
Atmos. Meas. Tech., 12, 935–953, 2019
https://doi.org/10.5194/amt-12-935-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving the mean and uncertainty of ultraviolet multi-filter
rotating shadowband radiometer in situ calibration factors: utilizing
Gaussian process regression with a new method to estimate dynamic
input uncertainty
Maosi Chen1, Zhibin Sun1, John M. Davis1, Yan-An Liu2,3,4, Chelsea A. Corr1, and Wei Gao1,5

1United States Department of Agriculture UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory,
Colorado State University, Fort Collins, CO 80523, USA
2Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University,
Shanghai 200241, China
3School of Geographic Sciences, East China Normal University, Shanghai 200241, China
4ECNU-CSU Joint Research Institute for New Energy and the Environment, Shanghai 200062, China
5Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA

Correspondence: Maosi Chen (maosi.chen@colostate.edu), Zhibin Sun (zhibin.sun@colostate.edu),
and Yan-An Liu (yaliu@geo.ecnu.edu.cn)

Received: 31 August 2018 – Discussion started: 15 November 2018
Revised: 27 January 2019 – Accepted: 28 January 2019 – Published: 12 February 2019

Abstract. To recover the actual responsivity for the Ultra-
violet Multi-Filter Rotating Shadowband Radiometer (UV-
MFRSR), the complex (e.g., unstable, noisy, and with gaps)
time series of its in situ calibration factors (V0) need to be
smoothed. Many smoothing techniques require accurate in-
put uncertainty of the time series. A new method is pro-
posed to estimate the dynamic input uncertainty by exam-
ining overall variation and subgroup means within a mov-
ing time window. Using this calculated dynamic input uncer-
tainty within Gaussian process (GP) regression provides the
mean and uncertainty functions of the time series. This pro-
posed GP solution was first applied to a synthetic signal and
showed significantly smaller RMSEs than a Gaussian pro-
cess regression performed with constant values of input un-
certainty and the mean function. GP was then applied to three
UV-MFRSR V0 time series at three ground sites. The method
appropriately accounted for variation in slopes, noises, and
gaps at all sites. The validation results at the three test sites
(i.e., HI02 at Mauna Loa, Hawaii; IL02 at Bondville, Illi-
nois; and OK02 at Billings, Oklahoma) demonstrated that
the agreement among aerosol optical depths (AODs) at the
368 nm channel calculated using V0 determined by the GP
mean function and the equivalent AERONET AODs were

consistently better than those calculated using V0 from stan-
dard techniques (e.g., moving average). For example, the av-
erage AOD biases of the GP method (0.0036 and 0.0032)
are much lower than those of the moving average method
(0.0119 and 0.0119) at IL02 and OK02, respectively. The
GP method’s absolute differences between UV-MFRSR and
AERONET AOD values are approximately 4.5 %, 21.6 %,
and 16.0 % lower than those of the moving average method
at HI02, IL02, and OK02, respectively. The improved accu-
racy of in situ UVMRP V0 values suggests the GP solution
is a robust technique for accurate analysis of complex time
series and may be applicable to other fields.

1 Introduction

While many instruments generate relatively stable data time
series over short time windows, dynamic uncertainty levels,
variable sampling densities, and/or different lengths of gaps
with missing data can complicate the analysis of long-term
datasets. For example, the 5-year time series of a solar vari-
ability indicator (Mg II core to wing index) shows consis-
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tency on the order of days but increasing noise level and
gaps are observed at the month scale (Cebula et al., 1992).
The time series of the geopotential scale factor, a function
of the geoidal potential, is also relatively stable on shorter
timescales but demonstrates a slowly increasing long-term
pattern (Burša et al., 1997). Additionally, the time series of
a ratio (F factor) for calibrating a satellite radiometer suite
(i.e., VIIRS) shows band-specific gap distributions and vari-
able trends (Cardema et al., 2012). As a result, these time
series may not be described as a simple deterministic func-
tion of time due to possible noise and gaps.

