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Abstract. High-resolution atmospheric transport simulations
were used to investigate the potential for detecting carbon
dioxide (CO2) plumes of the city of Berlin and neighbor-
ing power stations with the Copernicus Anthropogenic Car-
bon Dioxide Monitoring (CO2M) mission, which is a pro-
posed constellation of CO2 satellites with imaging capabili-
ties. The potential for detecting plumes was studied for satel-
lite images of CO2 alone or in combination with images of
nitrogen dioxide (NO2) and carbon monoxide (CO) to inves-
tigate the added value of measurements of other gases co-
emitted with CO2 that have better signal-to-noise ratios. The
additional NO2 and CO images were either generated for
instruments on the same CO2M satellites (2 km× 2 km res-
olution) or for the Sentinel-5 instrument (7.5 km× 7.5 km)
assumed to fly 2 h earlier than CO2M. Realistic CO2, CO
and NOX(= NO+NO2) fields were simulated at 1 km× 1 km
horizontal resolution with the Consortium for Small-scale
Modeling model extended with a module for the simulation
of greenhouse gases (COSMO-GHG) for the year 2015, and
they were used as input for an orbit simulator to generate
synthetic observations of columns of CO2, CO and NO2 for
constellations of up to six satellites. A simple plume detec-
tion algorithm was applied to detect coherent structures in
the images of CO2, NO2 or CO against instrument noise
and variability in background levels. Although six satellites
with an assumed swath of 250 km were sufficient to overpass

Berlin on a daily basis, only about 50 out of 365 plumes per
year could be observed in conditions suitable for emission
estimation due to frequent cloud cover. With the CO2 instru-
ment only 6 and 16 of these 50 plumes could be detected
assuming a high-noise (σVEG50 = 1.0 ppm) and low-noise
(σVEG50 = 0.5 ppm) scenario, respectively, because the CO2
signals were often too weak. A CO instrument with speci-
fications similar to the Sentinel-5 mission performed worse
than the CO2 instrument, while the number of detectable
plumes could be significantly increased to about 35 plumes
with an NO2 instrument. CO2 and NO2 plumes were found
to overlap to a large extent, although NOX had a limited life-
time (assumed to be 4 h) and although CO2 and NOX were
emitted with different NOX : CO2 emission ratios by differ-
ent source types with different temporal and vertical emis-
sion profiles. Using NO2 observations from the Sentinel-5
platform instead resulted in a significant spatial mismatch
between NO2 and CO2 plumes due to the 2 h time differ-
ence between Sentinel-5 and CO2M. The plumes of the coal-
fired power plant Jänschwalde were easier to detect with the
CO2 instrument (about 40–45 plumes per year), but, again,
an NO2 instrument could detect significantly more plumes
(about 70). Auxiliary measurements of NO2 were thus found
to greatly enhance the capability of detecting the location of
CO2 plumes, which will be invaluable for the quantification
of CO2 emissions from large point sources.
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1 Introduction

The signatory countries of the Paris climate agreement have
set ambitious goals to reduce CO2 emissions and limit global
warming to below 2 ◦C above preindustrial levels (UNFCCC,
2015). The efficient implementation and management of
long-term policies will require consistent, reliable and timely
information on CO2 emissions (Ciais et al., 2015; Pinty
et al., 2018). The majority of these emissions are concen-
trated on a small fraction of the globe, primarily on cities
and power plants. Acknowledging their important role, cities
have started to devise policies for cutting CO2 emissions of-
ten surpassing the reduction targets of the respective coun-
tries (e.g., C40 cities, 2018). However, many cities are cur-
rently lacking detailed CO2 emission inventories and moni-
toring systems to evaluate their policies.

The European Space Agency (ESA) and the European
Commission (EC) therefore propose the Copernicus An-
thropogenic Carbon Dioxide Monitoring (CO2M) mission,
a constellation of CO2 satellites with imaging capability, to
support the quantification of anthropogenic CO2 fluxes and
to assist greenhouse gas mitigation policies at the national,
city and facility level (Sierk et al., 2019). The satellites are
envisioned as an essential component of a CO2 emission
monitoring and verification support system to be established
under Europe’s Earth observation program Copernicus (Ciais
et al., 2015; Pinty et al., 2018). The system would allow for
observing CO2 plumes of individual point sources such as
large cities and power plants and for quantifying the respec-
tive emissions during single satellite overpasses (Bovens-
mann et al., 2010; Pillai et al., 2016; Velazco et al., 2011).
A CO2 plume is defined here as an enhancement of CO2
concentrations above the background in the satellite image
caused by the emissions of a given source. The emissions
of the source can be estimated from the CO2 enhancement
inside the plume, which requires that the plume location is
identified in the satellite observations and assigned to the
source. An atmospheric transport model may be used for
simulating the plume location and for estimating the emis-
sions with an inversion framework (e.g., Pillai et al., 2016;
Broquet et al., 2018). However, the simulated plume might
be significantly displaced due to uncertainties in wind fields
and emission heights, which would result in systematic er-
rors in the estimated emissions (Broquet et al., 2018; Brun-
ner et al., 2019). It is therefore desirable to detect the plume
directly in the satellite observations, which would make it
possible to correct transport-related errors in the simulations
but also to estimate the emissions directly from the CO2 en-
hancements in the plume using plume fitting or mass balance
approaches, which only require an estimate of the mean wind
speed within the plume (Fioletov et al., 2015; Krings et al.,
2013; Varon et al., 2018). While some potential for detecting
and estimating emissions from CO2 fluxes has been demon-
strated for strong CO2 plumes of megacities and large point
sources using the Orbiting Carbon Observatory 2 (OCO-2,

Crisp et al., 2017) (Nassar et al., 2017; Reuter et al., 2019),
it remains a major challenge to accurately determine the lo-
cation of CO2 plumes, especially of weaker plumes with
signal-to-noise ratios near or below the detection limit for
single pixels. The detection of CO2 plumes is additionally
challenged by the interference with signals from biospheric
CO2 fluxes and other anthropogenic sources in the vicinity of
the target. Therefore, measurements of auxiliary trace gases
coemitted with CO2 but little affected by biospheric pro-
cesses such as carbon monoxide (CO) and nitrogen dioxide
(NO2) were proposed to help separate anthropogenic from
biospheric CO2 signals (Reuter et al., 2014; Ciais et al.,
2015).

This study presents results from the SMARTCARB
project (use of satellite measurements of auxiliary reactive
trace gases for fossil fuel carbon dioxide emission estima-
tion, Kuhlmann et al., 2019), which aimed to assess the po-
tential synergies of measurements of CO and NO2 for ob-
serving and quantifying CO2 emissions and to help define
the required satellite specifications for the CO2M mission.
To address these questions, Observing System Simulation
Experiments (OSSEs) were conducted, for which synthetic
satellite observations were generated from high-resolution
atmospheric transport simulations. The model domain was
centered on the city of Berlin and also covered several nearby
power plants. Similar simulations were already performed in
previous OSSEs (Pillai et al., 2016; Broquet et al., 2018), but
they did not have a comparable spatial resolution or temporal
extent or did not cover the additional species NO2 and CO as
investigated here.

Since the detection of the CO2 plume is a first and im-
portant step of a CO2 emission monitoring system, the aim
of this paper is to investigate whether and how often CO2
plumes are expected to be detected in the satellite images
during a year depending on the size of the CO2M satel-
lite constellation and on instrument error scenarios. The de-
tectability is studied for satellite images of CO2 alone or in
combination with images of NO2 and CO to investigate the
added value of additional measurements either on the same
CO2M satellite (2 km× 2 km, overpass: 11:30 local time) or
with the Sentinel-5 instrument (7.5 km× 7.5 km, overpass:
09:30 local time). In this paper, we analyze the signal-to-
noise ratios of a city plume and of different point sources
for the different instruments. Furthermore, based on a newly
developed simple plume detection algorithm, we identify sta-
tistically significant plume signals against instrument noise
and background variability. The results are used to provide
recommendations for the dimensioning of the CO2M mis-
sion, which will be a key component of the Copernicus CO2
emission monitoring and verification support system. In a
companion paper Brunner et al. (2019) presented the over-
all model setup and emphasized the importance of prop-
erly accounting for the vertical placement of CO2 emissions
from large point sources in atmospheric CO2 simulations.
In a follow-up study, we will quantify the emissions from
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Berlin and a few power plants in the model domain from
the synthetic satellite observations using both inverse and
mass-balance approaches, building on the plume detection
presented here.

In a satellite image, a plume may be defined as a collection
of spatially connected pixels with elevated signals starting at
a source. Whether and how frequently the plume of a given
source can be detected depends on several, partly interdepen-
dent factors:

– The number of satellites and the instrument’s swath
width, as they determine the number of overpasses over
the plume and how much of the plume is visible in the
satellite image.

– The intensity of the emission source, which affects the
amplitude of the enhancement above background.

– The meteorological conditions, notably wind speed and
turbulence, which determine the dilution and dispersion
of the emissions.

– The single sounding precision of the instrument, which
determines if the enhancement within the plume can be
detected.

– The variability of the background, which is caused by
anthropogenic emissions and biospheric fluxes in the
vicinity of the source and which is additionally affected
by meteorology.

– The presence of clouds partially or fully obscuring the
plume.

Since most of these factors vary with season, the detectability
also depends on the time of the year. Therefore, long simula-
tions covering a full year were conducted.

