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Abstract. The purpose of this study is to demonstrate the role
of aerosol layer height (ALH) in quantifying the single scat-
tering albedo (SSA) from ultraviolet satellite observations for
biomass burning aerosols. In the first experiment, we retrieve
SSA by minimizing the near-ultraviolet (near-UV) absorbing
aerosol index (UVAI) difference between observed values
and those simulated by a radiative transfer model. With the
recently released S-5P TROPOMI ALH product constrain-
ing forward simulations, a significant gap in the retrieved
SSA (0.25) is found between radiative transfer simulations
with spectral flat aerosols and those with strong spectrally
dependent aerosols, implying that inappropriate assumptions
regarding aerosol absorption spectral dependence may cause
severe misinterpretations of the aerosol absorption. In the
second part of this paper, we propose an alternative method
to retrieve SSA based on a long-term record of co-located
satellite and ground-based measurements using the support
vector regression (SVR) approach. This empirical method is
free from the uncertainties due to the imperfection of a pri-
ori assumptions on aerosol microphysics seen in the first ex-
periment. We present the potential capabilities of SVR us-
ing several fire events that have occurred in recent years.
For all cases, the difference between SVR-retrieved SSA and
AERONET are generally within ±0.05, and over half of the
samples are within ±0.03. The results are encouraging, al-
though in the current phase the model tends to overestimate
the SSA for relatively absorbing cases and fails to predict
SSA for some extreme situations. The spatial contrast in SSA
retrieved by radiative transfer simulations is significantly
higher than that retrieved by SVR, and the latter better agrees

with SSA from MERRA-2 reanalysis. In the future, more
sophisticated feature selection procedures and kernel func-
tions should be taken into consideration to improve the SVR
model accuracy. Moreover, the high-resolution TROPOMI
UVAI and co-located ALH products will guide us to more
reliable training data sets and more powerful algorithms to
quantify aerosol absorption from UVAI records.

1 Introduction

The concept of the near-ultraviolet (near-UV) absorbing
aerosol index (UVAI) initially came along with the ozone
product of the Total Ozone Mapping Spectrometer (TOMS)
on board Nimbus 7. It detects elevated UV-absorbing aerosol
layers by measuring the spectral contrast difference between
a satellite observed radiance in a real atmosphere and a model
simulated radiance in a Rayleigh atmosphere (Herman et al.,
1997):

UVAI=−100
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where the superscripts “obs” and “Ray” denote the radiance
from observations and that from simulations, respectively; Iλ
and Iλ0 are the radiance at wavelength λ and λ0, respectively;
λ is the wavelength where the radiance difference between a
Rayleigh and a measured scene is calculated; and λ0 is the
longer wavelength where a spectrally constant scene reflec-
tivity is assumed for the calculation of IRay

λ . A positive UVAI
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value indicates the presence of absorbing aerosols, whereas
negative or near-zero values imply non-absorbing aerosols or
clouds (Herman et al., 1997). The over 4 decades of UVAI
observations (1978 to present) have been widely used for
aerosol research. It would be beneficial to derive aerosol ab-
sorption properties from the long-term global UVAI records,
e.g., the single scattering albedo (SSA), which is the ratio of
aerosol scattering to aerosol extinction. Aerosols are consid-
ered to be the largest error source in radiative forcing assess-
ments (IPCC, 2014), and SSA is one of the key parameters
to reduce this uncertainty (Haywood and Shine, 1995).

The magnitude of UVAI depends on many factors (Her-
man et al., 1997; Torres et al., 1998; Hsu and Herman, 1999;
de Graaf and Stammes, 2005). Although non-aerosol fac-
tors exist, such as spectral dependence of the surface, ocean
color, sun glint and cloud contamination, the most domi-
nant factors are aerosol concentration, aerosol vertical dis-
tribution and aerosol optical properties (Wang et al., 2012;
Buchard et al., 2017). To derive SSA from UVAI, infor-
mation on other two parameters (aerosol concentration and
aerosol vertical distribution) are necessary. The aerosol con-
centration is usually provided in terms of the aerosol opti-
cal depth (AOD). There are many AOD products with wide
spatial–temporal coverage. By contrast, there is much less
information on the aerosol vertical distribution. The most
well-known aerosol vertical distribution product is provided
by the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), but the number of measurements is limited due
to its narrow tracks (Winker et al., 2009). Passive sensors
make efforts to retrieve the aerosol layer height (ALH) from
columnar measurements. For example, Chimot et al. (2017)
present the feasibility of ALH retrieval using the OMI oxy-
gen band at 447 nm, Tilstra et al. (2018) developed an algo-
rithm to derive absorbing aerosol layer height from GOME-
2 FRESCO cloud layer height products and Xu et al. (2017,
2019) attempted to retrieve ALH from EPIC oxygen absorp-
tion bands for dust and carbonaceous layers over both land
and ocean surfaces.

Recently a new ALH product has been run operationally,
based on the measurements in the near-infrared (NIR) oxy-
gen A-band of the TROPOspheric Monitoring Instrument
(TROPOMI) on board the Copernicus Sentinel-5 Precursor
(S-5P; Sanders et al., 2015). TROPOMI has a wide swath of
2600 km, providing daily global coverage with a spatial res-
olution of 7× 3.5 km2 in nadir. The instrument is equipped
with both the UV–visible (270–500 nm) and the near-infrared
(NIR; 675–775 nm) channels, which can simultaneously pro-
vide UVAI and the co-located ALH product (Veefkind et al.,
2015).

The purpose of this paper is to demonstrate the role of the
ALH in quantifying aerosol absorption from UVAI using the
newly released TROPOMI Level 2 ALH product. In the cur-
rent phase, we only focus on biomass burning aerosols. Two
experiments are conducted. First, following previous studies
(Colarco et al., 2002; Hu et al., 2007; Jeong and Hsu, 2008;

Sun et al., 2018), we create lookup tables (LUTs) of simu-
lated UVAI for various aerosol optical properties by radiative
transfer models (RTMs). SSA is then derived by minimiz-
ing the difference between pre-calculated UVAI and satel-
lite observed values. The major uncertainties in the retrieved
SSA are caused by assumptions regarding the wavelength-
dependent refractive index and the availability of reliable
aerosol vertical distribution information (Sun et al., 2018).
Now, with the operational TROPOMI ALH constraining for-
ward simulations, it is expected to partly reduce the SSA re-
trieval uncertainty while also quantifying the influence of as-
sumed aerosol properties on the retrieved SSA.

