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Abstract. The dominant hydrometeor types associated with
Brazilian tropical precipitation systems are identified via re-
search X-band dual-polarization radar deployed in the vicin-
ity of the Manaus region (Amazonas) during both the GoA-
mazon2014/5 and ACRIDICON-CHUVA field experiments.
The present study is based on an agglomerative hierarchical
clustering (AHC) approach that makes use of dual polarimet-
ric radar observables (reflectivity at horizontal polarization
ZH, differential reflectivity ZDR, specific differential-phase
KDP, and correlation coefficient ρHV) and temperature data
inferred from sounding balloons. The sensitivity of the ag-
glomerative clustering scheme for measuring the interclus-
ter dissimilarities (linkage criterion) is evaluated through the
wet-season dataset. Both the weighted and Ward linkages ex-
hibit better abilities to retrieve cloud microphysical species,
whereas clustering outputs associated with the centroid link-
age are poorly defined. The AHC method is then applied to
investigate the microphysical structure of both the wet and
dry seasons. The stratiform regions are composed of five hy-
drometeor classes: drizzle, rain, wet snow, aggregates, and
ice crystals, whereas convective echoes are generally associ-
ated with light rain, moderate rain, heavy rain, graupel, ag-
gregates, and ice crystals. The main discrepancy between the
wet and dry seasons is the presence of both low- and high-
density graupel within convective regions, whereas the rainy
period exhibits only one type of graupel. Finally, aggregate
and ice crystal hydrometeors in the tropics are found to ex-
hibit higher polarimetric values compared to those at midlat-
itudes.

1 Introduction

The use of dual-polarization (DPOL) radars over several
decades by national weather services as well as research lab-
oratories has deeply changed the understanding and forecast-
ing of many precipitation events around the world. By us-
ing a second orthogonal polarization, such weather radars
enable inference of the size, shape, orientation, and phase
state of different particles detected within the sampled cloud.
To date, the major advances that have been made as a re-
sult of DPOL radar sensitivities are mainly related to im-
provement in the distinction between meteorological and
non-meteorological echoes, attenuation correction, quantita-
tive rainfall estimation, and bulk hydrometeor classification
(Bringi and Chandrasekar, 2001; Bringi et al., 2007). By
combining DPOL radar observables (generally, reflectivity
at horizontal polarization, ZH; differential reflectivity, ZDR;
specific differential phase, KDP; and correlation coefficient,
ρHV) with some extra information such as temperature to lo-
cate the freezing level, the hydrometeor identification task
has been the subject of many research studies. Indeed, po-
tential benefits from this research topic are numerous such
as the evaluation of microphysical parameterization in high-
resolution numerical weather prediction models (e.g. Augros
et al., 2016; Wolfensberger and Berne, 2018), investigation
of relationships between microphysics and lightning (e.g.
Ribaud et al., 2016a), and improvement in weather nowcast-
ing for high-impact meteorological events (hailstorms, flight
assistance, and road safety).

Three hydrometeor classification schemes have been de-
veloped since the emergence of DPOL radar in the 1980s:
(1) supervised, (2) unsupervised, and (3) semi-supervised
techniques (Fig. 1).
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Figure 1. Schematic representation of the different hydrometeor classification techniques and their principal associated benchmarks.

1. The supervised method constitutes, by far, most of
the literature and is subdivided into three different
techniques: the Boolean tree method, fuzzy logic, and
the Bayesian approach. Here, the supervised technique
refers to a priori and arbitrarily identified hydrometeor
types from which DPOL radar responses have been de-
rived from either theoretical models or empirical knowl-
edge. Polarimetric observations are then assigned to the
most suitable hydrometeor types according to their sim-
ilarities.

– Boolean method. This technique is the easiest way
to identify dominant hydrometeor populations and
has consequently been the first to be used. The
algorithm relies on the beforehand definition of
the ranges of DPOL radar-observable values for
each hydrometeor type by the user. Then, a simple
Boolean decision is applied to retrieve the dominant
hydrometeor type (Seliga and Bringi, 1976; Hall
et al., 1984; Bringi et al., 1986; Straka and Zrnić,
1993; Höller et al., 1994). This approach, neverthe-
less, does not take into account the fact that differ-
ent hydrometeor types can be defined on the same
range of values for the same polarimetric radar ob-
servable and, therefore, frequently leads to misclas-
sification.

– Fuzzy-logic technique (Mendel, 1995). This super-
vised algorithm type fixed the previous limitation
by allowing a smooth transition of DPOL radar-
observable ranges for all hydrometeor types. The
originality of fuzzy logic is its ability to transform

sets of non-linear radar data into scalar outputs re-
ferring to different microphysical species. In this re-
gard, each hydrometeor-type distribution is charac-
terized by a membership function coming from ei-
ther T-matrix simulations (Mishchenko and Travis,
1998) or, less frequently, aircraft in situ measure-
ments. The hydrometeor inference is finally the re-
sult of a combination of membership functions and
a set of a priori rules defined by the user (Straka,
1996; Vivekanandan et al., 1999; Liu and Chan-
drasekar, 2000; Marzano et al., 2006; Park et al.,
2009; Dolan and Rutledge, 2009; Al-Sakka et al.,
2013; Thompson et al., 2014). This method is rela-
tively simple to implement and computationally in-
expensive. A few studies, such as the Joint Polar-
ization Experiment (Ryzhkov et al., 2005) for hail
detection or even the recent use of a fuzzy-logic al-
gorithm as an operational tool for national weather
services (Al-Sakka et al., 2013), have demonstrated
the robustness of this hydrometeor classification al-
gorithm type in singular environments.

– Bayesian approach. In this case, the hydrometeor
identification task is expressed in a probabilistic
form based on synthetic data derived from polari-
metric radar simulation of different hydrometeor
types (with each one being characterized by a cen-
tre and a covariance matrix). The final supervised
hydrometeor inference is then performed by adapt-
ing the maximum a posteriori rule. Another inter-
esting attribute of the Bayesian technique resides in
the appealing possibility of retrieving the liquid wa-

Atmos. Meas. Tech., 12, 811–837, 2019 www.atmos-meas-tech.net/12/811/2019/



J.-F. Ribaud et al.: X-band dual-polarization radar-based hydrometeor classification 813

ter content associated with each hydrometeor type
(Marzano et al., 2008, 2010).

2. More recently, Grazioli et al. (2015), or even Grazi-
oli et al. (2017), proposed an innovative unsupervised
approach to identifying the dominant hydrometeor dis-
tribution within precipitation events, where hydrome-
teor types are retrieved by gathering observable simi-
larities in DPOL radar data. Indeed, the unsupervised
technique refers to a set of unlabelled data observations
for which the goal is to group them into clusters shar-
ing similar properties based on innate structures of the
data (variance, distribution, etc.) and without using a
priori knowledge. To achieve this goal, the authors used
an agglomerative hierarchical clustering technique to-
gether with a spatial constraint on the consistency of
the classification (homogeneity). This data-driven ap-
proach mainly avoids the numerical-scattering simula-
tions used in fuzzy logic, which are well designed for
the liquid phase but questionable for ice-phase micro-
physics. Finally, interpretation of the clusters (labelling)
is done manually.

3. Although initially mentioned by Liu and Chandrasekar
(2000), the first complete study based on a semi-
supervised approach was done by Bechini and Chan-
drasekar (2015), recently followed by the works of Wen
et al. (2015, 2016) and Besic et al. (2016). This tech-
nique combines the advantages of the fuzzy logic and
clustering methods. The algorithm initially begins with
a fuzzy-logic classification, which is then adjusted by
a K-means clustering method that iteratively allows for
rectifying the initial membership function of each hy-
drometeor type according to the observed DPOL radar
measurements. In addition, constraints such as temper-
ature limits and/or spatial distribution can be imple-
mented in this self-adapting methodology.

