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Abstract. The characterisation of errors and uncertainties in
numerical weather prediction (NWP) model fields is a major
challenge that is addressed as part of the Horizon 2020 Gap
Analysis for Integrated Atmospheric ECV CLImate Monitor-
ing (GAIA-CLIM) project. In that regard, observations from
the GCOS (Global Climate Observing System) Reference
Upper-Air Network (GRUAN) radiosondes are being used
at the Met Office and European Centre for Medium-Range
Weather Forecasts (ECMWF) to assess errors and uncertain-
ties associated with model data.

The software introduced in this study and referred to as the
GRUAN processor has been developed to collocate GRUAN
radiosonde profiles and NWP model fields, simulate top-of-
atmosphere brightness temperature at frequencies used by
space-borne instruments, and propagate GRUAN uncertain-
ties in that simulation. A mathematical framework used to
estimate and assess the uncertainty budget of the comparison
of simulated brightness temperature is also proposed.

A total of 1 year of GRUAN radiosondes and matching
NWP fields from the Met Office and ECMWF have been
processed and analysed for the purposes of demonstration
of capability. We present preliminary results confirming the
presence of known biases in the temperature and humidity
profiles of both NWP centres. The night-time difference be-
tween GRUAN and Met Office (ECMWF) simulated bright-
ness temperature at microwave frequencies predominantly
sensitive to temperature is on average smaller than 0.1 K
(0.4 K). Similarly, this difference is on average smaller than
0.5 K (0.4 K) at microwave frequencies predominantly sensi-
tive to humidity.

The uncertainty estimated for the Met Office–GRUAN dif-
ference ranges from 0.08 to 0.13 K for temperature-sensitive
frequencies and from 1.6 to 2.5 K for humidity-sensitive fre-
quencies. From the analysed sampling, 90 % of the compar-
isons are found to be in statistical agreement.

This initial study has the potential to be extended to a
larger collection of GRUAN profiles, covering multiple sites
and years, with the aim of providing a robust estimation of
both errors and uncertainties of NWP model fields in radi-
ance space for a selection of key microwave and infrared fre-
quencies.

Copyright statement. The works published in this journal are
distributed under the Creative Commons Attribution 4.0 License.
This license does not affect the Crown copyright work, which
is re-usable under the Open Government Licence (OGL). The
Creative Commons Attribution 4.0 License and the OGL are
interoperable and do not conflict with, reduce or limit each other.

© Crown copyright 2018

1 Introduction

Space-borne observational datasets are EOS key compo-
nents that have led to significant advances in climate and
weather applications (Joo et al., 2013; Bauer et al., 2015;
Hollmann et al., 2013; Bojinski et al., 2014) and therefore
must be subject to high standards of calibration and valida-
tion to meet user requirements. As part of an overall strategy
for a harmonised and improved instrument calibration, the
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World Meteorological Organization (WMO), Coordination
Group for Meteorological Satellites (CGMS), and Global
Space-based Inter-Calibration System (GSICS) have advo-
cated the need to tie the measurements to absolute references
and primary standards (WMO, 2011, https://library.wmo.
int/doc_num.php?explnum_id=3710, last access: 2 January
2019; GSICS, 2015, http://www.wmo.int/pages/prog/sat/
documents/GSICS-RD002_Vision.pdf, last access: 2 Jan-
uary 2019). In most cases, however, commonly used valida-
tion techniques, as discussed by Zeng et al. (2015) and Loew
et al. (2017), do not yet provide a full metrological traceabil-
ity.

For a full metrological traceability and uncertainty quan-
tification, Green et al. (2018) suggested mirroring the mea-
surement protocols as described by Immler et al. (2010). Ac-
cordingly, consistency between two independent measure-
ments, m1 and m2, is achieved when

|m1−m2|< k

√
σ 2+ u2

1+ u
2
2, (1)

where u1 and u2 are the total uncertainties associated withm1
and m2, respectively. σ represents the intrinsic uncertainties
of the comparison. In the case of a comparison between ra-
diosonde and satellite observations for example, this term can
represent the collocation uncertainty (Calbet et al., 2017). k is
a coverage factor expanding the confidence interval for nor-
mally distributed error probability.

In this paper, we use the terms error and uncer-
tainty as described in the International Vocabulary of
Metrology (VIM) (JCGM, 2012, https://www.bipm.org/en/
publications/guides/vim.html, last access: 2 January 2019).
The uncertainty is described in the VIM as a non-negative
parameter characterising the dispersion of the quantity val-
ues being attributed to the quantity intended to be measured,
based on the information used. It is emphasised that all com-
ponents of the uncertainty contribute to this dispersion. This
includes systematic effects arising from, for example, correc-
tions or reference standards. If a systematic effect is unknown
it is unaccounted for in the uncertainty budget but contributes
to the error.

The error is defined as the measured quantity value minus
the unknown true value and may be composed of a random
and a systematic component.

For satellite data, pre-launch calibration characteristics
are often provided by the instrument manufacturer or space
agency. However at launch, an uncertainty chain that may
have been metrologically traceable during the laboratory cal-
ibration phase can become compromised due to changes in
the spacecraft during the launch process itself as well as
changes in the satellite environment in orbit compared to the
laboratory testing. Furthermore, the instruments also degrade
over time, sometimes in quite a complex manner. These is-
sues coupled with the current lack of true on-board traceable
references make creating a metrologically traceable uncer-
tainty chain difficult for the satellite data record.

This aspect is being addressed by the “Fidelity and
uncertainty in climate data records from Earth Observa-
tions” (FIDUCEO) project (http://www.fiduceo.eu/, last ac-
cess: 2 January 2019). The project aims to develop Funda-
mental Climate Data Record (FCDR) by reprocessing exist-
ing observations from raw satellite data to geolocated and
calibrated radiances with traceable uncertainties from a set of
different references at the pixel level. The uncertainty char-
acterisation will account for the physical basis of the sensing
process, the on-board calibration system, and an estimate for
the uncertainties arising from the processing.

The (re)assessment of historical, well-established, and
new space-borne instruments using data assimilation sys-
tems has become, over the past decade, common practice
in numerical weather prediction (NWP) centres (Bell et al.,
2008; Zou et al., 2011; Bormann et al., 2013; Lu and Bell,
2014). NWP models offer an interesting framework for the
assessment of observational datasets due to a physically con-
strained, continuous, global, and homogeneous representa-
tion of the atmosphere. An optimal estimation of the state of
the atmosphere is routinely performed in data assimilation
systems by blending information from a large volume of ob-
servations (space-borne, air-borne, and ground based) with
a short-range forecast. Diagnostics are calculated in satel-
lite observation space, typically in brightness temperature,
thanks to the radiative transfer models used by data assimila-
tion systems (Saunders et al., 2018). This forward approach
is better posed than the inverse problem, that is to say com-
paring model geophysical fields to retrieved satellite profiles,
since multiple atmospheric states can provide solutions to the
retrieval, introducing further uncertainty. NWP representa-
tion of atmospheric temperature and humidity fields is of suf-
ficient quality to enable the characterisation of subtle biases
in satellite observations as demonstrated in the work refer-
enced herein. Loew et al. (2017) reported model field uncer-
tainties in the satellite observation space ranging from 0.05 to
0.2 K at frequencies principally sensitive to mid-tropospheric
and lower-stratospheric temperature and from 1 to 2 K at fre-
quencies sensitive to mid- and upper-tropospheric humidity.
However, those estimations arise from sensitivity studies and
not from robust uncertainty analyses. Stochastic approaches,
based on ensemble forecasting techniques, have been used to
estimate forecast uncertainties, but with the caveat that they
do not represent the systematic model biases (Leutbecher et
al., 2017).

This lack of metrologically traceable characterisation has
often hampered the recognition and consideration of model-
based assessment outside of the NWP context, especially at
space agency and instrument team levels. Key climate users
can also benefit from this approach, which has begun to find
resonance in the climate community (e.g. Massonnet et al.,
2016).

It is also worth noting that bias correction schemes are
generally applied to observations, especially satellite radi-
ances, used in data assimilation systems. Corrections are
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performed with respect to the model background or analy-
sis depending on the chosen scheme. Although this works
for theoretical unbiased NWP models, real-world data as-
similation systems also use reliable observations whose role
is to anchor the analysis. These anchoring observations, al-
though they may be slightly biased with respect to the truth,
are not corrected in the data assimilation system. As a re-
sult, background and analysis are weighted by the average
of the non-zero biases in the model and in the anchor obser-
vations. Eyre (2016), however, demonstrated that a risk in-
herent to bias correction schemes is a decrease in the weight
given to anchor observations when the number of assimilated
bias-corrected observations increases, which results in model
background and analysis to be increasingly weighted toward
the bias in the model. To avoid this situation, Eyre (2016)
suggests that correction should be derived from areas where
NWP model bias is expected to be small, along with the use
of numerous anchor observations.