Long-term measurements of irradiance by Multi-Filter
Rotating Shadowband Radiometers (MFRSRs) are also sub-
ject to errors imposed by the factors mentioned above. The
MFRSR measures direct normal, diffuse horizontal, and to-
tal horizontal irradiances at seven visible channels with a
roughly 10 nm full half maximum width (FHMW) (Har-
rison and Michalsky, 1994). The Ultraviolet (UV) version
of MFRSR measures the same three irradiance components
at seven UV channels (i.e., 300, 305, 311, 317, 325, 332,
and 368 nm) with a 2 nm FHMW (Gao et al., 2010). Cur-
rently, the US Department of Energy (DOE) Atmospheric
Radiation Measurement (ARM) Climate Research Facility
(Mather and Voyles, 2013), the NOAA Surface Radiation
(SURFRAD) (Augustine et al., 2005), and the US Depart-
ment of Agriculture (USDA) UV-B Monitoring and Research
Program (UVMRP) (Gao et al., 2010) maintain their own
MFRSR and/or UV-MFRSR at multiple sites across the US.
To capture immediate instrument responsivity variation, the
UVMRP performs in situ calibrations using the Langley
method (Slusser et al., 2000; Harrison and Michalsky, 1994)
or derived approaches (e.g., Chen et al., 2013, 2015, 2016)
on (UV-)MFRSR direct beam measurements on days with
extended clear-sky periods (Gao et al., 2010).

Many factors contribute to the error or uncertainty of the
Langley method, including variations in aerosol and/or other
atmospheric constituents over the course of the calibration
period (Augustine et al., 2003; Chen et al., 2015; Zhang et
al., 2016), the presence of thin cirrus (Shaw, 1976), and in-
strument errors (e.g., instrument tilt and misalignment, incor-
rect nighttime offset and angular corrections) (Alexandrov
et al., 2007). Thus, the sequence of original UVMRP (UV-
)MFRSR in situ calibration factors exhibits certain levels of
noise. Among these uncertainties, variable AOD is consid-
ered the major contributor to the variability in the Langley
calibration factors obtained in typical atmospheric conditions
over the continental United States (Alexandrov et al., 2008),
even with careful cloud screening (e.g., Chen et al., 2014;
Alexandrov et al., 2004). In addition, extended cloudy peri-
ods and low solar zenith angles during winter months further
reduce the sequence quality and appear as large time gaps in
the datasets. Since the in situ calibration factor represents the
instrument’s responsivity, which is assumed to be relatively
stable, it has been suggested that one applies some smooth-
ing methods (e.g., averaging or fitting a smooth curve) to

the daily calibration time series (Alexandrov et al., 2008)
to reduce the issue. Currently, UVMRP implements an out-
lier detection and moving smoothing technique to overcome
these issues. However, the process involves manual interac-
tion, performs unreliably during sparse and gapped periods,
and lacks the uncertainty estimation.

Analyses of complex long-term time series, such as those
of (UV-)MFRSR V0 values, must consider (i) the underly-
ing continuous trend (i.e., the mean function) and the cor-
responding trend uncertainty and (ii) the (dynamic) input
uncertainty. For problem (i), there is a variety of available
approaches, such as local polynomial regression, smooth-
ing splines, and Gaussian process (GP) regression (Proietti,
2011). Local polynomial regression (LPR) constructs a poly-
nomial within each local time window and fits its coefficients
by locally weighted least squares. LPR’s computational com-
plexity is low, and it can eliminate some of the randomness
in the data (Hyndman, 2011). However, LPR may have dif-
ficulty on the cases with varying sampling densities or gaps.
In addition, LPR does not allow estimation of the trend near
the ends of the time series and cannot be used for forecasting
(Hyndman, 2011). A spline is a piecewise polynomial func-
tion with continuous derivatives (Proietti, 2011), and smooth-
ing splines estimate the underlying spline by minimizing the
distance between the spline and the observations while pe-
nalizing the roughness of the spline (Wahba, 2011). For ex-
ample, a cubic spline fit was used to fill the large gaps in
the Mg II index time series (Viereck et al., 2004). Both LPR
and smoothing splines are unable to utilize the information
about the input uncertainties or to estimate the uncertainty
associated with the trend. Unlike the two methods above,
GP does not restrict the class of the underlying functions be-
cause it is not a parametric model (Rasmussen and Williams,
2006). Instead, it gives a priori probability to every possible
function based on the desired function characteristics such
as smoothness (Rasmussen and Williams, 2006). GP regres-
sion assumes both the observations and the underlying func-
tion are from one joint (prior) Gaussian distribution and de-
rives the underlying function distribution by conditioning the
joint (prior) distribution on the observations (Rasmussen and
Williams, 2006). The method takes the observational error
into consideration and naturally gives the uncertainty of the
underlying function, making itself an appropriate tool for
problem (i). GP regression has been widely used in many
fields (e.g., forecasting of mortality rates, Wu and Wang,
2018; prediction of spatial–temporal violent events, Kupilik
and Witmer, 2018; and modeling-received signal strength for
wireless local area network location fingerprinting, Richter
and Toledano-Ayala, 2015).