Because the detection of weak anthropogenic CO2 plumes
is affected by interference with biospheric CO2 signals, aux-
iliary trace gases coemitted with CO2 could be used for lo-
cating the CO2 plume in the satellite image. However, this
requires that the plumes of CO2 and of the auxiliary trace
gas are spatially congruent. This is usually the case when
they are emitted from the same source, for example, a power
plant. The shape of the NO2 plumes might deviate from the
CO2 plume for two reasons. First, NO2 is emitted mainly as
nitrogen monoxide (NO), which is converted to NO2 over
time, resulting in lower NO2 concentrations near the source.
Second, NO2 decays slowly with time, reducing NO2 con-
centrations downstream. To account for these two effects, we
simulated nitrogen oxides (NOX = NO+NO2) that slowly
decay with time and calculated NO2 from NOX concentra-
tions offline by applying a formula frequently used to rep-
resent NO2 : NOX ratios downstream of emission sources
(Düring et al., 2011). The situation is more complex for cities
where the emissions originate from different sectors (indus-
try, heating, transport, etc.) that emit with different temporal

Figure 1. Simulated XCO2 field on 23 April 2015 in the SMART-
CARB model domain overlaid with an example of a 250 km wide
swath of the planned Sentinel CO2 instrument (low-noise scenario).
Missing CO2 measurements are shown in gray. Cloud cover is over-
layed in white, with transparency corresponding to total cloud frac-
tion.

profiles and at different altitude levels, and which have dif-
ferent emission ratios (Brunner et al., 2019). In this study, we
therefore carefully consider the vertical and temporal profiles
of emissions from different sectors, which makes it possible
to test for congruence.

2 Data and methods

2.1 Synthetic satellite observations

2.1.1 Model simulations

The synthetic satellite observations were generated from
high-resolution simulations conducted with the COSMO-
GHG model. COSMO is a hydrostatic, limited-area model
developed by the Consortium for Small-scale Modeling (Bal-
dauf et al., 2011), for which an extension has been de-
veloped for the simulation of greenhouse gases (COSMO-
GHG)(Oney et al., 2015; Liu et al., 2017).

COSMO-GHG was set up to simulate CO2, CO and
NOx concentration fields for nearly the complete year 2015
(1 January–25 December). The model domain extended
about 750 km in the east–west and 650 km in the south–north
direction. It was centered over the city of Berlin and also cov-
ered numerous power plants in Germany and neighboring
countries. The spatial resolution was 1.1 km× 1.1 km hori-
zontally with 60 vertical levels up to an altitude of 24 km.
Figure 1 presents the model domain and marks the location
of Berlin and the six largest coal-fired power plants. The de-
tailed model setup is described by Brunner et al. (2019).
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Table 1. Emissions of largest power plants in the model domain
according to the TNO/MACC-3 inventory for the year 2011 as used
in this study.

Power CO2 NOx CO
plant (Mt yr−1) (kt yr−1) (kt yr−1)

Jänschwalde 33.3 26.9 44.1
Boxberg 19.0 15.4 14.4
Lippendorf 15.3 12.3 2.7
Turów 8.7 13.1 1.3
Schwarze Pumpe 8.2 6.6 5.3

Initial and lateral boundary conditions (ICBCs) for mete-
orological variables were provided by the operational Euro-
pean COSMO-7 analyses of MeteoSwiss with hourly tem-
poral and 7 km horizontal resolution. For the tracers, ICBCs
were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) through the European Earth
observation program Copernicus. CO2 and CO boundary
conditions were taken from a global free-running CO2 sim-
ulation with 137 levels and about 15 km horizontal resolu-
tion (T1279 spectral resolution, experiment gf39, class rd)
(Agustí-Panareda et al., 2014). For NO and NO2, boundary
conditions were taken from ECMWF’s operational global
forecasts for aerosol and chemical species with 60 vertical
levels and a horizontal resolution of about 60 km (T255 res-
olution, experiment 0001, class mc) (Flemming et al., 2015).

Anthropogenic emissions were obtained by combining the
third version of the TNO/MACC inventory (Kuenen et al.,
2014, for version 2), which was generated by the Netherlands
Organisation for Applied Scientific Research (TNO) for the
Monitoring Atmospheric Composition and Climate – Phase
III (MACC-3) project, with a detailed inventory provided by
the city of Berlin (AVISO GmbH and IE Leipzig, 2016). The
inventories provide point and area sources separately for dif-
ferent sectors (e.g., industry, heating and road transport) us-
ing Selected Nomenclature for Air Pollution (SNAP) cate-
gories. The temporal variability of emissions was accounted
for by applying diurnal, weekly and seasonal cycles accord-
ing to SNAP categories. Furthermore, emissions were verti-
cally distributed using specific vertical profiles for the differ-
ent emissions categories and plume rise calculations for the
six largest power plants and the major point sources in Berlin
(Brunner et al., 2019). Hourly biospheric fluxes of both pho-
tosynthesis and respiration were generated with the Vegeta-
tion Photosynthesis and Respiration Model (VPRM) at the
resolution of the COSMO model (Mahadevan et al., 2008).

According to the official inventory of the city of Berlin,
total annual CO2 emissions of Berlin were 16.9 Mt CO2 yr−1

(in the reference year 2012 of the inventory). This is about a
factor of 2 smaller than in previous studies, e.g., in the LO-
GOFLUX project (Chimot et al., 2013; Bacour et al., 2015;
Pillai et al., 2016), which relied on unrealistically high emis-

sions as provided by the global EDGAR inventory (version
4.1). Due to the diurnal cycle of emissions, emissions were
somewhat larger (about 20.0 Mt CO2 yr−1) around the time
of the satellite overpasses (10:00–11:00 UTC). Table 1 sum-
marizes the CO2, NOx and CO emissions of the five largest
power plants in the domain.

The simulations included a total of 50 different passively
transported tracers representing the three different gases fur-
ther divided into different sources, release times or release
altitudes. This also included background tracers constrained
at the lateral boundaries by the global-scale models and
two tracers for biospheric respiration and photosynthesis for
CO2. Due to the reactivity of NOx , five different NOx tracers
with e-folding lifetimes of 2, 4, 12, and 24 h and infinity were
included, considering that the lifetime of NOx varies between
about 2 and 24 h (Schaub et al., 2007). The full list of trac-
ers is provided in the SMARTCARB final report (Kuhlmann
et al., 2019, p. 15f).

In this study we use the following seven tracers that have
been computed from the 50 tracers in the simulations.

– X_BER: concentrations from time-varying emissions of
Berlin;

– X_PP: concentrations from time-varying emissions
from the six largest power plants in the model domain;

– X_ANTH: concentrations from other anthropogenic
sources in the domain excluding emissions of Berlin
(X_BER) and the six largest power plants (X_PP);

– X_BIO: concentrations from local biospheric fluxes,
i.e., respiration and photosynthesis within the domain
(only for CO2);

– X_TOT: concentrations from all emissions and bio-
spheric fluxes as well as inflow from lateral boundaries;

– X_BER_BG: concentrations from emissions, fluxes and
lateral boundaries excluding emissions from Berlin
(=X_TOT–X_BER); and

– X_PP_BG: concentrations from emissions, fluxes and
lateral boundaries excluding emissions from the six ma-
jor power plants (=X_TOT–X_PP),

where X is CO2, CO or NO2. NO2 concentrations were cal-
culated from NOx concentrations using an empirical formula
used frequently for representing NO2 : NOx ratios down-
stream of emission sources (Düring et al., 2011). For NO2
only the tracers with a lifetime of 4 h were used. Note that
only the sum of the emissions from the six power plants was
simulated but not the power plants individually, which often
complicated the analysis due to overlapping plumes. For the
analysis, the three-dimensional model fields were vertically
integrated to compute column-averaged dry air mole frac-
tions of CO2 (XCO2). Likewise, tropospheric CO and NO2
vertical column densities (VCDs) were generated by consid-
ering only the model fields below 10 km altitude.
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2.1.2 Satellite instrument scenarios

The CO2M mission is a proposed constellation of satellites
flying in a sun-synchronous low-Earth orbit with Equator
crossing times around 11:30 local time. Each satellite will
carry an imaging spectrometer measuring in the near-infrared
(NIR) and in two shortwave infrared spectral bands (SWIR 1
and SWIR 2) for retrieving CO2 as the main payload. The
NIR band is used to retrieve information on the dry air col-
umn, on surface pressure, and on aerosols and clouds. The
SWIR-1 and SWIR-2 bands contain weak and strong ab-
sorption features of CO2 and provide additional information
on aerosols and clouds, especially on thin cirrus clouds. A
CO2 retrieval using these three bands is described for ex-
ample by O’Dell et al. (2012). CO2M is planned to carry
also additional instruments for measuring NO2, aerosols and
clouds. In an earlier phase, also an instrument measuring CO
was considered. The preliminary system concept envisages a
pixel size of 4 km2 and a swath width of 250 km or more.

For the CO2, CO and NO2 satellite observations, differ-
ent instrument scenarios were prescribed by ESA for this
study in terms of orbit, spatial resolution, and spatial and
temporal coverage of the CO2M instrument. In addition, the
Sentinel-5 instrument on board the Meteorological Opera-
tional Satellite – Second Generation A (MetOp-SG-A) was
studied as an alternative platform for CO and NO2 measure-
ments. Sentinel-5 will be an imaging spectrometer measur-
ing, among others, NO2 and CO columns with a spatial res-
olution of 7 km× 7 km and a 2650 km swath. MetOp-SG-A
will be also on a sun-synchronous orbit but with different
Equator crossing times and repeat cycles than the CO2M
mission.

In addition to a single satellite, the potential of a constella-
tion of multiple CO2M satellites was also studied. The basic
assumption for a constellation is that the individual satellites
are spaced with equal angular distance in the same orbit with
the same orbit parameters, for instance separated by 180, 120
and 90◦ on a full circle in the case of 2, 3 and 4 satellites.
The individual satellites can be distinguished by their start-
ing longitude at the Equator of the first orbit in the repeat
cycle. Here, we analyze constellations between one and six
satellites.