Overall, these hydrometeor classification algorithms (HCAs)
still require in situ aircraft validations (especially within con-
vective cores) that are problematic due to their cost and, ob-
viously, the danger of obtaining such measurements. Only
a few studies have had the opportunity to use limited air-
craft measurements and generally compared a few isolated in
situ images with HCA outputs (Aydin et al., 1986; El-Magd
et al., 2000; Cazenave et al., 2016; Ribaud et al., 2016b).
Another limitation of these studies using methods such as
the fuzzy-logic approach is the dependency of their valid-
ity, since they are generally both wavelength- and climati-
cally radar-dependent. Although T-matrix simulations for a
radar wavelength have been theoretically demonstrated, each
final algorithm is then tuned by giving weights to each DPOL
radar observable to allow them to fit as closely as possible
with local ground observations. Finally, one can also see that
the related hydrometeor identification literature is mainly
concerned with the midlatitudes. Indeed, the methods were

initially developed for S-band radar before being adapted to
both C- and X-band radars, and research studies have largely
been done in North America, Europe, and Oceania.

The present study aims to develop the first HCA for
Brazilian tropical precipitation systems via an X-band dual-
polarization radar used in both the GoAmazon2014/5 and
ACRIDICON-CHUVA field experiments (Martin et al.,
2016, 2017; Wendisch et al., 2016; Machado et al., 2018).
Although the area constitutes an intriguing location with both
a high amount of rain and complex aerosol–cloud interaction
(e.g. Cecchini et al., 2017; Machado et al., 2018), there are al-
most no references for hydrometeor classification over trop-
ical land, especially for the Amazon region. In this regard,
the studies by Dolan et al. (2013) and Cazenave et al. (2016)
took place in singular locations (Darwin, Australia, and Ni-
amey, Niger, respectively). These studies used a supervised
fuzzy logic approach to retrieve the hydrometeor distribu-
tion within precipitation events with a C- and adapted X-
band scheme, respectively. As aforementioned, fuzzy-logic
algorithms use weights to constrain the final identification.
Another issue that might be related to hydrometeor identi-
fication tasks is the use of the melting layer as a parameter
to detect liquid-ice delineation. However, liquid water above
the melting layer within the convective tower of tropical sys-
tems is not unusual (Cecchini et al., 2017; Jäkel et al., 2017).
For instance, Cecchini et al. (2017) retrieved liquid water at
as low as −18 ◦C within polluted tropical convective clouds.
Classification using cluster analysis allows the use of natu-
ral (non-imposed) classes of ice-water species. For all these
reasons, the present paper deals with the first unsupervised
clustering method based on X-band DPOL radar measure-
ments in the Brazilian tropical region. Three main questions
are addressed in this paper. (1) What is the sensitivity of the
clustering algorithm to the different linkage methods, and
how can one improve the liquid–solid delineation? (2) What
are the hydrometeor classification output characteristics for
both wet and dry tropical seasons in Amazonas? (3) What
are the microphysical distribution differences within tropical
convective and stratiform cloud systems between the wet and
dry seasons?

The article is organized as follows: Sect. 2 provides a brief
description of the radar dataset, while Sect. 3 presents the
AHC method. The sensitivity of the AHC to the linkage
methods together with a potential temperature improvement
is assessed and discussed in Sect. 4. The hydrometeor iden-
tification for Brazilian tropical system events is presented in
terms of wet–dry seasons and stratiform–convective regions
in Sect. 5, while a discussion of hydrometeor distribution
comparisons is presented in Sect. 6.

2 Datasets and processing

The data used in this study are mainly based on DPOL
radar data observations collected during both the GoAma-
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Figure 2. (a) Geographical localization of the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. (b) X-band DPOL radar coverage
and its associated topography.

zon2014/5 and ACRIDICON-CHUVA experiments that took
place around the city of Manaus in the Amazonas state of
Brazil (Fig. 2). Both of these research experiments aimed to
investigate the complex mechanisms at play within tropical
weather through intriguing interactions between human ac-
tivities and the neighbouring tropical forested region. In this
regard, the present study considers the wet and dry seasons
as corresponding to the intensive operating periods (IOPs) of
the GoAmazon2014/5 field experiment (Martin et al., 2016),
which were from 1 February to 31 March 2014 (wet sea-
son: 59 days) and 15 August to 12 October 2014 (dry season:
60 days).

Among all the instruments deployed, a SELEX Gema-
tronik X-band DPOL radar was located in the city of Man-
acapuru in 2014 to complete the radar coverage from the
Manaus Doppler radar, as well as to provide more micro-
physical details about the South American monsoon meteo-
rological systems (Oliveira et al., 2016). The X-band DPOL
radar was operated at 9.345 GHz with a 1.3◦ beam width
at −3 dB and in simultaneous transmission and reception
(STAR) mode (Schneebeli et al., 2012; and Table 1). The
latter characteristic allows the reflectivity to be obtained
at horizontal polarization ZH, differential reflectivity ZDR,
differential-phase 8DP, and correlation coefficient ρHV. The
scanning strategy was designed to complete an entire volume
scan in 10 min by combining 15 different plan position indi-
cators (PPIs) ranging from 0.5 to 30◦, as well as two range
height indicators (RHIs) towards randomly different direc-
tions.

The raw radar dataset has been processed beforehand to be
used for the hydrometeor identification task. In this regard, a

four-step process has been applied to the DPOL radar dataset
which consists of (i) calibration of ZDR, (ii) identification
of meteorological and non-meteorological echoes, (iii) 8DP
filtering and estimation of the derivative specific differential-
phase KDP (Hubbert and Bringi, 1995), and (iv) attenuation
correction applied to both ZH and ZDR based on the ZPHI
method proposed by Testud et al. (2000). The calibration of
ZDR has been adjusted by using vertically pointing scans
for cases with no rain attenuation (drizzle/light rain). This
method allows the ZDR offset to be temporally calculated
since 0 dB is expected. The offset has been then removed in
subsequent ZDR measurements. A second analysis of ZDR
was occasionally realized by checking ZDR values within a
stratiform light-rain medium and characterized by ZH values
between 20 and 22 dBZ. The expected ZDR value was 0.2 dB
as shown by Illingworth and Blackman (2002) or Segond
et al. (2007). Note that the dataset has also been restricted
to precipitation events wherein the radome of the X-band
DPOL radar was dry in order to remove any additional at-
tenuation (Bechini et al., 2010). In addition to these consid-
erations, a signal-to-noise ratio of SNR ≥+10 dB as well
as a reduced radar coverage ranging from 5 to 60 km, have
been considered for this study to mitigate potential remain-
ing errors. The last processing step relies on the separation
of stratiform and convective radar echoes. The methodology
used in the present paper is the same as that used by Steiner
et al. (1995) and has been applied from a horizontal reflectiv-
ity field at a constant altitude plan position indicator (CAPPI)
generated at 3 km height (T > 0 ◦C).

The present study also deals with external temperature in-
formation coming from soundings launched near the X-band
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Table 1. X-band dual-polarization radar characteristics.

Location (3.21◦ S; 60.6◦W; 60.9 m)
Radar type Pulsed
Polarization H–V orthogonal
Transmission/reception Simultaneous
Antenna 1.8 m diameter, 1.3◦ 3 dB beamwidth
Antenna gain 43 dB
Frequency 9.345 GHz
Maximum range detection 100 km
Range resolution 200 m
10 min PPI elevation angles 0.5/1.3/2.1/3.2/4.3/5.6/7.1/8.8/10.8/13.0/15.6/18.5/21.8/25.6/30.0◦

radar (downwind of Manaus) at 00:00, 06:00, 12:00, 15:00,
and 18:00 UTC. The sounding with the closest time to the
radar measurements has been considered to derive the tem-
perature profile associated with both PPIs and RHIs.