For problem (ii), the input error statistics (e.g., input uncer-
tainty) is often assumed to be known or roughly estimated in
advance. In practice, a typical approach may use some prede-
termined constant (e.g., the nominal uncertainty of an instru-
ment, or the standard deviation of its observation) to estimate
input uncertainty for the entire dataset. However, this kind of
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approach omits the information of the possible time-varying
observation error, leading to over- or underestimation of the
input uncertainty at a given (temporal) location (Chandorkar
et al., 2017). A sophisticated approach may treat the dynamic
input uncertainty as additional parameters and solve them to-
gether with other model parameters through optimization un-
der the Bayesian framework (Kavetski et al., 2006a, b). How-
ever, this method requires the specification of valid error and
uncertainty models, which are normally poorly understood in
practice (Kavetski et al., 2006a, b).

In this study, we developed and validated a generic solu-
tion that combines GP regression with a new dynamic in-
put uncertainty estimation method to determine the underly-
ing continuous trend and the corresponding uncertainty for
the given time series. In Sect. 2, we briefly summarize the
basics of the GP regression and develop the dynamic in-
put uncertainty estimation method. We also describe a com-
plex (noisy, gapped, etc.) synthetic time series and real UV-
MFRSR in situ calibration factor time series used in the
analysis. In Sect. 3, we present and discuss the performance
of the GP method on the test data, in comparison with the
UVMRP current operational method and a moving average
(MA) technique. Validation of the calibration factors deter-
mined with the GP method via the comparison of AODs cal-
culated with these factors and those reported by the AErosol
RObotic NETwork (AERONET) (Holben et al., 1998) is also
discussed in Sect. 3.

2 Materials and methods

2.1 Gaussian process (GP) regression

2.1.1 Main procedure

A GP is a technique used in the analysis of a finite num-
ber of random variables with a joint Gaussian distribution
(Rasmussen and Williams, 2006). The following briefly in-
troduces the theory of GP regression. An observed dataset,
Dobs = (X,y)= {(xi,yi) |i = 1, . . . ,N}, has N pairs of in-
puts (X= {xi} ∈ RN×D) and corresponding observed values
(y = {yi} ∈ RN ), where D is the length of input vector xi.
y is the combination of a function of X and noises ε: y =
f(X)+ ε, where ε follows an independent distributed Gaus-
sian distribution ε ∼N

(
0,diag(σ 2

y)
)

and σ y ∈ RN is the
given or estimated uncertainty (standard deviation) on the N
observations. In practice, σ y is not always known in advance.
Section 2.1.2 provides an empirical approach to estimat-
ing σ y. It is assumed that the test dataset D∗ =

(
X∗,f ∗

)
=

{(x∗i,f∗i) |i = 1, . . . ,N∗} and the observed dataset (Dobs)
have the joint Gaussian distribution but the test function val-
ues (f ∗) are unknown:[
y

f ∗

]
∼N

(
0,
[

KXX+ σ
2
yI KXX∗

KXX∗ KX∗X∗

])
, (1)

where I is the identity matrix, KX∗X ∈ RN∗×N denotes the
covariance matrix between observed (X∗) and test inputs
(X), and similarly for the other three terms KXX ∈ RN×N ,
KXX∗ ∈ RN×N∗ , and KX∗X ∈ RN∗×N . Each element of these
covariance matrices is determined by a kernel function
K(z1,z2), which maps any pair of inputs (z1,z2 ∈ RD) into
R. There is a wide variety of kernel functions such as the
radial basis function (RBF) and the rational quadratic (RQ)
kernel (Rasmussen and Williams, 2006). For example, The
RQ kernel is defined by the following equation with length
scale (l) and alpha (α) as its two parameters (Rasmussen and
Williams, 2006):

KRQ(r)=

(
1+

r2

2αl2

)−α
, r = ‖z1− z2‖ . (2)

In practice, users need to use prior knowledge or techniques
such as autocorrelation to choose the best kernel function to
represent the correlation among input data. The hyperparam-
eters (θ ) of the chosen kernel function are then optimized by
maximizing the log-transformed marginal likelihood (Ras-
mussen and Williams, 2006):

logp(y|X,θ)=−
1
2
yT
[
KXX (θ)+ σ

2
yI
]−1

y−
1
2

log
∣∣∣KXX (θ)+ σ

2
yI
∣∣∣− N

2
log2π. (3)

To simplify the calculation, the mean of y has been sub-
tracted from both the actual observed values and the test
function values. Therefore, the joint distribution has a mean
equal to zero.