The Gap Analysis for Integrated Atmospheric ECV CLI-
mate Monitoring (GAIA-CLIM) project (Thorne et al., 2017)
aims to address those challenges by improving the use of
in situ observations to rigorously characterise a set of at-
mospheric essential climate variables (ECVs) derived from
satellite observations as well as the geolocated and cali-
brated spectral radiances (level 1b) from which these quanti-
ties are derived (http://www.gaia-clim.eu/, last access: 2 Jan-
uary 2019). The work presented here is embedded in that
framework and focuses on developing NWP as a compre-
hensive reference by establishing traceability for the model
fields through comparison with traceable comparator data.

The NWP model error and uncertainty budget can be ex-
pressed as a function of four main contributions:

a. the error and uncertainty in NWP temperature and hu-
midity fields mapped to observation space (brightness
temperature).

b. the error and uncertainty in the underlying radiative
transfer modelling, including biases between fast radia-
tive transfer models commonly used in NWP and ref-
erence line-by-line models; fundamental spectroscopic
uncertainty; and surface emissivity uncertainty.

c. the error and uncertainty due to scale mismatch, which
encompasses the different scales at which observation
and model are resolved, and the scale of natural variabil-
ity that is, especially for humidity, much smaller than
both observation and model scales.

d. the error and uncertainty due to residual cloud; clear-sky
scenes are generally preferred because simulated cloudy
radiances are affected by uncertainties in model repre-
sentation of cloud amounts and the absorption and scat-
tering properties of hydrometeors.

This study aims to address the first contribution. To that
end, the Met Office and European Centre for Medium-

Range Weather Forecasts (ECMWF) models are compared
to radiosondes from the Global Climate Observing Sys-
tem (GCOS) Reference Upper-Air Network (GRUAN) in
a stand-alone module based on the core radiative transfer
modelling capability of the fast radiative transfer model RT-
TOV and the Radiance Simulator (both available at http:
//www.nwpsaf.eu/, last access: 2 January 2019). This soft-
ware, referred to as the GRUAN processor, enables the
collocation of geophysical fields and simulation of top-of-
atmosphere (TOA) brightness temperatures (Tb) from ra-
diosondes and NWP models, with GRUAN uncertainties
propagated into the radiative transfer calculation.

Section 2 introduces the datasets used for this study,
namely GRUAN radiosondes and the NWP models from
the Met Office and ECMWF. Sections 3 and 4 describe the
GRUAN processor functionality and present an illustrative
case study. A methodology statistically assessing the uncer-
tainties is presented in Sect. 5. Section 6 concludes the study.

2 Datasets

2.1 GRUAN

With 17 sites across the world (including two inactive sites
in the Pacific), GCOS is building on existing infrastruc-
tures to develop a reference network for upper-air observa-
tions (http://www.gruan.org/, last access: 2 January 2019).
GRUAN aims to provide long-term high-quality measure-
ments of ECVs with vertically resolved uncertainty esti-
mates. To meet the strict criteria for reference measurements,
GRUAN data also include a comprehensive collection of
metadata and documentation of correction algorithms.

To date, only the Vaisala RS92 radiosonde is used to pro-
duce the GRUAN-certified products (Sommer et al., 2016),
referred to as RS92 GRUAN data product version 2 (RS92-
GDP), but a new product based on the Vaisala RS41 is in
preparation. The RS92 GRUAN processing is documented
by Dirksen et al. (2014). This includes the correction of
the radiosonde systematic errors, due to mainly solar radi-
ation, and the derivation of the uncertainties for temperature,
humidity, wind, pressure, and geopotential height. The to-
tal uncertainty budget accounts for correlated and uncorre-
lated contributions of both random sources of uncertainty
and uncertainties from systematic error corrections, and it
is expressed as the root sum square of all contributions.
The uncertainty related to the short-wave radiation correc-
tion (used in the temperature uncertainty budget), the corre-
lated uncertainty related to systematic error corrections, and
uncorrelated uncertainty (standard deviation) derived from
the GRUAN processing are available in the RS92-GDP files,
in addition to the total uncertainty of each variable. How-
ever, not all correlated and uncorrelated components are in-
dependently available (albeit used in the calculation of the
total uncertainty) and some sources of partially correlated
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uncertainty are not yet modelled in GRUAN algorithms (e.g.
the pendulum motion of the radiosonde under the balloon).
Therefore, only the total uncertainties of temperature, humid-
ity, and pressure are considered in this study.

The results presented in this preliminary study focus on the
profiles from Lindenberg (LIN), GRUAN lead centre, Ger-
many (52.21◦ N, 14.12◦ E), for the year 2016.

2.2 Met Office NWP

Met Office model data files are extracted from the Managed
Archive Storage System (MASS) and only ±5◦ latitude and
longitude around the GRUAN launch site is kept to limit
the data volume. For LIN, the model fields cover the area
latitude 47.109–57.109 and longitude 9.0234–19.102. Each
model data file contains four time steps starting at T + 0,
the analysis, and three successive 3 h forecasts referred to as
T + 3, T + 6, and T + 9. The Met Office data assimilation
system is a hybrid four-dimensional variational analysis (4D-
var) with a 6 h time window (Lorenc et al., 2000; Rawlins et
al., 2007). Four analyses (and their successive forecasts) are
available every day at 00:00, 06:00, 12:00, and 18:00 coordi-
nated universal time (UTC). Assimilated satellite radiances
are corrected with a variational bias correction similar to the
scheme described by Auligné et al. (2007). The operational
forecast model in 2016 had a resolution of approximately
17 km at mid-latitudes for 70 levels from the surface to 80 km
(N768L70). The radiative transfer calculation was performed
in 2016 by the fast radiative transfer model RTTOV version
9 (Saunders et al., 1999, 2007).

In the Met Office NWP system, the interpolation of back-
ground fields is performed twice, once for all observations
and later just for those observations to be assimilated. The
radiosonde profiles are averaged over the vertical model lay-
ers. Latitude, longitude, and time at each level are used in
the first interpolation of background values, but fixed coor-
dinates are used in the latter interpolation. A bias correction
of radiosonde profiles is in place on a per station basis but is
generally not applied where RS92 is used. As noted by In-
gleby and Edwards (2015), radiation corrections are now of-
ten directly applied by the radiosonde manufacturer such as
Vaisala, which reduces the need for correction in the NWP
system. Bias correction and quality controls operationally
applied to radiosonde at the Met Office are detailed in Ap-
pendix 1 of Ingleby and Edwards (2015).

2.3 ECMWF NWP

ECMWF data are extracted from the Meteoro-
logical Archival and Retrieval System (MARS,
https://software.ecmwf.int/wiki/display/UDOC/MARS+
user+documentation, last access: 2 January 2019). Data
come from the operational data class atmospheric model
long window 4D-var stream (see MARS documentation
for details). The covered area is the same as for the Met

Office. Each model data file contains six time steps of
3 h starting from T + 0 to T + 15. The ECMWF anal-
ysis/forecast system is documented by ECMWF (https:
//www.ecmwf.int/en/forecasts/documentation-and-support,
last access: 2 January 2019). A cubic octahedral reduced
Gaussian grid is currently used with a resolution of TCo1279
(horizontal grid spacing of about 9 km) and with 137 levels
in the vertical. Note that from February 2006 until June 2013,
there were 91 vertical levels, and from January 2010 until
March 2016 a linear reduced Gaussian grid was used with a
horizontal spacing of around 16 km. Data assimilation uses
incremental 4D-var (Courtier at al., 1994) with a 12 h win-
dow, the nominal 00:00 UTC analysis uses data from 21:00
to 09:00 UTC. Forecasts and ensembles are run twice daily
from early delivery 6 h window 4D-var analyses (Haseler,
2004). Flow-dependent ensemble information from the
ECMWF ensemble of data assimilations is incorporated into
the modelling of background-error covariances (Bonavita
et al., 2016). Satellite radiative transfer calculations use the
fast radiative transfer model RTTOV version 11.2 (Hocking
et al., 2015), which has been used operationally since May
2015 (Lupu and Geer, 2015). Variational bias correction
of satellite radiances (and, unlike the Met Office scheme,
aircraft temperatures) is based on Dee (2004) and Auligné et
al. (2007).

The treatment of radiosondes in the ECMWF system dif-
fers from that of the Met Office in that there is no average
on model levels and each level is treated as a point value.
In addition, the balloon drift in space and time was not ac-
counted for in 2016 (i.e. the ascension was assumed instan-
taneous and vertical). The treatment of the radiosonde drift
(from Binary Universal Form for the Representation of Me-
teorological data (BUFR) reports) has been introduced in the
operational system in 2018 (Ingleby et al., 2018). Also in
contrast to the Met Office, radiosondes at ECMWF are bias
corrected for temperature and humidity. The correction, de-
scribed by Agusti-Panareda et al. (2009), uses monthly statis-
tics of background departure based on night-time RS92 and
is applied as a function of radiosonde type, pressure, and so-
lar elevation angle.

