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Abstract. This paper presents the simultaneous retrieval of
aerosol optical thickness and surface properties from the
CISAR algorithm applied both to geostationary and polar-
orbiting satellite observations. The theoretical concepts of
the CISAR algorithm have been described in Govaerts and
Luffarelli (2018). CISAR has been applied to SEVIRI and
PROBA-V observations acquired over 20 AERONET sta-
tions during the year 2015. The CISAR retrieval from the two
sets of observations is evaluated against independent data
sets such as the MODIS land product and AERONET data.
The performance differences resulting from the two types of
orbit are discussed, and the information content of SEVIRI
and PROBA-V observations is analysed and compared.

1 Introduction

The retrieval of aerosol properties over land surfaces from
space observations is a challenging problem due to the strong
radiative coupling between atmospheric and surface radia-
tive processes. Different approaches are usually exploited to
retrieve different Earth system components (e.g. Hsu et al.,
2013, Mei et al., 2017), leading to inconsistent and less ac-
curate data sets. The joint retrieval of surface reflectance
and aerosol properties, as originally proposed by Pinty et al.
(2000), presents many advantages, such as the possibility to
perform the retrieval over any type of surface and ensure ra-
diative consistency among the retrieved variables.

Govaerts and Luffarelli (2018) (hereafter referred to as
Part 1) describes the theoretical aspects of the Combined
Inversion of Surface and AeRosol (CISAR) algorithm, de-
signed for the joint retrieval of surface reflectance and
aerosol properties. This new generic retrieval method specif-
ically addresses issues related to the continuous variation of
the state variables in the solution space within an optimal
estimation (OE) framework. Through a set of experiments,
the capability of CISAR to retrieve surface reflectance and
aerosol properties within the solution space was illustrated.
Nonetheless, these experiments only represent ideal simu-
lated observation conditions, i.e. noise-free data acquired in
narrow spectral bands placed in the principal plane, assum-
ing unbiased surface prior information. This second part aims
to demonstrate CISAR’s applicability to actual satellite ob-
servations, with less favourable geometrical conditions than
the principal plane and accounting for the radiometric noise.
For this purpose, the algorithm has been applied to two ra-
diometers with similar spectral properties but different orbits
(geostationary and polar). Radiometers on board geostation-
ary platforms deliver observations with a revisit time of tens
of minutes but with a limited field of view, so that many in-
struments are needed to cover the entire Earth. The poles can-
not be observed. Conversely, a polar orbit, combined with an
adequate swath, could offer a daily revisit time of the entire
globe. The selected radiometers are the Spinning Enhanced
Visible and Infrared Imager (SEVIRI), flying on board of
the Meteosat Second Generation (MSG) geostationary plat-
form, and the PRoject for On-Board Autonomy-Vegetation
(PROBA-V). These two instruments have similar radiometric
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performances and both have acquired more than 15 years of
observations thanks to the launch of a succession of radiome-
ters with very similar characteristics. Applying the same al-
gorithm on similar instruments flying in different orbits rep-
resents a meaningful way to analyse the generic algorithm
performance of CISAR.

This paper is organised as follows. Section 2 describes
the observation system considered in the OE framework: the
satellite observation, the ancillary information, the prior in-
formation and the forward model. The uncertainty character-
isation of the observation system is also described in Sect. 2.
The algorithm implementation is described in Sect. 3. Sec-
tion 4 analyses the information content of the satellite obser-
vations, comparing the differences between the geostationary
and polar-orbiting instruments, and discusses the challenges
encountered when little or no information about the retrieved
variables is carried by the observation. Given these difficul-
ties in the retrieval, a quality indicator (QI) is implemented
and presented in Sect. 5, characterising the reliability of the
solution. Finally, the performance of CISAR is discussed in
detail in Sect. 6. The derivation of CISAR-retrieved aerosol
optical thickness (AOT) and bidirectional hemispherical re-
flectance (BHR) will be compared between the AErosol
RObotic NETwork (AERONET) (Giles et al., 2017) and the
Moderate Resolution Imaging Spectroradiometer (MODIS)
land product data (DAAC, 2017). The performance differ-
ences between the retrieved data sets obtained from SE-
VIRI and PROBA-V observations will be further investigated
through statistics on the quality of the retrieval and through
the information content of the satellite observations.

2 Observation system characterisation

2.1 Observation system definition

The fundamental principle of OE is to maximise the proba-
bility P = P(x|y�3̃,xb,b) with respect to the values of the
state vector x, conditional to the value of the measurements
and any prior information (Rodgers, 2000). The ensemble of
measurements, prior information, ancillary data and the for-
ward model constitutes the observation system. This section
describes each component of this system for the two satellite
data sets processed in the framework of this study.

In order to evaluate the CISAR algorithm performance
when applied to observations acquired from different orbits,
20 AERONET stations located within the SEVIRI field of
view have been selected (Fig. 1, Table 1). These targets span
different geometries and land cover types (vegetation, urban,
bare areas, water, mixed). The observations pertain to the
year 2015.

For each of these stations, satellite data have been ac-
quired, together with ancillary information, such as the cloud
mask and the model parameters, which are the parameters
that are not retrieved by the algorithm but that influence the
observation. Satellite data and ancillary information are ac-

Figure 1. Locations of selected AERONET stations. All stations are
located within the SEVIRI field of view.

Table 1. AERONET targets.

Name Latitude Longitude Land cover
type

Athens_NOA 37.99 23.77 Urban
Barcelona 41.39 2.12 Urban
Bucharest_Inoe 44.35 26.03 Mixed
Bure_OPE 48.56 5.50 Vegetation
Burjassot 39.51 −0.42 Urban
Carpentras 44.08 5.06 Vegetation
Dakar 14.39 −16.96 Costal
Gloria 44.60 29.36 Water
Granada 37.16 −3.60 Urban
IMS-METU-ERDERMLI 36.56 34.25 Costal
Kyiv 50.36 30.50 Vegetation
Mainz 49.50 8.30 Mixed
Murcia 38.01 −1.17 Vegetation
Paris 48.87 2.33 Urban
Petrolina_SONDA −9.38 −40.50 Urban
Pretoria_CSIR-DPSS −25.76 28.28 Mixed
Sede_Boker 30.85 34.78 Bare areas
Toulouse_MF 43.57 1.37 Urban
Venise 45.31 12.51 Water
Zinder_Airport 13.78 8.99 Bare areas

cumulated in time to form a multi-angular observation vector
y�3̃ in order to correctly characterise the surface reflectance
anisotropy. Nevertheless, retrieving surface and aerosol prop-
erties from satellite observations is an ill-posed problem
(Wang, 2012). Consequently, assumptions on the magnitude
and on the temporal and spectral variability of the state vari-
ables are made. The ensemble of these assumptions and their
associated uncertainties constitutes the prior information.

The observation uncertainty sigmao characterisation is
one of the most critical aspects of the CISAR algorithm as
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it directly determines the likelihood of the solution. In fact,
sigmao determines the observation term of the cost func-
tion (Eq. 17 of Part 1). The observation uncertainty is com-
posed of the radiometric uncertainty (directly related to the
radiometer characteristics), the forward model uncertainty
and the uncertainty related to the model parameters.