Although the availability of ALH in radiative transfer cal-
culations can improve the SSA retrieval, assumptions regard-
ing aerosol microphysics remain inevitable. Therefore, in the
second experiment, we propose an empirical method to pre-
dict aerosol absorption that is based on the long-term records
of co-located UVAI, ALH, AOD and absorbing aerosol opti-
cal depth (AAOD) using machine learning (ML) techniques.
ML algorithms learn the underlying behavior of a system
from a given training data set. They are particularly useful
to address ill-defined inversion problems in the field of geo-
sciences and remote sensing, where theoretical understand-
ing is incomplete but there is a significant number of ob-
servations (Lary et al., 2015). We employ ML techniques in
order to avoid explicit assumptions regarding aerosol micro-
physics such as those made in the first experiment. Currently,
ALH observations are not abundant; therefore, we will use
the ALH provided in the OMAERUV product for the train-
ing procedure. Nevertheless, the recent TROPOMI ALH re-
trievals and other future ALH products mean that such em-
pirical methods have great potential. Various ML algorithms
have been developed to deal with classification or regression
problems. In this paper, we choose support vector regression
(SVR), a regression variant form of the support vector ma-
chines (SVMs; Drucker et al., 1997). Compared with other
algorithms (e.g., the artificial neural network), SVR is less
sensitive to the training data set size and can successfully
work with a limited quantity of data (Mountrakis et al., 2011;
Shin et al., 2005). We will present the capability of retrieving
SSA from UVAI using this empirical method with the use of
multiple case studies.

This paper is organized as follows: the first experiment is
outlined in Sect. 2, including a description of the radiative
transfer simulation settings and the analysis of the uncer-
tainty trigger by the assumptions regarding aerosol absorp-
tion spectral dependence; Sect. 3 starts with introduction of
SVR, followed by training data set preparation, SVR model
hyper-parameter tuning, error analysis and case applications.
Finally, the major conclusions and implications for future re-
search are summarized in Sect. 4.
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Table 1. Aerosol models used in the forward radiative transfer calculations. 1κ is the relative difference between κ354 and κ388, defined as
1κ = (κ354− κ388)/κ388.

Geometric Effective Geometric Variance Refractive Spectral Refractive Refractive
radius radius standard (lnσeff) index: dependence index: imaginary part index: imaginary part
(rg) (reff) deviation real part (1κ) at 354 nm of other wavelengths

(n) (κ354) (≥ 388 nm)

0.07 µm 0.14 µm 1.7 0.53 1.5 0 %, 5 %, 10 %, (1 +1κ)× κ388 0.005
15 %, 20 %, 25 %, 0.010

30 %, 35 % and 0.020
40 % 0.030

0.040
0.048
0.060

2 Experiment 1: SSA retrieval using radiative transfer
simulations

In this section, we present the first experiment that retrieves
SSA using radiative transfer calculations as done in previ-
ous studies (Colarco et al., 2002; Hu et al., 2007; Jeong
and Hsu, 2008; Sun et al., 2018). Forward radiative trans-
fer simulations are realized by the DISAMAR (Determining
Instrument Specifications and Analyzing Methods for At-
mospheric Retrieval) radiative transfer model developed by
the Royal Netherlands Meteorological Institute (KNMI; de
Haan, 2011). Figure 1 illustrates the model inputs and the
procedure. For each pixel, aerosol optical properties are first
computed using Mie theory for various predefined aerosol
models. DISAMAR then calculates UVAI using the corre-
sponding satellite information: AOD, ALH, the solar zenith
angle (θ0), the viewing zenith angle (θv), the solar azimuth
angle (ϕ0), the viewing azimuth angle (ϕv), surface albedo
(As) and the surface pressure (Ps) of the target pixel. The
output of the forward simulations is a LUT of UVAI as a
function of the input SSA (determined by the predefined
aerosol models), which is fit by a second-order polynomial
function. Finally, by specifying the corresponding satellite-
observed UVAI, the SSA of the target pixel is estimated from
the UVAI–SSA relationship. The retrieved SSA is reported
at 500 nm in order to compare it with the results of the SVR
method. Section 2.1 will introduce the input parameters for
the radiative transfer simulations, followed by retrieval re-
sults in Sect. 2.2.

2.1 Radiative transfer simulation setup

2.1.1 Aerosol models

The aerosol models used for the Mie calculations are a com-
bination of the aerosol models from the ESA Aerosol_cci
project (Holzer-Popp et al., 2013) and the OMAERUV al-
gorithm (Torres et al., 2007, 2013). We assume a fine-mode
smoke aerosol type and further divide it into seven sub-

types, as listed Table 1. We use the particle size distribution
of the fine-mode strongly absorbing aerosol from the ESA
Aerosol_cci project. The geometric radius (rg) is 0.07 µm
(effective radius reff of 0.14 µm), and the geometric standard
deviation (σg) is 1.7 (logarithmic variance lnσg of 0.53). The
real part of the refractive index (n) uses the same value as
in the OMAERUV algorithm, which is set to be 1.5 for all
subtypes and is spectrally flat. We adopt the imaginary part
of the refractive index at 388 nm (κ388) of the OMAERUV
smoke subtypes (except for BIO-1 whose κ388 is 0) in our
study and add a subtype with a κ388 of 0.06.

Many studies have shown evidence that absorption by
biomass burning aerosols in the near-UV band has a strong
spectral dependence (Kirchstetter et al., 2004; Bergstrom et
al., 2007; Russell et al., 2010). Accordingly, a constant 20 %
1κ has been applied to all smoke subtypes in the recent
OMAERUV algorithm (Jethva and Torres, 2011), where 1κ
is defined as the relative difference between κ354 and κ388
(i.e., 1κ = (κ354− κ388)/κ388). In this experiment, we will
investigate how the retrieved SSA responds to the assumed
spectral dependence by considering nine different1κ values
from 0 % (i.e., “gray” aerosols) to 40 % (very strong spectral
dependence). This corresponds to an absorbing Ångström ex-
ponent (αabs) from 1 to 3.4 and from 1.3 to 4.7, depending on
the aerosol subtype. Note that the1κ is only applied between
κ354 and κ388. As we only investigate the influence due to
aerosol absorption spectral dependence in the near-UV range
in this study, aerosol absorption at wavelengths larger than
388 nm is set equal to that at 388 nm.

To summarize, the first experiment consists of nine cases
represented by different 1κ . Within each case, there are
seven predefined aerosol subtypes with varying κ388. Thus,
63 forward simulations are performed for each individual
pixel.

2.1.2 Inputs from satellite

Figure 1 presents the input parameters for the radiative
transfer simulations of UVAI. Satellite measurement geome-
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Figure 1. Procedure of the radiative transfer simulation of UVAI.
The aerosol models are from the ESA Aerosol_cci project (Holzer-
Popp et al., 2013) and the OMAERUV algorithm (Torres et al.,
2007, 2013). The satellite inputs are the TROPOMI measurement
geometry and ALH, the MODIS AOD and the OMI surface clima-
tology. The aerosol profile is parameterized as a one-layered box-
shaped profile, with the central layer height set to the TROPOMI
ALH and an assumed constant pressure thickness of 50 hPa.

tries (θ0, θv, ϕ0 and ϕv) and the surface pressure (Ps) from
the TROPOMI UVAI reprocessed product (https://scihub.
copernicus.eu, last access: 8 June 2018) are used as input
for the forward simulations. The TROPOMI UVAI is calcu-
lated for two different wavelength pairs. One uses the con-
ventional 340 and 380 nm wavelengths to continue the her-
itage of UVAI records from multiple sensors, and the other
uses 354 and 388 nm in order to allow for comparison with
OMI measurements (Stein Zweers, 2016). In this study we
employ the 354 and 388 nm pair.