3 Unsupervised agglomerative hierarchical clustering

The present hydrometeor classification algorithm is an unsu-
pervised AHC method that aims to partition a set of n ob-
servations into N different clusters. This technique works as
an iterative bottom-up method where each observation starts
in its own cluster and pairs of clusters are aggregated step
by step until there is one final cluster, which comprises the
entire dataset. Each cluster is composed of a group of obser-
vations sharing more similar characteristics than the observa-
tions belonging to the other clusters. Here, there is no a priori
information concerning the shape and size of each cluster or
the final optimized number of clusters. A posteriori analysis
is then performed through the final iterations to retrieve the
optimal clustering partition and respective labels.

Since the associated background already exists, the reader
is especially referred to Ward (1963) and Jain et al. (2000) for
detailed mathematical reviews of the technique. Addition-
ally, the present clustering framework is mainly based on the
methodology developed by Grazioli et al. (2015, Sect. 4 and
Fig. 2), hereafter referred to as GR15, and only relevant and
important information will be addressed hereafter to avoid
being redundant. The main steps of the present AHC can be
summarized as follows:

– Vectorized objects of radar observations are defined for
each valid radar resolution volume as

x = {ZH,ZDR,KDP,ρHV,1z},

where 1z is the difference between the radar resolution
height and the altitude of the isotherm at 0 ◦C, deduced
from sounding balloons.

– Since scales of radar polarimetric variables differ by or-
ders of magnitude, data normalization is applied to con-
catenate all the observations into a [0;1] common space.

The first four components of each object are based on
the minimum–maximum boundaries rule. The tempera-
ture information is redistributed by applying a soft sig-
moid transformation that allows a value of zero (one) to
be set for altitudes below (over) the bright band. Here,
the thickness of the bright band over the whole GoAma-
zon2014/5 – ACRIDICON-CHUVA database has been
manually estimated and set up to spread over a layer
of ±700 m. To obtain the maximum degrees of free-
dom in the initial dataset coming from the DPOL radar
measurements, here, the influence of the temperature in-
formation is mitigated by distributing its values into a
[0;0.5] range space.

– Although the radar data are now suitable for clustering,
the choice of two criteria still remains. At each itera-
tion of the AHC method, similarities and dissimilarities
must be evaluated to determine which clusters merge.
In this regard, the Euclidean metric is considered to cal-
culate the distance between different single objects. The
generalization of this distance metric to an ensemble of
objects is called the merging linkage rule. Various meth-
ods exist to evaluate interdissimilarities such as sin-
gle (nearest neighbour), complete (farthest neighbour),
averaged, weighted, centroid, or even Ward (variance
minimization) linkages (see Müllner, 2011). Herein, we
consider the weighted, centroid, and Ward linkage rules
(see Sect. 4.1).

– Running a clustering method over the whole dataset is
computationally very expensive. To tackle this problem,
a subset of approximately 25 000 initial observations is
randomly chosen through the whole precipitation events
database. The clustering method is initially applied to
the subset and then extended to the whole dataset by
using the nearest-cluster rule at each iteration.

– One of the major novelties proposed by GR15 relies
on the implementation of a spatial constraint that aims
to check the homogeneity of the clustering distribu-
tion at each iteration. More precisely, one assumes that
a smooth, horizontal transition exists between the re-
sulting hydrometeor field outputs. Therefore, a spatial

www.atmos-meas-tech.net/12/811/2019/ Atmos. Meas. Tech., 12, 811–837, 2019



816 J.-F. Ribaud et al.: X-band dual-polarization radar-based hydrometeor classification

Table 2. Distance formulas for the weighted, centroid, and Ward
linkage rules. Here, S and T are two clusters joined into a new clus-
ter, whereas V is any another cluster. nS , nT , and nV are the number
of objects contained in the clusters S, T , and V .

Linkage method Distance formula for d(S ∪ T ,V )

Weighted d(S,V )+d(T ,V )
2

Centroid
√
nSd(S,V )+nT (T ,V )

nS+nT
−
nSnT d(S,T )

(nS+nT )
2

Ward
√
(nS+nV )d(S,V )+(nT+nV )d(T ,V )−nV d(S,T )

nS+nT+nV

smoothness index is calculated at the end of each iter-
ation step and individual object by checking the four
closest geographical radar gates. In the very same way
as that used in GR15, results are summarized into a con-
fusion matrix, from which several spatial indexes can
be extracted to analyse the individual and global spatial
smoothness of a partition.

– The merging of two clusters is realized by identify-
ing the cluster which presents the lowest spatial sim-
ilarities among all clusters. Objects belonging to this
spatially poor cluster are then constrained to be redis-
tributed through the other existing clusters according to
the linkage method chosen. This final step allows a re-
duction of the total number of clusters by one.

– If the iteration process does not reach a single and
unique cluster, the iteration loop then restarts at the ini-
tial PPI classification and goes through the evaluation of
spatial homogeneity.

– Finally, an analysis of the variance explained has been
implemented to evaluate the consistency of the clus-
tering classification outputs. This quality metric allows
a definition of the theoretically appropriate number of
clusters by analysing the ratio between the internal and
external variance of each cluster at each step of the iter-
ation. The main idea here is to find the optimal cluster
distribution beyond which considering one more cluster
is not meaningful.

4 Methodology discussions

4.1 Linkage rule sensitivity

According to the set-up described in Sect. 3, different link-
age rules have been tested through the special wet-season ob-
servation period (February to March) of 2014. To perform
this sensitivity test, three different linkage rules have been
considered here: (i) weighted, (ii) centroid, and (iii) Ward

Figure 3. Evolution of the variance explained for different cluster-
ing linkage rules. Each linkage method is subdivided in terms of
stratiform (dashed line) and convective (solid line) regions. The or-
ange vertical span highlights the interval potentially associated with
the optimal number of clusters.

(see Table 2 for their respective formulas). Since the clus-
tering method randomly picks observations within the whole
wet-season period, a set of numerous runs for each linkage
method have been performed to extract, as much as possi-
ble, the most representative behaviour of each one. The gen-
eral common set-up is composed of a subset of 25 000 obser-
vations randomly picked through more than 50 precipitation
days. The temperature information is based on radiosounding
observations and is dispatched in a [0;0.5] interval to place
twice as much importance on the initial DPOL radar obser-
vations. The number of clusters reached in the first step of the
AHC method is set at 50 (far enough from the final partition
and not too computationally expensive). Finally, the cluster-
ing method has been conducted separately on stratiform and
convective regions.

In this respect, Fig. 3 presents the evolution of the vari-
ance explained (the ratio between the internal and external
variance) for the three different linkage rules as a function of
the number of clusters considered, together with their asso-
ciated precipitation regimes (stratiform or convective). Over-
all, the three methods exhibit an “elbow” curvature with an
optimal number of clusters ranging from approximately 5 to
8 (orange background on Fig. 3). One can see that from 2 to
5 clusters, the explained variances sharply increases, mean-
ing that each added cluster within this interval contributes
significantly to retrieving the most adequate cluster partition.
From 5 to 8 clusters, the increase starts to slow down, in-
dicating that considering a greater number of clusters is not
meaningful. In this regard, the best compromise seems to be
the weighted and/or Ward linkage method for both stratiform
and convective regions. Indeed, these methods have the high-
est scores, with approximately 99 % reached within the 5–
8 cluster interval.
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Due to the inherent complexity of representing all the
potential combinations, manual analysis and selection have
been performed beforehand to find the optimal number of
clusters between the stratiform and convective regions. The
results from this partitioning are presented through one strat-
iform and one convective RHI (Figs. 4 and 5).

In addition, fuzzy-logic information has been imple-
mented to make comparisons with cluster outputs. The
fuzzy-logic scheme is mainly based on the X-band algorithm
of Dolan and Rutledge (2009), hereafter referred to as DR09,
and has been slightly enriched for the wet-snow and melting-
hail hydrometeor types by Besic et al. (2016) through scat-
tering simulations and a temperature membership function
(Besic et al., 2016, Appendix A). Finally, the adapted fuzzy-
logic allows discrimination between nine hydrometeor types:
light rain (LR), rain (RN), melting hail (MH), wet snow
(WS), aggregates (AG), low-density graupel (LDG), high-
density graupel (HDG), vertically aligned ice (VI), and ice
crystals (IC).

