(a) Simulation of particle spectra and the creation of the lookup table

Collect a set of i_L , n_L and p_L by iterating through all realistic combinations of i, assuming a gamma size distribution.

(b) Look up a result

Create space with a combination of the coordinates (here: v_t , and w) and fill with the corresponding vectors n_L and i_L .

Calculate the distribution of the matching probability in (v_t, w) space against vector $\mathbf{m} = (v_{t,M}, w_M)$ measured with errors.

-Coordinate of mostprobable match

(c)

Scale normal vectors and combine with P

Retrieve vectors \mathbf{r}_L of extensive properties by scaling each normal vector of the lookup table with measured Z_M and the simulated Z_1 so that $\mathbf{r}_L = \mathbf{n}_L (Z_M / Z_1)$.

Plot an element of all vectors \mathbf{r}_L vs matching probability P (example for number concentration).