3 Processor design

The GRUAN processor, a software based on the NWP Satel-
lite Application Facility (SAF) Radiance Simulator (Smith,
2017), is designed to collocate NWP model fields from the
Met Office or ECMWF with radiosondes from the GRUAN
network and simulate TOA Tb from those collocated profiles.
The simulations are performed at frequencies used by me-
teorological space-borne instruments and supported by RT-
TOV. Figure 1 illustrates the processor top-level design with
its main processing steps.
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Figure 1. GRUAN processor top-level design. Solid arrows show the main processing steps from input (blue for NWP model data and green
for GRUAN data) to output. Dashed arrows represent the internal processing.

3.1 Inputs

The processor requires as input a GRUAN and a model data
file. Supported products are GRUAN RS92-GDP, Met Of-
fice Unified Model (UM) field files (or PP files; see Smith,
2017), and ECMWF GRIB files. Both model file types
must contain the minimum set of required variables as de-
scribed by Smith (2017) for the Radiance Simulator. Pro-
cessing options and RTTOV attributes are provided via a
text file read by the processor. This file includes the in-
strument characteristics (e.g. channels) to be simulated and
output options (output in unit of radiances or Tb for ex-
ample). Optionally, RTTOV bias and root-mean-square er-
ror (RMSE) estimated from comparisons between RTTOV
and line-by-line model calculations, as provided by NWP
SAF (https://www.nwpsaf.eu/site/software/rttov/download/
coefficients/comparison-with-lbl-simulations/, last access: 2
January 2019), can be written to the output files. Finally, an
option allows one to opt for a model–radiosonde collocation
following the balloon drift (in space and time; see Sect. 3.3)
or assuming no drift. Note that all collocations presented in
this paper account for the radiosonde drift.

3.2 Conversion

The conversion step ensures that both model and GRUAN
variables (e.g. temperature or humidity) are expressed in the
same units and that those units are compatible with RTTOV
(see Sect. 3.5). Two main types of conversion are supported:
temperature from potential temperature and specific humid-
ity from relative humidity.

Model data files may sometimes contain potential tem-
perature instead of temperature profiles, as is the case for
the Met Office. Temperature (T ) is therefore calculated as
a function of potential temperature (θ ) and pressure (P ) as
follows:

T = θ

(
P

P0

)κ
, (2)

where P0 is the standard reference pressure equal to 1000 hPa
and κ the ratio of the gas constant of air to the specific heat
capacity at constant pressure.

Similarly, it is worth noting that model data files may not
directly contain pressure profiles (e.g. in ECMWF files) or
the pressure may be expressed on a different set of levels
with respect to other variables (e.g. Met Office files). In both
cases however, the pressure on model levels can be calculated
from coefficients provided in the model data files.

The expression of humidity also needs to be har-
monised. GRUAN provides profiles of relative humidity
(RH), whereas the humidity from both NWP models is ex-
pressed in specific humidity (q), in units of kilogram per kilo-
gram. GRUAN relative humidity is converted to q as follows:

q =
εRHes

(P − (1− ε) RHes)
, (3)

where ε is the ratio of the molecular weight of water vapour
to the molecular weight of dry air and es the saturation
vapour pressure over liquid. For consistency with GRUAN
and Vaisala processing, es is expressed as defined by Hyland
and Wexler (1983), such that

ln(es)=
C1

T
+C2+C3 T +C4T

2
+C5T

3
+C6 ln(T ), (4)

with: C1 =−5.8002206× 103

C2 = 1.3914993× 100

C3 =−4.8640239× 10−2

C4 = 4.1764768× 10−5

C5 =−1.4452093× 10−8

C6 = 6.5459673× 100

for es in pascals and T in kelvin.

3.3 Interpolations

The GRUAN processor generates a set of model profiles (i.e.
one profile per variable), on model levels, interpolated in
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Figure 2. Illustration of an observation of coordinate (xp , yp , zp)
in a cube for which vertices represent the model latitude (x axis),
longitude (y axis), and forecast time (z axis).

space and time along the radiosonde path, which are then
vertically interpolated on a fixed set of 278 levels as follows.

First, model fields are linearly interpolated at the ra-
diosonde coordinates (latitude–longitude–time), weighted by
the distance to the eight closest grid points. Therefore,
for an observation at the coordinate p = [xp,yp,zp], as il-
lustrated in Fig. 2, in a cube of vertices [(x,y,z), (x+
dx,y,z), (x,y+dy,z), (x,y,z+dz), (x+dx,y+dy,z), (x+
dx,y,z+dz), (x,y+dy,z+dz), and (x+dx,y+dy,z+dz)],
where dx and dy represent the grid point interval in lati-
tude and longitude, respectively, and dz the interval between
the time T + n and T + (n+ 3), with associated field val-
ues Fp and [F000,F100,F010,F001,F110,F101,F011,F111],
respectively, Fp is calculated as follows:

Fp = F000 (1−wx)
(
1−wy

)
(1−wz)

+F100wx
(
1−wy

)
(1−wz)+F010 (1−wx)wy (1−wz)

+F001 (1−wx)
(
1−wy

)
wz+F101wx

(
1−wy

)
wz

+F011 (1−wx)wywz+F110wxwy (1−wz)
+F111wxwywz, (5)

where wx , wy , and wz are the weights defined as

wx =
(
xp − x

)
/dx, (6)

wy =
(
yp − y

)
/dy, (7)

wz =
(
zp − z

)
/dz. (8)

This operation is repeated along the radiosonde path with
a time step of 15 s based on the radiosonde time profile.
A unique model profile (one for each variable) is recon-
structed by combining the model fields from the pressure
levels crossed by the radiosonde between two consecutive
interpolated model profiles.

The reconstructed set of profiles is then interpolated on
a fixed vertical grid of 278 pressure levels. The fixed grid,

referred to as processor grid (Pg), has been designed to have
at least one Pg level between any two levels of the coarser
model (Met Office or ECMWF) grid, referred to as coarse
grid (Cg). Therefore, for Pg of dimension n equal to 278 and
Cg of dimensionm (equal to 70 for the Met Office, 91 or 137
for ECMWF), the interpolation is calculated by weighting
the fields with respect to the pressure via the interpolation
matrix W of dimension n x m, such as

Pg =WCg, (9)

where for the j th pressure (P ) level of Pg located between
the ith and i+ 1th levels of Cg

Pgj =Wj1Cg1+Wj2Cg2+ . . .+WjmCgm, (10)

Wji =
Pi+1−Pj

Pi+1−Pi
, (11)

Wji+1 = 1−Wji, (12)
Wjk = 0 where k 6= i, i+ 1. (13)

The vertical interpolation of model profiles as well as the
subsampling of the radiosonde profiles (see Sect. 3.4) to the
processor grid aims to provide a homogenised number of ver-
tical levels on which the radiative transfer equation is calcu-
lated. Although the coarse model grid and the fine radiosonde
grid could be directly used as input in RTTOV, it was ob-
served that the lack of homogenisation between model and
radiosonde profiles causes a bias in radiance space. It was
therefore decided to interpolate the model profiles and pro-
vide a way to estimate the uncertainty associated with this
interpolation (see Sect. 5).

Figure 3 illustrates the change from a collocated
Met Office temperature profile (LIN 31 December 2016,
16:00 UTC) on model levels (70 levels) (Fig. 3a) to a col-
located Met Office profile interpolated on the processor grid
(278 levels) (Fig. 3b).

3.4 Merging and subsampling

A caveat of processing radiosonde profiles in RTTOV is
the lack of information between the top of a profile (burst-
ing point of the balloon) and the TOA. This is addressed
by merging the radiosonde profiles with the model profiles
above the last available point of the radiosonde. Note that
this step occurs after the interpolation of the model profiles
so that the upper merged parts of the radiosonde and model
profiles are strictly identical.

Similarly, RTTOV requires surface information: 2 m tem-
perature and humidity, surface pressure and altitude, 10 m
wind (u and v components, used for microwave simulations
over ocean), and skin temperature. While GRUAN provides
the surface pressure, temperature, relative humidity, and al-
titude at launch site in all the data files, the skin tempera-
ture (T G

skin) has to be derived from the difference between the
model skin (TMskin) and the 2 m temperature (TM

2 m) applied to
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Figure 3. (a) GRUAN temperature profile (red line) from Lindenberg on 31 December 2016 at 16:00 UTC as provided in the RS92-GDP
data file with full GRUAN vertical resolution and a collocated Met Office temperature profile (blue dotted line) on the model vertical levels.
(b) GRUAN temperature profile subsampled at the processor 278 pressure levels and merged with the Met Office profile above 9.8 hPa (red
line) and collocated Met Office temperature profile interpolated on the processor vertical levels (blue dotted line).

the GRUAN surface temperature (T G2 m) such as

T G
skin = T

G
2 m+ (T

M
skin− T

M
2 m). (14)

Although the 10 m wind could be provided by the Vaisala
wind profiles (available in GRUAN data files) or calcu-
lated from GRUAN profiles of wind speed and direction, the
chaotic rotation of the radiosonde just after launch results in
unreliable wind information near the surface. Therefore, the
model 10 m wind (u and v components) is also merged with
the GRUAN data. Note that 10 m wind is used to calculate
the sea surface emissivity (for microwave simulations) and
therefore only concerns GRUAN sites on small island sites

(i.e. La Réunion, Nauru, Manau, Ny-Ålesund, Graciosa, and
Tenerife).