For the computation of orbits, we adopted the orbit simula-
tor of the Netherlands Institute for Space Research (SRON).
Since this simulator makes a few simplifying assumptions,
such as circular orbits and tiled ground pixels, satellite and
instrument parameters were slightly modified to preserve es-
sential parameters. In particular, orbit periods were calcu-
lated to match a given cycle duration and length. The pe-
riod then determines the altitude and inclination of a circular,
sun-synchronous orbit. The altitude of the circular orbits is
slightly larger than the typically used mean altitude for el-
liptic orbits. Since the altitude affects the size of the ground
pixels and the width of the swath, field of view and along-
track sampling time were set to match exactly the prescribed

pixel size at subsatellite point as well as the prescribed swath
width. As a result, the number of across-track pixels for the
simulated Sentinel-5 did not match exactly the number of
pixels for the real Sentinel-5 instrument.

Tables 2 and 3 summarize the orbits and viewing geome-
tries of the two satellites. The CO2M satellite is assumed to
have a 250 km wide swath and an 11 d repeat cycle. Within
the 11 d cycle, the instrument provides nearly global spatial
coverage (Fig. 2). For locations in the SMARTCARB model
domain, either one or two overpasses occur during the 11 d
repeat cycle depending on the Equator starting longitude of
the satellite. The wider swath of Sentinel-5 results in near-
daily global coverage (not shown).

XCO2, CO and NO2 column densities were sampled along
the satellite swath for 1 year using the tracers from the
COSMO-GHG simulations. For CO2M, XCO2, CO and NO2
columns were mapped onto the 2 km× 2 km size pixels along
the 250 km wide swath.

For Sentinel-5, CO and NO2 columns were sampled with
up to 7.5 km× 7.5 km resolution along the 2670 km wide
swath of the Sentinel-5 instrument. Due to the wide swath,
the pixel sizes grow towards the edge of the swath. In this
study, only the spatial overlap between Sentinel-5 and CO2M
were of interest because Sentinel-5 was used for detecting the
CO2 emission plumes inside the swath of CO2M.

2.1.3 Instrument error characteristics

The error characteristics of the CO2, NO2 and CO instru-
ments were specified in collaboration with ESA based on
previous studies for CarbonSat (Buchwitz et al., 2013) and
on performance requirements for Sentinel-5 (Ingmann et al.,
2012). For the instruments on the CO2M satellites, two or
three scenarios were included in order to cover a realistic
range between more or less demanding instruments. Table 4
summarizes the single sounding precision of the different in-
struments.

For XCO2, three different uncertainty scenarios were con-
sidered which relate back to the performance estimates de-
rived for the CarbonSat mission concept. CarbonSat was a
CO2 imaging spectrometer proposed for ESA’s eighth Earth
Explorer mission, with specifications similar to those of
the CO2M mission. A detailed error budget for CarbonSat
was presented in the CarbonSat report for mission selec-
tion (ESA, 2015). In the LOGOFLUX study, error parame-
terization formulas (EPFs) for random and systematic errors
were developed, which account for errors introduced by solar
zenith angle (SZA), surface reflectance in the near-infrared
(NIR) and shortwave infrared (SWIR 1), cirrus clouds and
aerosol optical depth (Buchwitz et al., 2013).

Here, the same EPFs were adopted but only applied to
compute random errors. These were calculated based on SZA
and surface reflectance in the NIR and SWIR-1 band. Surface
reflectances were taken from the MODIS MCD43A3 product
(version 006) at 1 km spatial resolution (Schaaf and Wang,
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Table 2. Satellite platforms and their orbit parameters used in this study. Note that some parameters slightly deviate from the real satellites
(see text for details).

Parameter CO2M satellite MetOp-SG-A

Orbit type Sun-synchronous Sun-synchronous
Inclination 97.77◦ 98.7◦

Orbits per day 14+ 10/11 14+ 6/29
Cycle duration 11 d 29 d
Cycle length 164 orbits 412 orbits
Altitude 602.24 km 830.16 km
Orbit period 96.58 min 101.36 min
Local time in descending node 11:30 h 09:30 h
(Equator crossing time)

Table 3. Observation geometries for instruments on the CO2M satellite and Sentinel-5 used in this study. Note that some parameters can
differ from the real satellites (see text for details).

Parameter CO2M satellite Sentinel-5

Number of across-track pixels 125 208
Swath 250 km 2670 km
Field of view 23.22◦ 107.1◦

Pixel size 2 km× 2 km from 7.5 km× 7.5 km (nadir) to 35 km× 7.5 km (swath edge)
Along-track sampling time 0.286 s 1.13 s

2015). A detailed consideration of cirrus clouds and aerosols
and their impact on systematic errors was outside the scope
of the study as it would have required the collection and pro-
cessing of a large amount of additional data. The possible
impact of not considering systematic errors will briefly be
discussed in Sect. 4.

The random error calculated with the EPFs for the
so-called vegetation-50 scenario (VEG50, i.e., vegetation
albedo and SZA of 50◦) is about 1.5 ppm. In the model do-
main, mean random errors are slightly smaller at 1.3 ppm. To
obtain random errors for the three instrument scenarios with
σVEG50 of 0.5, 0.7 and 1.0 ppm, the computed errors were
divided by 3.0, 2.14 and 1.5, respectively.

For NO2 VCDs, the overall uncertainties are due to
(a) measurement noise and spectral fitting affecting the slant
column densities; (b) uncertainties related to the separation
of the stratospheric and tropospheric column; and (c) uncer-
tainties in the auxiliary parameters used for air mass fac-
tor (AMF) calculations such as clouds, surface reflectance,
a priori profile shapes and aerosols (Boersma et al., 2004).
The total uncertainties are dominated by uncertainties from
spectral fitting for background pixels and by uncertainties in
AMF calculations for polluted pixels, respectively. Typical
spectral fitting uncertainties of previous instruments such as
the Ozone Monitoring Instrument (OMI) were of the order
of 1–2× 1015 molecules cm−2 and AMF uncertainties of the
order of 15 %–20 %. These ranges were used to define two
different scenarios for a possible CO2M NO2 instrument (Ta-
ble 4). For the Sentinel-5 UVNS instrument, we assumed

a relative uncertainty of 20 % and a minimum uncertainty
of 1.3× 1015 molecules cm−2. In the presence of clouds, the
reference noise was increased using the empirical formula
developed by Wenig et al. (2008). For a cloud fraction of
30 %, random noise is approximately doubled.

For CO VCDs, the total uncertainty depends on the (a)
fitting noise; (b) a priori CO and CH4 profiles; and (c) sur-
face reflectance, aerosols and clouds. We assumed a single
sounding precision of 4.0× 1017 molecules cm−2 and a rela-
tive precision of 10 % and 20 % for both Sentinel-5 and the
CO2M mission.

2.1.4 Cloud filtering

Satellite observations require filtering for clouds, which sig-
nificantly reduces the number of observations available for
plume detection. For the CO2 product, we removed all CO2
pixels with cloud fractions larger than 1 % because the CO2
requires rigorous cloud filtering (Taylor et al., 2016). The
NO2 retrieval can tolerate larger errors and is therefore less
sensitive to clouds. For the NO2 product, we used a cloud
threshold of 30 % as often applied in satellite NO2 studies
(e.g., Boersma et al., 2011). For CO, a cloud threshold of 5 %
was used, which is motivated by the cloud threshold used for
the MOPITT CO product (Deeter et al., 2017; MOPITT Al-
gorithm Development Team, 2017).
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Figure 2. Spatial coverage of one CO2M satellite within its 11 d repeat cycle (a) globally and (b) over Europe. The white square marks the
COSMO-GHG model domain in which the number of overpasses is either one or two. The exact locations of the stripes are arbitrary and
depend on the Equator starting longitude (here: 0◦ E) of the satellite.

Table 4. Instrument uncertainty scenarios. VEG50 refers to a reference scene with a surface albedo of a vegetated surface and a solar zenith
angle (SZA) of 50◦.

Scenario name Species Satellite(s) Reference noise (σVEG50/σref)

absolute∗ relative∗

CO2 low noise CO2 CO2M 0.5 ppm –
CO2 medium noise CO2 CO2M 0.7 ppm –
CO2 high noise CO2 CO2M 1.0 ppm –
NO2 low noise NO2 CO2M 1.0× 1015 molec. cm−2 15 %
NO2 high noise NO2 CO2M 2.0× 1015 molec. cm−2 20 %
NO2 Sentinel-5 NO2 Sentinel-5 1.3× 1015 molec. cm−2 20 %
CO low noise CO Sentinel-5 and CO2M 4.0× 1017 molec. cm−2 10 %
CO high noise CO Sentinel-5 and CO2M 4.0× 1017 molec. cm−2 20 %

∗ Whichever is larger.

Previous studies used the MODIS cloud mask product
available at 1 km resolution (Ackerman et al., 2017) for
masking cloudy CO2 observations (Buchwitz et al., 2013;
Pillai et al., 2016). Since CO and NO2 observations can toler-
ate larger cloud fractions, a cloud fraction product would be
needed for masking pixels with different thresholds, but the
MODIS cloud product is only available at 5 km resolution
(Platnick et al., 2017). Therefore, we used total cloud frac-
tions computed by COSMO-GHG, i.e., the same model as
used for the tracer transport simulations, that are available at
model resolution. COSMO-GHG computes total cloud frac-
tion from layer cloud fractions assuming minimum overlap.
The differences between cloud masks derived from COSMO-
GHG and MODIS products and their effects on data yield are
discussed in Sect. 4.1.

2.2 Plume detection algorithm

2.2.1 Algorithm

We developed a new but simple plume detection algorithm
that uses a statistical test to detect signal enhancements
which are significant with respect to instrument noise and
variability in background levels. The plume is then identified

as a coherent structure of significant pixels. The algorithm
involves three processing steps as laid out in Fig. 3.

