), and uncertainties in derived concentrations are
accordingly higher.

Sea salt aerosol, when fully dehydrated to anhydrous in-
organic salts, has a density of 2.1–2.2 g cm−3 (Lewis and
Schwartz, 2004; Zelenyuk et al., 2005). However, dried am-
bient sea salt particles have lower densities due to reten-
tion of water even after efflorescence (Cziczo et al., 1997;
Shinozuka et al., 2004; Tang et al., 1997; Weis and Ewing,
1999) and to internally mixed organic material. In the ma-
rine boundary layer where most sea salt is sampled, particles
exist as solution droplets since the ambient RH is greater
than the efflorescence RH (ERH) of 40 %–45 % (Cziczo et
al., 1997; Tang et al., 1997). Upon sampling, particles are
dried to RH� 45 % in the sampling lines, yet water does
not fully evaporate. The Iscat–Da analysis yields a sea salt
aerosol density / shape factor ratio of 1.45, which is close to
the 1.41 g cm−3 density of a spherical sea-salt–water particle
at the ERH of∼ 45 % (Tang et al., 1997; Zhang et al., 2005).
This suggests that efflorescence did not occur during the 0.5 s
residence time between sampling and analysis and that most
sea salt in PALMS is analyzed as a metastable solution. Sea
salt density is prescribed at 1.45 g cm−3 with a shape fac-
tor of χv = 1. Occasionally during research flights, particles
were sent through a 300 ◦C thermal denuder for 3.3 s prior to
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Figure 5. PALMS simultaneous optical and aerodynamic diameter measurements during the SEAC4RS airborne campaign. (a) Raw scatter
intensities versus measured aerodynamic diameters for populations of different particle classes. Curves toward the right side represent particle
with higher density / shape factor ratios, and a large real refractive index shifts curves upwards for these sizes. Sub-populations of the sulfate–
organic–nitrate particle class are plotted for nearly pure (mass fraction > 0.9) organic (green) and sulfate (red) particles. Lines are the average
of 100–72000 particle measurements. (b) Aerodynamic diameters are converted to volume-equivalent diameters by prescribing density and
shape factors to each particle. Divergence atD > 0.5 µm is due to Mie resonances, which are highly sensitive to refractive index. (c) Calculated
Mie scattering intensities at λ= 405 nm are plotted for different refractive indices (n-ki) that correspond to composition classes.

analysis. The Iscat–Da analysis indicates that the heated sea
salt fully effloresced and, assuming a dynamic shape factor
of χv = 1.08 (Beranek et al., 2012), had a density of 1.8 (see
Fig. S3). We presume that efflorescence was complete during
the 2–3 s residence time in the actively dried transfer tubing
prior to sampling with optical particle spectrometers.

Mineral dust particle densities for the large majority of
crustal minerals are typically 2.5–2.65 g cm−3 (Davies, 1979;
Kandler et al., 2009; Linke et al., 2006), with a few subtypes
such as hematite having higher values. Shape factors are in-
variably χt > 1 with a typical range of 1.3–1.5 (Davies, 1979;
Kulkarni et al., 2011; Linke et al., 2006). χt denotes the dy-
namic shape factor measured at atmospheric pressure, which
is in transitional flow but near the continuum flow limit, i.e.,
χt (1 atm) ∼ χc. Most ambient mineral dust is coated by sec-
ondary organic and inorganic material, which reduces both
particle density and shape factor. Preliminary PALMS labo-
ratory studies indicate that typical organic coatings add 5 %–
10 % to the mass of ambient dust particles, which reduces the
density of a 2.65 g cm−3 dust particle to 2.4–2.5 g cm−3 and
will also reduce the shape factor slightly. However, prescrib-
ing a density of 2.5 and shape factor of 1.4 yields Iscat–Da
curves for dust that are clearly not consistent with other par-
ticle types (Fig. S3). To achieve internal consistency, dust
must either be prescribed an implausibly low particle density
of ∼ 2.0 g cm−3 or a larger shape factor. Based on the Iscat–
Da analysis a density of 2.5 g cm−3 and χv of 1.6–1.8 is pre-
scribed to all ambient dust particles. Large shape factors for
ambient mineral dust are discussed in Appendix B.

Scattering intensities and sizes for additional particle types
from Table 1 are shown in Fig. S3. Biomass burning par-
ticles are ∼ 80 %–90 % organic material by mass soon af-
ter emission (Cubison et al., 2011; Levin et al., 2010; May
et al., 2014), and they acquire sulfate, ammonium, and ni-

trate upon further aging, whereby density increases to 1.4–
1.5 g cm−3. In the stratosphere meteoric particles are nearly
pure sulfuric acid (∼ 1.7 g cm−3) with small meteoritic inclu-
sions, and they acquire organic material upon mixing into the
troposphere, whereby their density decreases. Particles from
heavy fuel oil combustion are mostly composed of mixed
sulfate and organic material with trace industrial metals and
typically have a density of 1.3–1.6 g cm−3. As stated above,
for the concentration analysis, individual particle densities
for these three classes (BB, MT, FO), as well as sulfate–
organic–nitrate particles (SO) are calculated from relative
sulfate and organic mass (see Sect. 3.7). Alkali salts have
a density / shape factor ratio of approximately 1.5, which,
assuming spherical shape, is well below the 2.0–2.6 g cm−3

density typical of crystalline alkali sulfates, chlorides, car-
bonates, or oxides. It is possible that like sea salt, these alkali
salt mixtures have not fully effloresced during sampling, and
the retained water lowers their particle density.

3.6 Detection efficiency

The efficiency of acquiring single-particle mass spectra from
aircraft platforms depends on many factors including sam-
pling biases of the aircraft inlet, losses in sample tubing,
transmission through critical orifices and focusing lenses,
particle beam dispersion upon entering a vacuum, sensitiv-
ity of the optical detection system, and targeting accuracy
with the desorption–ionization laser. In practice the detec-
tion efficiency at small sizes (D <∼ 0.3 µm) is limited by the
optical scattering signal-to-noise ratio and is a strong func-
tion of size, and large particle (D >∼ 1.5 µm) detection is
limited by impaction losses in tubing and instrument inlets.
Detection efficiency is not used directly in deriving particle
type concentrations presented here, yet it is an important di-
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agnostic to assess SPMS performance over the dominant size
modes in the aerosol distribution.