In the raw RS92 data and GRUAN data, the samplings are
provided every second but filtering reduces the effective reso-
lution of temperature to approximately 10 s at low levels; the
effective resolution of humidity is similar but it is reduced
to 40–50 s at upper levels (Dirksen et al., 2014). As a result,
GRUAN profiles count several thousand levels in the verti-
cal that need to be reduced to the number of levels on the
processor grid. This is achieved with a subsampling of the
radiosonde profiles to the nearest levels for each of the 278
processor pressure levels, at levels at which data are avail-
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able, with the imposed constraint that the ratio radiosonde
pressure by processor pressure must be less than 0.1 %.

The subsampling of GRUAN profiles has been preferred
over layer-averaging or convolution techniques for several
reasons. First, we aimed to avoid all unnecessary modifica-
tion of the GRUAN profiles, used as reference in this study.
Second, GRUAN uncertainties are vertically resolved and
their processing would have resulted in an information loss.
Third, the aim of the processor is to evaluate uncertainties in
radiance space. During the testing phase, we observed that
neither the choice of averaged layers nor subsampled levels
significantly affects the calculation of radiative transfer and
the resulting brightness temperatures.

Figure 3 shows the changes from a GRUAN temperature
profile (LIN 31 December 2016, 16:00 UTC) as provided in
the RS92-GDP data file (5821 levels, from the surface to
9.88 hPa) (Fig. 3a) to a processor merged and subsampled
profile (278 levels, from the surface to 0.008 hPa) (Fig. 3b).

3.5 RTTOV and uncertainties

The radiosonde and model profiles, both on the processor
vertical grid, and their respective surface parameters are
passed to RTTOV for the calculation of the TOA Tb. RT-
TOV version 11.3, currently used by the GRUAN processor,
is documented by Hocking et al. (2015).

The surface emissivity depends on the surface type. For
land and sea ice, the processor uses a fixed value, 0.95 and
0.92, respectively. Those estimates are potentially far from
the truth, but any bias introduced by fixed emissivity terms is
expected to cancel out when the difference in simulated Tb is
calculated. Note that RTTOV allows the use of the emissivity
atlases over land and sea ice, but this option has not yet been
investigated. Over sea, the surface emissivity is calculated
by the RTTOV FAST Emissivity Modeling (FASTEM) ver-
sion 5 (Kazumori and English, 2015). Although version 5 is
the default version, this can be changed in the input attribute
file. It is worth noting here that although the radiosonde may
drift from above land to above sea (ice) (or the opposite), the
surface type can only be of one kind. The land surface type
is typically used as most radiosonde launch sites are well in-
side land masses. However, for the small island sites of La
Réunion, Nauru, Manau, Ny-Ålesund, Graciosa, and Tener-
ife, the radiosonde is expected to rapidly drift over sea and
therefore the sea surface type is used instead. The difference
between sea and sea ice is controlled by the sea-ice mask
used by the NWP model.

The viewing angle is set by default to nadir (0◦) for all
simulations. However, different angles could potentially be
used for the purpose of better comparisons with real satellite
data, for example.

All simulations assume clear-sky scenes and use RTTOV
direct mode (ignoring the scattering) with the cloud liquid
water option off (data not available from GRUAN data file).
It is acknowledged that this may introduce discrepancies in

the comparison between model and radiosonde in situations
in which the radiosonde encounters one or several cloud
layers. The brightness temperatures calculated from the ra-
diosonde data perturbed by the presence of clouds (e.g. peaks
in the humidity profile and to a lesser extent in the tempera-
ture profile) will differ from those calculated from the model
data that assume clear-sky conditions. Because the RS92-
GDP does not provide a cloud flag, indirect screening may
be required for fine comparisons. To that end, one can use
the precipitable water column from the RS92-GDP metadata
as a proxy for cloud and or assume the presence of cloud
when the relative humidity exceeds a threshold value.

Finally, note that RTTOV interpolation mode (used to in-
terpolate the input levels to the coefficient levels for the cal-
culation of the atmospheric optical depth, and then back from
the coefficient levels to the input levels for the calculation of
the radiative transfer equation) uses the log-linear on weight-
ing function mode as described by Hocking et al. (2015).
This aims to avoid a known issue causing the oscillation of
the temperature Jacobians.

It was observed that the interpolation of the model fields
at the GRUAN launch site coordinates results in large dis-
crepancies, especially affecting surface parameters (surface
pressure and elevation) and the lower part of the profiles,
when the local orography presents large variations at scales
of the same order as the model grid resolution. The interpo-
lation, using the weighted average of the four neighbouring
grid points at a given forecast time may result in the model
surface being below or above the actual GRUAN launch site
surface. A typical example is the site at La Réunion where
the radiosondes are launched from the Maïdo observatory at
an altitude of 2200 m, compared to which the interpolation
of the ECMWF model gives an altitude of 980 m and the in-
terpolation of the Met Office model 0 m. In Lindenberg by
comparison, the radiosondes are launched from the altitude
of 103 m while both models estimate the altitude to be 57 m.
To estimate the associated error, a set of dummy model pro-
files are generated with the surface pressure forced to that
provided in the GRUAN metadata. If the model has a surface
below that of the observations, the model profiles are lin-
early interpolated and cut at the observed surface pressure,
and the surface parameters become those of the lowest level.
If the model has a surface above that of the observations,
the model profiles are linearly extrapolated to the observed
surface pressure, and the model surface parameters become
those of the new lowest level. The difference between the Tb
calculated from those modified profiles and the Tb calculated
from the original profiles provides an estimation of the asso-
ciated error. This is referred to as u_surf_bt in the processor
output.

Finally, the GRUAN uncertainties are propagated into ra-
diance space. As described by Calbet et al. (2017), this can
be achieved by multiplying the GRUAN profiles of uncer-
tainty by the Jacobians derived by RTTOV from the GRUAN
atmospheric profiles, or by applying the radiative transfer to
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the input atmospheric GRUAN profiles perturbed with their
associated uncertainties. The GRUAN processor is designed
to follow the second method although the first one will be
further discussed in Sect. 5. In the processor, two sets of per-
turbed profiles are created, one containing the GRUAN pro-
files of temperature, pressure, and humidity, incremented by
their respective total uncertainty (T + u_temp, P + u_press,
and q+u_q), and one containing the GRUAN profiles decre-
mented by their total uncertainty (T −u_temp, P −u_press,
and q − u_q). The resulting brightness temperatures calcu-
lated by RTTOV based on those two sets of perturbed pro-
files, referred to as T +b and T −b , respectively, are compared to
Tb, calculated with the unperturbed profiles, to estimate the
associated uncertainty in radiance space. The greatest differ-
ence between |Tb− Tb

+
| and |Tb− T

−

b | is given in output as
u_gruan_bt. Note that the eight combinations of sign that this
approach can allow have been tried during the test phase. The
resulting uncertainty was not found to be significantly differ-
ent from that obtained with T +b and T −b , but the processing
time significantly increased. T +b and T −b were therefore re-
tained as the best compromise.

It should be noted that the simplified nature of this ap-
proach, which applies a perturbation of constant sign in
the vertical, ignores the complicated fluctuations that the
propagation of uncertainty via a multiplication by the Ja-
cobians would induce (see Sect. 5). Here, we assume that
the GRUAN profiles of uncertainty used to perturb the atmo-
spheric profiles are fully correlated at all levels. This assump-
tion differs from the truth in that GRUAN total uncertainty
consists of a root sum square of correlated and uncorrelated
components (Dirksen et al., 2014). Nevertheless, assuming
a fully correlated perturbation enables the estimation of the
total GRUAN uncertainty upper bound in radiance space al-
lowed by this approach. The lower bound, not addressed in
the GRUAN processor, can be obtained by assuming the un-
certainty profiles are completely uncorrelated and lies close
to zero as demonstrated by Calbet et al. (2017).

Ideally, the correlated and uncorrelated components of
GRUAN uncertainty should be treated separately with,
for example, the Monte Carlo method described in the
Guide to the Expression of Uncertainty in Measurement
(GUM) (https://www.bipm.org/en/publications/guides/gum.
html, last access: 2 January 2019). However, those compo-
nents are not all independently available and it is currently
not possible to differentiate them in the RS92-GDP. Note that
the radiosonde (random and/or systematic) errors are not pro-
vided. Instead, the GRUAN algorithm corrects the system-
atic errors in the radiosonde measurements, acknowledging
that the correction is not perfect and introduces an associated
residual uncertainty (accounted for in the total uncertainty).

For completeness, perturbations to the surface parameters
could be added to the total uncertainty budget in radiance
space, but GRUAN does not provide uncertainties associ-
ated with these measurements. An alternative is discussed in
Sect. 5.