The first step of the plume detection algorithm finds satel-
lite pixels with CO2, CO or NO2 values significantly larger
than the background field using a statistical Z test, for which
the distribution of the test statistics can be approximated by
a normal distribution (e.g., v. Storch and Zwiers, 2003). The
Z test computes a z value given by

z=
x−µ

σ
, (1)

where x is an observation from a population with mean value
µ and standard deviation σ . The value x is considered signif-
icantly larger than µ when the z value is greater that or equal
to a critical value. The critical value is calculated from the
inverse cumulative distribution function of the normal dis-
tribution for a probability q. The probability that x is not
significantly larger than µ is the p value (p = 1− q).

A key feature of the algorithm is that the trace gas ob-
servation of a single pixel is replaced by a spatial average
of pixels in a defined neighborhood. This allows identifying
weak plumes with signals of individual pixels well below in-
strument noise but also bares the risk of diluting the signal at
the plume edges. Figure 4 shows examples of neighborhoods
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Figure 3. Schematic of the processing steps of the plume detection algorithm. (a) A large (blue) and a small plume (red) with sources marked
by arrows are located within the satellite overpass. (b) Pixels detected based on the Z test are marked with “D”. (c) Connected pixels are
given a unique number each denoting a different plume. (d) All plumes not connected with the source of interest (blue circle) are rejected.

Figure 4. Examples of neighborhoods with different sizes (ns) used
for calculating the local mean.

with different sizes ns that have been used for testing the al-
gorithm. A large neighborhood results in a stronger smooth-
ing and may therefore produce a larger number of false pos-
itives, i.e., pixels outside of the plume that are wrongly as-
signed to the plume. An ideal neighborhood size balances
the need for sensitive plume detection with the requirement
of a low fraction of false positives.

Whether a signal enhancement is detectable is primarily
determined by the z value (Eq. 1), which can also be in-
terpreted as the signal-to-noise ratio (SNR) at a spatially
smoothed satellite pixel. Thereby, the signal is the enhance-
ment above background due to the plume, and the noise
is composed of both instrument noise and spatial variabil-
ity in the background. Since the background, i.e., the trace
gas field in the absence of the plume, cannot be directly ob-

served, it needs to be estimated either from the observable
trace gas field surrounding the plume or from a climatology
or a model. Instrument noise and background variability can
have both random and systematic components. The random
component would reduce with the inverse square root of the
number of valid pixels n in the neighborhood, whereas the
systematic error would be approximately independent of n.
The number of valid pixels n can be smaller than the size
of the neighborhood ns when pixels are missing, e.g., due to
clouds or at the boundary of the satellite swath. Therefore,
the z value or the SNR can be calculated as follows:

SNR=
Xobs−Xbg√
σ 2

rand
n
+ σ 2

sys

, (2)

where Xobs represents the spatially averaged satellite obser-
vations, Xbg is the estimated background value, and σrand
and σsys are the random and systematic errors, respectively.
Equation (2) can be calculated for each satellite pixel and
compared with the critical value to determine which Xobs’s
are significantly larger than Xbg.

To compute the SNRs from the satellite image, we com-
puted observed values Xobs as the local means of a neigh-
borhood of size ns (Fig. 4). For sake of simplicity, the back-
groundXbg in this study was estimated from the X_BER_BG
and X_PP_BG model tracers for a 200 km× 200 km square
centered on the city of Berlin and a 100 km× 100 km square
centered on each power plants. The implications of this as-
sumption are discussed in Sect. 4.

For random and systematic errors we assumed that the
instrument uncertainty is purely random and that the back-
ground variability is purely systematic. For the instrument
uncertainty, random errors as listed in Table 4 were used,
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which reduce with the number of valid pixels in the local
neighborhood n due to the inverse scaling by the number of
pixels. The background uncertainty σ 2

bg was computed from
the spatial variance of the background model tracer in a fixed
domain surrounding the source as described above. Since it
is assumed to be systematic, it does not decrease with the size
of the neighborhood.

The result of the Z test is a binary image with “true” val-
ues where pixels are significantly enhanced above the back-
ground and “false” values where they are not (Fig. 3b). Since
the local mean can still be computed for missing center pix-
els – using neighboring pixels – missing pixels can also be
detected as enhanced above the background.

In the second step, pixels that are enhanced (true) and
connected are assumed to belong to the same plume. We
label regions of connected pixels using a standard labeling
algorithm. Neighboring pixels are identified using a Moore
neighborhood, where each pixel has eight potential neigh-
bors. Each region is assigned a unique integer value (Fig. 3c).

Finally, in the third step, all connected regions that do not
intersect with the source region are removed, leaving only re-
gions that overlap with the source of the plume (Fig. 3d). For
cities, the source region is defined by a circle with a radius
of 15 km and for point sources by a circle with a radius of
5 km. The last step may remove regions that are part of the
real plume but separated from the source by weak signals or
missing values (e.g., the region labeled “2” in Fig. 3c).

2.2.2 Performance evaluation

The plume detection algorithm was applied to the CO2
plumes of Berlin and Jänschwalde. The detectability of CO2
plumes was evaluated for the different instrument scenarios
by comparing the detected plume with the “true plume” de-
fined by the field of the CO2 tracer released by the respective
source (CO2_BER in the case of Berlin, CO2_PP for Jän-
schwalde) above a low threshold. For Jänschwalde, the per-
formance had to be additionally evaluated by visual inspec-
tion due to frequent overlaps with the plumes of other power
plants also contained in the CO2_PP tracer.

To evaluate the performance of Sentinel-5 with respect
to detecting plumes as observed by CO2M, detected pixels
had to be projected onto the pixels of the CO2M instrument.
Sentinel-5 pixels were thus only used over the swath of the
CO2M satellite rather than over the whole swath of Sentinel-
5.

When using NO2 or CO for plume detection, the perfor-
mance was assessed by comparing the detected pixels with
the true CO2 plume rather than the true plume of the auxil-
iary gas. In this way, the degree of congruence between the
CO2 and auxiliary trace gas plumes was considered as well.

For the evaluation, we computed true positives (TPs), false
positives (FPs) and the positive predictive value (PPV=
TP/(TP+FP)) (Ting, 2010). A good algorithm should have a
much smaller number of FPs than TPs and, therefore, a PPV

close to 1. To remove the impact of different cloud thresh-
olds, TPs, FPs and PPVs were only computed for cloud-free
pixels using a cloud threshold of 1 % because we are primar-
ily interested in valid CO2 observations that can be used for
estimating CO2 emissions.

3 Results

3.1 Coverage and potential for plume detection

In this section, the potential for plume detection is analyzed
based on the simulated tracers emitted by the source of inter-
est. These true plumes will be used in the following sections
as reference to evaluate the performance of the plume de-
tection algorithm. They can be interpreted as the maximum
number of plumes detectable by a perfect, noise-free instru-
ment.

The frequency with which the CO2 plumes of a given
source can be observed depends on how often a satellite
passes over the source, how often the CO2 signal is larger
than the threshold and how often cloud-free conditions dom-
inate during the overpass. We define an overpass as an inter-
section between the satellite swath and the source region as
specified above. The number of overpasses scales with the
number of satellites and the swath width of the instrument.
The scaling with the number of satellites is not trivial, how-
ever, since individual satellites may pass over the source ei-
ther once or twice during the 11 d repeat cycle depending on
the satellite’s Equator starting longitude (see Fig. 2).

The total number of overpasses per satellite is either 34 or
66 per year, depending on whether the satellite has one or
two overpasses per 11 d repeat cycle. Since one out of four
satellites has only one overpass per 11 d, the number of over-
passes per year roughly scales with a factor 1.75 times the
number of satellites times the number of 11 d periods per
year (about 33). A constellation of six satellites covers the
model domain nearly daily.

To define the extent of a plume in the satellite image, we
have to set a signal threshold for the tracer field (XCO2_BER
for Berlin) above which a pixel is considered as belonging
to the plume. A possible threshold is the value at which the
signal would become larger than the variability of the back-
ground, i.e., where the signal is larger than the standard devi-
ation of the background. Based on the time series of standard
deviations of the model background tracer (XCO2_BER_BG
for CO2) computed for a 200 km× 200 km square centered
on the city of Berlin (Fig. 7c, f and i), we defined a thresh-
old of 0.05 ppm for XCO2, 0.2× 1015 molec. cm−2 for NO2
and 0.06× 1017 molec. cm−2 for CO approximately corre-
sponding to the minimum of the standard deviations. Note
that these thresholds are significantly smaller than the noise
level of the instruments.

A plume was defined as the collection of pixels for which
the signal is larger than the threshold. However, we also re-

www.atmos-meas-tech.net/12/6695/2019/ Atmos. Meas. Tech., 12, 6695–6719, 2019



6704 G. Kuhlmann et al.: Detectability of CO2 emission plumes of cities and power plants with CO2M mission

Figure 5. Examples of true XCO2 plumes of Berlin (XCO2 signal > 0.05 ppm) with different cloud cover fractions (cc). The numbers of
XCO2 pixels are shown for cloud fractions ≤ 1 %. (a–d) Plumes with increasing cloud fraction; (e) plume close to the edge of the swath;
(f) plume without cloud-free CO2 observations connected to Berlin.

quired that Berlin is inside the swath of the instrument to be
able to unambiguously assign a plume to the city. Further-
more, we removed parts of plumes that reentered the swath
after leaving it because it is often not possible to correctly
assign these parts to their source.