Figure 4 shows a stratiform system exhibiting a well-
defined bright-band signature from polarimetric observations
that occurred on the shores of the Amazon River on 21 Febru-
ary 2014. Overall, the centroid linkage method does not re-
produce the event well, and the final representation is mi-
crophysically poor (Fig. 4f). Indeed, this linkage rule simply
divides the cloud into three homogeneous regions (T > 0 ◦C,
T ∼ 0 ◦C, and T < 0 ◦C). Additionally, the centroid linkage
fails to identify a clear bright-band region (Fig. 4f, clus-
ters 2S and 3S). On the other hand, the weighted and Ward
linkage methods are very close to the fuzzy-logic output de-
scriptions (Fig. 4e, g, h). They both exhibit two kinds of rain,
and a bright-band region sits below what appears to be an
aggregate–ice crystals mixture. The main discrepancy here
concerns the representation of the rain structure. The Ward
linkage rule retrieves two more distinct liquid species (as
does fuzzy logic), whereas the weighted linkage method ex-
hibits a smoother rainy region.

Figure 5 presents a decaying convective cell that occurred
on 2 February 2014 at 13:57 UTC (0–7 km from the radar:
stratiform region, 7–40 km from the radar: convective re-
gion). As is the case for the stratiform RHI in Fig. 4, the
centroid linkage rule fails to retrieve a detailed microphysi-
cal structure and only presents very homogeneous liquid and
solid regions. Once again, both the weighted and the Ward
linkage rules stand out and display a more realistic hydrom-
eteor description of the convective cloud in comparison to
the DPOL radar observations and the fuzzy-logic outputs
(Fig. 5a–e, g, h). Although they both present three clusters
for T > 0 ◦C, the weighted linkage rule puts more emphasis
on the convective region located ∼ 20–30 km from the radar
than does the Ward linkage (Fig. 5e, cluster 6C vs. Fig. 5g,
cluster 11C). The representation of the solid region (T <
0 ◦C) is almost the same, except for in the aggregate region
(Fig. 5h), which seems to be smaller for the weighted linkage
rule (Fig. 5e cluster 8C) than for the Ward method (Fig. 5g

cluster 10C). Another discrepancy between the weighted and
Ward linkages concerns the layer around the isotherm at
0 ◦C. Although Fig. 5 does not exhibit any bright-band re-
gion, the Ward linkage rule does exhibit one due to the tem-
perature input (Fig. 5g cluster 12C), whereas the weighted
rule does not. The bright-band region is known to be well
defined for stratiform regimes but quasi-undetectable (if de-
tectable at all) for convective areas (Leary and Houze Jr.,
1979; Smyth and Illingworth, 1998; Matrosov et al., 2007).
Throughout the present paper, one will thus consider only a
bright-band cluster for the stratiform regions, whereas con-
vective areas will be lacking one.

Overall, Figs. 3, 4, and 5 have shown that the centroid
linkage method is inappropriate for the present task, whereas
both weighted and Ward linkage rules are able to retrieve
a detailed microphysical structure within the sample cloud.
Based on the present description and our personal analysis
over the whole dataset, we chose to keep working with the
weighted linkage rule throughout the remainder of the paper.

4.2 Potential improvement around isotherm 0 ◦C

High amounts of liquid water a few kilometres above the
isotherm at 0 ◦C are not rare within the core of convective
tropical cells. Sometimes, super-cooled liquid drops can be
maintained and even moved upward within the melting layer,
thus occasionally giving distinctive column-shaped polari-
metric signatures for ZDR/KDP (e.g. Kumjian and Ryzhkov,
2008). A simple liquid–solid delineation based only on the
temperature profile is therefore unsuitable.

Figure 6 presents an adaptive solution for tackling this is-
sue based on the clustering outputs of the weighted linkage
rule. The solution proposed here relies on a posteriori anal-
ysis of the clustering outputs associated with the convective
regions. First, one proceeds to identify the convective core
under the isotherm at 0 ◦C (here, cluster 6C). Then, all radar
observations within the solid region are assigned by calcu-
lating their distance from the 6C cluster centroid without ap-
plying any temperature constraint (objects are thus defined
only by the first four radar components). If the distance is
smaller thanD < 0.25 and there is no discontinuity through-
out the liquid–solid delineation, then the solid identification
is switched to liquid (cluster 6C). Note that the distance D
has been empirically chosen for the present radar observa-
tions and could consequently be adjusted by exploring more
convective days. Overall, with this simple hypothesis, one
can see the potential of a such method (Fig. 6b). The liquid
cluster can thus reach 8 km in the core of the convection at
25 km from the radar, which matches well with the convec-
tive tower (> 35 dBZ) visible in Fig. 5a. Around this con-
vective core, the enhancement allows raindrops to be raised
by about 1 km upward in the 0 ◦C isotherm, restraining clus-
ter 6C at ∼ 5 km. In comparison to a simple binary delin-
eation such as that used for the fuzzy-logic outputs (Fig. 6a),
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Figure 4. X-band DPOL radar observables and the corresponding retrieved hydrometeor classification outputs at 12:07 UTC on 21 Febru-
ary 2014, along the azimuth 290◦. DPOL radar observables are shown in (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved
hydrometeors for clustering outputs based on (e) weighted, (f) centroid, and (g) Ward linkage rules and (h) fuzzy-logic scheme outputs. In
(e)–(g), each number corresponds to a different cluster. S stands for stratiform regimes, whereas C is for convective regimes.

the focus on radar observables in a second phase is then
promising.

5 Wet- and dry-season-dominant hydrometeor
classifications

This section aims to interpret and label each cluster retrieved
through both the wet and dry seasons over the Manaus re-
gion by using the AHC method set-up described in Sect. 3.
As the use of classification allowing liquid water above the
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Figure 5. Same as Fig. 4, but for 13:57 UTC on 13 February 2014, along the azimuth 200◦.

melting layer of convective towers needs further validation, a
standard classification is used to classify and analyse the wet
and dry hydrometeors using the temperature parameter.

5.1 Wet-season clustering outputs

The distributions of ZH, ZDR, KDP, ρHV, and 1z for each
cluster from the stratiform and convective clouds of the wet
season together with their probability densities are presented
in the violin plot in Figs. 7 and 8. The contingency ta-

ble between the stratiform (convective) clustering outputs
and the nine microphysical species retrieved by the DR09
adapted fuzzy-logic algorithm is shown in Table 3 (Table 4).
The complete wet-season cluster centroids are given in Ap-
pendix Table A1.

5.1.1 Stratiform region

Cluster 1S is only defined for negative temperatures and is
associated with high ρHV and low ZH, ZDR, and KDP val-
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Figure 6. Clustering hydrometeor classification retrieved from the X-band radar at 12:07 UTC on 21 February 2014, along the azimuth 290◦.
(a) With temperature constraint, (b) without temperature constraint.

Table 3. Confusion matrix comparing the clustering outputs from the stratiform region of the wet season and hydrometeor species retrieved
from the adapted fuzzy logic.