3.6 Outputs

For each pair of collocated radiosonde and NWP model
fields, the GRUAN processor generates two output files in
netCDF format. The first file contains the model-related
fields including, but not limited to, the profiles of tempera-
ture, humidity, and pressure on the processor vertical grid,
the interpolation matrix W, the simulated brightness temper-
ature, the temperature, humidity, and pressure Jacobians, and
a quality control flag (qcflags). Note that for successful sim-
ulations, qcflags is equal to zero. The second file contains
the GRUAN-related fields, including GRUAN atmospheric
profiles and associated uncertainties on the processor vertical
grid, the Jacobians, and the Tb and Tb uncertainties estimated
from the perturbed GRUAN profiles (u_gruan_bt).

Both files also contain metadata documenting the GRUAN
processor version number (here 6.2); the NWP model, model
validity time, and model version number; the simulated satel-
lite name, platform, and channel; the RTTOV version, RT-
TOV coefficient creation date, bias, and root mean square
error (when available); and the metadata available from the
original RS92-GDP.

Note that some GRUAN processor simulated brightness
temperatures have been ingested into the GAIA-CLIM Vir-
tual Observatory (http://gaia-clim.vo.eumetsat.int/, last ac-
cess: 2 January 2019) for the purposes of visualisation,
manipulation, and extraction of collocated GRUAN–NWP–
satellite data.

4 Data analysis illustration

For illustration purposes, 1 year of collocated profiles and
simulated Tb are presented. The dataset corresponds to 1160
radiosondes launched from Lindenberg, Germany, in 2016,
compared to the Met Office and ECMWF models. Tb values
have been simulated at the Advanced Technology Microwave
Sounder (ATMS) 22 channel frequencies, a microwave ra-
diometer with sounding capability in the oxygen band (53–
57 GHz), sensitive to tropospheric and lower-stratospheric
temperature, and in the water vapour band (around 183 GHz),
sensitive to mid- to upper-tropospheric humidity (Bormann
et al., 2013).

The dataset is divided into two samples composed of day-
time and night-time profiles. This is aimed at discriminating
the GRUAN profiles affected by solar radiation, the domi-
nant source of uncertainty according to Dirksen et al. (2014).
All profiles with a solar zenith angle (calculated as a func-
tion of latitude, longitude, and UTC) smaller (greater) than
90◦ at launch time is considered daytime (night-time). Note
that for a refined analysis, the whole profile (not just launch
time) should be checked and only profiles with the sun be-
low (or above) the horizon throughout should be used. Note
that for simplicity, no cloud screening is applied in this case
study. This caveat may, as suggested in the previous section,
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exacerbate the biases observed when comparing brightness
temperature simulated from radiosonde profiles and from
model fields. Future work dedicated to the in-depth analy-
sis of model errors and uncertainties based on the processor
outputs will address the impact of clouds on the simulations.

After screening, 573 pairs of GRUAN processor outputs
are available in daytime and 587 in night-time for each
model. The mean difference NWP–GRUAN in temperature,
humidity, and simulated Tb is shown in Figs. 4 (daytime) and
5 (night-time) together with the number of available com-
parisons as a function of the pressure. Note that at pres-
sures less than 10 hPa, the data sampling decreases rapidly
as fewer balloons reach those levels. An arithmetic mean is
used to average the uncertainty over the sampling according
to Immler et al. (2010) (Eq. 4). For temperature and humid-
ity, the GRUAN total uncertainty as provided in the RS92-
GDP is used (the relative humidity uncertainty is converted
into specific humidity uncertainty in the GRUAN processor),
while the uncertainty in Tb shows the GRUAN uncertainties
propagated in radiance space via the perturbation of the at-
mospheric profiles. Note that the model uncertainty and the
uncertainty associated with the vertical interpolation are ig-
nored in this section but addressed in Sect. 5.

It is important to note that both Met Office and ECMWF
operationally assimilate the radiosonde profiles from the
GCOS Upper Air Network (GUAN), which, in Lindenberg,
are the same as the GRUAN profiles but without the spe-
cific GRUAN processing (and without uncertainty character-
isation). Therefore, unlike the forecasts, the model analyses
(T + 0) are not completely independent from the observa-
tions. However, this is not expected to significantly affect the
mean comparison as only about 5 % of the profiles fall in the
first time window (i.e. interpolation between T+0 and T+3).

In Figs. 4 and 5, the main feature for ECMWF is a 0.5 K
cold bias in the stratosphere (100–10 hPa), observed both day
and night. This bias has also been detected by Shepherd et
al. (2018) in the ERA5 reanalysis that is based on IFS cy-
cle 41r2, the operational model in 2016. It is attributed to an
excess of moisture transported into the lower stratosphere,
which leads to a cold bias by radiative cooling. The model
also presents a 50 %–75 % wet bias peaking between 200 and
100 hPa, slightly more pronounced during the day. This is
consistent with the results from Ingleby (2017), who showed
a similar behaviour for several kinds of radiosonde.

The Met Office model presents a persistent 0.2 to 0.5 K
cold bias at pressures greater than 300 hPa and a 0.25 K warm
bias between 200 and 100 hPa seen at night-time only. This
is consistent with Ingleby and Edwards (2015), who showed
similar features in the comparison between radiosondes and
the Met Office regional model covering the UK. The Met Of-
fice tropospheric humidity generally fits the radiosonde pro-
files well but presents a 50 %–60 % wet bias with a pecu-
liar double peak at 200 and 100 hPa. A wet bias peaking at
300 hPa was already observed by Ingleby et al. (2013), the
coarser vertical resolution used by the authors potentially ex-

plaining the different pressure level at which the bias is ob-
served. However, the second maximum (at 100 hPa) seems
to be a new feature that appears in 2015 and persists in 2017
(not shown). This remains unexplained to date.

In radiance space, it is important to distinguish between
frequencies representative of the difference between NWP
and GRUAN and those significantly affected by the sur-
face and the mid-stratosphere to upper stratosphere where
the GRUAN profiles are merged with the model. Hence,
ATMS frequencies sensitive to the surface (23.8–54.4 and
88.2–165.5 GHz, channels 1–7 and 16–17, respectively)
and to the upper stratosphere (57.29± 0.3222± 0.022–
57.29± 0.3222± 0.0045 GHz, channels 13–15, respec-
tively) should be considered with caution and not used
for scientific applications. On the contrary, frequencies
sensitive to the upper-tropospheric and lower-stratospheric
temperature (peaking between 300 and 20 hPa) and to
the mid-tropospheric humidity (peaking between 650 and
350 hPa) cover the same vertical domain as the information
provided by GRUAN. For those frequencies, ATMS channel
characteristics and mean Tb difference are provided in
Table 1.

At frequencies sensitive to temperature (54–57 GHz, chan-
nels 8–12), hereafter referred to as temperature channels, the
mean difference for ECMWF varies from −0.08 to −0.39 K
at night, mostly outside GRUAN uncertainty (red shading,
Fig. 5), reflecting the cold bias observed in the stratosphere.
Note that a difference greater than GRUAN uncertainty does
not mean a statistical disagreement since the uncertainty re-
lated to the model is unaccounted for (i.e. the total uncer-
tainty of the comparison as expressed in Eq. (1) is larger than
the GRUAN uncertainty alone). The difference is slightly
larger in daytime (−0.16 to − 0.54 K). Similarly, the differ-
ence at frequencies sensitive to humidity (around 183 GHz,
channels 18–22), hereafter referred to as humidity channels,
varies from 0.04 to 0.37 K at night (−0.01 to−0.61 K during
the day), within GRUAN uncertainty.

The mean difference in Tb for the Met Office is always
found within GRUAN uncertainty and varies from −0.09 to
0.04 K during the night (−0.02 to −0.26 K in daytime) for
the temperature channels and from −0.46 to 0.02 K during
the night (−0.36 to −1.01 K in daytime) for the humidity
channels.

The standard deviation of the differences is similar for
both centres and does not vary much from day to night.

5 Comparison assessment

The previous section gives insights into the GRUAN uncer-
tainty propagated in radiance space by the GRUAN proces-
sor. The approach offers a rapid but incomplete evaluation of
the NWP–GRUAN comparison, but several aspects are over-
looked in the final budget that for various reasons are not part
of the internal processor processing. This includes
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Figure 4. Mean difference ECMWF–GRUAN (blue) and Met Office–GRUAN (green) calculated from 573 daytime collocations from Lin-
denberg in 2016. The temperature difference (a) is expressed in kelvin, the humidity difference is expressed in grams per kilogram (c) and in
percentage (NWP−GRUAN/GRUAN) (d), and the difference in simulated brightness temperatures for the 22 ATMS channels is expressed
in kelvin (e) with the 1σ standard deviation (vertical bars). The red shading shows GRUAN uncertainty. The number of observations is shown
as a function of the pressure (b).
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Figure 5. Same as Fig. 4 but for the 587 night-time collocations.
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Table 1. Mean difference NWP–GRUAN in simulated Tb for ECMWF (1TbECMWF ) and Met Office (1TbMetOffice) and 1σ standard deviation
for ATMS channels 8–12 and 18–22 at daytime and night-time.