Since a satellite image can be obscured by clouds, we need
to define how many pixels are needed to make up a useful
plume. This number depends on the application. For exam-

ple, to estimate emissions of cities, we require that the plume
must extend beyond the city limits to contain emissions from
the whole city area. The crosswind diameter of Berlin’s CO2
plume is typically about 20 km or 10 satellite pixels, which
is roughly the diameter of the part of the city with the high-
est emissions. To cover at least the whole city area, we only
consider CO2 plumes with at least 100 cloud-free CO2 pix-
els to be useful. For the power plants, the crosswind diame-
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ter is less than 5 pixels near the source. Therefore, 10 pixels
were used to define the minimum number for a useful plume
in this case. It should be noted that this number of pixels is
not necessarily sufficient for estimating the emissions of a
source with certain accuracy, which depends, among others,
on instrument precision, meteorology and source strength.
Nonetheless, detecting the full crosswind diameter is the
minimum requirement, for example, for flux-based inversion
methods (e.g., Krings et al., 2013; Reuter et al., 2019). The
number of detected pixels is a useful measure for comparing
the detectability of CO2 plumes with CO2, CO and NO2 ob-
servations because source strength and meteorology are the
same for a given source.

For a signal threshold of 0.05 ppm, Berlin’s CO2 plume
always has more than 100 pixels above the signal thresh-
old. However, many plumes are partly or fully covered by
clouds significantly reducing the number of useful plumes.
Figure 5a–d present examples of CO2 plumes under different
cloud conditions with an increasing fraction of cloudy pixels.
Figure 5c and d show examples with plumes of only 11 and
20 pixels, which is much smaller than the area of the city. On
the other hand, the 100-pixel threshold does not necessarily
remove swaths with plumes in broken clouds (e.g., Fig. 5b),
for which it will also be challenging to estimate emissions,
because adjacent cloudy pixels increase the XCO2 uncer-
tainty (Taylor et al., 2016). The number of plumes with at
least 100 pixels is also reduced when the source is close to
the edge of the swath and winds are pushing the plume out
of the view of the satellite (e.g., Fig. 5e). These overpasses
occur every 11 d due to the repeat cycle of the satellite. As
a result, orbits with plumes near the edge of the swath can
have up to 20 % less useful plumes.

Figure 6 presents the number of useful city plumes (> 100
pixels) per month for CO2, NO2 and CO for constellations of
one to six satellites. Plumes without cloud-free observations
over the source region (e.g., Fig. 5f) were removed because
they cannot be detected by the algorithm used in this study.
A constellation of six satellites observes only 50± 5 CO2
plumes within 1 year despite almost daily overpasses due
to the small number of days with low cloud fractions. Ex-
cept for February, which was an unusually sunny month in
2015, there is a clear tendency of higher cloud fractions and
correspondingly fewer plume observations in winter than in
summer. The standard deviations shown in the figures as ver-
tical black bars were estimated from the scatter of observable
plumes using satellites with different Equator starting longi-
tudes. The presence of clouds thus reduces the opportunity
for plume detection by a factor as a large as 5 to 6 over the
city of Berlin. The number of observable NO2 plumes per
year (108± 8) is about twice as large as for CO2, which is
primarily due to the larger cloud threshold of 30 %. For CO
the number of observable plumes per year is 58± 5. The av-
erage number of plumes per satellite and year is thus about 8
(range: 3–13), 9 (4–15) and 17 (7–23) for CO2, CO and NO2,
respectively.

Table 5. The 5th, 50th and 95th percentile of CO2, NO2 and CO
signals of Berlin as well as Jänschwalde and Lippendorf power sta-
tions.

Species 5th 50th 95th

Berlin

CO2 (ppm) 0.16 0.33 1.03
NO2 (1016 molec. cm−2) 0.30 0.63 1.56
CO (1017 molec. cm−2) 0.12 0.27 0.96

Jänschwalde power station

CO2 (ppm) 1.28 2.69 6.64
NO2 (1016 molec. cm−2) 2.09 4.30 10.0
CO (1017 molec. cm−2) 0.55 1.14 2.88

Lippendorf power station

CO2 (ppm) 0.53 1.29 3.73
NO2 (1016 molec. cm−2) 0.85 2.03 5.37
CO (1017 molec. cm−2) 0.03 0.08 0.22

The number of observable plumes varies strongly between
the individual satellites of a constellation because the num-
ber of cloud-free days per year is quite small and the over-
pass days are different for different Equator starting longi-
tudes. Since satellites are equally spaced in orbit, changing
the number of satellites changes the starting longitudes and
overpass days of the satellites. As a consequence, the num-
ber of observable plumes per constellation can also fluctuate
strongly. According to Fig. 6, for example, a constellation
of two satellites seems almost equivalent to a constellation
of three, but this result is merely a consequence of the fact
that cloud cover was often large during these overpasses and
Berlin was at the edge of the swath for the satellite with a
starting longitude of 8◦. The result would be different for an-
other starting longitude of the first satellite, another city, or
another year.

3.2 Signal-to-noise ratios

The key measure that determines the detectability of a CO2
plume is the SNR (Eq. 2), which compares the amplitude of
the plume signal to the instrument noise and the variability
of the background. SNRs provide a first indication of an in-
strument’s suitability for detecting a plume.

Time series of the CO2, NO2 and CO plume signals were
computed from the X_BER and X_PP tracers for Berlin
and the power stations Jänschwalde and Lippendorf at the
overpass time of CO2M, i.e., about 11:00 UTC. The sig-
nals were computed as maximum values of the local means
within the source region, i.e., a circle with 15 or 5 km radius.
Thereby, the local means were computed with a neighbor-
hood ns of size 37 for Berlin and 5 for the power stations
(Fig. 4). A large neighborhood reduces the random noise
of the measurements and therefore allows detecting smaller
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Figure 6. Number of cloud-free plumes of the city of Berlin with at least 100 pixels per month for (a) CO2, (b) NO2 and (c) CO. The cloud
threshold is 1 % for CO2, 30 % for NO2 and 5 % for CO observations. Error bars are obtained by comparing all available satellites. The
number of expected plumes per satellite is 8, 17 and 9 for the CO2, NO2 and CO instrument, respectively.

Table 6. Median signal-to-noise ratios for signals of Berlin, Jän-
schwalde and Lippendorf using different uncertainty scenarios. The
signals were computed as largest local mean values using a local
neighborhood size ns of 37 and 5 for cities and power stations, re-
spectively.

Scenario name
Signal-to-noise ratio

Berlin Jänschwalde Lippendorf

CO2 low noise 1.4 10.4 4.3
CO2 medium noise 1.4 8.0 3.5
CO2 high noise 1.2 5.8 2.6
NO2 low noise 9.0 14.3 8.8
NO2 high noise 8.4 10.8 7.5
CO low/high noise 0.4 0.6 0.0

signals. On the other hand, a large neighborhood will in-
clude background values in the computation of the averages
at the plume edges and reduce the signal. The sizes used
here roughly correspond to the typical diameters of the CO2
plumes from Berlin (about 15 km) and the power stations
(about 6 km), respectively, and were also found most suitable
for the plume detection algorithm because they maximize
TPs without reducing PPVs too much (see also Kuhlmann
et al., 2019). The results for Berlin are presented in Fig. 7 for
the three trace gases. The figure compares the daily plume
signals (left panels) to the daily mean background values
(middle) and their spatial variability (right). The 5th, 50th
and 95th percentiles of the time series are summarized in Ta-
ble 5 for Berlin as well as for the power stations. The sig-
nals have a large range due to the variability of emissions
(e.g., lower during weekends) and meteorology. The CO2 and
NO2 signals of the power stations are between 5 and 10 times
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Figure 7. Time series of CO2, NO2 and CO plume signals (a, d, g); mean backgrounds (b, e, h); and standard deviations of backgrounds (c,
f, i) for Berlin. Signals are the largest local mean values of the X_BER model tracer using a 37-pixel neighborhood. Background means and
standard deviations were obtained from the X_BER_BG tracer for a 200 km× 200 km square centered over Berlin. Reference uncertainties
(σVEG50/ref) corresponding to the different instrument scenarios are shown as horizontal lines for comparison.

larger than those of Berlin. The CO signal of Lippendorf, on
the other hand, is smaller than the signal of Berlin. The power
plants produce strong local enhancements easily detectable
by the CO2 satellite, but the corresponding plumes are much
narrower than those of Berlin.

Figure 7b and c present the spatial means and standard
deviations of the background around Berlin. Background
XCO2 has a strong annual cycle with an amplitude of about
16 ppm. Since the XCO2 plume signal of Berlin is typically
only about 0.2 to 1.0 ppm, it is critical to accurately estimate
the background XCO2 value in Eq. (2). The spatial variability
σbg of the background, on the other hand, is typically only of
the order of a few tenths of a part per million. Despite higher
XCO2 in winter than in summer, the variability is somewhat
larger in summer due to stronger biospheric activity in com-
bination with lower average wind speeds, especially in July
and August. Large peaks in the background variability are of-
ten caused by plumes from other anthropogenic sources such
as the power stations in the southeast of Berlin (Fig. 1).

For NO2, the annual cycle of the background is relatively
constant for our idealized NO2 tracer with a constant life-
time of 4 h (Fig. 7e and f). In reality, the lifetime will likely

be longer and the variability correspondingly higher in win-
ter. The NO2 signal of Berlin is significantly larger than the
background and its variability. Similar to CO2, the CO time
series has a strong annual cycle with an amplitude of about
5× 1017 molec. cm−2 (Fig. 7h and i) requiring again an ac-
curate estimation of the background. The standard deviation
of the background is about half of the CO signal.

Table 6 summarizes the median of all SNRs of Berlin
and the two power stations for the different satellite instru-
ment scenarios that have been computed from the time series
of highest signals. To understand the numbers, it should be
noted that a plume pixel would be detectable when the SNR
is larger than 2.3; i.e., z(q)= 2.3 for q = 99 %. For Berlin,
the CO2 SNRs are below this detection limit for all noise lev-
els while NO2 SNRs are above the limit. For the two power
stations, SNRs are above the detection limit both for the CO2
and NO2 instrument scenarios, but SNRs for the NO2 instru-
ment scenarios are always larger.