PALMS detection efficiencies are calculated for flight seg-
ments with fairly constant and low concentration (about
< 0.1 µm3 cm−3), when the particle rate is not limited by
hardware or software and therefore dead time is minimal.
MeasuredDa is converted toDve for all particles, and the to-
tal counts in each size bin are converted to an apparent con-
centration using the PALMS flow rate and sampling time.
The PALMS observed concentrations are divided by OPS
concentrations to determine detection efficiency. Figure 6
shows detection efficiencies for two airborne campaigns. Al-
though the curves show that average instrument performance
is similar across different campaigns, variability within and
between individual flights can be large. Within any given
flight, the detection efficiency at a particular size routinely
varies by ×2–×5, and variations of >×10 are not uncom-
mon between flights. This variability is due to a variety of
the factors listed above, many of which change with ambi-
ent pressure. In particular, changes in the overlap between
the particle beam and laser beams will dramatically affect
the detection efficiency for all sizes or a range of sizes. This
variability in detection efficiency affects all particle classes
nearly equally for a given particle size. A reduced detection
efficiency does not directly impact particle type concentra-
tions, but it can increase the statistical uncertainties and sam-
pling time required to generate concentration products.

A tempting alternative to the method presented here (com-
bining SPMS data with coincident size distribution mea-
surements) is to determine the SPMS particle detection ef-
ficiency as a function of size under controlled conditions,
and then multiply this curve by the airborne size-dependent
data rate to yield a quantitative particle concentration, sim-
ilar to SPMS scaling methods used at ground sites (Bein
et al., 2006; Jeong et al., 2011; Pratt et al., 2009b; Shen
et al., 2019). However, this approach is not recommended
due to many possible pitfalls and large, unquantifiable errors.
The key drawback is that the detection efficiency curve for
PALMS and other SPMS instruments is extremely steep as it
ascends several orders of magnitude across the accumulation
mode from D ∼ 0.1 to 0.5 µm, where particle number con-
centrations are also changing by orders of magnitude. The
multiplication of these two strong functions, combined with
the inherent variability over different ambient conditions and
instrument alignment, will produce large and intractable un-
certainties, e.g., >×10 in mass. Other problems include the
following.

– Both the measurement of detection efficiency and its ap-
plication to derive concentrations are only valid when
the particle data rate is not artificially limited by soft-
ware or hardware or when instrument dead time can be
accurately determined. In practice, aerosol concentra-
tions in many lower tropospheric conditions and partic-
ularly inside plumes are high enough that SPMS sys-

tems will far exceed their maximum acquisition rate and
generate erroneously low concentrations.

– Small changes to the alignment of the particle beam
with the detection lasers, ionization laser, and ion ex-
traction optics, which are not uncommon on airborne
platforms, have a large effect on particle detection effi-
ciency. Detection efficiency must also be re-determined
after any routine alignment adjustments. For PALMS
the second detection laser beam is only ∼ 150 µm wide.

– The flow characteristics of pressure reduction orifices
change with upstream (ambient) pressure, changing par-
ticle trajectories downstream of the orifice in ways
that are very sensitive to physical alignment and may
not vary smoothly with pressure. One example is that
pressure-controlled inlets can act as virtual impactors
that enhance concentrations above a certain particle size
that is both difficult to define and changes with pressure.

– Upstream pressure reduction orifices routinely accu-
mulate small amounts of aerosol material that subtly
change particle trajectories with large impacts to detec-
tion efficiency (Fig. 6).

The approach described in Sect. 3.1, mapping the PALMS
composition measurements to independently measured size
distributions without the need to determine size-dependent
detection efficiencies, circumvents these complications.

3.7 Sulfate and organic mass concentrations

In addition to deriving concentrations for individual particle
classes, the subcomponents of internally mixed particles can
also be quantified. Signal intensity ratios in PALMS mass
spectra for components of interest are calibrated to known
mass fractions in laboratory-generated aerosol standards. By
combining these calibrations with the particle class concen-
trations described here, absolute mass fractions for aerosol
subcomponents such as sulfate and organic material can be
determined. For instance, the average sulfate mass fraction
is first determined for all non-refractory particle classes us-
ing mass spectral signal ratios, and then this mass fraction
is multiplied by total mass concentration of those particle
classes to yield an aerosol sulfate mass concentration. The
resulting mass concentrations for sulfate, organic material,
metals, or other components can be compared directly to
bulk composition measurements from instruments such as
the AMS, SAGA, or a variety of offline analytical methods
(see Sect. 4.1).

Murphy et al. (2006) derived sulfate and organic mass
fractions from PALMS negative polarity spectra by calibrat-
ing airborne data to a quadrupole AMS. New calibrations for
sulfate and organic mass fraction were performed on posi-
tive mass spectra for the current study using realistic atmo-
spheric surrogate particles, shown in Fig. 7. Aqueous solu-
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Figure 6. Detection efficiency curves for the PALMS instrument in
flight. Detection efficiency was calculated for several cases, iden-
tified as clean flight segments when the particle data rate was not
actively limited by software or hardware. Thick lines and shading
are geometric means and standard deviations over all cases. Higher
efficiencies for Dve > 3 µm during ATom are partly due to addition
of a virtual impactor upstream of PALMS. Thin black lines are five
individual cases during one ATom-1 flight. Variations in altitude,
particle composition, inlet performance, and unknown factors re-
sult in detection efficiencies that vary by >×10 within and between
flights. The lowest thin line was a case where a buildup of aerosol
material on the pressure reduction orifice altered particle trajecto-
ries inside the inlet.