TROPOMI ALH is retrieved at the oxygen A-band (759–
770 nm), where the strong absorption of oxygen causes the
highly structured spectrum (https://scihub.copernicus.eu, last
access: 22 June 2018). This feature is particularly suitable
for elevated, optically dense aerosol layers (Sanders et al.,
2015; de Graaf et a., 2019). The ALH is reported in both al-
titude and pressure. For the forward radiative transfer calcu-
lations, the input aerosol profile is parameterized according
to the settings in the ALH retrieval algorithm: a one-layered
box-shaped profile, with a central layer height derived from
TROPOMI and an assumed constant pressure thickness of
50 hPa (de Graaf et al., 2019). At the same band, there is

the TROPOMI FRESCO cloud support product providing
cloud fraction (CF) for mitigating cloud effects, as will be
explained in the following (https://scihub.copernicus.eu last
access: 19 September 2018) (Apituley et al., 2017; Wang et
al., 2008).

The TROPOMI AOD product has not been op-
erational; thus, we use AOD from the Level 2
MYD04 product (Collection 6) of Aqua MODIS
(https://doi.org/10.5067/MODIS/MYD04_L2.006).
Aqua has an overpass time similar to S-5P
(13:30 LT – local time). The AOD at 550 nm used
in the RTM-based method is a combination of the
Deep_Blue_Aerosol_Optical_Depth_550_Land and the
Effective_Optical_Depth_Op55um_Ocean (Levy et al.,
2013).

The surface albedo that is used to retrieve TROPOMI
UVAI is currently not available in the product. Instead, we
use the Aura/OMI Level 3 Lambertian equivalent reflectance
(LER) monthly climatology calculated from measurements
between 2005 and 2009 (Kleipool et al., 2008) (Kleipool,
2010) (https://doi.org/10.5067/Aura/OMI/DATA3006).
TROPOMI on S-5P and OMI on Aura have similar overpass
times (13:30 LT) and measurement geometries (Levelt and
Noordhoek, 2002; Veefkind et al., 2015).

Due to the different spatial resolutions, TROPOMI ALH,
OMI LER climatology and MODIS AOD are resampled
onto the TROPOMI UVAI grid. Before implementing ra-
diative transfer calculations, preprocessing excludes pixels
with a large solar zenith angle (θ0 > 70◦), weak aerosol
absorption (UVAI354,388 < 1), insignificant aerosol amount
(AOD550 < 0.5) or cloud contamination (CF > 0.3).

2.2 SSA retrieved by radiative transfer simulations

In the first experiment, we focus on one of the largest fire
events that occurred in southern California in 2017, i.e.,
the Thomas Fire (http://www.fire.ca.gov/current_incidents/
incidentdetails/Index/1922, last access: 25 November 2019).
Figure A1 in Appendix A shows the RGB plume captured by
MODIS on 12 December 2017. A brown smoke plume pro-
duced by the Thomas Fire was blown away from the conti-
nent and transported northwards. The major part of the plume
was over the ocean and under cloud-free conditions, which is
favorable for spaceborne aerosol observations. There is a to-
tal of 5217 pixels in this case. Figure 2 presents the UVAI,
ALH and AOD data after preprocessing. The highest UVAI
appeared at the southern part of the plume, where both the
aerosol loading and aerosol layering were relatively high
(AOD > 2 and ALH is over 2.5 km).

Figure 3a displays the mean SSA of all plume pixels re-
trieved by the RTM-based method as a function of 1κ . The
retrieved aerosol absorption decreases with 1κ . This finding
is in good agreement with Jethva and Torres (2011). “Gray”
aerosols require stronger absorption to reach the same level
of UVAI compared with “colored” aerosols. This also ex-
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Figure 2. Satellite data from the Californian fire event on 12 December 2017: (a) TROPOMI UVAI calculated by reflectance at 354 and
388 nm; (b) TROPOMI ALH (unit: km); (c) MODIS AOD at 550 nm.

Figure 3. SSA retrieved by radiative transfer simulations as a func-
tion of1κ (1κ = (κ354−κ388)/κ388): (a) SSA mean and standard
deviation (filled region) of plume pixels; (b) SSA mean and stan-
dard deviation (filled region) of the 15 AERONET-co-located pix-
els; (c) absolute difference between the mean SSA of the 15 co-
located pixels and the AERONET retrieval.

plains the high SSA standard deviation (filled area) in the
cases with little or no spectral dependence on aerosol ab-
sorption. The large variability in retrieved SSA (from 0.69±
0.13 to 0.94±0.03) demonstrates that inappropriate assump-
tions regarding the spectral dependence of near-UV aerosol
absorption may significantly bias interpretations of smoke
aerosol absorption and should be carefully handled in for-
ward radiative transfer calculations.

The retrieved aerosol absorption is compared with the
nearby version 3 Level 1.5 AERONET inversion product
(https://aeronet.gsfc.nasa.gov last access: 4 June 2019). Only
one site is within 50 km of the TROPOMI plume pixels (Hol-

ben et al., 1998) (UCSB, located at 119.845◦W, 34.415◦ N)
with only one record for this case. The SSA at 500 nm at
18:54:47 UTC is 0.98 (sky radiance error 15.8 %), which is
nearly 3 h ahead of the TROPOMI overpass. There are 15
TROPOMI pixels co-located with UCSB at a distance of
within 50 km and a time difference of within 3 h. Hereafter
we refer to them as AERONET-co-located pixels. As illus-
trated in Fig. 3b, the mean SSA of the co-located pixels also
increases with 1κ and eventually levels off at around 0.96.
The extremely low SSA and high variation (0.57± 0.25) re-
trieved for “gray” aerosols prove that the assumption of spec-
tral independence is not recommended for smoke aerosols.

The differences between the mean SSA of the co-
located pixels and the AERONET measurement are shown
in Fig. 3c. The retrieved SSA starts falling inside the
uncertainty range of AERONET (±0.03) (Holben et al.,
2006) when 1κ is 25 %, where the plume SSA is
0.90± 0.05 and the AERONET-co-located SSA is 0.96±
0.02 (Table 2). Table 2 also presents the SSA from the
AOD retrieval from the OMAERUV version 3 product
(https://doi.org/10.5067/Aura/OMI/DATA2004). OMI pixels
are co-located with the AERONET site in the same fash-
ion as TROPOMI. The SSA of the OMAERUV–AERONET
co-located pixels is 0.06 lower than that of AERONET,
which indicates that a 20 % spectral dependence of the
aerosol absorption in OMAERUV algorithm may be not
sufficient for this case. Although our retrieved SSA seems
closer to the AERONET retrieved SSA than that provided by
OMAERUV, one should keep in mind that there is only one
record for this event, and that the meteorological conditions,
combustion phases and even the aerosol compositions may
change during the 3 h time difference.

Figure 4 presents the spatial distribution of retrieved
AAOD and SSA when 1κ is 25 %, which shows a strong
heterogeneity in the horizontal direction. The plume center
is most absorbing where the SSA is even less than 0.70.
The SSA gradually increases when the plume is transported
northwards. SSA is expected to be low near source flaming
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Table 2. Retrieved SSA using the radiative transfer simulations for the Californian fire on 12 December 2017.