Based on the SNRs, the NO2 plumes should be well de-
tectable. For Berlin, the detection of the CO2 plume with the
CO2 instrument will often be challenging due to low SNRs.
The CO SNRs are always much smaller than those for CO2,
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Figure 8. Example of plume detection with CO2M’s CO2 and NO2 instrument and Sentinel-5’s NO2 instrument on 21 April 2015. Significant
pixels detected by the algorithm are highlighted as black crosses. The outlines of the true CO2 and NO2 plumes based on the XBER tracers
are overlaid as solid and dashed lines, respectively. (a) Low-noise CO2 instrument. (b) High-noise CO2 instrument. (c) High-noise NO2
instrument on the CO2M satellite. (d) NO2 instrument on Sentinel-5.

making a CO instrument with the given specifications less
suitable for the purpose of plume detection. In the following,
we therefore only investigate the potential benefit of auxil-
iary NO2 observations.

3.3 Plume detection algorithm

The plume detection algorithm was applied to the CO2
plumes of Berlin and Jänschwalde for different instrument
scenarios. The probability q was set to 99 % and neighbor-
hood sizes of 37 and 5 were selected for Berlin and the
power stations, respectively. In the case of Sentinel-5, the
corresponding neighborhood sizes were set to 5 and 1 due
the larger pixels of this satellite. Based on an analysis of
the positive predictive values, these neighborhood sizes were
found most suitable for detecting the city and power plant
plumes (Kuhlmann et al., 2019). For Berlin, 20 synthetic
satellite images were created for each single overpass with
different patterns of random noise. The plume detection al-
gorithm was subsequently applied to each image, and the re-
sults were averaged to obtain more robust results independent
of the selected noise pattern. For Jänschwalde, only one syn-
thetic satellite image was created for each overpass because
no model tracer was available to compare the results with a
true plume.

3.3.1 Examples of detected plumes from Berlin

Figure 8 shows the CO2 and NO2 plumes of Berlin on
21 April 2015 observed by CO2M and Sentinel-5 for differ-
ent instrument scenarios. The outlines of the real plumes are
overlaid as solid and dashed lines for CO2 and NO2, respec-
tively. Since the CO2 instruments have a lower cloud thresh-
old, a band of cirrus clouds is obscuring the plume in the
CO2 observations but not in NO2. Successfully detected pix-
els are shown as black crosses, and the number of detected
pixels (median of all 20 noise realizations) are presented in
the legend. On average, a CO2 instrument detects 116± 46,
48±40 and 24±30 pixels with noise scenarios σVEG50 of 0.5,
0.7 and 1.0 ppm, respectively (Fig. 8a and b). The number of
true positives is slightly smaller, having on average 2 false-
positive pixels. Consequently, the PPV is high, ranging be-
tween 0.85 and 0.99 for high- and low-noise, respectively.

For the NO2 measurement the band of thin cirrus clouds is
not an issue. The NO2 instrument can therefore detect a much
larger number of pixels, i.e., 1242±99 and 1203±155 in the
case of the low-noise and the high-noise scenarios, respec-
tively (Fig. 8c). On average, the fraction of FPs is relatively
large, and the PPV is only 0.80±0.05 and 0.77±0.10 for the
low- and high-noise scenarios, respectively. The small PPV is
caused by interference with the plume of Jänschwalde, which
is just south of the plume of Berlin. For cases where no neigh-
boring plumes have been detected falsely with the NO2 in-
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Figure 9. (a) Example of 27 February 2015 where plume detection with a CO2 instrument fails because of pronounced horizontal gradients
in the CO2 background field. (c) Example of 2 July 2015 where the plume detection fails due to small CO2 signals as a result of high wind
speeds. In both cases, the plume can readily be detected with a high-noise NO2 instrument (panels b and d).

strument, the spatial match between CO2 and NO2 plumes
is generally high, suggesting a high degree of spatial overlap
between the CO2 and NO2 plumes.

The Sentinel-5 NO2 instrument is also able to detect the
CO2 plume with 879± 114 CO2M pixels, but since it is
measured 2 h earlier, the NO2 plume seen by Sentinel-5
(dashed line in Fig. 8d) is slightly shifted with respect to the
CO2 plume (solid line). As a consequence, the PPVs is low
(0.60± 0.04).

Figure 9 presents two examples where the CO2 instrument
fails to detect the CO2 plume. In Fig. 9a, the CO2 field has
a pronounced spatial gradient resulting in a high variance of
the background. This gradient is not present in the much-
shorter-lived trace gas NO2, making it possible to detect the
plume using an NO2 instrument (Fig. 9b). Similar situations
occur in roughly 20 % of cloud-free swaths. Figure 9c and d
show a second example where the CO2 instrument cannot de-
tect the plume because the signal is very weak due to strong
winds. Owing to its better SNR, the NO2 instrument is able
to detect the plume also in this situation.

Figure 10 presents two examples comparing the NO2
plume observed by Sentinel-5 to the CO2 plume observed 2 h
later by the CO2M satellite. In the first example (panels a and
b), Sentinel-5 fails to detect any plume due to clouds, which
have largely disappeared by the time of the CO2M overpass.
In the second example, both Sentinel-5 and the CO2M satel-
lite detect a plume of similar size, but the Sentinel-5 plume is

significantly displaced due to changes in the prevailing winds
between the two overpasses.

3.3.2 Number and sizes of detected Berlin plumes

To count the number of plumes detectable under the differ-
ent instrument scenarios, we analyze the 50 plumes observed
by a constellation of six satellites, which we had classified
in Sect. 3.1 as being potentially useful based on the idealized
tracerXBER having more than 100 pixels above a threshold of
0.05 ppm. Table 7 summarizes the results in terms of number
and size of the detected plumes. A plume was only counted
as detected when at least 100 CO2 pixels were correctly de-
tected (true positives) and when at least 80 % of the detected
pixels were true positives (PPV≥ 0.80). The PPV threshold
was found useful for removing plumes interfering with others
or plumes shifted due to the earlier overpass time of Sentinel-
5.

Table 7 shows that the CO2 instruments detect signifi-
cantly fewer plumes than the NO2 instruments. Depending
on the instrument noise scenario, the CO2 instruments de-
tect plumes with more than 100 pixels with a success rate
of only 12 % to 32 %, while for the NO2 instruments the suc-
cess rates are 68 % to 70 %. Surprisingly, the NO2 instrument
with low noise performs slightly worse than the high-noise
instrument. This is an artifact of the algorithm often detect-
ing small plumes not related to emissions from Berlin in the
case of a low-noise instrument. The Sentinel-5 NO2 instru-
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Figure 10. Examples of comparing plume detection between the (a, c) CO2M’s and (b, d) Sentinel-5’s NO2 instruments. (a, b) Due to a
time lag of 2 h, the scene is cloudy during the Sentinel-5 overpass but not during the CO2M overpass (3 December 2015). (c, d) The plume
position clearly changed between the two overpasses (17 June 2015).

ment detects 20 % of the plumes, thus only half the success
rate of the NO2 instrument on the CO2M satellite. The main
reason for this low success rate is the spatial mismatch of the
plumes due to the 2 h difference in overpass times.

Figure 11 shows the number of plumes per month with
at least 100 detected pixels for different constellations be-
tween one and six satellites for the CO2 low-noise and the
NO2 high-noise scenario. The number of plume detections
per month is small and therefore highly sensitive to the spe-
cific orbit configuration. For example, two satellites seem to
detect more plumes than three, but this result is caused by an
unfavorable orbit for observing Berlin for the constellation
with three satellites and unfavorable cloud cover as already
discussed earlier. The standard deviation was estimated from
the number of detectable plumes using satellites with differ-
ent starting longitudes (i.e., east–west displacements of all
orbits). The figure shows that the number of observed plumes
generally increases with the number of satellites as expected,
but statistical noise can mask the increase from one constella-
tion to the next. The figure confirms the much lower success
rates of the CO2 instruments as compared to the NO2 instru-
ments as expected from the computed signal-to-noise ratios.

3.3.3 Detection of plumes from power stations

There are six major power plants in the model domain: Jän-
schwalde, Boxberg, Schwarze Pumpe, Lippendorf, Turów
and Pątnów. Because no model tracer was defined for in-

dividual power plants but instead only for the sum of all
of them, the true plume of an individual power plant is not
known. Therefore, we applied a visual inspection to identify
those plume detections which erroneously included neigh-
boring plumes. Furthermore, we limit the analysis to Jän-
schwalde.

As an example, Fig. 12 shows the successful detection of
the CO2 plume of Jänschwalde on 2 November 2015 by dif-
ferent instruments. Since CO2 emissions of Jänschwalde are
high with 33.3 Mt CO2 yr−1, the XCO2 signal is very strong
and can be detected well even with a high-noise instrument
(σVEG50 = 1.0 ppm). With low noise (σVEG50 = 0.5 ppm) the
weaker plumes of Schwarze Pumpe and Boxberg are visi-
ble as well. The NO2 instrument detects the four plumes
in the region well. On this day also the Sentinel-5 NO2 in-
strument successfully detects the plume of Jänschwalde and
other point sources. Figure 13 presents a second, more chal-
lenging example for 17 February 2015. The CO2 instrument
successfully detects the plume with 0.5 ppm uncertainty, but
with 1.0 ppm uncertainty, the number of detected pixels is
likely too small to be useful for emission estimation. The
reason for the low number of detected pixels in this case is
the strong horizontal gradient in the CO2 background. The
NO2 instrument detects the plume, but because the NO2
plume of Jänschwalde overlaps with neighboring plumes,
these plumes are erroneously assigned to Jänschwalde as
well. At the coarser resolution of Sentinel-5 the plumes of the
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Table 7. Number of CO2 plumes from Berlin and the 5th, 50th and 95th percentiles of the number of detected CO2 pixels (TP if PPV≥ 0.8
and cloud fraction < 1 %) for a constellation of six CO2M satellites or one Sentinel-5 satellite. The maximum number of detectable plumes
would be 50, corresponding to all potentially useful plumes with at least 100 CO2 pixels with values of the tracer XBER above a threshold
of 0.05 ppm.