tions were nebulized to generate a submicron aerosol popula-
tion that was dried to RH < 40 % and sampled with PALMS.
Solutions were composed of ammonium sulfate mixed with
varying amounts of sulfuric acid, sucrose, and mixed di-
carboxylic acids (see Table S1 in the Supplement). Positive
spectra were very similar to free tropospheric aerosol spectra
in the SO particle class, confirming that the ionization en-
vironment for calibration particles is representative. Another
set of calibration solutions contained ∼ 1 % potassium and
generated particle spectra that were very similar to biomass
burning aerosol in the atmosphere. Relative intensities were
summed for C+, CH+, CO+, and C+3 ions to represent the
total organic signal. In PALMS, these ions comprise > 90 %
of the total organic ion intensity in positive spectra for nearly
all non-refractory particles in the atmosphere. This efficient
conversion of organic material into a few simple ion species
demonstrates a weak dependence of the principal mass spec-
tra signatures on organic aerosol species and facilitates cal-
ibration across different particle types. The C+2 ion was ex-
cluded here due to interference with Mg+ in the meteoric
class. The sulfate signal is the sum of S+, SO+, and SO+2 ion
intensities, and it is similarly consistent across non-refractory
particles.

Figure 7a shows the PALMS response as a function of
aerosol organic mass fraction. The organic signal fraction,
sforg, defined as the intensity ratio of organic peaks / (organic
+ sulfate peaks), is fit to the organic mass fraction mforg us-
ing the following functional form.

mforg =
morg

morg+msulf
=

sforg

α+ sforg(1−α)
(2)

The single parameter α represents the relative ionization ef-
ficiency (RIE) of organic material to sulfate. No systematic
differences were found in the PALMS response to organic
and sulfate mixtures with and without potassium, indicating
that organic and sulfate ionization is fairly consistent across
different ionization environments in non-refractory particles.
The calibration fit is applied to the signal fractions in Fig. 7b.
The organic mass fraction for individual particles can have
large errors due to the inherent particle-to-particle variabil-
ity in SPMS spectra. However, errors are quickly reduced
when averaging over a population of particles. To estimate
precision uncertainty, particles were arranged into groups of
increasing size, and the average organic mass fraction for
each population was compared to the solution mass fraction,
Fig. 7c. The relative standard deviation converged to 8 %
when averaging ≥ 15 spectra, and errors exhibited no trend
with mass fraction (not shown). Coincident with PALMS, an
Aerodyne AMS using a quadrupole mass analyzer (Jayne et
al., 2000) measured sulfate and organic mass of the generated
aerosol. In Fig. 7b, average mass fractions from the AMS
show similar deviations from the 1 : 1 line to the PALMS av-
erages.

The calibration is applied to positive spectra for all non-
refractory particle classes, including SO, BB, MT, and FO.
The organic or sulfate mass concentration for an individ-
ual particle class can be calculated by multiplying the mass
concentration by the organic or sulfate mass fraction. Simi-
larly, total organic and sulfate mass concentrations are calcu-
lated as the sum of organic and sulfate mass concentrations
from all non-refractory particle classes. These mass concen-
trations are conceptually comparable to bulk aerosol analysis
of organic and sulfate made by common online (e.g., aerosol
mass spectrometry) and offline (e.g., ion chromatography)
techniques. By truncating the PALMS size range accord-
ingly (Hu et al., 2017), direct comparisons between PALMS
and these other measurements can be made. Total uncertain-
ties in PALMS sulfate and organic mass concentrations are
estimated from uncertainties in the simplified size distribu-
tion (Sect. 3.3) combined with errors in mass fraction, OPS
volume, particle classification, and particle density (see Ap-
pendix A). For ATom campaigns using 3 min sample peri-
ods, estimates of total relative uncertainties (1σ ) are 40 %–
50 % for mass concentrations ≤ 0.01 µg m−3 and 20 %–35 %
at higher concentrations. Any potential biases due to extrapo-
lation of accumulation-mode composition to sizes below the
PALMS size range (Sect. 3.3) are not included.
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Figure 7. PALMS calibration of organic mass fraction for atmospheric aerosol surrogates composed of neutralized and acidic sulfate mixed
with a variety of organic compounds (see Table S1). Blue points are ammonium sulfate–sucrose–adipic-acid solutions, and red points are
ammonium-sulfate–sulfuric-acid–dicarboxylic-acid solutions. (a) Raw signal fractions (dashes) are fit to the solution organic mass fraction
data (dotted line). Symbols are averages of 130–1900 spectra. (b) Calibrated organic mass fractions from PALMS (red and blue) confirm
a linear response, with averages that exhibit similar deviations to a quadrupole AMS. The dotted line is a linear fit to PALMS data forced
through zero. (c) Relative error (standard deviation /mean) for all calibration points as a function of the population size used to calculate the
average.

Primary sulfate on sea salt or mineral dust, as well as sec-
ondary sulfate accumulated on other particle types, is not in-
cluded in the calibration because sulfate ionization on refrac-
tory particles is complicated by interferences and stronger
matrix effects. The analysis assumes that dry aerosol mass
is composed entirely of organic and sulfate material. Con-
stituents like ammonium, nitrate, chloride, and alkali met-
als are disregarded. In most free tropospheric environments
these components account for a small fraction of the aerosol
mass. In the continental boundary layer or under polluted
conditions, higher levels of ammonium and nitrate will intro-
duce a high bias to the derived organic and sulfate mass con-
centrations. Future calibration studies can address the aerosol
total nitrogen content from positive spectra or nitrate content
using negative spectra.

4 In-flight performance

4.1 Comparison to other aerosol composition
measurements

Figure 8 compares PALMS mass concentrations for sulfate
and mineral dust with other online and offline techniques dur-
ing routine airborne measurements. PALMS sulfate mass is
calculated as the sum of all non-refractory particle types (SO,
BB, MT, and FO), accounting for the sulfate mass fraction of
each particle type (Sect. 3.7). PALMS sulfate mass concen-
tration shows excellent agreement with other airborne sulfate
measurements over several orders of magnitude (Fig. 8a).
For the AMS comparison the PALMS and LAS size ranges
are truncated using the AMS size-dependent lens transmis-
sion efficiency, which is similar to that reported in Hu et
al. (2017).