TYPE DZ RN MH WS AG LDG HDG VI CR

1S 38.64 % 0.01 % 0.00 % 10.34 % 32.91 % 1.31 % 0.00 % 4.47 % 12.34 %
2S 0.02 % 0.21 % 0.00 % 43.51 % 42.66 % 11.91 % 0.00 % 0.02 % 1.67 %
3S 64.36 % 27.55 % 0.21 % 7.88 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
4S 5.75 % 7.27 % 0.02 % 86.02 % 0.53 % 0.11 % 0.00 % 0.03 % 0.27 %
5S 98.04 % 0.00 % 0.27 % 1.68 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

ues (Figs. 4e and 7). One can see from contingency Table 3
that the cluster 1S repartition is mostly associated with aggre-
gates (∼ 33 %) and ice crystals (∼ 12 %) for high altitudes.
Although the horizontal and differential reflectivity values
are slightly higher than those for the DR09 T-matrix micro-
physical outputs and polarimetric characteristics retrieved by
GR15, one can make the assumption that the cluster 1S be-
haviour stands for ice crystals. On the other hand, cluster 2S
is closer to the DR09 T-matrix aggregates of microphysical
features. This cluster is characterized by a mean horizon-
tal (differential) reflectivity of ∼ 27 dBZ (∼ 1.3 dB), a low
specific differential phase (∼ 0.27 ◦ km−1), and a high coef-
ficient of correlation (0.97). Overall, the polarimetric signa-
tures of cluster 2S are mostly divided into the associated wet
and dry snow (aggregates) from the microphysical categories

of fuzzy logic (Table 3). Figure 4e allows discrimination be-
tween these categories, and one can consider that here clus-
ter 2S is associated with aggregates. Once again, its polari-
metric signatures are slightly higher than the DR09 T-matrix
values or even the GR15 aggregate clustering output. One ex-
plication behind these distributions being slightly shifted to
higher values can be the relative humidity, which is higher in
the tropics than at higher latitudes. The growth of ice crys-
tals/aggregates by vapour diffusion within this cloud region
(Houze, 1997) may lead to bigger solid particles (higher ZH
and ZDR values).

The bright-band region is well represented here by clus-
ter 4S. Indeed, its global distribution spreads only at the al-
titude of the isotherm at 0 ◦C and exhibits high ZH and ZDR
values, as well as low KDP and ρHV values. Finally, clus-
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Table 4. Same as Table 3, but for the convective region of the wet season.

TYPE DZ RN MH WS AG LDG HDG VI CR

6C 77.00 % 21.70 % 0.99 % 0.31 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
7C 0.00 % 0.16 % 0.00 % 21.69 % 7.70 % 69.01 % 1.44 % 0.00 % 0.00 %
8C 0.78 % 2.70 % 0.02 % 27.24 % 44.51 % 23.71 % 0.00 % 0.27 % 0.77 %
9C 0.10 % 0.00 % 0.00 % 9.86 % 55.90 % 5.83 % 0.00 % 9.15 % 19.16 %
10C 96.47 % 0.14 % 1.46 % 1.92 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
11C 31.42 % 62.98 % 1.24 % 4.36 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Figure 7. Violin plot of cluster outputs retrieved for the stratiform regime of the wet season (DZ is drizzle, RN is rain, WS is wet snow, AG
is aggregates, and IC is ice crystals). The thick black bar in the centre represents the interquartile range, and the thin black line extended from
it represents the 95 % confidence intervals, while the white dot is the median.
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Figure 8. Same as Fig. 7, but for the convective regime of the wet season (LR is light rain, MR is moderate rain, HR is heavy rain, GR is
graupel, AG is aggregates, and IC is ice crystals).

ters 3S and 5S present rain characteristics, since more than
90 % of these clusters are in agreement with the drizzle and
rain fuzzy-logic types from DR09. Although the two clus-
ters have the same behaviour, cluster 3S is characterized by
polarimetric signatures higher than those in cluster 5S, ex-
cept for the coefficient of correlation (0.97 vs. 0.99). In this
regard, one can consider that cluster 3S represents the rain
microphysical species, whereas cluster 5S is related to driz-
zle characteristics.

5.1.2 Convective region

Overall, one can see from Figs. 5 and 8 that the convective
regions of the wet season are composed of three types of hy-
drometeors for both positive (clusters 6C, 10C, and11C) and
negative temperatures (clusters 7C, 8C, and 9C).

Hail precipitation in the Amazonas region is rare, and as
expected, no clusters represent melting hail characteristics,
as in Ryzhkov et al. (2013) or Besic et al. (2016) (Table 4).
Therefore, clusters 6C, 10C, and 11C can be associated with
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three distinct rainfall precipitation regimes. In this regard,
cluster 10C presents the same light-rain characteristics as
both DR09 and GR15. The cluster is characterized by ZH
(ZDR) values approximately 13 dBZ (0.68 dB), and a KDP
(0.14 ◦ km−1) that is in high agreement with the drizzle hy-
drometeor type from the adapted fuzzy logic (∼ 97 %, Ta-
ble 4). According to this description, one can attribute clus-
ter 11C to the light-rain precipitation type. The two remain-
ing liquid clusters are associated with moderate and heavy
rainfall types with almost the same polarimetric signatures
as those given in GR15. Indeed, cluster 6C presents higher
ZH (44 vs. 31 dBZ), ZDR (2.1 vs. 1.4 dB), and KDP (1.9
vs. 0.8 ◦ km−1) mean values than those for cluster 11C. In
this regard, one can link cluster 6C to heavy rainfall and clus-
ter 11C to moderate rainfall.

Concerning negative temperatures, cluster 9C stands out
by being spread at the highest altitudes (Fig. 8e). This cluster
is defined by low ZH, ZDR, and KDP values together with a
moderate ρHV (∼ 0.97). One can note that cluster 9C is close
to the ice crystals and small aggregates retrieved by GR15
and is also the only cluster related to the T-matrix ice crystals
species from DR09 (Table 4). Within the decaying convective
cell presented in Fig. 5, one can observe that cluster 7C is
associated with the low-density graupel characteristics pro-
posed by DR09 and exhibits ZH (ZDR) values approximately
36 dBZ (0.8 dB). In addition, cluster 7C is mainly classified
(∼ 69 %) as low-density graupel (Table 4). Finally, the last
cluster, 8C, is surrounded by ice crystals and presents polari-
metric signatures lower than those for cluster 7C. Although
it is defined by higher values than those given by DR09 and
GR15, one can associate cluster 8C with the aggregate mi-
crophysical species. Indeed, contingency Table 4 shows that
45 % of the cluster 8C points are in agreement with this hy-
drometeor type.

5.2 Dry-season clustering outputs

As for the previous section, the clustering outputs retrieved
by the AHC method and the weighted linkage rule are iden-
tified and associated with their corresponding microphysical
species through the dry tropical season. The corresponding
cluster centroids are detailed in Appendix Table A2.

5.2.1 Stratiform region

Figure 9 shows the clustering classification outputs extracted
from an RHI presenting a melting layer region within a strat-
iform event that occurred on 8 September 2014 in the re-
gion of Manaus. Overall, the clustering outputs are close to
the hydrometeor distribution retrieved by the adapted DR09
fuzzy logic. Clusters 1S–2S retrieved for positive tempera-
tures appear well located in terms of polarimetric signatures
and fuzzy-logic outputs. One can see that the melting layer
region is clearly characterized by cluster 4S, whereas for neg-

ative temperatures, clusters 3S–5S show patterns close to the
fuzzy-logic outputs.

The violin plots in Fig. 10 and contingency Table 5 al-
low discrimination and labelling of these clusters. For DR09
classification, clusters 1S and 2S exhibit rainfall signatures.
Cluster 2S is in agreement with the fuzzy-logic drizzle cate-
gory (∼ 92 %), whereas cluster 1S is divided into the drizzle
(∼ 76 %) and rain (∼ 22 %) microphysical species. Between
these two clusters, one can observe that cluster 1S contains
the highest ZH, ZDR and KDP values, and one can conse-
quently label it as a rainfall type. Cluster 2S is, however, as-
sociated with the drizzle/light-rain category according to the
polarimetric radar signatures (GR15).

The liquid–solid delineation is represented here by clus-
ter 4S. It presents a low ρHV (∼ 0.93) and a large ZH dis-
tribution around ∼ 30 dBZ and is almost only defined for al-
titudes close to the 0 ◦C isotherm. In addition, contingency
Table 5 matches well with this hydrometeor association.