1TbECMWF (1σ ) (K) 1TbMetOffice (1σ ) (K)

Channel Frequency (GHz) Night Day Night Day

8 54.94 −0.08 (0.09) −0.16 (0.10) −0.00 (0.11) −0.04 (0.12)
9 55.5 −0.15 (0.12) −0.24 (0.13) 0.04 (0.13) −0.02 (0.14)
10 57.29 −0.32 (0.18) −0.45 (0.18) 0.01 (0.16) −0.07 (0.20)
11 57.29± 0.217 −0.39 (0.21) −0.54 (0.22) −0.04 (0.20) −0.16 (0.25)
12 57.29± 0.3222± 0.048 −0.34 (0.25) −0.53 (0.27) −0.09 (0.28) −0.26 (0.31)
18 183.31± 7.0 0.35 (0.91) 0.25 (1.09) 0.02 (0.83) −0.36 (1.02)
19 183.31± 7.0 0.37 (1.13) 0.15 (1.24) −0.09 (1.03) −0.48 (1.14)
20 183.31± 3.0 0.34 (1.31) −0.01 (1.36) −0.18 (1.22) −0.61 (1.27)
21 183.31± 1.8 0.22 (1.48) −0.29 (1.50) −0.31 (1.42) −0.81 (1.45)
22 183.31± 1.0 0.04 (1.61) −0.61 (1.64) −0.46 (1.57) −1.01 (1.60)

(a) the uncertainty associated with surface parameters, not
provided in RS92-GDP and likely to change from sta-
tion to station;

(b) the NWP model uncertainty, often expressed as a co-
variance matrix and used in the data assimilation pro-
cess by the NWP centres, but not available in the input
data files; and

(c) the uncertainty associated with the vertical interpolation
operated by the processor for which estimation requires
information on the last two points.

In this section, a mathematical framework is elaborated to
estimate a robust uncertainty budget for the comparison be-
tween NWP fields and GRUAN observations, in radiance
space, and statistically assess this comparison. This includes
uncertainties in the GRUAN observations, in the vertical in-
terpolation of the GRUAN processor, and in the model fields.
Note that, as previously mentioned, any comparison to satel-
lite radiances should also include other sources of uncertainty
such as in the underlying radiative transfer models and cloud
detection. For this study, we focus on the comparison to the
Met Office model fields, but the same method could be ap-
plied to the comparison with ECMWF fields.

We define xrs as the radiosonde profiles and xm as the
model profiles (temperature, humidity, and pressure, with a
pressure coordinate). Note that xrs and xm are on different
vertical grids. xrs is on the GRUAN processor vertical grid,
composed of 278 levels, hereafter referred to as the fine grid
(f ), subsampled from the original GRUAN profiles (noting
that with a ratio radiosonde pressure by processor pressure of
less than 0.1 %, the subsampling uncertainty is assumed neg-
ligible). xm is on the model vertical grid, hereafter referred
to as the coarse grid (c), as given in input.

Given H , the observation operator, we can express the
simulated Tb as follows:

yrs ≡H (xrs) , (15)
ym ≡H (Wxm) , (16)

where W is the interpolation matrix.
Equations (15) and (16) can be further expanded as a func-

tion of the profiles’ true value on the fine and coarse grids,
hereafter xt

f and xt
c, respectively, and the errors associated

with the radiosonde and the model fields, hereafter εrs and
εm, as follows:

yrs =H
(
xt

f+ εrs
)
, (17)

ym =H
(
Wxt

c+Wεm
)
, (18)

with xt
c defined as xt

c ≡W∗xt
f, where an expression for W∗,

the pseudo-inverse of W, is given in Appendix B.
The comparison carried out in this study is in radiance

space and the observation operator used to simulate the
brightness temperatures is identical for both radiosonde and
model field simulations. For these reasons, we consider the
radiance space as our reference and ignore any errors asso-
ciated with observation operator that would cancel out in the
difference anyway since the errors associated with the obser-
vation operator are mainly systematic. Note that those errors
need, however, to be taken into account if a simulated prod-
uct is compared to real satellite observations.

We define the vertical interpolation error εint as

εint ≡Wxt
c− x

t
f. (19)

Equation (18) can be written as follows:

ym =H(Wxt
c− x

t
f+Wεm+ x

t
f)

=H(Wεm+ εint+ x
t
f). (20)

Given H, the Jacobian matrix provided by RTTOV and con-
taining the partial derivatives of ∂y/∂x (i.e. the change in
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radiance, ∂y, for a change in the state vector, ∂x), Eqs. (17)
and (20) can be approximated, assuming small errors, as fol-
lows:

yrs
∼=H

(
xt

f
)
+Hxt

f
εrs, (21)

ym
∼=H

(
xt

f
)
+Hxt

f
(Wεm+ εint). (22)

Therefore, the NWP–GRUAN comparison in radiance space
is expressed as follows:

δy ≡ ym− yrs
∼=Hxt

f
(Wεm+ εint− εrs). (23)

Assuming a complete non-correlation between the interpo-
lation error and those of the radiosonde and the model, the
covariance of the difference is expressed as follows:

Sδy ≡ E
{
(∂y−E {∂y})T (∂y−E {∂y})

}
, (24)

where E is the expectation operator. We can approximate
Eq. (24) as

Sδy ∼=HRrs
f HT
+HWBm

c WTHT
+HSint

f HT, (25)

where Rrs
f , Bm

c , and Sint
f are the error covariance matrices of

GRUAN measurements (on the fine grid), the forecast (on the
coarse grid), and the vertical interpolation (on the fine grid),
respectively, as described below.

We first define the GRUAN covariance matrix. GRUAN
does not provide a full covariance matrix with the measure-
ments; therefore Rrs

f is built as a diagonal matrix accounting
for the different sources of uncertainty such as

HRrs
f HT

=HTRTHT
T +HqRqHT

q +HPRPHT
P

+hskinTu
2
skinThTskinT+hT 2 mu

2
T 2 mhTT 2 m

+hq2 mu
2
q2 mhTq2 m+hP2 mu

2
P2 mhTP2 m, (26)

where RT , Rq , and RP are diagonal matrices whose diago-
nals are the square of GRUAN profiles of total uncertainty
for T , q (converted from relative humidity), and P , respec-
tively, on the processor vertical grid; uskinT, uT 2 m, uq2 m, and
uP 2 m the uncertainties associated with the surface param-
eters (i.e. skin temperature, 2 m temperature, 2 m humidity,
and 2 m pressure) set to 0.3 K, 0.3 K, 0.04 RH, and 0.1 hPa,
respectively (Sven Brickmann, DWD, private communica-
tion, 2016), estimated for the Lindenberg site. HT , Hq , and
HP are the Jacobians of the temperature, humidity, and pres-
sure profiles, respectively, and hskinT, hT 2 m, hq2 m, and hP2 m
are the Jacobians of the surface parameters.

RT , Rq , and RP are diagonal, which precludes a proper
propagation of the correlation in radiance space. In this sub-
optimal case, Rrs

f , and by extension, Sδy , the covariance of
the comparison, will not capture the most accurate represen-
tation of the uncertainty budget.

Then, we define the forecast error covariance matrix. For
the purposes of this study, the forecast covariance matrix

from the operational Met Office observation processing sys-
tem, a one-dimensional variational analysis (1D-var) per-
formed ahead of the main variational process, is used for Bm

c .
Alternatively, the forecast error covariance matrix can be es-
timated from an ensemble of NWP profiles as described in
Appendix A.

Finally, we define the vertical interpolation covariance ma-
trix. To estimate Sint

f , the interpolation error must be quanti-
fied.

From Eq. (19) we have

εint =WW∗xt
f− x

t
f = (WW∗− I)xt

f, (27)

where the random vector xt
f, representing the true state on

the fine grid, is assumed to have mean E{xt
f}, the (unknown)

mean model forecast profile on the fine grid, and covariance
E
{(
xt

f−E
{
xt

f
})T (

xt
f−E

{
xt

f
})}
≡ Bm

f , the covariance of

xt
f in model space on the fine grid. It follows that we can

express the covariance of the interpolation uncertainty as

Sint
f ≡ E

{
(εint−E {εint})

T (εint−E {εint})
}

=
(
WW∗− I

)
Bm

f
(
WW∗− I

)T
. (28)

Note that when the model grid coincides with the fine grid
we have W∗ =W−1 and Sint = 0 as expected. Replacing W∗
by its form expressed in Appendix B, we obtain

Sint
f = Bm

f (I−W
(

WTBm−1

f W
)−1

WTBm−1

f ). (29)

Note that in practice (i.e. for numerical calculations) it is
more convenient to use the form expressed in Eq. (28) to get
Sint

f as a symmetric and positive definite matrix.
This methodology has been applied to the 587 profiles

of the night-time dataset described in the previous section.
The covariances Sδy of each comparison as approximated
in Eq. (25) have been averaged (arithmetic mean, hereafter
Sδy) and the square root of the diagonal. (i.e. the 1σ stan-
dard deviation of the comparison total uncertainty distribu-
tion) is shown in Fig. 6. In practice, we calculate Sδy as the
sum of the covariance matrices of each variable: the surface
measurement covariance (Ssurf_rs); the model surface covari-
ance (Ssurf_m); the total humidity covariance (Sq_total); the to-
tal temperature covariance (ST_total); and the GRUAN pres-
sure covariance (SP_rs). The square root of their diagonal is
also shown in Fig. 6. In addition, Sq_total and ST_total can be
further decomposed into the sum of the covariance matrices
of each of their components: the GRUAN humidity and tem-
perature covariance (Sq_rs and ST_rs); the model humidity and
temperature covariance (Sq_m and ST_m); and the covariance
of the vertical interpolation of the model humidity and tem-
perature profiles (Sq_m_int and ST_m_int). The square root of
their diagonal is also shown in Figs. 7 and 8.