Few standard methods exist to derive accurate mineral
dust aerosol concentrations. The Interagency Monitoring of
Protected Visual Environments (IMPROVE) program per-
forms routine aerosol composition measurements at over 200
ground sites throughout the US. Particles are collected on fil-
ters over a 24 h period every few days. Bulk concentrations of
aerosol components are measured using particle-induced X-
ray emission (PIXE), X-ray fluorescence (XRF), and other
offline analytical techniques. Sulfate is derived from sul-
fur measurements assuming partial neutralization by ammo-
nium. Soil dust concentration is derived from crustal metal
concentrations and by applying a basic mineralogy. In Fig. 8b
and c, PALMS sulfate and mineral dust mass concentrations
are compared to IMPROVE data for airborne sampling in
the continental boundary layer near an active IMPROVE site.
PALMS airborne data are truncated to Da < 2.5 µm to match
the IMPROVE size range. Spatial and temporal variability
render this an indirect comparison. Nevertheless, the sulfate
measurements are strongly correlated, suggesting that mea-
surement colocation is reasonable and that for sulfate, the
snapshot obtained during short airborne segments can often
be representative of the daily average. Mineral dust is also
positively correlated but exhibits higher variability than sul-
fate. The variability is large compared to estimated uncer-
tainties, suggesting that real atmospheric variability rather
than measurement error is the cause. This is not surprising
given the different sources of sulfate and mineral dust. Dust
resuspension from land surfaces is a strong function of wind
speed, and localized wind patterns give ground-level dust a
high variability at small spatial scales, whereas secondary
sulfate sources are more regional in scope. Additionally, the
different size ranges for sulfate and dust can lead to differ-
ent loss rates due to precipitation scavenging or gravitational
deposition. Despite the imperfect sampling overlap, the qual-
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Figure 8. Comparison of PALMS with other speciated aerosol mass measurements. (a) PALMS derived sulfate mass at 3 min time resolution
compared to co-located AMS and SAGA filter samples during the ATom-1 airborne campaign. Sea salt sulfate (0.25×Na+) is subtracted
from SAGA data. SAGA filters taken over an altitude range > 3 km are excluded. Small points are 3 min averages (blue) or represent one
SAGA filter measurement (orange). Large symbols are medians with interquartile error bars. The solid black line is 1 : 1, and grey dashed
lines are 1 : 1.5 and 1 : 2. The inset graph is a histogram of PALMS ratio to AMS or SAGA for all individual samples. PALMS sulfate (b)
and mineral dust (c) mass are compared to nearby IMPROVE ground station data for three airborne campaigns. Each point is the average
of airborne data for non-targeted flight segments in the continental boundary layer within 0.5◦ latitude and 1◦ longitude of an IMPROVE
site that reported data that day. IMPROVE data are 24 h averages, and airborne segments are typically ∼ 3–30 min duration during daytime.
Error bars are estimated statistical uncertainty calculated as described in Appendix A. Dashed lines are weighted linear fits.

itative agreement and positive correlation in Fig. 8c furthers
confidence in the ability of PALMS to measure absolute min-
eral dust mass concentrations.

4.2 Examples of mineral dust mass over the US

To demonstrate the utility of the new quantification method,
we calculate the average mineral dust mass over the con-
tinental US. Figure 9 compares PALMS mineral dust mass
concentrations for four airborne campaigns that span differ-
ent regions and seasons. In general, the large majority of
dust mass was present in the coarse mode, Dve > 1 µm. For
the summertime campaigns, concentrations decrease steadily
with increasing altitude, suggesting that dust was emitted
from regional sources and removed during vertical trans-
port. For the DC3 campaign the dust maximum occurred
in the mid-troposphere. This profile is consistent with Asian
dust sources contributing significantly to springtime US dust
loadings (Chin et al., 2007) and also to convective lofting of
dust. The MACPEX campaign targeted large-scale convec-
tive systems. The dust mass increase at 11–12 km is consis-
tent with deep convective outflow. For the SEAC4RS, DC3,
and NEAQS campaigns, the aircraft inlets and aerosol instru-
mentation measured sizes up to 4 µm and captured nearly the
entire coarse mode. An exception was a weak Saharan dust
plume encountered over the Gulf of Mexico, where external
cloud–aerosol probes showed particles up to 20 µm. Future
publications will explore mineral dust abundance and geo-
graphic distributions over continental and remote regions.

5 Summary and recommendations

We present a new method to measure composition-resolved
aerosol size distributions and quantitative concentrations us-
ing single-particle mass spectrometry (SPMS) combined
with absolute particle concentration measurements. Novel
approaches include simplifying the size distribution into a
few size bins guided by compositional transitions, applying
density and shape factors that are validated using optical–
aerodynamic sizing consistency to each particle, and avoid-
ing the reliance on SPMS detection efficiency to gener-
ate concentration products. Using this method PALMS can
determine particle type concentrations for sample periods
that are > 10 times shorter than previous studies, and under
ambient aerosol loadings that are > 100 times lower. This
method is successfully applied to background free tropo-
spheric conditions with typical time resolutions of a few min-
utes, thereby introducing a critical new capability for fast-
response measurement of mineral dust aerosol concentration
from aircraft platforms. Other common refractory and non-
refractory particle concentrations are also determined, in-
cluding sea salt, sulfate–organic internal mixtures, biomass
burning, heavy fuel oil products, and aerosol chemical com-
ponents distributed across many particle types such as sulfate
and organic material.

The principal strengths of this approach are summarized
below.