2.2 Satellite data

MSG nominal position is 0◦ over the equator in a geosta-
tionary orbit. SEVIRI is the main instrument of the MSG
mission, which has as its primary objective the observation
in near real-time of the Earth’s full disk, shown in Fig. 1.
SEVIRI achieves this with 12 channels, ranging from 0.6 to
13 µm, three of which are located in the solar spectrum and
centred at 0.64, 0.81 and 1.64 µm and are used within this
study. SEVIRI observes the Earth’s full disk with a 15 min
repeat cycle. The sampling distance between two adjacent
pixels at the subsatellite point is 3 km for the visible bands.
As there is no on-board device for the calibration of the so-
lar channels, the calibration within this study has been per-
formed with the method proposed by Govaerts et al. (2013).

The PROBA-V satellite mission is intended to ensure the
continuation of the Satellite Pour l’Observation de la Terre
5 (SPOT5) VEGETATION products starting from May 2014
(Sterckx et al., 2014). The microsatellite offers global cover-
age of land surface with daily revisit for latitude from 75◦ N
to 56◦ S in four spectral bands, centred at 0.46, 0.66, 0.83
and 1.61 µm. The PROBA-V products are provided at a spa-
tial resolution of 1/3 and 1 km, the latter being used in the
framework of this study. To cover the wide angular field
of view (101◦) in a small-sized platform, the optical design
of PROBA-V is made up of three cameras (identical three-
mirror anastigmatic telescopes). The three cameras have an
equal field of view. The downward-pointing central camera
covers a swath 500 km wide, while the swath of the right
and left cameras is 875 km wide. Although the three cam-
eras have different responses, a mean spectral response func-
tion (SRF) is considered within this study, accounting for
the radiometric uncertainty associated with this approxima-
tion. Each camera has two focal planes, one for the short-
wave infrared (SWIR) band and one for the visible and near-
infrared (VNIR) bands. Despite the different viewing angles
in the SWIR band, CISAR assumes the observations are ac-
quired with the same geometry in all bands. This assumption
leads to an additional term in the observation uncertainty.
Because of the omission of on-board calibration devices, the
PROBA-V in-flight calibration relies only on vicarious meth-
ods (Sterckx et al., 2013).

The similarities between the three SEVIRI solar bands and
the red, NIR and SWIR PROBA-V bands permit the evalu-
ation and comparison of the CISAR performances when ap-
plied to the two instruments, the spectral responses of which
are shown in Fig. 2. The satellite observations have been ac-
quired from the European Organisation for the Exploitation

Table 2. PROBA-V instrument noise (%).

Band Left camera Center camera Right camera

Blue 4 4 4
Red 3 3 3
NIR 3 3 3
SWIR 5 4 5

Table 3. Total radiometric uncertainty median values (%).

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 3 2 3
PROBA-V 4 3 3 4

of Meteorological Satellites (EUMETSAT) Earth Observa-
tion Portal and from the Flemish Institute for Technological
Research (VITO) for SEVIRI and PROBA-V respectively.
The top-of-atmosphere (TOA) bidirectional reflectance fac-
tor (BRF) satellite observation uncertainty is derived is com-
puted directly from the digital count value in the case of SE-
VIRI, whereas for PROBA-V the level 2-A TOA BRF is pro-
vided by VITO (Wolters et al., 2018). The satellite obser-
vation uncertainty is derived from the radiometric noise σ i
and the geolocation uncertainty σ r . For PROBA-V two ad-
ditional terms are calculated: the uncertainty σ c associated
with the approximation of a mean SRF of the cameras and
the one derived from considering the same viewing geome-
try in the SWIR and in the VNIR bands, σ�.

PROBA-V radiometric noise has been delivered by VITO
(Sindy Sterckx, personal communication, September 2017)
per camera and per band (Table 2). For SEVIRI, this term
is computed considering (i) the instrument noise due to the
dark current, (ii) the difference between the detector gain and
(iii) the number of digitalisation levels (Govaerts and Lat-
tanzio, 2007). The geolocation uncertainty σ r , arising from
the assumption of the satellite data being correctly mapped
to the surface of the Earth, is estimated for each pixel p as
follows (Govaerts et al., 2010):

σ 2
r (t, λ̃,p)=

(
∂y0(t, λ̃,px,py)

∂px
σ x(t, λ̃)

)2

+

(
∂y0(t, λ̃,px,py)

∂py
σ y(t, λ̃)

)2

, (1)

where σ x,y is the geolocation or co-registration standard de-
viation and y0(t, λ̃,px,py) is the TOA BRF in the channel λ̃
acquired at time t .

The uncertainty σ c, originating from the usage of a mean
SRF for the three PROBA-V cameras, has been estimated
by simulating the TOA BRF, considering both the mean and
actual SRF for a wide range of observation conditions. The
assessed σ c is lower than 0.2 % in all bands and for all cam-
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Figure 2. SEVIRI (in blue), PROBA-V (in red) and MODIS (in green) spectral responses.

eras. Finally, the assumption of having the same viewing ge-
ometry for the three PROBA-V bands is associated with the
uncertainty σ�, computed as follows:

σ 2
�(t, λ̃,�,p)=

(
∂y0(t, λ̃,θ)

∂θ
σ θ (t, λ̃)

)2

. (2)

The total relative radiometric uncertainty median values
are shown in Table 3.

2.3 Ancillary data

In addition to satellite observations, a cloud mask and the
model parameters are required. For SEVIRI observations, the
nowcasting satellite application facility (SAF) cloud mask
(Meteo France, 2013), provided at the radiometer’s native
temporal and spatial resolution, is used; for PROBA-V the
cloud mask is provided by VITO (Wolters et al., 2018). The
model parameters, i.e. total column water vapour (TCWV),
total column ozone (TCO3) and surface pressure, are taken
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis (Dee et al., 2011).

The uncertainties of the model parameters b are converted
into an equivalent noise σB , calculated as follows (Govaerts
et al., 2010):

σ 2
B(b, λ̃,�0,�v)=

(
∂y(x,Uoz;�,λ̃)

∂Uoz
σUoz

)2

+

(
∂y(x,Uwv;�,λ̃)

∂Uwv
σUwv

)2

+

(
∂y(x,Usp;�,λ̃)

∂Usp
σUsp

)2

, (3)

where Uoz and Uwv are the ozone and water vapour total
column concentration, Usp is the surface pressure and σUoz ,
σUwv and σUsp are their associated uncertainties. The surface

Table 4. Water vapour transmittance in the SEVIRI, PROBA-V and
MODIS bands.

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.993 0.915 0.988
PROBA-V 1.000 0.990 0.926 0.995
MODIS 1.000 0.990 0.985 0.996

pressure contribution to the signal is about 10 times smaller
than the contribution of the water vapour concentration. The
TCWV is distributed among the two atmospheric layers in
the forward radiative transfer model assuming a US76 water
vapour vertical profile (Sissenwine et al., 1976). The fraction
of TCWV in the scattering layer interacts with the aerosol
particles and thus strongly affects the CISAR retrieval. Un-
like the ozone which is mainly present in the stratosphere,
the water vapour is dominant in the lower part of the atmo-
sphere, severely impacting the aerosol retrieval in SEVIRI
and PROBA-V band 0.8 µm (Table 4). Hence, only the un-
certainty related to the TCWV is considered and Eq. (3) is
approximated to the following:

σ 2
B(b, λ̃,�0,�v)≈

(
∂y(x,Uwv;�,λ̃)

∂Uwv
σUwv

)2

. (4)

The median values of the equivalent model parameter
noise (EQMPN), computed as in Eq. (4), are shown in Ta-
ble 5.
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Table 5. Total EQMPN median values (%).