For the negative temperatures, the clustering outputs ex-
hibit two clusters, 3S–5S. The first is located within the
edge region of the cloud, whereas cluster 5S is distributed at
lower altitudes and is closer to particles of greater densities
(Fig. 10). Cluster 5S is in ∼ 70 % agreement with the aggre-
gate fuzzy-logic outputs (Table 5), and its polarimetric sig-
natures are close to those of GR15 and T-matrix simulations
from DR09. One can then define cluster 5S as the aggregate
microphysical species. Finally, ice crystals and small aggre-
gates are represented through cluster 3S, which is defined by
low ZH, ZDR, and KDP values and a high ρHV.

5.2.2 Convective region

Figure 11 shows an RHI of a convective system that occurred
in the late afternoon on 6 October 2014 in the region of Man-
aus. Overall, this RHI shows a convective cell (at 24–50 km
from the radar) together with its relative stratiform region (0–
23 km). Note that the abrupt transition from the convective
and stratiform classification areas (Figs. 5, 6, 11) is inherent
to the Steiner et al. (1995) algorithm. In terms of microphys-
ical distribution, there should be some consistency between
the two cloud types. The implementation of continuity anal-
ysis may prevent the latter artefacts. The convective cell is
characterized by ZH values up to 25 dBZ at 14 km, and the
cloud top exceeds 16 km. According to the fuzzy-logic out-
puts (Fig. 11f), the cell mostly exhibits rainfall precipitation
for positive temperatures. The corresponding cluster outputs
retrieve the same signatures, dividing the rain pattern into
three different clusters: 6C, 7C, and 12C. Once again, the
fuzzy logic collocates a bright band around the isotherm at
0 ◦C, whereas neither polarimetric signatures nor clustering
outputs exhibit a bright band. For negative temperatures, the
AHC method retrieves four clusters (8C, 9C, 10C, and 11C),
the same as the fuzzy-logic outputs.

The violin plots in Fig. 12 and contingency Table 6 allow
discrimination and labelling of these clusters. For the con-
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Figure 9. X-band DPOL radar observables and the corresponding retrieved hydrometeor classification outputs at 21:26 UTC on 8 Septem-
ber 2014, along the azimuth 200◦. DPOL radar observables are shown in (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved
hydrometeors for clustering outputs based on (e) weighted linkage rules and (f) the fuzzy-logic scheme. In (e)–(f), each number corresponds
to a different cluster. S stands for the stratiform region, whereas C is for the convective region.

vective regions observed during the wet season, hail precipi-
tation is rare in the Amazonas. Contingency Table 6 is also in
agreement with this description, since none of the clustering
outputs exceed 3 %. Therefore, one can attribute clusters 6C,
7C, and 12C to three different rainfall precipitation regimes,
ranking the cluster positions as follows: 12C presents weaker
ZH, ZDR, and KDP values than cluster 7C, which presents

lower values than cluster 6C (Fig. 12). In addition, one can
see from contingency Table 6 that all three are in very high
agreement with the drizzle and rain microphysical species.
Based on the aforementioned description together with the
Fig. 11 analysis, one can attribute cluster 12C to light rain-
fall, cluster 7C to moderate rainfall and, finally, cluster 6C to
the heavy-rainfall type.
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Figure 10. Same as Fig. 7, but for the stratiform regime of the dry season (DZ is drizzle, RN is rain, WS is wet snow, AG is aggregates, and
IC is ice crystals).

Table 5. Same as Table 3, but for the stratiform region of the dry season.

TYPE DZ RN MH WS AG LDG HDG VI CR

1S 76.30 % 22.17 % 0.10 % 1.43 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
2S 92.32 % 4.36 % 0.65 % 2.63 % 0.02 % 0.00 % 0.00 % 0.01 % 0.00 %
3S 0.25 % 0.00 % 0.00 % 2.65 % 41.61 % 2.19 % 0.00 % 21.18 % 32.12 %
4S 0.97 % 1.30 % 0.00 % 49.30 % 18.46 % 26.83 % 0.23 % 0.44 % 2.48 %
5S 0.30 % 0.03 % 0.00 % 8.28 % 68.48 % 3.99 % 0.00 % 5.29 % 13.62 %
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Figure 11. Same as Fig. 9, but for an RHI at 18:16 UTC on 6 October 2014, along the azimuth 200◦.

Concerning all clusters spreading at negative tempera-
tures, cluster 11C matches well with the high-density grau-
pel category defined by DR09 such as “graupel growing in
regions of large supercooled water contents, melting grau-
pel, and freezing of supercooled rain”. Based on contingency
Table 6, this cluster is mainly associated with wet snow and
slightly with the low-density graupel microphysical specie.
Nevertheless, one can see that the ρHV distribution is pretty
low (∼ 0.94) and could also be the signature of wet graupel
(due to melting or wet growth) or a mixture of graupel and

hail, as suggested by Straka et al. (2000) and Kumjian and
Ryzhkov (2008). This cloud region is surrounded by low-
density graupel, characterized by cluster 9C (Figs. 11–12).
This hydrometeor type shows 60 % agreement with this mi-
crophysical type within contingency Table 6 and is close to
the DR09 T-matrix outputs. Cluster 10C shares more than
50 % with the aggregate type and 30 % with the low-density
graupel type, whereas cluster 8C is associated in general with
ice crystals and aggregate types (Table 6). With Figs. 11–12
and the aforementioned description, one can analyse clus-
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Figure 12. Same as Fig. 7, but for the convective regime of the dry season (LR is light rain, MR is moderate rain, HR is heavy rain, LDG is
low-density graupel, HDG is high-density graupel, AG is aggregates, and IC is ice crystals).

Table 6. Same as Table 3, but for the stratiform region of the dry season.

TYPE DZ RN MH WS AG LDG HDG VI CR

6C 73.71 % 23.34 % 2.60 % 0.34 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
7C 21.61 % 73.56 % 1.00 % 3.83 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 %
8C 0.07 % 0.01 % 0.00 % 5.62 % 51.01 % 2.70 % 0.00 % 12.72 % 27.87 %
9C 0.16 % 2.32 % 0.00 % 27.80 % 7.41 % 60.40 % 1.86 % 0.00 % 0.04 %
10C 0.79 % 0.17 % 0.00 % 13.48 % 51.19 % 30.91 % 0.00 % 0.83 % 2.63 %
11C 0.00 % 15.29 % 0.51 % 64.19 % 0.19 % 11.4 % 7.72 % 0.00 % 0.00 %
12C 97.19 % 0.00 % 0.41 % 2.34 % 0.06 % 0.00 % 0.00 % 0.01 % 0.00 %
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ter 9C as low-density graupel, cluster 10C as aggregates, and,
finally, cluster 8C as ice crystals.

6 Discussion

6.1 Impact of the clustering method and location

The present results allow us to make a brief comparison
of the classical supervised fuzzy-logic technique commonly
used in the literature and the unsupervised AHC method.
In opposition to the rigid structure of a fuzzy-logic algo-
rithm, the flexibility of the clustering approach allows better
identification of the bright-band region. Indeed, the liquid–
solid delineation around the 0 ◦C isotherm is better captured
and distinguished by the AHC method, which preferentially
follows the polarimetric signatures instead of the stratified
temperature region. Additionally, one can see the ability of
the AHC method to fully exploit the high sensitivity of the
X-band radar frequency to distinguish between three differ-
ent (light, moderate, and heavy) rainfall regimes such as in
GR15. This enhancement allows, for instance, for more em-
phasis on severe convective precipitation cells and may open
new perspectives for nowcasting issues.

Note that the present clustering method has been distinctly
subdivided into stratiform and convective regions. Although
they are characterized by different thermodynamic structures
(Houze, 1997), the stratiform and convective regions may be
related in terms of microphysical distributions, such as ice
particles which might be ejected from the top of an active
convective cell into the upper part of the stratiform region.
This microphysical continuity could be further considered ei-
ther by merging stratiform and convective hydrometeor types
that present close DPOL characteristics (Figs. 7, 8, 10, and
12) or by implementing an a posteriori continuity analysis.