– PALMS and many other SPMS instruments fundamen-
tally classify individual aerosol particles into distinct
composition types. PALMS detects all major particle
types in the atmosphere, including refractory particles.
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Figure 9. Vertical profiles of PALMS mineral dust mass (a) and mass fraction (b) over the continental US for Dve > 0.1 µm. Lines are cam-
paign average concentrations binned at 1 km intervals from products generated at native resolutions of 3 min (SEAC4RS, DC3, NEAQS) or
5 min (MACPEX). Biomass burning plumes and clouds are excluded. By truncating the size range using a typical cyclone impactor trans-
mission curve with Da (50 %) = 2.5 µm (http://www.urgcorp.com/, last access: 26 October 2019), these mass concentrations are equivalent
to a PM2.5 measurement. The MACPEX size range is limited by the optical particle spectrometer toDve < 1.5 µm. Positive error bars are one
standard deviation.

– Particle types and sub-types can be defined flexibly
to suit a particular science objective, e.g., particles of
stratospheric versus tropospheric origin. Definitions can
be refined to characterize newly discovered particle
types.

– There is a fast time response on the order of 1–5 min for
concentrations of ∼ 10 ng m−3 (see Appendix A).

– Intermittent clouds, plumes, or other events within a
sample period can be excluded at high time resolution,
e.g., 1 s.

– Concentration products can be derived for many histor-
ical PALMS and other SPMS datasets that have coinci-
dent particle size distribution measurements.

– The size distribution measurement can employ any of
several standard sizing techniques (Dopt,Dmob,Da), for
which many commercial units are available.

– Stable SPMS detection efficiency is not a prerequisite.
Variations in size-dependent detection efficiency due to
different sampling conditions or instrument configura-
tions only affect the product time resolution and un-
certainty, not the derived concentrations. The alterna-
tive method that scales observed SPMS detection rates
by fixed detection efficiencies results in large, unquan-
tifiable uncertainties in integrated number, surface, and
volume.

PALMS differentiates externally mixed particle types based
on mass spectral signatures. Climate-relevant particle types

such as mineral dust, biomass burning, and sea salt are read-
ily distinguished, giving PALMS and other SPMS instru-
ments the unique capability to measure these important pri-
mary aerosol species with high time and size resolution.
Quantification of rare types from unique emission sources
is also possible, such as industrial metallic particles and
bioaerosol. In addition to concentrations for individual par-
ticle classes, calibration of mass spectral signal ratios al-
lows for quantification of sub-components within a particle
class or across several classes. Aggregate sulfate and organic
masses are determined here by summing the contributions
over the non-refractory particle classes.

Time resolution and statistical accuracy for aircraft stud-
ies are primarily limited by the data acquisition rate across
the entire accumulation and coarse modes. Reducing native
size resolution to 3 or 4 bins improves sampling statistics and
allows for faster time resolution, while introducing modest
systematic errors (typically 5 %–25 % in volume).

Particle densities and dynamic shape factors for each par-
ticle class are prescribed from literature or determined by
simultaneous optical and aerodynamic size measurement in
PALMS. Densities for particle types that are predominantly
sulfate and organic material by mass are determined from
their mass fraction. Density and shape values affect the size
bin alignment between PALMS and the particle size spec-
trometer. Particle type concentration products are more sen-
sitive to prescribed density and shape than to assumptions
of particle refractive index, with the exception of highly ab-
sorbing species like BC. In agreement with limited literature
studies, we find that the dynamic shape factor for irregular
particles such as natural and synthetic mineral dust can be
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significantly higher under near-vacuum conditions than at at-
mospheric pressure.

We conclude with several recommended guidelines for
adopting this method for airborne SPMS measurements.

– SPMS users should at least recreate Figs. 3, 4, 5,
and A1, and also an OPS counting efficiency and sizing
accuracy assessment (Kupc et al., 2018), to help esti-
mate the principal components of concentration uncer-
tainty in their respective systems.

– User-selectable parameters for particle type concentra-
tion products include definition of particle types, the
sample averaging time, number and range of size bins,
minimum number of mass spectra per size bin, and den-
sities and shape factors for all particle types.

– SPMS users should estimate systematic biases due to
particle composition, which may include a lack of de-
tectable ions for certain particle types (Hatch et al.,
2014; Marsden et al., 2018; Wenzel et al., 2003) or di-
verging particle trajectories inside the vacuum (Huff-
man et al., 2005; Vaden et al., 2011) that can lead to
different detection efficiencies between spherical and
non-spherical particles, particularly for instruments for
which particles transit a long distance.

– Increasing the size range and improving the detection
efficiency of single-particle instruments across the size
mode(s) of interest are the most important parameters
for reducing biases, systematic errors, and statistical un-
certainties that translate directly into faster time resolu-
tion.

– Aircraft inlets and size distribution instruments must
demonstrate effective transmission and detection effi-
ciency through the coarse mode, which in the back-
ground continental troposphere extends to Dve ≥ 4 µm
and can be larger in plumes or at low altitudes. In the
presence of dust events or in the marine boundary layer,
nearly all aircraft inlets will sample only a minor frac-
tion of the coarse-mode mass (Brock et al., 2019).

– Desired attributes for airborne optical particle spectrom-
eters include a size range that covers the full accumu-
lation mode (D ∼ 0.06–1 µm) and a large fraction of
the coarse mode (D ∼ 1–10 µm), a sample flow rate of
∼> 1 L min−1 to allow reasonable statistical sampling
times for coarse aerosol but while limiting coincidence
errors for small particles, and the ability to operate with
a large pressure difference between instrument interior
and a pressurized aircraft cabin. The combination of a
dedicated accumulation-mode instrument with a sepa-
rate coarse-mode instrument operating at a higher sam-
ple flow is advantageous.

– Sampling lines can be actively dried to remove aerosol
water. Otherwise, residual water must be accounted for
in prescribing particle density and for OPS sizing when
deriving dry volume and mass concentrations. Inlet RH
should be kept below 40 % for sea salt, and preferably
lower for sulfuric acid or sulfate internally mixed with
organics. Operators should consider trade-offs between
active drying and possible loss of volatile aerosol mate-
rial.