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.28 2.02 0.38
PROBA-V 0.01 0.37 1.49 0.14

2.4 Prior information

Within an OE framework, the definition of the prior informa-
tion and its uncertainty plays a fundamental role. In CISAR
four different sources of prior information are considered:

1. Surface parameter magnitude. The surface reflectance,
represented by the RPV (Rahman–Pinty–Verstraete)
model (Rahman et al., 1993), is not expected to undergo
rapid variations on a short temporal scale; hence the re-
trieval in the previous accumulation period can be used
as prior information for the next inversion (Govaerts
et al., 2010). The prior information on the RPV parame-
ters at the time td is built by computing a running mean
over theNr previously converged accumulation periods.

xb(td)=
6
td−1
ti=0 x̂(ti)

Nr
(5)

The corresponding prior uncertainty is defined as half
of the variability range of the solution x̂(ti) retrieved
during the considered Nr accumulation periods.

σ xb (td)=
maxt∈Nr x̂(ti)−mint∈Nr x̂(ti)

2
(6)

When Nr is smaller than a certain minimum threshold
Nmin (Table 7), the prior information on the magnitude
of the RPV parameters is taken from the last successful
retrieval and its uncertainty is computed as in Eq. (7),
whereNd is the number of days since the last successful
retrieval (Govaerts et al., 2017).

σ xb (td)= σ xb (td − 1)1.05Nd (7)

2. AOT magnitude. This information is taken from an an-
nual mean climatology data set (Kinne et al., 2013).
From this data set, the prior information on the AOT
magnitude for the coarse and fine mode (absorbing and
non-absorbing distinctly) is taken. The uncertainty is set
to a high arbitrary value σ xb for all the wavelengths (Ta-
ble 7).

3. Constraints on the AOT temporal variability. These con-
straints result from the assumption that the AOT does

Table 6. FASTRE relative uncertainty in the SEVIRI and
PROBA-V processed bands (%).

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 1.88 2.75 0.96
PROBA-V 2.38 1.31 2.20 0.75

not change rapidly on a very short temporal scale; there-
fore a maximum temporal variation is defined through
a sigmoid function. The temporal constraints are de-
scribed by the matrix Ha in Eq. 13 of Part 1.

4. Constraints on the AOT spectral variability. The AOT is
expected to decrease with the wavelength, proportion-
ally to the ratio of the extinction coefficient (see Eq. 15
of Part 1). The applied constraints define the matrix Hl

(Eq. 14 of Part 1).

2.5 Forward model

FASTRE, the CISAR forward radiative transfer
model (RTM), and its uncertainty σ F are described in
Sect. 4.4 of Part 1. FASTRE uncertainty in the SEVIRI
and PROBA-V processed bands has been estimated as in
Eq. (10) of Part 1, comparing the outcome of FASTRE with
a more elaborated RTM, in which 50 atmospheric layers
are considered. The results of this evaluation are shown in
Table 6. The forward model uncertainty is lower than 3 %
in all processed bands, presenting its largest value in the
SEVIRI VIS0.8 band, the most affected by water vapour
absorption (Table 4). The FASTRE two-layer approximation
of the atmosphere does not allow a correct discretisation of
the water vapour vertical profile and, thus, a correct char-
acterisation of its interaction with the scattering particles.
Moreover, the two-layer approximation assumes that the
scattering particles are only present in the lower layer. Given
the spectral behaviour of the AOT, this assumption leads
to a higher uncertainty at wavelengths shorter than 0.4 µm
(Seidel et al., 2010). Despite the limitations associated with
the two-layer approximation, FASTRE uncertainty is in the
range of 1 %–3 % (Table 6), which is smaller or equal to the
instrument radiometric noise.

3 Data processing

3.1 General set-up

In order to perform the inversion on actual satellite data,
the observations are accumulated in time and the corre-
sponding uncertainty is computed as described in Sect. 2.
This temporal accumulation is performed in order to build
a multi-angular observation vector y�3̃ to characterise the
surface reflectance anisotropy. The surface optical properties
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Figure 3. Polar plot of the angular sampling during 5 days (1–5 May 2015) of SEVIRI observations (a) and during 16 days (1–16 May
2015) of PROBA-V observations (b) over Carpentras, France. The blue triangles represent the satellite viewing angles, the red diamonds the
illumination one. Circles represent the zenith angle and polar angles represent azimuth angles with zero azimuth pointing to the North.

are considered invariant during the accumulation period, and
therefore a trade-off between having enough cloud-free ob-
servations to build the observation vector and allowing the
algorithm to catch surface variations is introduced; the high-
repeat temporal coverage of geostationary satellites allows a
shorter accumulation periods with respect to polar-orbiting
instruments. For SEVIRI acquisitions, although the angular
sampling does not vary much from one day to the next, the
length of the accumulation period is set to 5 days in order
to maximise the occurrence of cloud-free observations. For
polar-orbiting satellites, the length of the temporal accumu-
lation is normally driven by the repeat cycle, as it is the case
for MODIS (DAAC, 2018). In the case of PROBA-V, the
satellite orbit is not maintained and there is no repeat cycle.
Hence, the choice of the length of the time window during
which the satellite observations are accumulated results from
empirical studies, aiming to balance the trade-off previously
described. Consequently, the length of the accumulation is
set to 16 days and the successive accumulation periods are
shifted by 8 days. An example of the angular sampling during
this accumulation period is shown in Fig. 3 for SEVIRI and
PROBA-V. During the accumulation period, observations ac-
quired with a sun or viewing angle larger than θmax (defined
in Table 7) are discarded.

The definition of the first guess is an important aspect of
the inversion process and it is defined in order to minimise
the possibility of finding local minima. When a minimum
value is found, an investigation of the cost function in the
vicinity of the solution should be made in order to determine
whether or not it is a local minimum. However, this explo-
ration could be computationally expensive. In order to min-
imise the possibility of local minima without degrading the
computational performances, the AOT first guess is assigned
to successive observations alternating between a low-value
τlow and a larger one τhigh (see Table 7). As CISAR retrieves

Figure 4. Solution space (black triangle) for the wavelength 0.6 µm
defined by the non-absorbing fine-mode (FN), the absorbing fine-
mode (FA) and the coarse-mode (C) vertices. The red, green and
blue lines show the 99.7 %, 95.5 % and 68.3 % probability regions
respectively, derived from AERONET inversion product for all the
observations available over all the AERONET stations.

a single set of RPV parameters over the entire accumulation
period in each processed band, only one set of first guesses
x0 is defined:

x0(td)= xb(td)+ (−1)itd × σ xb (td), (8)

where itd is the index of the current accumulation period and
xb is the prior information at the accumulation period td .