Note that on some occasions, the processor fine grid does
not capture the lowermost or uppermost model levels, which

Atmos. Meas. Tech., 12, 83–106, 2019 www.atmos-meas-tech.net/12/83/2019/



F. Carminati et al.: Using reference radiosondes to characterise NWP model uncertainty 97

Figure 6. The 1σ standard deviation of the total uncertainty distribution expressed as the square root of the diagonal of the mean comparison
covariance Sδy (blue dots) and the square root of the diagonal of the components forming Sδy , namely, the GRUAN surface uncertainty
(Surf_rs, orange), the model surface uncertainty (Surf_m, green), the humidity total uncertainty (q_total, red), the temperature total uncer-
tainty (T_total, purple), and the GRUAN pressure uncertainty (P_rs, brown).

caused missing values in W. The calculation has conse-
quently been performed, for those cases, on the remaining
levels of W. It is planned to refine the processor grid in the
future version in order to avoid such missing data in the in-
terpolation matrix.

As expected, the surface components of the total uncer-
tainty are dominant at frequencies at which the radiance is
sensitive to the surface (ATMS channels 1–7 and 16–17).
Amongst them, the surface component from the model is the
largest due to the low confidence in surface emission and
properties. Channels with frequencies sensitive to tempera-
ture and humidity are dominated by the temperature and hu-
midity total components, respectively.

The decomposition of the temperature and humidity total
uncertainties in the temperature channels (Fig. 7) and in the
humidity channels (Fig. 8), respectively, shows that, again,
the model components are largely dominant. Note that for the
highest peaking temperature channel (channel 12) the sec-
ond largest uncertainty is the GRUAN pressure component.
Also, the lowest peaking humidity channels (channels 18–
19) are significantly affected by the surface uncertainty, al-
though this may vary with the location and the water vapour

burden, making those channels peak more or less high in the
atmosphere and therefore more or less sensitive to the sur-
face.

The total uncertainty ranges from 0.08 to 0.13 K for the
temperature channels in Fig. 7 and from 1.6 to 2.5 K for
the humidity channels in Fig. 8. Compared to the mean dif-
ference 1TbMetOffice documented in Table 1, the night-time
sampling satisfies the consistency requirement of Eq. (1)
with k = 1, noting that the σ term in Eq. (1) that should
represent the uncertainty associated with the trilinear hori-
zontal interpolation is currently unknown, although assumed
small, and therefore ignored. Future work will be dedicated
to the estimation of this σ term using a high-resolution re-
gional model.

These preliminary results are in line with the uncertainty
range provided by Loew et al. (2017). This should however
be confirmed with the careful evaluation of multiple GRUAN
sites over longer time periods, beyond the scope of this paper
but planned to be addressed in the near future.

It is interesting to compare the GRUAN processor upper
bound uncertainty, calculated assuming a complete correla-
tion, i.e. u_gruan_bt, with the GRUAN contribution to Sδy .
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Figure 7. Same as Fig. 6 but only for ATMS temperature upper-tropospheric and lower-stratospheric channels 8–12, with the square root
of the diagonal of the components forming ST_total, namely, the GRUAN temperature uncertainty (T_rs, olive), the model temperature
uncertainty (T_m, pink), and the model vertical interpolation uncertainty (T_m_int, grey).

Ignoring the uncertainties associated with the surface param-
eters, the GRUAN contribution to Sδy can be calculated as
the square root of the first three terms of Eq. (26). Figure 9
shows that u_gruan_bt is consistently 4 times larger than the
3σ standard deviation of the GRUAN contribution to Sδy at
the frequencies of interest. It may indicate that the assump-
tion of complete correlation in the uncertainty (i.e. the use of
GRUAN total uncertainty as if correlated at all levels), asso-
ciated with the calculation of the maximal total uncertainty in
Tb, results in a large overestimation of the uncertainty in radi-
ance space. In addition, it should be remembered that the use
of diagonal matrices in Eq. (26) is suboptimal and may not
capture the full extent of the uncertainty. The lack of explicit
systematic and random errors associated with the radiosonde
profiles and the lack of discretisation between correlated and
uncorrelated uncertainty components in GRUAN products is
also suboptimal. This stresses the need for the GRUAN com-
munity to provide proper covariance matrices, better-defined
error profiles, and better discretisation of correlated and un-
correlated uncertainties. Finally, it is possible, although not
likely, that a violation of the assumption of small uncertain-
ties in Eqs. (21)–(22) could result in non-linear perturbations
potentially causing the GRUAN contribution to Sδy to be un-
derestimated.

Next, the overall agreement between the Met Office model
and GRUAN, in radiance space, is assessed via a χ2 test.
Here, a reduced χ2, hereafter χ̃2, is estimated for each profile
as follows:

χ̃2
=

1
c

(
δyi − δy

)T S−1
δy (δyi − δy), (30)

where δyi is the NWP–GRUAN difference in Tb for the ith
comparison, and δy is the mean comparison over the sample.
The number of degrees of freedom c, in this context, is the
number of channels regardless of any constraints as defined
in Rodgers (2000) (Sect. 12.2).

Comparing calculated and theoretical χ̃2 will allow, in
theory, the assessment and eventually revision of the un-
certainty estimates used for the NWP model and GRUAN.
Figure 10 shows the distribution of χ̃2 calculated for the
night-time sampling (blue line) and how it compares to the
theoretical χ̃2 estimated from random data of similar sam-
pling size (green line). Dashed lines show the 95th percentile
of each distribution. χ̃2 values beyond the theoretical 95th
percentile line reflect the comparisons for which the model
and GRUAN are significantly different. For this example, the
95th percentile of the calculated χ̃2 (blue dashed line) is 5 %
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Figure 8. Same as Fig. 6 but only for ATMS humidity tropospheric channels 18–22, with the square root of the diagonal of the components
forming Sq_total, namely, the GRUAN humidity uncertainty (q_rs, olive), the model humidity uncertainty (q_m, pink), and the model vertical
interpolation uncertainty (q_m_int, grey).

larger than the theoretical one (green dashed line); i.e. about
10 % of the calculated χ̃2 values are greater than the theo-
retical 95th percentile threshold. This relatively good match
between calculated and theoretical χ̃2 rules out the hypoth-
esis of the violation of small uncertainties in Eqs. (21)–(22).
However, it might be that one (or more) component of Sδy
has been underestimated and could be revised until both 95th
percentiles match. It is also possible that unforeseen sources
of uncertainty have been unaccounted for in Eq. (25). In both
cases, the increased total uncertainty will reduce the num-
ber of comparisons failing the test and reduce the difference
between the calculated and theoretical 95th percentile thresh-
old.

A refined assessment using a larger sample spanning sev-
eral years and several GRUAN sites will be addressed as part
of future work, but is out of the scope of this study.

6 Conclusion

NWP models have demonstrated the ability to act as suit-
able reference comparators for the calibration and validation
of satellite instruments. Model analysis and short-range fore-
cast uncertainties are incrementally reduced by progressive

improvements in data assimilation techniques and the inges-
tion of a large and growing number of observations from
multiple sources. From the state of the art of NWP output
fields, biases as small as a tenth of a kelvin can be highlighted
in some satellite datasets. In addition, NWP models provide
global fields, which allow for the evaluation of satellite data
across the full dynamic range of the instrument. Yet model
uncertainty estimates do not meet international metrological
traceability standards as provided by other reference datasets,
such as the GRUAN radiosondes.

In order to address the missing links in the traceability
chain of model uncertainty, a collocation and radiance sim-
ulation tool (the GRUAN processor) has been developed in
the framework of the GAIA-CLIM project. This allows us to
quantify differences between GRUAN radiosonde profiles of
well-defined uncertainties and NWP fields, in both observa-
tion and radiance space.

Based on the radiative transfer core capability of the ra-
diance simulator developed and maintained by NWP SAF,
the processor collocates model fields to GRUAN radiosonde
profiles in space and time, then simulates top-of-atmosphere
brightness temperatures for both datasets at frequencies used
by satellite instruments, and propagates GRUAN uncertain-
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Figure 9. The 1σ standard deviation of the uncertainty distribution from the GRUAN contribution to Sδy is shown in blue (dotted line).
It is calculated as the square root of the first three terms of Eq. (26), i.e.