Retrieval Number of Retrieved SSA SSAmax – Retrieved SSA AERONET OMAERUV
methods plume (plume pixels) SSAmin (co-located pixels) SSA SSA

pixels

RTM with 1κ = 25 % 5217 0.90± 0.05 0.38 0.95± 0.02 0.98 0.92± 0.01

Figure 4. Retrievals of radiative transfer simulations for the Cali-
fornian fire event on 12 December 2017 when 1κ = 25 % (1κ =
(κ354− κ388)/κ388): (a) retrieved AAOD at 500 nm; (b) retrieved
SSA at 500nm.

regions (Eck et al., 1998, 2003, 2013), whereas SSA may be-
come higher when aerosols age during transport (Reid et al.,
2005; Lewis et al., 2009). The strong spatial variability in
SSA is mainly controlled by the heterogeneity of the UVAI
(Fig. 3a) via the one-to-one numerical relationship. This re-
lationship may differ from one pixel to another, as the al-
gorithm focuses on one-pixel retrieval each time. Depending
on the combustion phase and meteorological conditions, het-
erogeneity of the aerosol properties is expected for plume of
this size. Nevertheless, whether such a large SSA difference
of 0.38 (maximum SSA – minimum SSA, Table 2) is reason-
able requires further investigation (discussed in Sect. 3.6.3).

3 Experiment 2: SSA retrieval using support vector
regression

In this section, we propose an empirical method to derive
SSA as an alternative to the radiative transfer simulations
presented in the first experiment. The motivation is that as-
sumptions regarding aerosol microphysics in forward simu-
lations are inevitable, although our knowledge to them is in-
adequate (particularly the aerosol absorption spectral depen-
dence). An inappropriate assumption may lead to significant
bias in retrieved SSA (Fig. 3). Conversely, SVR (and other
ML algorithms) is applicable to solve ill-posed inversion
problems by learning the underlying behavior of a system
from a given data set without a priori knowledge of aerosol
microphysics. In this paper, we construct a SVR model with
UVAI, AOD and ALH as input features and AAOD as the

output, and then derive the SSA using the following relation-
ship:

SSA= 1−
AAOD
AOD

. (2)

The procedure for SVR prediction is presented in Fig. 5.
We start with a brief introduction of the SVR algorithm,
followed by input feature selection (Sect. 3.2), training and
testing data set preparation (Sect. 3.3), SVR model hyper-
parameter tuning (Sect. 3.4), error analysis (Sect. 3.5) and
case applications (Sect. 3.6).

3.1 Support vector regression

SVR (Drucker et al., 1997) is the regression variant of SVM,
a supervised nonparametric statistical algorithm initially de-
vised by Cortes and Vapnik (1995). The SVM algorithm is
suitable for solving problems with small training data sets
with a high-dimensional feature space and can provide ex-
cellent generalization performance (Durbha et al., 2007; Yao
et al., 2008), which has been applied extensively to solve re-
mote sensing problems (Lary et al., 2009; Mountrakis et al.,
2011; Di Noia and Hasekamp, 2018). The basic ideal of SVM
in classification problems is finding an optimal hyperplane
in a high-dimensional feature space that maximizes the mar-
gin between the two classes to minimize misclassifications
(Durbha et al., 2007). The same principle is applied to re-
gression problems, where SVR attempts to find an optimal
hyperplane that maximizes the margin of tolerance in order
to minimize the prediction error. The error within the margin
does not contribute to the total loss function, while samples
on the margin are called support vectors.

For the detailed mathematical formulation of the SVR
algorithm one can refer to Smola and Scholkopf (2004).
Briefly, given the training data with n observations
{(x1,y1), (x2,y2), . . ., (xn,yn)}, the statistical model is as-
sumed to be as follows:

y = r (x)+ δ, (3)

where x is a multivariate input and y is a scalar output with
length n; δ is the independent zero mean random noise. The
input x is first mapped onto a feature space with dimension
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of m by a nonlinear transformation, and then a linear model
f (x) is constructed based on it:

f (x)=

m∑
j=1

ωjgj (x)+ b, (4)

where the gj (x) is the nonlinear transformation, ωj is the
model parameter vector and b is the bias. SVR tries to find
the optical model from a set of approximate functions f (x).
An approximate function is assessed by the loss function. In
SVR, the loss function is defined as ε-insensitive loss:

L(y, f (x))=

{
0
|y− f (x)| − ε

if |y− f (x)| ≤ ε
otherwise (5)

Then the total empirical risk is as follows:

R(ω)=
1
n

n∑
i=1

L(yi,f (xi)) . (6)

SVR performs linear regression in a high-dimension feature
space using ε-insensitive loss, and reduces the model com-
plexity by minimizing the norm ‖ω‖2. By introducing non-
negative slack variables (ξi and ξ∗i ) to measure the deviations
of errors outside ε, SVR problems can be formulated as fol-
lows:

minimize
1
2
‖ω‖2+C

n∑
i=1
(ξi + ξ

∗

i )

s.t.


yi − f (xi)≤ ε+ ξ

∗

i

f (xi)− yi ≤ ε+ ξi
ξi,ξ

∗

i ≥ 0
, (7)

where C is a positive regularization constant determining
the trade-off between model complexity and the degree to
which deviations larger than ε are penalized. The optimiza-
tion problem can be transferred into the dual problem by in-
troducing Lagrange multipliers (αi and α∗i ) and the solution
the becomes

f (x)=

n∑
i=1

(
αi −α

∗

i

)
K(xi,x)+ b

s.t. 0≤ αi,α∗i ≤ C, (8)

where K (xi,x) is the kernel function that is positive semi-
definite in order to satisfy Mercer’s theorem. The kernel
function enables the SVR to solve nonlinear problems.

According to the description above, we know that SVR
generalization performance and estimation accuracy depend
on the regularization constant C, the width of the tolerance
margin ε and the kernel function K (xi,x). We will discuss
how to determine the three hyper-parameters in Sect. 3.3.

3.2 Feature selection based on OMI and AERONET
observations

Although SVR is able to deal with high-dimensional input
features, feature selection is still important for generalization
performance, computational efficiency and interpretational
issues (Weston et al., 2001). Many sophisticated approaches
have been devised for feature selection (Guyon and Elisseeff,
2003). In this study we choose features based on our empir-
ical knowledge of UVAI and the Spearman rank correlation
coefficients (ρ).

3.2.1 Collocating OMI and AERONET observations

The feature selection is based on the co-
located OMAERUV version 3 product
(https://doi.org/10.5067/Aura/OMI/DATA2004 last ac-
cess: 17 October 2018) and AERONET version 3 Level
1.5 inversion product (https://aeronet.gsfc.nasa.gov, last
access: 4 June 2019). OMAERUV is currently the only
satellite product containing long-term UVAI, AOD, SSA
and corresponding ALH data (Torres et al., 2007, 2013).
Its AOD was validated by the multiyear AERONET record
(Ahn et al., 2014), and its SSA was evaluated by AERONET
almucantar retrievals (Jethva et al., 2014). The ALH is
the best-guess value, either from CALIOP climatology or
assumed ALH in the retrieval (if the CALIOP climatology
is not available) (Torres et al., 2013). As a result, one
should keep in mind that the ALH from OMAERUV may
suffer from the uncertainties of CALIOP climatology and
a priori assumptions, as well as collocation error between
OMI pixels and the CALIOP footprint. It is also noted
that there are two official OMI aerosol Level 2 products,
although the OMI measurements in this paper only refer to
the OMAERUV product.