From the retrieved set of RPV parameters the BHR is cal-
culated, assuming perfectly diffuse illumination conditions,
and the AOT is extrapolated at 0.55 µm through the extinc-
tion coefficient α:

τ0.55,v = τλ,v

(
α0.55,v

αλ,v

)
, (9)
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Table 7. CISAR set-up parameters.

SEVIRI PROBA-V

Nd Length of the accumulation period 5 16
Ns Shift between the accumulation period 5 8
Nmin Minimum converged retrievals to compute 5 5

the mean on the RPV parameters
– Maximum number of iterations 20 20
θmax Maximum processed sun and viewing zenith angles [◦] 70 70
τlow Minimum AOT first-guess value 0.001 0.001
τhigh Maximum AOT first-guess value 0.100 0.100
σ xb,τF Fine-mode prior uncertainty for the AOT 1.0 1.0
σ xb,τC Coarse-mode prior uncertainty for the AOT 2.0 2.0
σ xb,RPV Default prior uncertainty for the RPV parameters 1.0 1.0

where v is the considered aerosol vertex and λ is the wave-
length from which the AOT at 0.55 µm is extrapolated.

3.2 Aerosol vertices

The aerosol vertices subsample the entire solution space to a
region where the aerosol properties can be retrieved. The re-
lationship between the particle size and the single-scattering
properties has been discussed in Part 1. As recommended,
three vertices are selected, defined by the asymmetry fac-
tor g and the single-scattering albedo (SSA) ω0: two fine-
mode vertices, absorbing and non-absorbing, and one coarse-
mode vertex, defining a triangle in the [g,ω0] space in each
processed band. The three vertices are chosen to analyse
the single-scattering properties derived from the AERONET
inversion product on all available observations since 1993
(Dubovik et al., 2006), similarly to the approach proposed
by Govaerts et al. (2010). The distribution of aerosol single-
scattering properties in the [g,ω0] space, as derived from
AERONET inversion product, is shown in Fig. 4 for λ=
0.6 µm. The aerosol properties are clustered in the region de-
fined by 0.60< g < 0.80 and 0.85< ω0 < 0.98, containing
68.3 % of the data (blue line). The selected CISAR vertices
defining the solution space cover about 80 % of possible so-
lutions (black triangle).

4 Information content

The analysis of the information content relies on a two-fold
approach. First, the Jacobians are used as an indicator of the
TOA BRF sensitivity to state variable changes under differ-
ent observation conditions. Next, the entropy is used as a rig-
orous metric to determine the information content of the ob-
servation system for each radiometer. The Jacobians, i.e. the
partial derivatives of the forward model with respect to the
state variables, are affected by the changes in illumination
and viewing geometry both in terms of sign and magnitude
(Luffarelli et al., 2016). The minimisation of the cost func-
tion relies on an iterative approach where the direction of

Figure 5. Histograms of the distribution of the Jacobians related
to the RPV parameters (x axis), scaled by the variability range of
each variable. These distributions are obtained from PROBA-V ob-
servations (RED band) over Carpentras, France (vegetated target).
Positive (negative) values of the Jacobian show that the TOA BRF
is positively (negatively) correlated to the considered state variable.

steepest descent is determined by the Jacobians (Marquardt,
1963). An analysis of the Jacobians gives information about
the amount of information carried by the observation and
highlights variations in sensitivity throughout the year. The
larger the magnitude of the Jacobians, the higher the sensi-
tivity of the signal to the selected state variable. The Jaco-
bians have been scaled by the variability range of each state
variable to compare their dimensionless magnitude.

An illustrative example of the distributions of the Jaco-
bians relative to the RPV parameters is shown in Fig. 5. The
Jacobians are dominated by the ρ0 parameter (controlling
the magnitude of the surface BRF), followed by θ , k and
ρc (characterising the surface reflectance anisotropy). Con-
sequently, the retrieval of the surface reflectance shape is
more challenging than the retrieval of its mean magnitude;
nevertheless, its accurate retrieval is necessary to correctly
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Figure 6. Distribution of the AOT-scaled Jacobian over Carpentras (dark surface) and Zinder Airport (bright surface). The histograms are
obtained from PROBA-V observations (RED band) over the year 2015.

Table 8. Median and standard deviation of the scaled Jacobians.
The table refers to all processed targets during 2015. The values are
shown for the SEVIRI and PROBA-V bands centred at 0.6 µm.

Median value Standard deviation

ρ0 1.316 0.385
κ −0.008 0.038
θ −0.250 0.265
ρc −0.023 0.023
τF 0.017 0.014
τC 0.007 0.008

account for the coupling between the surface and the atmo-
sphere (Govaerts et al., 2008).

The aerosol contribution to the TOA BRF differs accord-
ing to the brightness of the surface. Figure 6 shows the AOT-
scaled Jacobians distribution over Carpentras (dark surface)
and Zinder Airport (bright surface). The Jacobians over Car-
pentras reach higher values with respect to the Jacobians re-
lated to Zinder Airport, because the signal at Zinder is domi-
nated by the bright surface (Sun et al., 2016). When the mag-
nitude of the AOT Jacobian is close to 0, the observed TOA
BRF is not sensitive to changes in the aerosol concentration
in the atmosphere. It is worth noting that the AOT-scaled Ja-
cobians can be both negative and positive, meaning that the
aerosols can increase or decrease the TOA BRF, depending
on the season and the viewing and illumination geometry.
This variability of the sign of the Jacobians, also occurring
over dark targets (Fig. 6a), represents one limitation in the
MODIS dense dark vegetation (DDV) algorithm (Kaufman
et al., 1997), which assumes that an increase in the AOT re-
sults in an increased signal at the satellite.

Table 8 shows the median value and the standard deviation
of the scaled Jacobians for all the state variables at SEVIRI
and PROBA-V bands centred at 0.6 µm, over all selected

AERONET stations. This table confirms the previous find-
ings on the Jacobian magnitude shown in Figs. 5 and 6 over
Carpentras and Zinder Airport. The AOT-scaled Jacobian is
about 2 orders of magnitude smaller than that for the surface
reflectance. The variability of the Jacobian sign and magni-
tude over the year is illustrated in Fig. 7, where it can be
seen that the effect of the aerosols on the reflectance can vary
with the geometry for the same land cover type. The Jacobian
variations in Fig. 7 essentially depend on the viewing and il-
lumination geometry. Aerosol particles mostly scatter in the
forward direction, given the positive sign of the asymmetry
factor g (controlled, among other factors, by the aerosol size
distribution) (Andrews et al., 2006). For this reason, the max-
imum information on the aerosols is located in the forward
direction, while it decreases when approaching the backscat-
tering direction. Additionally, a longer atmospheric path in-
creases the aerosol effects on the reflectance, given the higher
probability of interactions between the reflected sunlight and
the atmospheric particles. The impact of the length of the at-
mospheric path is highlighted in Fig. 8, showing the Jacobian
daily cycle over Carpentras. The sensitivity of the TOA BRF
with respect to the AOT almost disappears at noon, when the
atmospheric path is shortest and the effect of the aerosols
on the signal is minimised. A more detailed analysis of the
AOT Jacobians and their relation with the AOT magnitude
is performed by Luffarelli et al. (2016). Given the seasonal
variations of the Jacobians shown in Fig. 7 and 8 it is not ex-
pected that the same accuracy of the retrieval will be obtained
throughout the day and throughout the year.