– Airborne sampling inside water and ice clouds produces
a variety of artifact particles. Even brief cloud segments
can perturb average concentrations by large factors,
particularly for coarse-mode and refractory aerosol,
although submicron non-refractory measurements are
also affected (Cziczo and Froyd, 2014; Murphy et al.,
2004b; Weber et al., 1998). Artifact contributions to
measured aerosol properties are difficult to predict, and
measurements inside clouds using typical aerosol in-
lets should be considered suspect unless they have been
thoroughly validated under specific cloud conditions.

Data availability. Data are publically accessible at
https://doi.org/10.3334/ornldaac/1581 (Wofsy et al., 2018),
https://espoarchive.nasa.gov/archive/browse/macpex (MACPEX,
2011), https://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3 (DC3,
2012), https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs
(SEAC4RS, 2013), andand https://www.esrl.noaa.gov/csd/projects/
2004/ (NEAQS, 2004).
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Appendix A: Uncertainty sources and limits of detection

The principal uncertainty sources in deriving SPMS parti-
cle type concentrations are OPS counting and sizing errors,
simplification of the size distribution (Sect. 3.3), and the sta-
tistical noise for detecting individual particle types within
each size bin. Minor contributors to uncertainty include den-
sity and shape factor errors, provided they can be validated
or constrained in the SPMS system, and particle classifica-
tion errors. Estimation of total measurement uncertainty is
not always a simple propagation of individual error sources
because compensating factors can buffer some types of er-
ror. For example, an error in Dve due to inaccurate den-
sity or dynamic shape factor that does not shift the parti-
cle to a different size bin would not contribute to any addi-
tional uncertainty in number, surface, and volume concentra-
tions (Sect. 3.5). Another example is that poor SPMS particle
statistics within a size bin will contribute a variable amount
of uncertainty to total concentration, depending on the rela-
tive concentration within that bin (Sect. 3.3). Error sources
vary for different SPMS instruments, the chosen methodol-
ogy parameters (Sect. 4), and the sampling environment.

A1 Size distribution

Overall OPS uncertainty is dominated by systematic uncer-
tainties from the sample volume measurement, the error in
prescribed refractive index, and counting statistics. Given
reasonable constraints on refractive index, typical overall
number, surface area, and volume uncertainties for the accu-
mulation mode for 3 min samples are ∼ 2 %, ∼ 10 %, and ∼
15 % for aerosol loadings of ≥ 0.1 µm3 cm−3. In very clean
environments (N < 10 cm−3) or for supermicron sizes where
concentrations are often very low (N � 1 cm−3), statistical
sampling limitations are higher, and longer sampling times
or regional averages are recommended to reduce statistical
error. See relevant error analyses in Brock et al. (2011, 2019)
and Kupc et al. (2018).

A2 Particle classification

Particle classification error can contribute to particle type
concentration uncertainty, but is typically lower than other
error sources. Classification error is difficult to determine for
all principal atmospheric particle types (Table 1) due to a
lack of accurate reference measurements under realistic at-
mospheric conditions, e.g., mineral dust and biomass burn-
ing. Laboratory experiments for surrogate particles can help
estimate typical classification error. For a mixed sample of
laboratory air and resuspended Arizona Test Dust (Power
Technology, Inc), a compositionally diverse dust surrogate,
a manual verification of 2500 particle spectra classified as
dust showed < 3 % classification error. Errors can sometimes
be estimated by sampling in atmospheric environments over-
whelmingly dominated by one particle type, such as the re-

mote marine boundary layer for coarse sea salt, thick dust
plumes for coarse mineral dust, and thick smoke plumes
for biomass burning particles. A manual inspection was per-
formed of 1255 particle spectra with sizes Dve > 1 µm sam-
pled during ATom-1 pristine MBL periods. PALMS classi-
fication routines identified 1094 sea salt spectra, for which
2 (0.2 %) were false positives, and 9 sea salt spectra (0.8 %)
were mis-classified as other particle types. Typical PALMS
classification errors are < 5 % for all classes in Table 1 and
represent a minor contribution to particle type concentration
uncertainty. However, mis-classification of a common parti-
cle type as a rare particle type can contribute a larger relative
uncertainty. For instance, if 10 % of biomass burning parti-
cles were mis-classified as mineral dust during the SEAC4RS
campaign, dust volume concentration would be anomalously
high by 30 %. SPMS users should consider possible biases
that systematically suppress the identification of a particu-
lar particle type due to low ion signal (e.g., sulfuric acid) or
poor-quality spectra (e.g., mineral dust).

A3 Density and shape factor

Density and shape factor errors affect conversion to Dve and
also the conversion of volume to mass concentration. Den-
sity uncertainties should be determined for each SPMS par-
ticle type and possibly for particle subcomponents such as
sulfate and organic material. Simultaneous optical and aero-
dynamic particle sizing (Sect. 3.5) or similar methods help
constrain prescribed values. Estimated PALMS uncertain-
ties are ±0.1 g cm−3 for non-refractory particle type densi-
ties, ±0.15 g cm−3 for dust and sea salt densities, and ±0.15
for the dynamic shape factor of mineral dust. The EC parti-
cle type is less well constrained in both density and shape.
For common particle types, such as sulfate–organic–nitrate,
when hundreds of spectra are observed during a sample pe-
riod, statistical sampling uncertainties are reduced to levels
where density and dynamic shape factor errors can begin
to compete. For rare particle types, statistical uncertainties
dominate (see below), and dynamic shape factor errors are
typically minor contributions.