We collect the measurements of OMAERUV and
AERONET from 1 January 2005 to 31 December 2017. OMI
pixels with θ0 larger than 70◦ or a cloud fraction larger than
0.1 are excluded. OMI observations are then considered to
be co-located with an AERONET site if their spatial dis-
tance is within 50 km and their temporal difference is within
3 h. To ensure consistency between the different measure-
ment techniques (ground-based and spaceborne), we also ex-
clude samples if the SSA difference between OMAERUV
and AERONET is larger than 0.03, or the AOD difference
between OMAERUV and AERONET is larger than 5 %.
The AERONET SSA and AAOD are linearly interpolated to
500 nm, as OMAERUV reports them at this wavelength. In
total, 5679 samples are obtained. Figure B1 in the Appendix
shows the global distribution of the co-located OMAERUV–
AERONET samples. Note that these samples are not re-
stricted to biomass burning areas, but may also contain other
aerosol types.
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Figure 5. Procedure for support vector regression (SVR).

3.2.2 Feature selection

The OMAERUV–AERONET joint data set consists of the
following parameters: UVAI calculated using the 354 and
388 nm wavelength pair, satellite geometries, surface albedo,
surface pressure and ALH from OMAERUV, and SSA, AOD
and AAOD from AERONET. Note that the UVAI used here
is the “residue” field in the original OMAERUV product,
where the simulated radiance (IRay

λ in Eq. 1) is calculated by
a simple Lambertian approximation that is consistent with
TROPOMI UVAI (Torres et al., 2018). Figure 6 presents
the Spearman rank correlation coefficients matrix (ρ) of
those parameters. It is clear that except for AAOD, SSA
is barely associated with other parameters. The correlation
between UVAI and SSA is rather low (ρ =−0.25). Con-
versely, AAOD is highly associated with UVAI (ρ = 0.66)
as well as AOD (ρ = 0.66) as it carries information on both
aerosol absorption and aerosol loading. Therefore, it is pre-
ferred to predict AAOD from given UVAI and derive SSA
via Eq. (2) afterwards rather than to directly predicting SSA
from UVAI. Furthermore, as previously mentioned, AOD
and ALH are the major factors influencing UVAI, which is
also reflected by the relatively stronger correlation (ρ = 0.4).
Consequently, we construct a SVR model with UVAI, ALH
and AOD as the input features, and AAOD as the output. The
UVAI is also dependent on θ0; however in this study, we only
focus on the aerosol-related features.

Figure 6. Spearman rank correlation coefficient matrix (ρ) of pa-
rameters in the OMAERUV–AERONET joint data set.

3.3 Preparing training and testing data sets

The SVR model is trained and tested based on the
OMAERUV–AERONET joint data set that contains 8616
samples, as described in the last section (consisting of
UVAI, ALH from OMAERUV, and AOD, AAOD from
AERONET). We further partition it into a training data set
and a testing data set, respectively. The testing data set is used
to evaluate the generalization performance of a SVR model
trained by the training data set in order to avoid high bias (un-
derfitting) or high variance (overfitting) problems. The em-
pirical ratio between the training data set and the testing data
set is 70 % versus 30 %; thus, there are 3975 samples in the
training data set and 1704 samples in the testing data set.

3.4 SVR hyper-parameters tuning

As described in Sect. 3.1, the generalization performance and
model accuracy of the SVR depends on the following hyper-
parameters: (1) the width of insensitive zone ε – the cost
function does not consider errors in the training data as long
as their deviation to the truth is smaller than ε; (2) the reg-
ularization constant C that determines the trade-off between
model complexity and the degree to which deviations larger
than ε are penalized; and (3) the choice of the kernel and its
parameters. We adopt the methodology from Cherkassky and
Ma (2004), where the SVR parameterC and ε can be directly
determined from the statistics of the training data set:
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Table 3. Values for the regularization constant C, decided by Eq.(9);
the width of the insensitive zone ε, decided by Eq.(10); and the BRF
kernel parameter p2, decided by hyper-parameter tuning.

SVR hyper-parameters

Parameters C ε p2

Values 0.09 0.0001 1.67

C =max(|y+ 3σy |, |y− 3σy |) (9)

ε = 3σ

√
ln(n)
n

, (10)

where y and σy are the mean and standard deviation of the
output parameter in the training data set, respectively; σ is
the input noise level (we set it to 0.001); and n is the number
of training samples. The values determined for C and ε are
shown in Table 3. We employ the widely used radial basis
function (RBF) kernel function to solve the nonlinearity in
the SVR model. Compared with other kernel functions, RBF
is relatively less complex and more efficient. The RBF kernel
is defined as

K (xi,x)= exp

(
−
‖xi − x‖

2

2p2

)
, (11)

where p is the kernel width parameter that reflects the influ-
encing area of support vectors. This parameter is determined
by hyper-tuning on the testing data set (Durbha et al., 2007)
(explained below).

The RMSE of the training process may overestimate the
accuracy of a SVR model, because the training and predict-
ing processes are based on the same data set. Instead, an in-
dependent testing data set is used to represent the accuracy of
the SVR model. The difference of model accuracy between
training and testing process reflects the generalization perfor-
mance of the SVR model. An ideal SVR model should output
a low-level RMSE and the discrepancy between the training
and testing process should also be small. If the RMSE of
the testing process is much larger than that of the training
process, the SVR may suffer from overfitting problems. Fig-
ure 7 shows the hyper-parameter tuning process. Figure 7a–c
is the RMSE of the training process as a function of C and ε,
Fig. 7d–f is the RMSE relative difference between the test-
ing process and the training process and the columns indi-
cate different values of p. The cross markers indicate values
of C and ε determined by Eqs. (9) and (10). It is clear that
when p2

= 1.67, the RMSE of training process is relatively
small, as is the model accuracy difference between the train-
ing process and the testing process. The final values of C, ε
and p that will be applied in the case studies are listed in Ta-
ble 3. The corresponding RMSE of AAOD predicted by the

training process and the testing process are at a level of 0.01
(Fig. 8a).