The location of the present study also offers the possibil-
ity of discussing midlatitude and tropical microphysical dif-
ferences. As described in Sect. 5, the dominant tropical hy-
drometeor classification overlaps with some midlatitude mi-
crophysical species definitions. For instance, one can see that
both the aggregate and ice crystal microphysical species are
skewed to higher horizontal (differential) reflectivity, regard-
less of the season and region (stratiform/convective) consid-
ered. These discrepancies might be attributed either to an in-
accurate attenuation correction or inherent tropical charac-
teristics involved within microphysical ice growth. Although
we considered a limited radar coverage, regions with high
SNR values, as well as precipitation-only events having a
dry radome, the ZPHI method may still lead to overcorrec-
tion, especially on ZDR in strong convective cases when the
Mie scattering may dominate the precipitation regions. An-
other explanation of these discrepancies may rely on tropical
atmospheric characteristics that present higher tropospheric
humidity profiles together with higher incident solar radia-
tion, playing an important role in comparison to midlatitudes.

6.2 Wet–dry season differences

The investigation of some Amazonian wet–dry season dif-
ferences has already been explored by a few studies. For
instance, Machado et al. (2018) noted that, during both
the GoAmazon2014/5 and ACRIDICON-CHUVA field cam-
paigns, the wet-season overall mean cumulative rain was 4
times as much as that during the dry season. However, though
characterized by a low amount of total rainfall, the dry season
presents the higher rainfall rate (Dolan et al., 2013; Machado
et al., 2018). According to Machado et al. (2018), these dis-
crepancies can partly be explained by the fact that the dry
season presents higher convective available potential energy
(CAPE) and lower cloud cover than the wet season. Another
study conducted by Giangrande et al. (2017) also examined
the wet–dry season differences through convective clouds.
The authors showed that warm clouds exhibit larger cloud
droplets and that the stratiform region during the wet season
is much more developed than during the dry season (due to
surrounding monsoon ambient characteristics).

All these differences are expected to contribute to the wet–
dry season differences. Here, one can address for the first
time these discrepancies through the dominant microphysical
patterns in terms of stratiform and convection precipitation
regimes associated with the Central Amazonas (Manaus re-
gion). Based on this new hydrometeor classification adapted
to the tropical region, this section explores the differences
among the clouds related to these two seasons.

6.2.1 Stratiform region

Figure 13 presents a comparison of pairs of stratiform hy-
drometeor types between the wet and dry seasons. For pos-
itive temperatures, both the drizzle and rain microphysical
species present higher ZH and lower ZDR values during the
dry season than during the wet season. These polarimetric
signatures might be attributed to the evaporation and colli-
sional processes that tend to reduce the particle diameters
(Kumjian and Ryzhkov, 2010; Penide et al., 2013). The sep-
aration between the drizzle/light rain and the rain microphys-
ical species is defined for a rainfall rate of approximately
2.5 mmh−1 (American Meteorological Society, 2018). The
classical Marshall–Palmer Z–R relationship allows an esti-
mation of the rainfall rate for stratiform precipitation. In this
regard, the wet-rain microphysical species is characterized,
on average, by a rainfall rate of 1.84 mmh−1, whereas the
rate is up to 3 mmh−1 during the dry season. The general
wet-rain microphysical species distribution thus still contains
drizzle/light-rain observations, which might be due to the dif-
ferent cloud cover patterns associated with stratiform echoes
during the two seasons. As noted by Machado et al. (2018),
stratiform cloud cover related to the rainy season is more as-
sociated with a monsoon cloud regime than during the re-
maining season. While the dry season stratiform regime is
directly the result of the rain convective cells, the wet strati-
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Figure 13. Violin plot comparison of pairs of stratiform hydrometeor types between the wet and dry seasons (DZ is drizzle, RN is rain, WS
is wet snow, AG is aggregates, and IC is ice crystals).

form cover may also refer to large ambient unrelated residual
precipitation far outside the original convective cloud.

Overall, the melting layer, which is represented here
through the wet-snow microphysical species, is consistent
with the results of previous studies (Durden et al., 1997; Gi-
angrande et al., 2008; Heymsfield et al., 2015; Wolfensberger
et al., 2016; Wang et al., 2018). The vertically restricted layer
of wet snow presents the most widespread distribution ofZH,
ZDR,KDP and ρHV of all the retrieved microphysical species
and for both seasons. One can see that the wet-season distri-
bution differs from the dry season, as its distribution is more

associated with lower (higher) ZH (ZDR) values. The main
discrepancy here is related to the ZDR distribution, which
has stronger values during the wet season by approximately
1 dB. According to the study of Wang et al. (2018), which put
emphasis onto mature mesoscale convective system events
during the GoAmazon2014/5 experiment, the wet season al-
ways presents stronger bright-band signatures that might be
attributed to more prominent aggregation processes. Indeed,
the moist conditions at midlevels could promote more ice
growth in the stratiform regions (as compared to the dry sea-
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son) and could lead to stronger bright-band signatures when
those aggregates melt.

One of the main differences in the cloud structure between
the wet and dry season relies on the cloud-top altitudes. In-
deed, during the dry season, clouds can easily reach 16–
17 km in the tropics compared to only 13–14 km during the
wet season. Therefore, the microphysical processes for nega-
tive temperatures are distributed over two different thickness
layers and moisture profiles. In this cloud region, ice crystals
grow by vapour diffusion until they have sufficient weight to
start falling and forming aggregates (Houze, 1997). Although
they present quite similar distributions, they both spread with
about a 1.5 km interval difference in altitude. Additionally,
the ZDR values associated with aggregates and ice crystals
are generally slightly higher than those retrieved in DR09 or
GR15. However, this result is consistent with the study of
Wendisch et al. (2016), which identified shaped plates of ag-
gregates and crystals in the anvil outflow with in situ airplane
observations.

6.2.2 Convective region

Figure 14 presents a comparison of pairs of convective mi-
crophysical species between the wet and dry seasons. As
aforementioned in Sect. 5, the dry season is composed of
seven hydrometeor types compared to six for the wet sea-
son. While the rainy season only has a graupel microphysi-
cal species, the dry season allows a distinction between low-
and high-density graupel. Therefore, the graupel microphysi-
cal species defined during the wet season has been associated
with the low-density graupel of the dry season to make this
comparison possible.

Convective regions are characterized by three different
rainfall regimes: light, moderate, and heavy rain. Overall,
the ZH, ZDR, and KDP distributions associated with the dry
season are generally shifted towards higher values. The dry
season is known to exhibit the most intense convective cells
(Machado et al., 2018). Their corresponding precipitation
formation mechanism is generally dominated by ice micro-
physical processes, wherein the melting of graupel particles
leads to large raindrops (Rosenfeld and Ulbrich, 2003; Dolan
et al., 2013). One can see here that, although growth by co-
alescence could be very efficient during the wet season, the
production of larger raindrops results mostly from ice micro-
physical processes.

Overall, the combination of the wet-season graupel mi-
crophysical species with the dry season low-density graupel
makes sense in Fig. 14. Indeed, they have almost the same
polarimetric range distributions and are in agreement with
each other. By contrast, the high-density graupel signatures
are correlated with high ZH, ZDR, and KDP values and low
ρHV values. As mentioned in Sect. 5.2.2, high-density grau-
pel would have been associated with a mixture of wet grau-
pel and small hail. Nevertheless, these three related graupel

categories are even consistent with the DR09 T-matrix defi-
nitions.