A more rigorous analysis of the information content can
be made through the entropy, which measures the uncer-
tainty reduction (Rodgers, 2000). In an OE framework, the
prior information and its uncertainty represent a hypothesis
on the expected value of the state variables. It is envisaged
that the inversion process provides a posterior uncertainty on
the state variables which is smaller than the prior one; the en-
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Figure 7. Scaled AOT Jacobians time series over Carpentras,
France (vegetated target) related to SEVIRI VIS0.6 band (a) and
PROBA-V RED band (b) observations. The blue dots represent the
fine mode and the red triangles the coarse mode.

tropy quantifies this uncertainty reduction. When there is no
information coming from the satellite observations, the en-
tropy will be close to 0 as the observation does not add any
knowledge to the system. Formally, the entropy is computed
as follows:

H =−
1
2

ln
(
|Sx̂ |
|Sx |

)
, (10)

where Sx̂ (Eq. 21 of Part 1) and Sx are the uncertainties in
the posterior and the prior information.

In CISAR, the entropy is calculated considering the sur-
face and atmospheric state variables and their associated
prior and posterior uncertainty separately; the entropy dis-
tribution is shown in Fig. 9. The distribution of the sur-
face and AOT entropy related to SEVIRI observations ex-

Figure 8. Scaled AOT Jacobians (left y axis) associated with SE-
VIRI observation in the VIS0.6 band over Carpentras, France, for 5
June 2015. The blue dots represent the fine mode, the red triangles
the coarse mode. The black crosses represent the retrieved AOT at
0.55 µm (right y axis).

hibits higher values compared to the one related to PROBA-
V observations, given the larger radiometric uncertainty as-
sociated with the observations acquired by the polar-orbiting
satellite. The entropy not only depends on the information
carried by the satellite observation, but also on the uncer-
tainty associated with the prior information. As the prior in-
formation on the surface is updated (Sect. 2.4), the associated
uncertainty decreases in time, whereas the prior information
on the AOT remains weakly constrained, as the uncertainty
is kept to the default high value. For this reason, the entropy
associated with the RPV parameters a exhibits smaller value
than the one associated with the AOT (Fig. 9a).

5 Quality indicator

5.1 Review of existing methods

Section 2.5 discussed the limitations of the forward model
FASTRE. Furthermore, in Sect. 4 it has been shown that
the AOT Jacobian magnitude is subject to temporal vari-
ations depending on the viewing and illumination geome-
tries. These issues compromise the reliability of the retrieved
solution, which can be assessed using different methods.
Dubovik et al. (2011) use the relative fitting measurement
residual to filter the retrieval outliers. This approach presents
some limitations as the number of degrees of freedom can
vary depending on the availability of cloud-free observations.
The requirement for the quality of the fit should be stricter
when only a limited number of observations are available
(Govaerts et al., 2010). This specific issue was addressed
in Govaerts and Lattanzio (2007), who developed an ap-
proach which also takes into account the number of cloud-
free observations. The authors observed that the cost func-
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Figure 9. Distribution of the entropy related to the AOT (a) and to the RPV parameters (b).

tion is proportional to the quadratic sum of the mismatch
between the simulation and the observation for each acqui-
sition, weighted by the observation uncertainty. As the cost
function is strongly dependent on the number of observa-
tions, it is not possible to define a universal range of accept-
able values for its residual without performing additional op-
erations on the cost function. Both methods do not correctly
identify situations in which a good fit is reached, but the re-
trieval of the state variables is not reliable due to limited or no
dependency of the TOA BRF on the state variables (the Ja-
cobians are close to 0). A more elaborate QI has been devel-
oped for the MODIS Aerosol Product Collection 6 (Hubanks,
2017), which is composed of different tests accounting for
the fitting residual, the magnitude of the retrieved AOT, the
possible presence of cirrus, the brightness of the scene and
information on the number of pixels and the percentage of
water pixels present in the processed area. Despite taking into
account different factors in addition to fitting residuals, this
approach does not consider the actual information content of
the satellite observation. Moreover, as CISAR processes each
pixel independently, the information on the number and type
of pixels over which the retrieval is performed, as used in the
MODIS product, is not applicable within this method.

5.2 Overview

A new approach is proposed for the CISAR algorithm, which
combines a series of individual tests j with an associated
value pj in the range [0,1], defining a QI(ti) associated with
the solution retrieved at the time ti . These tests evaluate the
convergence of the inversion to a solution after a given num-
ber of iterations (0), on the validity range of the total AOT
(1) and surface albedo (2), on the mismatch between obser-
vations and simulations (3) and on the information content
of the satellite acquisition through the Jacobians (4) and the
entropy, as discussed in Sect. 4. The entropy is computed
separately for the AOT (5) and RPV parameters (6). These

tests have been defined through an analysis of their impact
on the CISAR performance when evaluated against indepen-
dent reference data sets. The value pj associated with each
test can assume values between 0 (bad quality) and 1 (good
quality). Figure 10 shows an example of the evaluation of the
retrieved AOT against the AERONET data for the mismatch
test (3). As the mismatch increases, the correlation decreases,
while the root mean square error (RMSE) shows the opposite
behaviour.

5.3 Quality indicator tests

5.3.1 Convergence

The first test to be performed is on the convergence of the in-
version. When the maximum number of iterations is reached,
p0 is equal to 0, otherwise p0 = 1.

5.3.2 State variable validity range

The validity of the retrieved total AOT and of the surface
BHR is examined in tests 1 and 2. In CISAR, a validity
range for each state variable is defined, based on physical
boundaries and empirical observations. When the value of
retrieved AOT (BHR) falls at the extremes of this range, p1
(p2) is equal to 0. The acceptable values for the BHR range
from 0 to 1, while the AOT can only assume positive values
smaller than 5. The values p1 and p2 are equal to 1 when
0<BHR< 1 and 0<AOT< 5 respectively.

5.3.3 Mismatch between observation and simulation

As discussed in Sect. 5.1, the fitting residual between the ob-
servation and the simulation is normally used to assess the
reliability of the solution, as it describes how well the signal
simulated with the forward model ym(ti,λ) fits the satellite
observations y0(ti,λ). The mismatch between the observed
and simulated TOA BRF is weighted by the observation’s un-
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Figure 10. Correlation (in red) and RMSE (in blue) variations as a function of the mismatch between the satellite observation and the
simulated signal (test 3). The figure refers to the CISAR AOT retrieval evaluation against AERONET data. These results are obtained from
CISAR applied to SEVIRI observations.