√
diag(Sq_rs+ST_rs+SP_rs). The 3σ standard deviation of the

uncertainty distribution is shown in purple (solid line). u_gruan_bt, the GRUAN uncertainty propagated into radiance space by the GRUAN
processor and averaged over the night-time sample, is shown in green (solid line).

ties in radiance space. The details of the GRUAN proces-
sor have been described in this paper and a mathemati-
cal methodology aimed at assessing NWP–GRUAN compar-
isons in radiance space has been expounded.

For this study, a small sampling of 573 daytime and 587
night-time GRUAN radiosonde profiles from Lindenberg,
Germany, in 2016, and matching NWP fields from the Met
Office and ECMWF global models have been processed and
analysed to demonstrate the GRUAN processor capability.

In the geophysical space of the radiosonde observations,
the NWP–GRUAN comparison has highlighted 0.5 K cold
biases located in the stratosphere of the ECMWF model and
in the lower troposphere of the Met Office model. A wet bias
ranging from 50 % to 75 % of the local specific humidity
is visible in both models at a pressure of between 200 and
100 hPa.

In radiance space, the Met Office and ECMWF Tb are
found to be within ±0.09 and ±0.39 K, respectively, of
GRUAN night-time profiles (when GRUAN biases are min-
imal), at frequencies predominantly sensitive to temperature
(54–57 GHz) in the vertical domain in which GRUAN ra-
diosonde observations are available. Similarly, the Met Of-
fice and ECMWF Tb values are found to be within ±0.46
and ±0.37 K, respectively, of GRUAN night-time profiles
at frequencies predominantly sensitive to humidity (around
183 GHz).

The propagation of GRUAN uncertainties in radiance
space is performed in the GRUAN processor via perturbation
of the temperature, humidity, and pressure profiles by plus
and minus their total uncertainty as provided in the RS92-
GDP data files. This process assumes a complete correlation
of the uncertainties at all levels. This is a pessimistic as-
sumption and the resulting uncertainty obtained in radiance
space is therefore representative of a maximum uncertainty
of the GRUAN component (the model uncertainty is not ac-
counted for). The true GRUAN uncertainty in radiance space
is smaller than that calculated as only a fraction of GRUAN
total uncertainty (in observation space) is really correlated
over the entire profile.

Independently from that maximum GRUAN uncertainty
estimate, a rigorous estimation of the uncertainties in radi-
ance space associated with the NWP–GRUAN difference is
proposed in this study as a post-processing application based
on the GRUAN processor outputs. The covariance of this dif-
ference, Sδy , is calculated as the sum of the GRUAN, model,
and interpolation uncertainties propagated in radiance space.

Tested with the Met Office background error covariance,
the NWP component of Sδy is found to be the dominant
source of uncertainty. The total uncertainty of the difference
ranges from 0.08 to 0.13 K at frequencies sensitive to tem-
perature and from 1.6 to 2.5 K at frequencies sensitive to hu-
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Figure 10. Reduced χ2 distribution from the NWP–GRUAN night-time sampling (blue) and theoretical reduced χ2 estimated from a random
sampling of equal size and equal degrees of freedom (blue). Dashed lines show the 95th percentile of each distribution.

midity, satisfying, on average, the consistency check (Eq. 1)
for night-time profiles.

The GRUAN component of Sδy is found to be 4 times
smaller (at 3σ ) than the maximum GRUAN uncertainty esti-
mated in the processor, demonstrating the large overestima-
tion of the complete correlation assumption. However, it is
worth stressing that in the absence of covariance information,
error (random and systematic) characterisation, and discreti-
sation between correlated and uncorrelated uncertainty com-
ponents in GRUAN data files, the estimation of Sδy remains
suboptimal.

The χ2 distribution calculated for the comparisons be-
tween model-based (Met Office) and GRUAN-based simu-
lated Tb revealed that the number of significantly different
comparisons is close to although slightly larger than that of
the corresponding theoretical χ2 distribution. Implications
are that either one or several components of Sδy are underes-
timated, or that a source of uncertainty has been overlooked.

The next step will be to process and analyse collocated
profiles spanning several years and multiple GRUAN sites.
This will provide a better, although incomplete, geographi-
cal distribution of model biases as well as their evolution in
time. Away from the surface, NWP model biases are to first
order a function of latitude and height and can usefully be

studied for polar, mid-latitude, and tropical bands. For north-
ern latitude bands, the NWP uncertainties can be studied by
comparison with GRUAN observations, but for the tropics
and southern latitudes, where there are few or no GRUAN
data, these could to be supplemented with other high-quality
radiosonde reports. The aim will be to provide a refined set of
model uncertainty for selected frequencies spanning both mi-
crowave and infrared domains. Ultimately, the contribution
from this work will help draw the full model uncertainty bud-
get (composed of uncertainties in radiance space, radiative
transfer modelling, scale mismatch, and cloud residual) for
more robust assessment of satellite observations. Finally, the
larger sampling will also ensure a more robust χ2 analysis
and, if deemed necessary, help revise the model covariance
matrices used in operation at the Met Office and ECMWF.

The quantitative estimate of errors and uncertainties in
NWP models, for temperature, humidity, and radiance space,
could aid in the interpretation of observation minus short-
range forecast statistics for satellite instruments, for example
by helping to identify whether biases in observation-minus-
model background values could be due to systematic errors
in the NWP model short-range forecasts. In future work, it
is planned to use the GRUAN processor output to evaluate
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biases in observation-minus-model background statistics of
satellite data.

GRUAN processor-based studies also have the potential
to refine and improve bias correction schemes used in NWP
centres by helping identify regions where NWP model biases
are small as suggested by Eyre (2016). Similarly, the process-
ing and inter-comparison of multiple radiosonde types can
help determine which sets of observations could be used as
anchors.

Finally, the GRUAN processor will also evolve with the
evolution of RTTOV. For example, a parallel version of the
processor is currently being tested with the ground-based fast
radiative transfer model RTTOV (RTTOV-gb). RTTOV-gb is
a modified version of RTTOV that allows for simulations of
ground-based upward-looking microwave sensors (De Ange-
lis et al., 2016). Model- and GRUAN-simulated Tb and prop-
agated uncertainties are expected to help estimate the uncer-
tainties in the microwave radiometer observations for which
RTTOV-gb has been developed. It is also planned to upgrade
the processor in order to support RTTOV 12 (Hocking et al.,
2017). This upgrade will allow better handling of surface
emissivity and give the option to output principal compo-
nents used for the new generation of hyperspectral infrared
sounders. Note that other fast radiative transfer models, such
as the Community Radiative Transfer Model (CRTM), could
potentially be tested with the GRUAN processor, although
there is no immediate plan to do so.

Data availability. For further information on the GRUAN proces-
sor source code and/or output availability, please contact the lead
author (fabien.carminati@metoffice.gov.uk).
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Appendix A: Forecast error covariance matrix
estimation

If the forecast error covariance matrix from the NWP forecast
model used as input to the processor is not available, it can
be determined from an ensemble of K NWP profiles, with
K >N , where N is the number of vertical levels, such that

Bm
c =

X′X′T

K − 1
, (A1)

where K − 1 gives the best estimate of the covariance of the
population from which the sample K is drawn, and with X′
such as

X′ = (xm1
c − xm

c , . . .,x
mj
c − xm

c , . . .,x
mK
c − xm

c ), (A2)

where xmj
c is the j th model profile of the K ensemble, and

xm
c is the mean of the K profiles, both on the coarse model

vertical grid.

Appendix B: Interpolation matrix pseudo inverse

The interpolation matrix W is not square and therefore its
inverse cannot be calculated. Instead, a pseudo inverse, W∗,
can be obtained using, for example, the weighted least-square
estimate of xt

c (Rodgers, 2000). For that, we need to min-
imise

r=
1
2

(
xt

f−Wxt
c
)TBm−1

f
(
xt

f−Wxt
c
)
, (B1)

where, for the weight, we use the forecast error covariance
matrix expressed on the fine grid, Bm

f , since we interpolate
the model profiles on that grid.

By taking the derivative with respect to xt
c and setting it to

zero, we find

xt
c =

(
WTBm−1

f W
)−1

WTBm−1

f xt
f, (B2)

where

W∗ =
(

WTBm−1

f W
)−1

WTBm−1

f . (B3)

In order to find an expression for Bm
f , we refer to Bm

c , the
forecast covariance matrix on the coarse model grid, to cal-
culate the forecast error correlation matrix Cm

c , on the coarse
model grid. The correlation matrix is then reconditioned on
the fine processor grid and referred to as Crec

f , as explained
below.

We define 6, a diagonal matrix representing the square
root of Bm

c variance, as

6 =
√

diag(Bm
c ). (B4)

Cm can be expressed as

Cm =6
−1Bm

c 6
−1. (B5)

We can then define Cm
f as

Cm
f =WCm

c WT . (B6)

However, Eq. (B6) does not guarantee that Cm
f diagonal el-

ements are equal to 1. This constraint needs to be imposed
as

Crec
f =WCm

c WT
− diag

(
WCm

c WT
)
+ I. (B7)

Given σm, a vector composed of the square root of the vari-
ance of εm variance, Bm

f , is expressed as follows:

Bm
f = diag(Wσm)Crec

f diag(Wσm). (B8)
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