A4 Statistical uncertainties in volume concentrations

In this section we consider the uncertainty in PALMS par-
ticle type volume concentrations due to statistical sampling
limitations. Statistical uncertainties for each particle type can
be estimated at every time point by assuming Poisson sta-
tistical behavior. Uncertainties for the particle number frac-
tions for each class are determined in each size bin and are
propagated through the multiplication of number fractions by
optical particle spectrometer concentrations. The total uncer-
tainty in volume concentration, δVi , for particle class i across
all diameter bins d in a sampling period with Nd total parti-
cles is determined as follows. The uncertainty for each parti-
cle class and size bin is based on the assumption of a Poisson
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probability distribution. To treat particle counts as indepen-
dent variables we define Nj,d as the number of counts for all
non-i classes.

Nd =Ni,d +Nj,d (A1)

δNi,d =
√
Ni,d (A2)

δNj,d =
√
Nj,d (A3)

Particle classification errors would add to the count uncer-
tainties in Eqs. (A2) and (A3). The number fraction of parti-
cles in class i and size bin d is fi,d with an uncertainty δfi,d
that is determined from error propagation formulae.

fi,d =
Ni,d

Ni,d +Nj,d
(A4)

δfi,d ≡

√(∣∣∣∣ ∂fi,d∂Ni,d

∣∣∣∣δNi,d)2

+

(∣∣∣∣ ∂fi,d∂Nj,d

∣∣∣∣δNj,d)2

(A5)

δfi,d =

√(
Nj,dδNi,d

)2
+
(
Ni,dδNj,d

)2(
Ni,d +Nj,d

)2 (A6)

The uncertainty in the volume for each class and bin is δVi,d ,
which is determined from the number fraction uncertainty
and volume measured by the particle spectrometer, Vd . In
order to limit this investigation to statistical uncertainties
in PALMS particle class concentrations, the uncertainty in
the particle spectrometer measurement is ignored here, i.e.,
δVd ≡ 0. In practice, users should include δVd in Eq. (A8)
when estimating total concentration error.

Vi,d = fi,dVd (A7)

δVi,d =

√(
δfi,dVd

)2
+
(
fi,dδVd

)2
= δfi,dVd;(δVd ≡ 0) (A8)

δVi =

√∑
d

(δVi,d)2 (A9)

To then calculate the mass concentration for a particle sub-
component such as sulfate, Msulf (see Sect. 3.7), the mass
concentration Mi for class i consisting of all non-refractory
particles is determined using particle densities, ρi , and the
average sulfate mass fraction, mfsulf,i , is applied.

Mi = ρiVi (A10)
Msulf =mfsulf,iMi (A11)

δMi =

√
(δρiVi)

2
+ (ρiδVi)

2 (A12)

δMsulf,i =

√(
δmfsulf,iMi

)2
+
(
mfsulf,iδMi

)2 (A13)

Note that particle classification error between non-refractory
particle types does not contribute any uncertainty to sulfate
mass concentration if the particle classes all use the same
calibration function (Fig. 7).

It should be noted that Poisson statistical errors for zero-
and low-count samples can be problematic. The estimated
standard deviation of 0 % for zero-count samples is not re-
alistic. Likewise, the 100 % standard deviation for one-count
samples is often unsuitably large for rare particle types. This
extreme variability of sample-to-sample error for rare parti-
cle types can render single-sample error estimates of little
practical value. This problem becomes more prevalent with
the increasing number and specificity of user-defined particle
classes. A possible alternative to deriving reasonable single-
sample error estimates for rare particle types is to determine
a true mean and true standard deviation across multiple sam-
ples within a similar atmospheric environment. Despite these
limitations, the Poisson model is self-consistent such that es-
timated errors propagated across multiple samples converge
properly to the true overall error, and the standard Poisson
model is presented here.

A5 Statistical analysis applied to PALMS airborne
measurements

Figure A1a shows how statistical uncertainties for five par-
ticle classes vary with their volume concentration for one
aircraft flight. The flight was chosen to represent a variety
of tropospheric environments and includes both very clean
conditions and an MBL with a substantial coarse mode. Fig-
ure A1b summarizes statistical errors for coarse particle con-
centrations of mineral dust and sea salt, and for sulfate mass
determined from non-refractory accumulation-mode parti-
cles. Figure A1b also includes data from a second flight with
elevated concentrations of upper tropospheric mineral dust.
Minor particle types with few particles per sampling period
have lower derived concentrations and higher relative uncer-
tainty. At low volume concentrations of ∼ 0.01 µm3 cm−3

typical (interquartile) errors for a 3 min sample are 50 %–
80 % for rare particle types such as dust and sea salt, and
10 %–30 % for common particles such as sulfate–organic–
nitrate. Relative errors decrease to 20 %–50 % and 5 %–10 %,
respectively, for concentrations ≥ 0.01 µm3 cm−3. Propaga-
tion of density and sulfate mass fraction errors result in
typical sulfate mass concentration errors of 15 %–40 % at
0.01 µg m−3 and 10 %–25 % for higher concentrations. The
convergence of PALMS concentration standard deviations
toward 100 % below ∼ 0.01 µm3 cm−3 is a consequence of
low-count samples for rare classes, whereby many samples
should be averaged to reduce statistical noise. Figure A1c il-
lustrates how statistical noise depends both on sample popu-
lation and absolute abundance and is also a complex function
of how particles observed by PALMS are distributed across
the dominant size modes. For common particle types that ac-
count for > 30 % of the total volume, the relative statistical
error in a 3 min time period is reduced to < 30 % when > 50
particles are sampled in the dominant volume mode.

PALMS and other SPMS instruments have zero back-
ground at zero concentration. Since background subtraction
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Figure A1. (a) Estimates of statistical uncertainties from the 12 August 2016 ATom flight for common particle types (sulf/org/nitrate, biomass
burning, and MBL sea salt) and rare particle types (dust, meteoric, sea salt outside the MBL). Each point represents one 3 min measurement.
(b) Relative errors for two flights are plotted versus volume concentration of each particle type. Errors for sulfate mass concentrations in (a)
and (b) also include errors propagated from particle density and sulfate mass fraction. (c) The variation of statistical error with volume
contribution and the number of analyzed spectra for 3 min time periods during the two flights in (b). (d) Analysis of the airborne sampling
time necessary to acquire 50 particle spectra. Points are from three diverse flights in the free troposphere (> 3 km), and the line is the median.

is not required, the lower limit of detection (LLOD) depends
only on the measurement uncertainty and can be estimated
as 1.645 times the standard deviation of a low concentra-
tion sample (Armbruster and Pry, 2008). Since the detection
efficiency at the time of measurement can vary over an or-
der of magnitude and is most sensitive to instrument inlet
and laser alignment but also to ambient pressure, the actual
LLOD throughout a measurement period can only be esti-
mated.