certainty σ 0(ti,λ). For this test, the largest mismatch among
the processed bands is considered. Two thresholds, T1 and
T2, are defined to identify good (p3 = 1) and bad (p3 = 0)
quality retrievals. The difference between the simulated sig-
nal and the satellite observation should have the same mag-
nitude as the observation uncertainty σ 0(ti,λ); therefore T1
is set to 1. Conversely, the maximum acceptable mismatch
value T2 = 2 has been chosen by observing the relationship
between the mismatch and the performances of CISAR when
evaluated against the independent data sets used for refer-
ence. Fig. 10 represents an example of this analysis. When
the mismatch assumes values within the range defined by T1
and T2, thresholds included, a value between a minimum m

and 1 is assigned to p3 through a sigmoid function with width
equal to 10/(T2− T1) (Fig. 11). A different coefficient m is
defined for each test j in order to give different weights to the
tests, according to the magnitude of their impact on the re-
trieved solution and its evaluation against the reference data
set. The outcome of test 3 is thus defined as follows:

p3(ti)= 0 if max
λ

{
|ym(ti ,λ)− y0(ti ,λ)|

σ 0(ti ,λ)

}
> T2

p3(ti)= 1 if max
λ

{
|ym(ti ,λ)− y0(ti ,λ)|

σ 0(ti ,λ)

}
< T1

m< p3(ti) < 1 if T1 ≤max
λ

{
|ym(ti ,λ)− y0(ti ,λ)|

σ 0(ti ,λ)

}
≤ T2

, (11)

with λ= 1, . . . , number of wavelengths.

5.3.4 Jacobians

The magnitude of the Jacobians gives information on the sen-
sitivity of the TOA BRF to the state variables. Performing a
test on the Jacobians related to each state variable can be
computationally expensive. In order to reduce the computa-
tional effort, only the Jacobian of the AOT is taken into ac-
count. The spectral constraints applied to the AOT variabil-
ity as in Sect. 2.4 impose a correlation between the AOT re-

Figure 11. Non-linear p3 definition between the minimum value
m and 1, which applies when the mismatch is larger than T1 and
smaller than T2.

trieved in the different spectral bands. Consequently, it is de-
sirable to have large absolute Jacobians in at least one band.
To have a good retrieval of the total AOT, the AOT associ-
ated with each aerosol vertex has to be correctly retrieved.
The quantity K̂x(ti) analysed in test 4 is thus the following:

K̂x(ti)=max
λ

{
min
v

{
|Kxλ,v (ti)|

}}
, (12)

with λ=1,. . . ,number of wavelengths and v = 1, . . . , number
of aerosol vertices.

The aim of this test is to discard observations with lit-
tle or no sensitivity to the AOT and to identify those situ-
ations in which the test on the misfit is successful because
of the prior information and/or the temporal and spectral
constraints (Sect. 2.1) rather than actual information com-
ing from the observations. The thresholds T1 and T2 are set
to 0.01 and 0.02 respectively. The values of p4 are defined

www.atmos-meas-tech.net/12/791/2019/ Atmos. Meas. Tech., 12, 791–809, 2019



802 M. Luffarelli and Y. Govaerts: Combined Inversion of Surface and AeRosol

Figure 12. Correlation (straight lines) and RMSE (dashed lines) variations as a function of the QI. The figure refers to the CISAR AOT
retrieval from SEVIRI (in blue) and PROBA-V (in red) observations evaluated against AERONET data. The QI is rounded to the nearest 0.1.

Table 9. CISAR-retrieved BHR from comparison of actual observations with MODIS in all the processed bands.

SEVIRI PROBA-V

0.6 µm 0.8 µm 1.6 µm 0.4 µm 0.6 µm 0.8 µm 1.6 µm

Number of points 7409 744
Correlation 0.917 0.779 0.854 0.743 0.864 0.618 0.841
Root mean square error 0.045 0.067 0.079 0.029 0.052 0.098 0.091
Mean absolute bias 0.039 0.067 0.067 0.025 0.045 0.070 0.077

similarly to p3:
p4(ti)= 0 if K̂x(ti) < T1

p4(ti)= 1 if K̂x(ti) > T2

m< p4(ti) < 1 if T1 ≤ K̂x(ti)≤ T2

. (13)

5.3.5 Entropy

Section 4 discusses how the entropy, which quantifies the un-
certainty reduction from the prior knowledge on the system
to the posterior uncertainty, represents a rigorous analysis of
the information content. Tests 5 and 6 analyse the entropy as-
sociated with the AOT and the one associated with the RPV
parameters, computed as follows:

HAOT(ti)=−
1

2Nλ
ln
(∏

λ

∏
vσ post(ti,λ,v)∏

λ

∏
vσ prior(ti,λ,v)

)

HRPV(ti)=−
1

2Nλ
ln

(∏
λ

∏
pσ post(ti,λ,p)∏

λ

∏
pσ prior(ti,λ,p)

), (14)

where Nλ is the number of processed wavelengths, λ= 1,
. . . , Nλ, p = 1, . . . , number of RPV parameters and v = 1,
. . . , number of aerosol vertices. The normalisation to Nλ
ensures consistency in the entropy evaluation when differ-
ent number of bands are analysed, as for the SEVIRI and
PROBA-V cases. The entropy computation is strongly de-
pendent on the magnitude of the prior uncertainty as ex-
plained in Sect. 4. Low entropy might be due to reliable
prior information, with a low associated uncertainty. Simi-
larly, the uncertainty reduction would be very large in the

case of little prior information on the state variable. For these
reasons, tests 5 and 6 are only performed when the prior un-
certainty is smaller than the validity ranges of the AOT and
RPV respectively and larger than one-sixth of it. The thresh-
olds associated with the two tests on the entropy are T1 = 0.1
and T2 = 0.6, which correspond to a 20 % and 70 % uncer-
tainty reductions respectively. The values p5(ti) and p6(ti)

are computed as in Eq. (15).
p5,6(ti)= 0 if HAOT(ti),HRPV(ti) < T1

p5,6(ti)= 1 if HAOT(ti),HRPV(ti) > T2

m< p5,6(ti) < 1 if T1 ≤HAOT(ti),HRPV(ti)≤ T2

(15)

5.4 Quality indicator computation

The final QI is computed by combining the results of the tests
performed on the retrieved solution:

QI(ti)= p0(ti)p1(ti)p2(ti)max

{
1−

6∑
j=3
(1−pj (ti)),0

}
. (16)

The final QI(ti) ranges from 0 to 1, where 0 designates a
poor-quality retrieval and 1 indicates a reliable solution. Fig-
ure 12 shows the variations of the correlation and the RMSE
between CISAR-retrieved AOT and AERONET data as a
function of the QI. The correlation increases as the QI takes
larger values, while the RMSE decreases. This behaviour is
observed with CISAR AOT retrieved from both SEVIRI and
PROBA-V observations (Fig. 12). This correlation increase
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Figure 13. CISAR-retrieved BHR from SEVIRI (blue dots) and PROBA-V (red dots) and MODIS land product (green triangle) over Zinder
Airport (Niger, Africa). The results are shown for each sensor’s band centred at 0.6 µm for the year 2015. The vertical bars represent the
retrieval uncertainty for SEVIRI and PROBA-V and standard deviation over the selected area for MODIS.

(RMSE decrease) is particularly visible when QI is taking
values between 0.0 and 0.2. For this reason, only retrievals
with QI≥ 0.2 are considered in Sect. 6.