3.5 Error analysis

The error sources of SSA retrieval using a SVR model de-
pends on the model accuracy as well as the quality of input
data. The model accuracy can be represented by the RMSE
of the testing process (0.01). As shown in Fig. 8a, the SVR
model has difficult predicting AAOD values larger than 0.05,
and most significant biases appear at this range. The uncer-
tainty in AAOD is passed to the SSA by Eq. (2). Figure 8b
shows the retrieved SSA in the training and testing processes.
It is noted that the predicted SSA is generally positively
biased, particularly in relatively stronger absorption cases
(SSA< 0.90). This bias is possibly due to the bias in the
feature domain, where the UVAI is relatively strongly corre-
lated with other factors (i.e., AOD and ALH) that may con-
tain redundant information which adversely impacts model
performance (Weston et al., 2001; Durbha et al., 2007). A
more sophisticated feature selection scheme is suggested to
reduce the redundancy, e.g., Minimum Redundancy Maxi-
mum Relevance (mRMR, Peng et al., 2005). Moreover, the
RBF kernel function may not capable enough to solve the
nonlinearity among the training data sets. The accuracy of
SSA predicted by the testing data set is ±0.02, with 82 % of
samples falling into the uncertainty range (±0.03) of the true
SSA (AERONET) and their accuracy is even higher (±0.01).

The error of the retrieved SSA due to the input features
may come from the observational or retrieval uncertainties
in each parameter. In our case, the typical UVAI bias re-
quirement is at a magnitude of 1 (Lambert et al., 2019).
It is reported that TROPOMI UVAI suffers from the long-
term downward wavelength-dependent trend in irradiance
(Rozemeijer and Kleipool, 2018). The detected degradation
in UVAI354,388 has been around 0.2 since August 2018 (Lam-
bert et al., 2019). The typical accuracy of TROPOMI ALH is
50 hPa, although in some situations the bias may exceed this
value (e.g., low aerosol loading over bright surface) (Sanders
et al., 2016). Depending on the retrieval algorithm, the un-
certainty of MODIS AOD is ±0.05+ 15 %AODAERONET
(Dark Target algorithm) (Levy et al., 2010) or ±0.03+
0.2AODMODIS (Deep Blue algorithm) (Sayer et al., 2014).
The SSA sensitivity to input features is presented in Fig. 9.
We use the mean value of each parameter in the OMAERUV–
AERONET data set as reference values (Fig. B2, UVAI =
1.59, ALH = 2.96 km, AOD = 0.39), and the corresponding
SSA value is 0.94. The positive bias of UVAI always leads
to an underestimation of SSA, unless the aerosol layer is lo-
cated at a relatively high altitude or aerosol loading is low.
Conversely, the insufficient UVAI causes the overestimation
of SSA, except for cases where the ALH is low or the AOD
is high. The sensitivity of SSA to UVAI is weaker when the
aerosol layer is close to the surface or at a very high altitude.
The sensitivity of SSA to UVAI always increases with AOD.
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Figure 7. The performance of the SVR model as a function of hyper-parameters (C, ε and p). The cross markers represent the values
of C and ε according to Cherkassky and Ma (2004). A p2 value equal to 1.67 is sufficient to obtain a relatively high accuracy and also
prevents overfitting of the training data set.

3.6 Case applications

Once the hyper-parameters are determined (Sect. 3.4), the
trained SVR model is ready to predict aerosol absorption.
The first application is the Californian fire event in Decem-
ber 2017 (Sect. 3.6.2), which is the same as that in the first
experiment. To demonstrate the generalization capability of
the SVR model, we also apply it to other fire events as long
as there are co-located TROPOMI and MODIS measure-
ments and AERONET-retrieved SSA available for compar-
ison (Sect. 3.6.2).

For all applications, the input parameters in the SVR
model are TROPOMI UVAI (calculated using the 354 and
388 nm wavelength pair), TROPOMI ALH and MODIS

AOD, respectively. The MODIS AOD at 550 nm is converted
to 500 nm using the Ångström exponent (α) provided by the
co-located AERONET site. Note that the data include pixels
with a CF larger than 0.1 in order to ensure that there are
satellite measurements co-located with the AERONET sites
(although the CF is no larger than 0.3).

3.6.1 Californian fire event on 12 December 2017

Figure 10 presents the retrieved AAOD and corresponding
SSA. It is noted that UVAI and AOD are higher in the cen-
ter of the plume, whereas ALH is relatively lower (Fig. 2).
The SSA should be smaller to compensate for the low al-
titude of the aerosol layer according to Fig. 9. However, the
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Figure 8. The accuracy of the trained SVR model: (a) the predicted AAOD at 500 nm against the true AAOD at 500 nm. The dashed line is
the 1 : 1 line, and the solid line is the linear fitting for the testing data set; (b) the predicted SSA at 500 nm against true SSA at 500 nm. Gray
and red indicate samples in training and testing data sets, respectively. The values in parentheses are the statistics for samples that fall within
an AERONET uncertainty of 0.03.

Figure 9. The sensitivity of the SVR-retrieved SSA: (a) the response of predicted SSA at 500 nm as a function of changes in UVAI and ALH;
(b) the response of predicted SSA at 500 nm as a function of changes in UVAI and AOD.

SVR-retrieved SSA is even higher than its surroundings. This
is because the UVAI and AOD retrievals are outside of the
distribution of the corresponding parameters in this region,
as shown in Fig. B2. The 13-year OMAERUV–AERONET
joint data cannot cover some extreme situations. The reason
for this may be that the joint data set is relatively small as a
result of data availability and collocation criteria, or that the
quality of the joint data suffers from observational or retrieval
uncertainties. As a result, the SVR model fails to handle the
input values outside of the range of the training data set.

The SSA of the all plume pixels is 0.94± 0.01 (including
the failed pixel predictions) and that for the AERONET-co-

located pixels (pixels within 50 km of UCSB) is 0.97± 0.01
(Table 4). These values may be overestimated, whereas the
standard deviation may be underestimated due to the SVR
prediction failures of some samples. The SSA difference rel-
ative to the AERONET retrieval is only 0.01, which is within
the uncertainty range of AERONET (±0.03).

3.6.2 Other case applications

To present the generalization performance of SVR, we ap-
ply it to other fire events as long as there is co-located infor-
mation from TROPOMI, MODIS and AERONET. The same
preprocessing is applied as in the previous case in order to
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Table 4. SVR-retrieved SSA. If no standard deviation is given, it indicates that only one record was available.

Case No. of Retrieved SSAmax – Co-located SSA AERONET OMAERUV
plume SSA (plume SSAmin AERONET (co-located SSA SSA
pixels pixels) pixels)

California 2017-12-12 5217 0.94± 0.01 0.09 UCSB 0.97± 0.01 0.98 0.92± 0.01
California 2018-11-09 1944 0.94± 0.01 0.10 Santa_Monica_Colg 0.93± 0.01 0.89± 0.06 0.89± 0.06
California 2018-11-10 2184 0.94± 0.02 0.10 CalTech 0.96± 0.01 0.89± 0.07 –

Fresno_2 0.93± 0.02 0.91± 0.01 –
Modesto 0.94± 0.01 0.92± 0.01 0.96± 0.01
USC_SEAPRISM_2 0.93± 0.00 0.90 –

California 2018-11-11 2815 0.95± 0.02 0.09 Modesto 0.98± 0.00 0.96± 0.01 0.95± 0.00
Canada 2019-05-29 8013 0.97± 0.02 0.10 Fort_McKay 0.97± 0.02 0.95± 0.00 0.93

Fort_McMurray 0.98± 0.01 0.93 1.00

Figure 10. SVR retrievals for the Californian fire event on 12 De-
cember 2017: (a) retrieved AAOD at 500 nm; (b) retrieved SSA at
500 nm.

exclude pixels with UVAI values smaller than 1, AOD values
smaller than 0.5 or CF values larger than 0.3.