Instrument scenario Plumes with ≥ 100 CO2 pixels Plume size at percentile

number percentage (%) 5th 50th 95th

CO2 low noise 16± 1 32± 3 0 5 323
CO2 medium noise 10± 1 20± 3 0 3 261
CO2 high noise 6± 1 12± 2 0 7 181
NO2 low noise 34± 1 68± 2 52 294 600
NO2 high noise 35± 2 70± 3 50 279 527
NO2 Sentinel-5 10± 2 20± 3 0 140 396

Figure 11. Number of detected plumes with at least 100 pixels (TP≥ 100 and PPV≥ 0.80) for one to six satellites with the (a) CO2 low-noise
and (b) NO2 high-noise scenario. Error bars were estimated from all available satellites with different Equator starting longitudes.

individual power plants can hardly be separated and, more-
over, the time difference of 2 h results in a plume location
that is shifted with respect to the plume seen by the CO2M
satellite.

Table 8 summarizes the results of the plume detection
for Jänschwalde under the different instrument scenarios. It
shows the number of detected plumes with at least 10 pixels
and, in addition, the number of plumes with at least 10 valid
CO2 pixels (cloud cover < 1 %). Note that, in the case of
the much narrower plumes from power plants, fewer pixels
are required to form a useful plume. We classified detections
that include large parts of the background as failed but still
counted detections that include neighboring plumes as suc-
cessful (e.g., Fig. 13c) because they successfully identified

the location of the plume. Since the classification is not al-
ways unambiguous, we assigned an uncertainty of about ±5
plumes at most.

In the year 2015, the number of detectable plumes with
more than 10 pixels for a constellation of six satellites was
between 40 and 45 for a CO2 instrument with σVEG50 of 0.5,
0.7 and 1.0 ppm. At the same time, the NO2 instrument de-
tected about 90 plumes for the low- and high-noise scenario.
When only plumes with more than 10 cloud-free CO2 obser-
vations were considered, the number was reduced to about 70
plumes. For a smaller number of satellites, the number of de-
tectable plumes would be correspondingly smaller. The NO2
instrument detects more plumes because of its lower sensi-
tivity to clouds, which makes it possible to trace the plume
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Table 8. Number of plumes detected for Jänschwalde with six satellites. The number of plumes are provided for plumes with at least 10
detected CO2 or NO2 pixels and in addition with at least 10 CO2 pixels (cloud cover < 1 %). In both cases, plumes were included where
neighboring plumes were detected in addition to Jänschwalde, i.e., detection with a large number of false positives (e.g., Fig. 13c). These
plumes are also shown separately. The classification uncertainty is about ±5 plumes. The neighborhood size was set to ns = 5.

Instrument Number of plumes with

scenario ≥ 10 detected pixels ≥ 10 CO2 pixels large number of false positives

CO2 low noise 44 42 7
CO2 medium noise 42 40 6
CO2 high noise 41 40 4
NO2 low noise 90 68 38
NO2 high noise 91 68 34

Figure 12. Example of plume detection for the Jänschwalde power plant on 2 November 2015 using (a, b) the CO2 instrument with σVEG50
of 0.5 and 1.0 ppm, (c) the NO2 instrument with the high-noise scenario and (d) the NO2 instrument on Sentinel-5.

to the source even for partly cloudy scenes. On the other
hand, the NO2 instrument often detects overlapping plumes
(e.g., Boxberg and Schwarze Pumpe) because the instrument
is much more sensitive to small signals further away from
the origin than the CO2 instrument. The mean plume size
was about 100 pixels for the low-noise CO2 instrument. The
plumes detected with the high-noise CO2 instrument were
about half the size. The NO2 instruments detected a similar
number of CO2 pixels to the low-noise CO2 instrument, but
when all detected pixels are counted the number of pixels
doubles.

4 Discussion

4.1 Comparison with previous studies

In this study we investigated whether and how frequently the
CO2 plume of Berlin and power stations can be detected by
different constellations of satellites using either CO2 obser-
vations alone or in combination with observations of the co-
emitted trace gases CO and NO2. To address the question,
high-resolution CO2, CO and NO2 fields were simulated with
the COSMO-GHG model for the year 2015 and used to gen-
erate synthetic XCO2, CO and NO2 satellite observations for
Sentinel-5 and a constellation of CO2M satellites. Similar
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Figure 13. Example of plume detection for Jänschwalde power plant on 17 February 2015 using (a, b) the CO2 instrument with σVEG50 of
0.5 and 1.0 ppm, (c) the NO2 instrument with the high-noise scenario and (d) the NO2 instrument on Sentinel-5.

OSSEs studies were conducted by Pillai et al. (2016) and
Broquet et al. (2018) for Berlin and Paris, respectively, as
part of the LOGOFLUX study (Bacour et al., 2015). How-
ever, their simulations did not include NO2 and CO fields.
A fundamental difference of our study compared to previous
studies is the realistic, i.e., not as a random noise, account for
transport model errors in the present study, where the loca-
tion of the plume is not taken from the model but detected
in the satellite image using either CO2 or NO2 observations.
For this reason, the focus of this paper is on the detectabil-
ity of the plume, while Pillai et al. (2016) and Broquet et al.
(2018) focused on the inversion, which we will describe in a
follow-up publication.

Pillai et al. (2016) simulated CO2 fields with the WRF-
GHG model with 10 km× 10 km spatial resolution for the
year 2008. The resolution was relatively low compared to the
1.1 km× 1.1 km resolution used in our study. They used CO2
emissions from the EDGAR inventory (version 4.1), which
are more than twice as high as the emissions reported in
the inventory of the city of Berlin as mentioned earlier. A
consequence of the unrealistic high emissions is higher CO2
signals (0.80–1.35 ppm) for Berlin than in our study (0.16–
1.03 ppm; see Table 5). Note that the signal strength also de-

pends on the spatial resolution, but our XCO2 signals were
computed for a local mean (ns = 37, i.e., 148 km2 spatial
resolution) that is comparable to the model resolution used
by Pillai et al. (2016). For Paris, Broquet et al. (2018) con-
ducted simulations with the CHIMERE atmospheric trans-
port model with 2 km spatial resolution. CO2 emissions for
the greater urban area were 40–50 Mt CO2 yr−1, which re-
sulted in a XCO2 signal of ∼ 1 ppm, quite consistent with
the plume signals reported here.

For Berlin, we estimated that 3 to 13 potentially useful
CO2 plumes (defined as plumes with at least 100 cloud-
free pixels above a threshold of 0.05 ppm) would be observ-
able, but not necessarily detectable, during 1 year by a single
CO2M satellite with a 250 km wide swath. Pillai et al. (2016)
identified 41 potentially useful orbits for estimating emis-
sions with a 500 km wide swath. Although a direct compari-
son of these two numbers is difficult because of the different
swath widths and the different definitions of “usefulness”,
we can still conclude that our study identified significantly
fewer plumes than Pillai et al. (2016) even after halving their
number to account for their wider swath.

Clouds have a strong impact on the number of cloud-
free observations. A major difference between Pillai et al.
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(2016) and our study is the different approaches for mask-
ing cloudy observations. Pillai et al. (2016) used the MODIS
cloud mask product (MOD35_L2) while we used cloud
masks derived from cloud fractions simulated with the
COSMO-GHG model. To compare these two approaches,
we computed the number of cloud-free pixels using the
MODIS cloud mask product (MOD35_L2), the MODIS
cloud product (MOD06_L2) and COSMO-GHG simula-
tions. The COSMO-GHG cloud fractions were spatially av-
eraged over the MODIS pixels. The comparison shows that
monthly fractions of cloud-free pixels agree well between
masks computed from COSMO-GHG and MODIS cloud
fractions for both a 1 % and 30 % cloud fraction, while the
cloud-free pixels based on the MODIS cloud mask product
are about twice as high (Fig. S1 in the Supplement). The
larger fraction of cloud-free observations obtained from the
MODIS cloud mask product is also consistent with a vali-
dation study showing that the product is not very sensitive
to optically thin clouds (Ackerman et al., 2008). The differ-
ences likely explain the different number of potentially use-
ful orbits between Pillai et al. (2016) and our study. It also
suggests that Pillai et al. (2016) overestimate the number of
potentially useful orbits while our results are likely more ac-
curate.

Further differences are to be expected because small
plumes with less than 100 pixels were excluded in our case
and because of different meteorology, especially cloud cover
and wind speed, for the different simulation periods. In ad-
dition, Pillai et al. (2016) used higher emissions and did
not consider vertical profiles of emissions, which results in
stronger and correspondingly larger plumes, which are less
likely to be fully covered by clouds (Brunner et al., 2019).

Since the number of useful plumes observable by a satel-
lite critically depends on its orbit (with one or two over-
passes over Berlin per 11 d repeat cycle), the number of use-
ful plumes per satellite may easily be overestimated if only
an optimal orbit is considered. Comparing different Equator
starting longitudes as applied in this study reduces the sensi-
tivity to a specific orbit selection.

4.2 Benefits of CO and NO2 measurements

Out of 50 potentially useful plumes, many plumes were too
weak to be easily seen by the CO2 instrument. Plumes of
Berlin with more than 100 detectable pixels could only be
detected in about 12 % of cloud-free cases with a high-noise
instrument (σVEG50 = 1.0 ppm) and about 32 % with a low-
noise instrument (σVEG50 = 0.5 ppm). The success rate of
32 % for an imperfect but still precise instrument (σVEG50 =

0.5 ppm) would only allow for two to three favorable plume
observations per year and satellite. These numbers illustrate
the challenge and call for a larger constellation or a wider
swath to increase the opportunities for plume detection and
emission quantification, and for a CO2 instrument with as
low noise as possible.