6 Performance evaluation

6.1 BHR

The CISAR BHR, computed from the RPV parameters, is
compared with the MODIS land product (Schaaf and Wang,
2015). To account for the different spatial sampling, the
MODIS data have been averaged on 5× 5 km and 1× 1 km
for the comparison with the retrievals from SEVIRI and
PROBA-V respectively. The results of this comparison are
shown in Table 9 in terms of correlation, RMSE and mean ab-
solute error (MAE). The CISAR results show a high correla-
tion with the MODIS product, above 0.7 in all the processed
spectral bands, except the PROBA-V NIR band, which shows
a correlation of 0.618. The density plots of the CISAR BHR
retrievals against MODIS data are included in the Supple-
ment for all the processed bands, for both satellites. Despite
the instrument differences discussed in Sect. 2.5, the CISAR
retrievals and the MODIS land product show similar seasonal
trends. Figure 13 shows the BHR time series over Zinder Air-
port (Niger, Africa), as retrieved from the CISAR algorithm
applied to SEVIRI and PROBA-V observations and from
the MODIS land product. The rainy season, from 20 May

to 5 October (Weatherspark.com, 2018), is distinguishable
through the decrease in the surface BHR in both the MODIS
and CISAR data sets, although CISAR retrieves a larger sea-
sonal variation with respect to MODIS product. The effect
of the updating mechanism on the surface prior described in
Sect. 2.4 is also visible as the retrieval uncertainty decreases
in time, given that the prior information on the surface is bet-
ter defined.

6.2 Aerosol optical thickness

The CISAR AOT retrieval, extrapolated at 0.55 µm, has been
evaluated against the AERONET data over the selected tar-
gets listed in Sect. 2. The CISAR AOT retrieval is eval-
uated in terms of correlation, RMSE and MAE with re-
spect to AERONET values. Additionally, the percentage of
points falling within the Global Climate Observation Sys-
tem (GCOS) requirements (Systematic Observation Require-
ments for Satellite-Based Data Products for Climate, 2011
Update), defined as max {0.03,10%}, is also accounted for.
The GCOS requirements are a useful tool for comparing dif-
ferent algorithms’ performances. However, both the SEVIRI
and PROBA-V missions were not originally designed for
AOT retrieval. The GCOS requirement of 0.03 for low opti-
cal thickness translates into a radiometric noise requirement
much better than 2 (1) % at 0.4 (0.6) µm, well below the ra-
diometric performance of the SEVIRI and PROBA-V instru-
ments (Table 3). The duration of the corresponding missions,
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Figure 14. Box plots showing the CISAR AOT retrieval extrapolated at 0.55 µm (left y axis) against the AERONET data (x axis) for SEVIRI
(a) and PROBA-V (b) over all the selected stations. Only retrievals with QI≥ 0.2 are considered. The blue boxes represent the interquartile
range (IQR), the red horizontal line represents the median value, the vertical dashed bars represent the 1.5× IQR range and the black crosses
represent the outliers. Boxes with fewer than 10 points are not displayed. The green histograms represent the AERONET AOT distribution.
The right y axis shows the percentage of points contained in each bin.

however, provides a decisive advantage for the generation of
AOT data sets from these instruments. In the following, the
GCOS requirements are evaluated in terms of percentage of
retrievals satisfying them.

Figure 14 shows the evaluation of the retrieved AOT
against AERONET data for both SEVIRI (left panel) and
PROBA-V (right panel). The CISAR retrievals from SEVIRI
observations show a better agreement with the AERONET
data compared to the retrievals from PROBA-V observations.
This is in accordance with the poor radiometric performances
of the polar-orbiting instrument and with the outcome of the
information content analysis performed in Sect. 4.

The box plots in Fig. 14 show an overestimation of the re-
trieval for low AOT and an underestimation for large AOT.
Similar behaviour is also observed in Wagner et al. (2010).
The underestimation of large values might be partially due
to the temporal constraints described in Sect. 2.4, as they
might prevent the algorithm from fitting rapidly evolving
aerosol events associated with large AOT values. However,
the applied temporal constraints are intended to optimise
the retrieval of low aerosol concentration, given the global
distribution of AOT, which is normally smaller than 0.2
(Kokhanovsky et al., 2007). Additionally, very high AOT
normally corresponds to local events, especially in Europe
(e.g. plume, fire); therefore the AOT obtained by the retrieval
from the satellite pixel containing the AERONET station will
be lower than the one measured by the AERONET tower
(Jiang et al., 2007). The histograms in Fig. 14 show that
AOT values larger than 0.8 represent less than 5 % of the
total number AERONET observations, affecting the reliabil-
ity of the statistics for high values of AOT. The processing of

more data would be necessary to increase the confidence in
the results for high AOT values. Some examples of CISAR’s
ability to detect high AOT are shown in the Supplement.

The overestimation of low AOT might originate from the
different spatial scales of the satellite observations and the
ground measurements. Most of the selected AERONET sta-
tions are located in Europe (Fig. 1), where the SEVIRI pixel
resolution is about 5× 8 km (as opposed to 3× 3 km at the
subsatellite point), which is compared to AERONET point
measurement. The probability of residual cloud contamina-
tion on this scale might thus explain part of the overesti-
mation (Henderson and Chylek, 2005, Chand et al., 2012).
Furthermore, the shortest SEVIRI spectral band is centred
at 0.67 µm, where the sensitivity to low optical thickness is
about 2 times smaller than in the blue spectral region. Con-
sequently, the retrieval in these cases essentially relies on the
prior information regardless of the very large associated un-
certainty. Despite the presence of a blue band and a better
spatial resolution (1 km), the retrievals from PROBA-V ob-
servations still show an overestimation at low AOT due to
the poor radiometric performances which decrease the im-
portance of the information derived from the observations
and the lack of a thermal channel that leads to an unreliable
cloud mask.

The CISAR potential to discriminate between the fine and
coarse mode is analysed next. Figure 15 shows the fine-
to coarse-mode ratio distribution related to AERONET data
(in green) and CISAR retrieval for SEVIRI (in blue) and
PROBA-V (in red). It can been seen that the distribution
related to CISAR retrievals from SEVIRI and PROBA-V
observations underestimate the fine-mode concentration for
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Figure 15. Fine- to coarse-mode ratio distribution at 0.6 µm from
AERONET (green) and from CISAR applied to SEVIRI (blue) and
PROBA-V (red) observations.

τF
τC
> 3. The percentage of cases where CISAR succeeds in

retrieving a predominantly fine-mode contribution to the to-
tal AOT ( τF

τC
> 1) is equal to 80 % when the retrieval is

performed on SEVIRI acquisition and 62 % when CISAR
is applied to PROBA-V data. This represents an improve-
ment with respect to the land daily aerosol (LDA) algorithm
(Wagner et al. (2010), Table 4), where particles retrieved by
AERONET as spherical were correctly characterised by the
algorithm in only 12 % of cases. This represents a decisive
advantage of the proposed approach with continuous varia-
tions of the aerosol properties in the solution space, as op-
posed to the use of a limited number of aerosol classes, as
in Wagner et al. (2010). The coarse-particle retrieval appears
to be more challenging for both satellites. The percentage of
cases where the coarse mode is correctly retrieved as pre-
dominant are 43 % and 30 % for the retrievals from SEVIRI
and PROBA-V observations. The less accurate retrieval of
the coarse mode compared to the fine mode is expected, as
the considered wavelengths are less sensitive to the radii in
the range of the coarse particles than to those of fine ones
(Torres et al., 2017). This can also be observed in Table 8,
where the median magnitude of the coarse-mode Jacobian is
less than half of the fine-mode Jacobian.