Figures 11–13 present the Californian fire events during
the period from 9 to 11 November 2018. The plumes were
over ocean but were partly contaminated by the underly-
ing clouds (Figs. A2, A3 and A4 present the Aqua MODIS
RGB images). Figure 14 shows the Canadian fire event on
29 May 2019. This case was over land (Fig. A5 present the
Aqua MODIS RGB image), which means that the brighter
surface may cause a higher bias in the input AOD and ALH
than cases over dark surfaces (Remer, 2005; de Graaf et al.,
2019).

The retrieved SSA for the abovementioned events is listed
in Table 4. Similar to the Californian case on 12 Decem-
ber 2017, The SVR fails to retrieve reasonable SSA for pixels
if input features fall outside their corresponding histogram in
the OMAERUV–AERONET data (Fig. 2b), which may cause
overestimations in plume mean SSA. The plume SSA of two
Californian fire events are similar, with values of around
0.94–0.95. The retrieved SSA for the Canadian fire is rela-
tively higher (0.97).

We further plot the SSA retrieved by SVR against co-
located AERONET records (black crosses in Fig. 15). In-

cluding the first case (Californian fire on 12 December 2017),
there are nine co-located records obtained. The difference be-
tween SVR-retrieved SSA and AERONET are almost within
±0.05, among which over half (five out of nine) fall within
the AERONET SSA uncertainty range (±0.03). We also pro-
vide SSA from OMAERUV for these cases (Table 4 and blue
circles in Fig. 15). Compared with OMAERUV, the SSA re-
trieved by SVR shows a better consistency with AERONET,
although one should keep in mind that the accuracy of SVR-
retrieved SSA is ±0.02 and the model tends to overestimate
the SSA for relatively absorbing cases.

3.6.3 Spatial variability of retrieved SSA

Compared with Fig. 4b, the spatial variability of SSA re-
trieved by SVR is less strong (Figs. 10–14): the difference
between maximum and minimum SSA ranges from 0.09 to
0.10 (Table 4). In the first experiment, SSA is determined by
UVAI for each pixel individually. In the SVR model, the spa-
tial variability of the intermediate output AAOD depends on
the three input features. Furthermore, SVR predicts SSA for
each pixel based on the common relationship between UVAI,
AOD and ALH in the training data set.

Heterogeneity in aerosol properties is expected for plume
of this size; however, the extent of this heterogeneity requires
further investigation. Here we assess the SSA spatial vari-
ability of an independent data set. We employ the SSA cal-
culated by AOD and scattering AOD from the MERRA-2
aerosol reanalysis hourly single-level product (https://disc.
gsfc.nasa.gov/datacollection/M2T1NXAER_5.12.4.htm last
access: 16 July 2019). The AOD and aerosol properties of
MERRA-2 have proved to be in good agreement with in-
dependent measurements (Buchard et al., 2017; Randles et
al., 2017). The MERRA-2 AOD and SSA for these cases are
shown in Appendix C. The plume can be detected using high
AOD values against their surrounding. Although the plume
presented by the satellite observations significantly differs
from that of model simulations, the SSA spatial difference
within the plume is at an approximate magnitude of 0.1.
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Figure 11. SVR retrievals for the Californian fire event on 9 November 2018: (a) TROPOMI UVAI calculated by reflectance at 354 and
388 nm; (b) TROPOMI ALH; (c) MODIS AOD at 550 nm; (d) retrieved AAOD at 500 nm; (e) retrieved SSA at 500 nm.

Figure 12. SVR retrievals for the Californian fire event on 10 November 2018: (a) TROPOMI UVAI calculated by reflectance at 354 and
388 nm; (b) TROPOMI ALH; (c) MODIS AOD at 550 nm; (d) retrieved AAOD at 500 nm; (e) retrieved SSA at 500 nm.

From this aspect, the spatial variability of SSA retrieved by
the SVR model is in better agreement with MERRA-2.

4 Conclusions

The long-term record of global UVAI data is a treasure with
respect to deriving aerosol optical properties such as SSA,
which is important for aerosol radiative forcing assessments.
To quantify aerosol absorption from UVAI, information on
AOD and ALH is necessary. Various AOD products are avail-
able, whereas ALH products are much less accessible. Re-
cently, the TROPOMI oxygen A-band ALH product has been
run operationally; using this product, we demonstrate the role
of ALH in quantifying SSA from satellite retrieved UVAI for
biomass burning aerosols.

In the first experiment, we derive the SSA using a forward
radiative transfer simulation of UVAI for a fire event in Cali-
fornia on 12 December 2017. Using the TROPOMI ALH, we
are able to quantify the influence of assumed spectral depen-
dence of near-UV aerosol absorption (represented by the rel-
ative difference between κ354 and κ388) on the retrieved SSA.
A significant gap in plume mean SSA (0.25) between “gray”
and strong spectral dependent aerosols (1κ = 0 % and 40 %,
respectively) implies that inappropriate assumptions regard-
ing spectral dependence may significantly bias the retrieved
aerosol absorption. The SSA difference between AERONET
and co-located pixels becomes smaller than the uncertainty
of AERONET (±0.03) when 1κ = 25 %. The correspond-

ing plume SSA is 0.90±0.05, and the AERONET-co-located
pixels’ SSA is 0.96± 0.02.

In the second part of this paper, we propose a statistical
method based on the long-term records of UVAI, AOD, ALH
and AAOD using a SVR algorithm, in order to avoid mak-
ing the assumption of the aerosol absorption spectral depen-
dence in the near-UV band. The SVR model is trained us-
ing 5679 co-located global observations from OMAERUV
and AERONET during the period from 2005 to 2017. The
SVR-retrieved SSA for the Californian fire event on 12 De-
cember 2017 is 0.97±0.01, which is 0.01 lower than that
of AERONET. The SVR algorithm is also applied to other
cases. Considering all of the case applications, the results
are encouraging: the SSA discrepancy between retrievals
and AERONET for almost all co-located samples is within
±0.05, and over half of them fall within the AERONET un-
certainty range (±0.03). One should keep in mind that the
SVR model tends to overestimate the SSA for relatively ab-
sorbing cases (e.g., SSA< 0.90), and sometimes fails to pre-
dict reasonable SSA when the input values fall outside the
range of the corresponding parameters in the training data
set.

In terms of spatial variability, the SSA retrieved by radia-
tive transfer simulations significantly differs from that re-
trieved by SVR. Spatial heterogeneity in SSA is expected,
but the extent of this heterogeneity requires further investiga-
tion. We employ the SSA provided by the MERRA-2 aerosol
reanalysis as a reference, and the spatial difference of this
data within smoke plume is at a magnitude of approximately
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Figure 13. SVR retrievals for the Californian fire event on 11 November 2018: (a) TROPOMI UVAI calculated by reflectance at 354 and
388 nm; (b) TROPOMI ALH; (c) MODIS AOD at 550 nm; (d) retrieved AAOD at 500 nm; (e) retrieved SSA at 500 nm.