The main discrepancy between the aggregate and ice crys-
tal microphysical species concerns their altitude definitions,
wherein the dry season allows these hydrometeor types to
be generated at higher altitudes. Systematically, the aggre-
gate and ice crystal ZH and ZDR distributions are shifted
to higher values during the wet season. These shifts may be
due to an unreliable estimation of the attenuation correction
or explained by the results of Rosenfeld and Lensky (1998)
and Giangrande et al. (2017). Both of these studies showed
that, during the dry season, updraughts are more intense and,
therefore, do not allow enough time for small ice crystals to
properly develop. In terms of aerosol concentrations, the wet
Amazonian season is known to be much cleaner than the dry
season (Artaxo et al., 2002). With this regard, Williams et
al. (2002), Cecchini et al. (2017), or even Braga et al. (2017)
highlighted its impact on the microphysical development of
tropical cloud particles, showing that high aerosol concentra-
tions may lead to smaller liquid particles within strong up-
draught regions. Small drops are known to freeze at colder
temperatures by inhibiting the ice multiplication processes
(Hallet and Mossop, 1974), and may account for the wet–dry
season differences observed.

7 Conclusions

Based on an innovative clustering approach, the first hydrom-
eteor classification for Amazon tropical-equatorial precipi-
tation systems has been realized by using research X-band
DPOL radar deployed during both the GoAmazon2014/5 and
ACRIDICON-CHUVA field experiments. The AHC method
was broadly equivalent to GR15 and built using ZH, ZDR,
KDP and pHV polarimetric radar variables together with tem-
perature information extracted from sounding balloons. The
clustering approach allowed of polarimetric radar observa-
tions to be gathered that exhibit similarities within both wet
and dry seasons and both stratiform and convective regions.
Sensitivity analysis during the wet season was performed
through different linkage rules and showed that both the
weighted and Ward linkage rules were the most suitable for
this hydrometeor classification task. In this regard, a novel
approach was tested to improve the 0 ◦C hydrometeor layer
representation within the convective region. While the 0 ◦C
isotherm region is generally binarily represented, one can al-
low the liquid water content to overpass this region by setting
simple rules. The final representation showed a realistic dis-
tribution and created new perspectives to respect polarimetric
radar signatures as much as possible.

The AHC clustering outputs for both the wet and dry sea-
sons and the stratiform and convective regions were inves-
tigated over the Manaus region with the complete datasets
collected during 2014. Although previous studies were con-
ducted for different latitudes and/or wavelengths, the re-
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Figure 14. Same as Fig. 13, but for the convective precipitation regime (LR is light rain, MR is moderate rain, HR is heavy rain, LDG is
low-density graupel, HDG is high-density graupel, AG is aggregates, and IC is ice crystals).

trieved hydrometeor types were found to be generally in
agreement. Overall, typical cloud microphysical distributions
within the stratiform precipitation regimes are characterized
by five hydrometeors: drizzle/light rain, rain, wet snow, ag-
gregates, and ice crystals. On the other hand, convective
regions exhibit more diversified microphysical populations
with six (seven) retrieved hydrometeor types for the wet (dry)
season: light rain, moderate rain, heavy rain, low-density
graupel, (high-density graupel), aggregates, and ice crystals.

The present study also highlighted the potential of the
clustering approach in comparison to a more “classical” su-

pervised fuzzy-logic algorithm. For instance, the clustering
results showed a better ability to delimit and distinguish the
bright-band region. The AHC method also allowed the higher
sensitivity of the X-band radar to be exploited and permitted
the retrieval of three different rainfall regimes by exhibiting
light, moderate, and heavy intensities.

The retrieved labelled clusters allowed comparisons of the
dominant microphysical species involved during both the wet
and dry seasons of Brazilian tropical precipitation systems.
Thus, the main discrepancy relies on the presence of one
more microphysical species within the convective region of
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the dry season, defined as high-density graupel. This micro-
physical species is probably the result of a deeper convection
associated with precipitation systems that occur during this
period of the year.

Overall, the dry season ZH, ZDR, and KDP distribution
shapes were quite similar to those of the rainy period; how-
ever, the distributions were shifted towards higher (lower)
values for positive (negative) temperatures. The different
rainfall intensities associated with the dry season generally
exhibited higher ZH, ZDR, andKDP values than those during
the wet season, leading us to believe that ice microphysical
processes outweigh warm-rain microphysical mechanisms.
Finally, the retrieved tropical microphysical species distribu-
tion showed that both aggregates and ice crystals were shifted
towards higher radar observable values in comparison to the
midlatitude X-band definition. These signatures might be due
to the presence of a higher humidity amount within tropical
regions, which may allow more dendritic-plate growth of ag-
gregate and ice crystal microphysical species.

Although the year 2014 was representative and complied
with typical tropical precipitation events, the present study
could be strengthened by an extended dataset as well as
the use of (i) in situ observations for validation tasks and
(ii) aerosol information to investigate microphysical differ-
ences between the wet and dry season. Nevertheless, this
first detailed analysis of dominant hydrometeor distributions
within tropical precipitation systems is promising and could
also be extended to other radar frequencies and operational
DPOL radars. Such improvements could be useful for identi-
fying key microphysical parameters for nowcasting issues,
which are expected to be investigated in the near future
through both the SOS-CHUVA (Brazil) and RELAMPAGO
(Argentina) research projects. In this regard, the clustering
methodology could be enhanced by taking into account the
Doppler velocities to explore the microphysical processes in-
volved within vigorous updraught and downdraught regions
of the cloud. Finally, these results could also be helpful in
evaluating the microphysical parameterization schemes used
within high-resolution numerical weather prediction models.

Data availability. The data set used in this study was col-
lected during the GoAmazon2014/5 field experiment, which is
part of the CHUVA project. Data can be accessed through
the CHUVA portal (http://chuvaproject.cptec.inpe.br/, last ac-
cess: 1 February 2019) or through the ARM Research Fa-
cility and the dedicated GoAmazon2014/5 field experiment
archive (https://iop.archive.arm.gov/arm-iop/2014/mao/goamazon/
T3/biscaro-xband_radar/, last access: 1 February 2019).
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Appendix A: Wet- and dry-season cluster centroids

Table A1. Cluster centroids for the wet season.

Cluster Label ZH (dBZ) ZDR (dB) KDP (◦ km−1) ρHV (–) 1z (km)

1S
Ice crystals

17.18 1.17 0.21 0.98 +2.23
Small aggregates

2S Aggregates 27.09 1.31 0.27 0.97 +1.25
3S Rain 27.28 1.43 0.10 0.97 −2.49
4S Wet snow 27.54 1.83 0.07 0.95 −0.10
5S Drizzle 13.84 1.21 0.02 0.99 −3.00

6C Heavy rain 44.18 2.09 1.88 0.98 −2.81
7C Graupel 36.28 0.74 0.34 0.98 +2.76
8C Aggregates 28.94 0.75 0.20 0.98 +2.32

9C
Ice crystals

17.62 0.91 0.22 0.97 +3.07
Small aggregates

10C Light rain 13.21 0.68 0.14 0.96 −2.81
11C Moderate rain 31.09 1.39 0.50 0.98 −2.74

Table A2. Cluster centroids for the dry season.

Cluster Label ZH (dBZ) ZDR (dB) KDP (◦ km−1) ρHV (–) 1z (km)

1S Rain 31.43 1.27 0.25 0.98 −3.12
2S Drizzle 20.66 0.89 0.07 0.98 −3.16

3S
Ice crystals

13.61 0.11 0.06 0.98 +3.65
Small aggregates

4S Wet snow 29.18 0.85 0.17 0.93 +1.40
5S Aggregates 19.65 0.71 0.11 0.98 +3.04

6C Heavy rain 46.70 2.38 3.12 0.97 −2.90
7C Moderate rain 34.18 1.24 1.06 0.97 −2.82

8C
Ice crystals

16.69 0.43 0.11 0.97 +3.85
Small aggregates

9C Low-density graupel 36.79 0.78 0.59 0.97 +1.96
10C Aggregates 24.75 0.45 0.18 0.98 +3.20
11C High-density graupel 46.36 2.20 2.50 0.94 +0.50
12C Light rain 14.47 0.27 0.21 0.97 −2.89
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