Adding an NO2 instrument greatly enhanced the opportu-
nities for detecting the CO2 plumes (68 %–70 % of cloud-
free cases), since the NO2 plumes largely overlap with the
CO2 plumes and since the signal-to-noise ratio is better for
the NO2 instrument. Furthermore, variability in the back-
ground is less important than for CO2, and the NO2 obser-
vations are less sensitive to clouds. Nevertheless, the number
of detectable plumes with an NO2 instrument remained small
with five to six per satellite and year. A CO instrument with
specifications similar to the CO instrument on Sentinel-5 had
a smaller signal-to-noise ratio than the CO2 instrument. Such
an instrument would add little useful information over a de-
veloped region like Germany where combustion processes
are well controlled and CO : CO2 emission ratios are corre-
spondingly small. The question of whether CO signals would
be sufficiently high in other regions of the globe was outside
the scope of this study.

The Sentinel-5 NO2 instrument is well suited to detect
the NO2 plume of Berlin. However, the different overpass
times of the CO2M satellite (11:30 local time) and Sentinel-
5 (09:30 local time) frequently resulted in a significant spatial
mismatch between the plumes, which reduced the number of
matching plumes to 20 % of the cloud-free cases. This is sim-
ilar to the CO2 instrument with medium noise but 3 to 4 times
lower than in the case of an NO2 instrument placed directly
on the CO2M satellite.

The detection of plumes from strong point sources like the
Jänschwalde power plant was easier than the detection of city
plumes because point sources tend to have stronger and more
confined CO2 plumes for the same amount of emitted CO2.
In addition, the number of pixels required to map out such a
plume was smaller, with only 10 detectable pixels being typ-
ically sufficient for identifying the main part of the plume.
With a constellation of six satellites, about 40–45 plumes
from Jänschwalde (33.3 Mt CO2 yr−1 emissions) with more
than 10 detectable pixels could be observed per year even
with a high-noise CO2 instrument. This corresponds to six
to eight plumes per satellite and year, which is significantly
better than for Berlin with the best instrument. The num-
ber of detectable plumes further increased by about 50 %
with the NO2 instrument (about 70 plumes). Smaller point
sources with emissions of about 10 Mt CO2 yr−1 (e.g., Lip-
pendorf, Schwarze Pumpe and Turow) were sometimes de-
tectable with a low-noise CO2 instrument but could also be
detected with an NO2 instrument.

Our study did not include systematic errors in the satellite
observations from aerosols, clouds and surface reflectance,
which can result in spatial patterns resembling plume struc-
tures and therefore complicate plume detection. We there-
fore might overestimate the number of detectable plumes.
Although systematic errors affect all satellite products, the
effect would be more severe for XCO2 than for NO2 due to
the much smaller signal-to-noise ratios. How much aerosols
enhance measurement uncertainties and correspondingly re-
duce the ability to detect plumes cannot be quantified here
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but will be studied, for example, in a study on the use of
aerosol information for estimating fossil fuel CO2 emissions
(AEROCARB) performed by a consortium led by SRON.

Our study could not simulate detailed NOX chemistry due
to the high computational costs. We can therefore not rule out
a larger mismatch between some CO2 and NO2 plumes than
simulated here, for example, because of different NO2 de-
cay rates at different altitudes. However, Reuter et al. (2019)
found no obvious mismatch when comparing colocated CO2
and NO2 plumes from OCO-2 and TROPOMI observations.
A follow-up study for quantifying the effect of NOx chem-
istry would certainly be desirable.

Since the shape and extent of the plume can be imaged
more accurately with an NO2 instrument on the CO2M satel-
lites, the NO2 instrument can also be used to assess and
correct transport simulations and improve these simulations
through data assimilation.

4.3 Limitations of the current plume detection
algorithm

The main objective of this study was to compare the basic de-
tectability of CO2 plumes with CO2, NO2 and CO observa-
tions. Our plume detection algorithm was able to detect weak
signals well below the single sounding precision but tended
to fail when the CO2 or NO2 field was complex, for exam-
ple when several plumes from adjacent sources overlapped or
when the background had a spatial gradient. These cases can
be easily identified by a trained human observer as done in
this study, but will have to be automatized for application at
the global scale, for example by applying machine-learning
methods.

In our study area, the attribution of detected enhancements
to sources was relatively simple because the locations of
the sources were known and plumes were rarely overlap-
ping with plumes from other sources. Source attribution can
be more challenging when source locations are not precisely
known or when several sources are close to each other. For
such cases, the algorithm will have to be extended to be op-
erationally applicable.

The algorithm assumed accurate knowledge of the mean
and variance of the background, which were estimated di-
rectly from a simulated background tracer. It is possible that
due to this optimistic assumption the number of detectable
plumes was overestimated. On the other hand, mean and vari-
ance were computed in a rather simple way from a large win-
dow centered on the source (200 km× 200 km for Berlin).
In the present algorithm, spatial gradients in the background
field contributed to the variance of the background and thus
reduced the ability for plume detection. However, such gra-
dients, if sufficiently smooth, could potentially be accounted
for in a more advanced algorithm through spatial interpola-
tion of the background surrounding the plume.

When applied to real satellite observations the background
and its variance could either be taken from a model or esti-

mated directly from the satellite observations. Although at-
mospheric transport models have large uncertainties at the
level of individual plumes, they could provide reasonable es-
timates of the CO2 and NO2 background. Likely the best
option is to derive the background directly from the satel-
lite data, which requires further development of the plume
detection algorithm presented here. An improved algorithm
could start with an a priori estimate of plume location and
background and would then be updated iteratively to improve
both plume location and background. A model could be used
here to determine a suitable a priori plume location and back-
ground. An improved version of the algorithm presented in
this paper has the potential for increasing the number of de-
tectable plumes per satellite as well as the number of CO2
pixels per plume.

5 Conclusions

In this paper the potential for detecting CO2 plumes of the
city of Berlin and neighboring power stations was inves-
tigated for the Copernicus anthropogenic CO2 monitoring
mission (CO2M), which is a proposed constellation of CO2
satellites of the European Copernicus program. Since the
interference of biospheric CO2 makes the identification of
weak anthropogenic CO2 plumes challenging, plumes were
detected either from CO2 observations or from observations
of the coemitted trace gases CO and NO2. The study used
high-resolution atmospheric transport simulations to create
realistic CO2, CO and NO2 fields at 1 km× 1 km horizontal
resolution to generate synthetic observations of XCO2, CO
and NO2 for constellations of up to six CO2M satellites and
one Sentinel-5 satellite.

For the city of Berlin about 50± 5 potentially useful CO2
plumes were identified for the year 2015 for a constella-
tion of six satellites, i.e., about eight plumes could be ob-
served by a single CO2M satellite per year. This number is
somewhat smaller than reported in earlier studies (Bacour
et al., 2015; Pillai et al., 2016), mainly because masking
cloudy pixels based on the simulated cloud fields leads to less
cloud-free observations than using the MODIS cloud mask
product. Many of these 50 potentially observable plumes
were too weak to be easily detectable by the CO2 instru-
ment. Plumes with more than 100 detectable pixels could
only be identified in 12 % and 32 % of cloud-free cases
with a high-noise (σVEG50 = 1.0 ppm) and low-noise CO2 in-
strument (σVEG50 = 0.5 ppm), respectively. A CO instrument
with the uncertainty scenario used in this study had a signal-
to-noise ratio that was lower than for the CO2 instrument
and was therefore not suitable for detecting CO2 plumes.
On the other hand, adding an NO2 instrument significantly
increased the number of detectable plumes (68 %–70 % of
cloud-free cases) because CO2 and NO2 plumes generally
overlapped well. The better performance of the NO2 instru-
ment was partly due to the higher signal-to-noise ratio and
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partly due to the lower sensitivity to clouds. The Sentinel-5
instrument was also well suited to detect the NO2 plumes, but
the different overpass times of the CO2M satellites (11:30 lo-
cal time) and Sentinel-5 (09:30 local time) often resulted in
a large spatial mismatch.

Strong point sources like the Jänschwalde power plant
could be detected more easily with the CO2 instrument (40–
45 plumes) because the plumes were spatially more con-
fined and the signals were stronger. The number of detectable
plumes increased further with the NO2 instrument by about
50 % (about 70 plumes). The Sentinel-5 instrument could
also detect the CO2 plume but could not always distinguish
the plumes from neighboring power plants due to the lower
spatial resolution. In addition, the spatial mismatch between
CO2M and Sentinel-5 was large due to the 2 h time differ-
ence between overpasses. Smaller point sources with emis-
sions of about 10 Mt CO2 yr−1 were only detectable with a
low-noise CO2 instrument but were in most cases readily de-
tectable with an NO2 instrument.

In this study, power plant plumes could be detected even
with an NO2 instrument with high noise. The power plants
were equipped with wet scrubber technology for reducing
SO2 and NOx emissions but not with the latest available
technology. Future updates using selective catalytic or non-
catalytic reduction have the potential to further reduce NOx
emissions by 20 % to 50 % (Lecomte et al., 2017), which
would place higher requirements on the NO2 instrument and
would make the low-noise scenario more beneficial.

This study demonstrates the huge benefit of adding an
NO2 instrument to a constellation of CO2M satellites for
detecting city plumes and weaker point sources. The major
advantages of the NO2 instruments are the higher signal-to-
noise ratio and the lower sensitivity to clouds. Therefore,
adding an NO2 instrument is highly recommended and the
low-noise instrument is preferable for detecting also weaker
and cleaner plumes in terms of NO2 emissions. Furthermore,
development of an advanced plume detection algorithm that
can detect CO2 plumes reliably will be essential for the ap-
plication on an operational satellite.
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