Figure 14. SVR retrievals for the Canadian fire event on 29 May 2019: (a) TROPOMI UVAI calculated by reflectance at 354 and 388 nm;
(b) TROPOMI ALH; (c) MODIS AOD at 550 nm; (d) retrieved AAOD at 500 nm; (e) retrieved SSA at 500 nm.

Figure 15. SVR-retrieved SSA (black crosses) and OMAERUV-
retrieved SSA (blue circles) against AERONET SSA at 500 nm for
all five cases in this study.

0.1. The spatial pattern of SSA retrieved by SVR shows bet-
ter agreement with this finding.

In this study, we present the potential to retrieve SSA
based on long-term data records of UVAI, ALH, AOD and
AAOD using a statistical method. The motivation is to avoid
a priori assumptions on aerosol microphysics such as those
made in the radiative transfer simulations. In the current
phase, we choose the SVR algorithm as the training data

set is relatively small. The input features are selected by the
Spearman rank correlation coefficients and a priori knowl-
edge on the relationship between UVAI and aerosol-related
features. The model hyper-parameters are analytically deter-
mined. The accuracy of SVR-predicted SSA is ±0.02, with
a higher tendency to overestimate the SSA for relatively ab-
sorbing cases. The OMAERUV–AERONET data set cannot
cover some extreme situations, and, as a result, the SVR fails
to predict reasonable SSA when the input values fall outside
the range of the corresponding parameters in the training data
set. In the future, more sophisticated feature selection tech-
niques and kernel functions should be considered to improve
the accuracy the algorithm. Other non-aerosol features af-
fecting UVAI should also be taken into consideration. More-
over, the high-resolution TROPOMI Level 2 UVAI and ALH
products are expected to significantly increase the size and
improve the quality of the training data set, which will re-
duce the computational failures of the SVR model and even
guide use to more powerful algorithms (e.g., ANN) to re-
trieve SSA.

Data availability. All data used in this study can be freely accessed.
The OMI/Aura Near UV Aerosol Optical Depth and Single Scatter-
ing Albedo 1-orbit L2 Swath 13× 24 km V003 (OMAERUV ver-
sion 3) is provided by the Goddard Earth Sciences Data and In-
formation Services Center (GES DISC) and can be accessed via
https://doi.org/10.5067/Aura/OMI/DATA2004 (Torres, 2016). The
OMI/Aura Surface Reflectance Climatology L3 Global Gridded
0.5◦× 0.5◦ V3 (OMLER) is also provided by GES DISC and
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can be accessed via https://doi.org/10.5067/Aura/OMI/DATA3006
(Kleipool, 2010). The TROPOMI ROPOMI/S5P Aerosol Index 1-
Orbit L2 Swath 7×3.5 km (L2_AER_AI), TROPOMI/S5P Aerosol
Layer Height 1-Orbit L2 Swath yx3.5 km (L2_AER_LH) and
TROPOMI/S5P FRESCO Cloud 1-Orbit L2 Swath 7× 3.5 km
(L2_FRESCO) are provided by Copernicus Sentinel data pro-
cessed by the European Space Agency (ESA) and the Konin-
klijk Nederlands Meteorologisch Instituut (KNMI) and can be
accessed via https://s5phub.copernicus.eu/dhus/#/home (last ac-
cess: 19 September 2018). The MODIS/Aqua Aerosol 5-Min
L2 Swath 10 km (MYD04_L2) is provided by the MODIS
Atmosphere Science Team/Aerosol Retrieval Group, MODIS
Adaptive Processing System (MODAPS) and can be accessed
via https://doi.org/10.5067/MODIS/MYD04_L2.006 (Levy et al.,
2015). The AERONET version 3 inversion product is provided by
the NASA Goddard Space Flight Center and can be accessed via
https://aeronet.gsfc.nasa.gov (NASA Goddard Space Flight Center,
2019). The radiative transfer model DISAMAR is proprietary; thus,
it is not shared with the public. All of the results from this study are
available with the permission of authors, and can be obtained upon
request from jiyunting.sun@knmi.nl.
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Appendix A: Case information

Figure A1. Smoke plume captured by Aqua MODIS for the Califor-
nian fire event on 12 December 2017 (source: https://gibs.earthdata.
nasa.gov, last access: 27 September 2018). The red regions indicate
fires and thermal anomalies.

Figure A2. Smoke plume captured by Aqua MODIS for the Califor-
nian fire event on 9 November 2018 (source: https://gibs.earthdata.
nasa.gov, last access: 7 August 2019). The red regions indicate fires
and thermal anomalies.

Figure A3. Smoke plume captured by Aqua MODIS for the Califor-
nian fire event on 10 November 2018 (source: https://gibs.earthdata.
nasa.gov, last access: 7 August 2019). The red regions indicate fires
and thermal anomalies.
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Figure A4. Smoke plume captured by Aqua MODIS for the Califor-
nian fire event on 11 November 2018 (source: https://gibs.earthdata.
nasa.gov, last access: 7 August 2019). The red regions indicate fires
and thermal anomalies.

Figure A5. Smoke plume captured by Aqua MODIS for the Cana-
dian fire event on 29 May 2019 (source: https://gibs.earthdata.nasa.
gov, last access: 7 August 2019). The red regions indicate fires and
thermal anomalies.
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Appendix B: OMI–AERONET joint data set (based on
global data from 1 January 2005 to 31 December 2017).

Figure B1. Global distribution of the OMAERUV–AERONET joint
data set. The color indicates the number of observations. Note that
all aerosol types are included.

Figure B2. Statistics of the OMAERUV–AERONET joint data set: (a) OMAERUV UVAI calculated from reflectance at 354 and 388 nm;
(b) OMAERUV ALH; (c) AERONET AOD at 500 nm; (d) AERONET AAOD at 500 nm; (e) AERONET SSA at 500 nm.
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Appendix C: MERRA-2 aerosol reanalysis.

Figure C1. MERRA-2 M2T1NXAER averaged between 12:00 and
15:00 LT for the Californian fire event on 12 December 2017:
(a) AOD at 500 nm; (b) SSA at 500 nm.

Figure C2. MERRA-2 M2T1NXAER averaged between 12:00
and 15:00 LT for the Californian fire event on 9 November 2018:
(a) AOD at 500 nm; (b) SSA at 500 nm.

Figure C3. MERRA-2 M2T1NXAER averaged between 12:00 and
15:00 LT for the Californian fire event on 10 November 2018:
(a) AOD at 500 nm; (b) SSA at 500 nm.

Figure C4. MERRA-2 M2T1NXAER averaged between 12:00 and
15:00 LT for the Californian fire event on 11 November 2018:
(a) AOD at 500 nm; (b) SSA at 500 nm.

Figure C5. MERRA-2 M2T1NXAER averaged between 12:00 and
15:00 LT for the Canadian fire event on 29 May 2019: (a) AOD at
500 nm; (b) SSA at 500 nm.
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