A simple estimate of number concentration LLOD can
be made from sampling counts and an average detection
efficiency. The minimum detectable concentration depends
on particle size since the PALMS detection efficiency in-
creases from ∼ 10−4 for particles 150 nm in diameter to
∼ 0.05 for 500 nm particles to ∼ 0.1 for supermicron sizes
(see Fig. 6). The peak of the PALMS size distribution is typ-
ically about Dve = 400 nm. In a 1 min sample period, detec-
tion of one 400 nm particle corresponds to a concentration of

approximately 0.07 cm−3, with an LLOD of∼ 0.1 cm−3. For
Dve = 150 nm the LLOD is ∼ 20 cm−3.

Estimation of LLOD for the derived concentration prod-
ucts is more complex. The particle volume LLOD depends
on both the PALMS size response and the shape of the vol-
ume size distribution. The examples in Fig. A1 show that
typical uncertainties in particle volume are still quantifiable
at very low atmospheric concentrations. Although LLODs
can be estimated from the uncertainties in Fig. A1, the sta-
tistical analysis does not provide an obvious volume below
which quantification is not feasible, nor can a single LLOD
value be derived. The statistical analysis (Fig. A1c) does,
however, provide a good rule of thumb that a minimum of
50 total spectra are needed to generate volume concentra-
tions for the dominant particle types within acceptable statis-
tical noise of around < 30 % using three size bins. Figure A1d
shows the sampling time required to measure 50 particles in
the free troposphere. Under typical lower tropospheric condi-
tions with an accumulation-mode volume of ∼ 1 µm3 cm−3,
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PALMS can quantify the dominant particle types in < 1 min
of sampling. In very clean conditions of 0.01 µm3 cm−3 oc-
casionally observed in the upper troposphere, PALMS needs
a median sampling time of 1 min. Fig. A1a and b show that
at concentrations below ∼ 0.01 µm3 cm−3 statistical uncer-
tainties increase toward 100 %. These considerations suggest
a reasonable estimate of LLOD as 0.01 µm3 cm−3 in 1 min
of sampling for dominant particle types. On the other hand,
particle types with low relative abundance may require thou-
sands of sampled spectra to determine their concentration to
an uncertainty of < 30 %. Since the derived concentration is
also based on size distribution measurements, the optical par-
ticle spectrometer sample flow and detection efficiency could
potentially contribute to the detection lower limit. However,
most particle sizing instruments have a LLOD that is similar
to or better than PALMS.

Appendix B: Shape factors for mineral dust

We briefly discuss evidence to support large mineral dust
shape factors observed by PALMS. Experimental studies of
irregular particles including PSL aggregates, soot aggregates,
and quartz particles demonstrate that χv >χt, and χv can of-
ten approach ∼ χ2

t (Alexander et al., 2016; Zelenyuk et al.,
2006b). This higher relative drag force for irregular particles
under free molecular flow is consistent with theoretical treat-
ments by Dahneke (1973a, b) for idealized shapes such as
cubes and spheroids. However, no simple general relation-
ship exists between χt and χv for realistic particles because
the increase in particle drag in free molecular conditions is a
complex function of particle physical shape and surface mor-
phology. For example, oblate and prolate spheroids behave
differently, and concave surface features were not considered
by Dahneke. Furthermore, when particle Reynolds numbers
exceed ∼ 0.1, particles begin to partially align with acceler-
ating flows, increasing their apparent shape factor (Dahneke,
1973a; Kulkarni et al., 2011).

Following previous SPMS studies (Alexander et al., 2016;
Zelenyuk et al., 2006b), a laboratory experiment was per-
formed to investigate the large apparent χv for dust. A differ-
ential mobility analyzer (DMA) was used to select commer-
cial illite NX particles (Arginotec) with a fixed mobility size,
Dmob, and the distribution of aerodynamic sizes was mea-
sured by PALMS. Given the material density of 2.65 g cm−3

and shape factor at conditions of the DMA of χt (∼ 1 atm)
= 1.49±0.12 (Hiranuma et al., 2015), one can derive the free
molecular shape factor χv (DeCarlo et al., 2004; Zelenyuk et
al., 2006b),

dva

dmob
=
ρp

ρ0

1
χtχv

Cc(dvaχvρ0/ρp)

Cc(dmob)
, (B1)

where Cc is the Cunningham slip correction factor under
DMA conditions. For particles with Dmob = 0.580 µm the
PALMS most probable aerodynamic diameter was Da =

0.485 µm, which when adjusted slightly to free molecular
flow givesDva = 0.500 µm. This yields an average shape fac-
tor of χv = 2.27, which is significantly higher than χt. A
second method to derive χv uses a parameterization of χtχv
for a variety of irregularly shaped particles (Zelenyuk et al.,
2006b). Using equation 11 of that reference gives an even
larger value, χv = 2.58. A third independent method uses the
internal consistency of PALMS optical and aerodynamic di-
ameters (Fig. 5b), which gives approximately χv = 2.3 for
illite NX. Ambient mineral dust particles sampled during the
lab study had lower derived shape factors of χv = 1.7, which
is comparable to values derived from dust in airborne studies
but is still higher than typical transitional shape factors for
dust (χt ∼ 1.4; Davies, 1979; Kulkarni et al., 2011; Linke et
al., 2006). These experiments confirm that for dust particles,
the shape factor near free molecular flow can be significantly
greater than in other flow regimes, i.e., χv >χt ∼ χc.
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