6.3 Single-scattering albedo and asymmetry factor

In Sect. 3.2 the solution space defined by the aerosol classes
vertices has been described. CISAR retrieves the averaged
SSA and asymmetry factor within this solution space as
linear combinations of the single-scattering properties of
each selected aerosol vertex (Eqs. 8 and 9 of Part 1). Fig-
ures 16 and 17 show the SSA and asymmetry factor dis-
tributions related to the AERONET inversion product and

CISAR retrievals. All the AERONET inversions are consid-
ered without applying the quality test as in Holben et al.
(2006). The three data sets show similar distributions, al-
though spikes can be observed at the extremes of the CISAR
retrieval distributions. When the AERONET solution is lo-
cated outside the solution space, CISAR cannot converge to
it and the retrievals fall on the solution space boundaries,
causing the spikes. The aerosol vertices selection in Fig. 4
is conceived to limit the number of occurrences of these
spikes. Figure 17 shows that the g parameter distributions ob-
tained from PROBA-V observations is much narrower than
the same distribution related to AERONET and CISAR ap-
plied to SEVIRI observations. This is in line with what has
been discussed in Sect. 6.2 on the poorer CISAR perfor-
mances in retrieving the predominant mode when applied to
PROBA-V observations rather than the SEVIRI ones. In fact,
when computing g, the aerosol size distribution is the most
important parameter to measure (Andrews et al., 2006), an
inexact estimate of the dominant mode (fine or coarse) leads
to an erroneous measurement of the asymmetry parameter.

7 Discussion and conclusion

This paper describes and evaluates the application of the
CISAR algorithm to satellite observations acquired from
geostationary and polar-orbiting instruments. The theoreti-
cal aspects of CISAR, a new generic algorithm for the joint
retrieval of surface reflectance and aerosol properties, with
continuous variation of all the state variables in the solution
space, are described in Part 1. In the latter, CISAR is ap-
plied to simulated noise-free observations in the principal
plane. This paper provides an evaluation of the algorithm
in non-ideal situations, i.e. actual satellite observations ac-
quired from both geostationary and polar-orbiting satellites,
namely SEVIRI and PROBA-V.

The proposed retrieval method relies on an OE approach
which consists of the inversion of FASTRE, a simple radia-
tive transfer model composed of two horizontal layers. The
FASTRE model is evaluated in Sect. 2.5 showing an accu-
racy within 3 % when compared to a complex 1-D radiative
transfer model. Higher uncertainties are observed in spectral
bands affected by water vapour as a result of the limited ver-
tical discretisation.

The analysis of the information content of the satellite
observations is performed in Sect. 4. Though the PROBA-
V instrument has one blue channel, which is not present in
SEVIRI, the better radiometric performances of the geosta-
tionary satellite provide more information on the retrieval
of surface reflectance and aerosol properties than the polar-
orbiting instrument.

The CISAR retrieval is evaluated against independent data
sets. The retrieved AOT is compared to AERONET data. A
specific QI has been developed to disregard suspicious re-
trievals. With an RMSE of 0.162 for SEVIRI and 0.176 for
PROBA-V, CISAR shows better performances when applied
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Figure 16. SSA distributions at 0.6 µm (a) and 0.8 µm (b) for AERONET (green), and CISAR applied to SEVIRI (blue) and to PROBA-V
(red).

Figure 17. Same as Figure 16 but for the asymmetry factor.

to the geostationary satellite. CISAR retrieves the single-
scattering aerosol properties, assuming a linear behaviour of
g and ω0 in the solution space; although this assumption
is not exactly true when far from pure single-mode situa-
tions, CISAR-retrieved aerosol properties distributions are
in good agreement with the AERONET inversion products,
especially when the algorithm is applied to geostationary
observations, as discussed in Sect. 6.3. These differences
are explained by the different information content associ-
ated with the observations acquired by the two satellites.
For both satellites, the CISAR discrimination between fine
and coarse mode is improved with respect to the LDA algo-
rithm (Wagner et al., 2010), as the continuous variation of the
aerosol properties in the solution space allows more accurate
retrievals of the single-scattering properties with respect to
that LUT-based approach. The CISAR surface albedo is com-
pared with the MODIS product, showing a correlation higher

than 0.74 in all processed bands (with the exception of the
NIR PROBA-V band). The better performances of CISAR
in retrieving the surface reflectance rather than the AOT are
explained by the larger contribution to the TOA BRF of the
surface. The small variance of surface reflectance on a short
timescale allows a good prior definition based on the previ-
ous CISAR retrievals.

Several aspects of the new CISAR algorithm would still
require additional effort to improve its performance. The
analysis of the Jacobian median values has revealed the very
small magnitude of the fine- and coarse-mode AOT Jaco-
bians. The spectral and temporal constraints of the AOT vari-
ability play a critical role in supporting the assessment of
aerosol properties. However, these constraints might lead to
an underestimation of the AOT for large values. The impact
of cloud mask omission errors on the AOT overestimation
at low optical thickness deserves additional work. In order
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to reduce the impact of cloud contamination in the AOT re-
trieval, a new version of the CISAR algorithm is under de-
velopment in the framework of the ESA-SEOM ConsIstent
Retrieval of Cloud Aerosol Surface (CIRCAS) project (http:
//www.circas.eu/, last access: 21 Janaury 2019). The new ver-
sion of CISAR aims to retrieve both the AOT and the cloud
optical thickness (COT), overcoming the need for an external
cloud mask. Within the CIRCAS project, CISAR will be ap-
plied to observations acquired by the Sea and Land Surface
Temperature Radiometer (SLSTR) on board Sentinel-3.

As pointed out in Part 1, the limited number of state vari-
ables retrieved by CISAR allows the same algorithm to be ap-
plied to sensors which have not been originally designed for
aerosol or surface albedo retrieval. The possibility to apply
the same algorithm to data acquired by different instruments
for the retrieval of several essential climate variables (ECVs)
presents a decisive advantage, as it provides radiatively con-
sistent ECVs derived from different sensors. Conversely, the
use of separate methods for the retrieval of different variables
might lead to a radiance bias, which has to be corrected be-
fore the assimilation of these variables (Thépaut, 2003). The
effort for the assimilation of surface and atmospheric prod-
ucts could be reduced if the different ECVs were consistently
derived with one single algorithm. The consistent retrieval of
the state variables and the algorithm applicability to different
sensors represent an important advantage for the numerical
weather prediction (NWP) community, whose the main fu-
ture challenges are related to a more consistent retrieval of
Earth’s system components and to the availability of more
satellite data.

Data availability. Results presented in Sect. 6 are available from
the authors upon request.

Supplement. Included are the scatter plots of the BHR retrieved by
CISAR versus the BHR delivered by MODIS (Figs. S1, S2), and
a few examples of the CISAR high-AOT retrievals compared with
AERONET data. The supplement related to this article is available
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