Based on the (optimized) joint distribution Eq. (1), the the-
orem that derives the conditional distribution from the joint
Gaussian distribution (Eaton, 1983), and the inversion equa-
tions of a partitioned matrix (Press, 1992), the GP regres-
sion predicts f ∗ from given X, y, and X∗ (Rasmussen and
Williams, 2006):{
f ∗|X,y,X∗

}
∼N

(
f ∗,cov(f ∗)

)
, (4)

where

f ∗ =KX∗X

[
KXX+ σ

2
yI
]−1

y, (5)

cov(f ∗)=KX∗X∗ −KX∗X

[
KXX+ σ

2
yI
]−1

KXX∗ . (6)

The GP-predicted sample standard deviations (i.e., the square
root of the diagonal elements in cov(f ∗)) can be converted
to the predicted confidence intervals. For example, the pre-
dicted 0.99999 confidence intervals used in this study are
obtained by multiplying a constant (i.e., 4.42) with predicted
sample standard deviation. Points outside the predicted con-
fidence intervals may be considered outliers and can be ex-
cluded iteratively until all points are within the confidence in-
tervals or the average ratio between GP predicted means and
standard deviations is less than a threshold (e.g., the thresh-
old is 0.01 in this study).
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2.1.2 Proposed dynamic input uncertainty estimation

As mentioned before, the statistical properties of the noise
ε of the observed time series y might be unknown. Even if
assuming ε ∼N

(
0,diag(σ 2

y)
)

in practice, σ y is not always
a constant and could vary in time. Therefore, we propose to
estimate σ y with a moving window approach. Within each
moving window (W), the input uncertainty (denoted as si) is
assumed to be relatively stable and can be estimated using
all points in the window (W). Note that si is not equivalent
to the standard deviation of all points within the period (sW),
unless the mean function of the time series is invariant. We
derive the relationship between si and sW (see Appendix A
for the detailed derivation) to estimate si:

s2
W =

N − J

N − 1
s2

i +
1

N − 1

J∑
j=1

Nj
(
µj −µW

)2
, (7)

where all points within W are clustered into J subgroups
based on their similarity in both time and value; Nj is the
number of points in each subgroup j ; N =

∑J
j=1Nj is the

number of all points within W; µj is the mean of subgroup j ,
which can vary among subgroups; si is the estimated uncer-
tainty of each point within W, acting as the sample standard
deviation across all subgroups; and µW and sW are the mean
and sample standard deviation of all points within W. The
classic K-means algorithm was used for the clustering pro-
cess. To increase the reliability of estimating statistics (mean
or sample standard deviation), small subgroups are merged
with adjacent ones to ensure each subgroup has more than
the required minimum points. The numbers of initial sub-
groups and the required minimum points depend on the prior
knowledge of the variability and availability of the data. Sen-
sitivity studies (not shown) indicate that five initial subgroups
per moving window and three required minimum points per
subgroup worked well for our applications. The dynamic in-
put uncertainty estimation process is applied to every data
point in a sequence. The squares of the estimated input stan-
dard deviations (i.e., s2

i in Eq. 7) are stored on the respective
diagnostic positions in σ y .

The flowchart of the proposed dynamic input uncertainty
estimation method and the complete GP procedure of esti-
mating the mean and confidence interval functions of a given
time series is presented in Fig. 1.

2.2 Moving average (MA)

MA is a simple smoothing technique. To assess the per-
formance of the GP regression with other methods, this
study implements MA for a one-dimensional case as fol-
lows. For a given x∗i , we first choose its nearby observa-
tions {(x,y) ||x− x∗i | ≤ win_size, (x,y) ∈Dobs } within the
given window win_size and then calculate the mean y value
of the subset as the smoothed observation at x∗i . The process
is repeated for all possible x values in D∗. The parameter

win_size of MA is set at 20 for all applicable cases in this
study.

2.3 UVMRP operational algorithm (OPER)

UVMRP operational algorithm (OPER) was specially de-
signed for smoothing its in situ calibration factor sequences
(http://uvb.nrel.colostate.edu/UVB/dataProcessingInfo/
VnaughtsDataProcessing.jsf, last access: 8 August 2018).
OPER is included as an additional source for method
comparison. The algorithm has three steps. In the first step, a
12-count running mean and the corresponding standard de-
viation are maintained to detect outliers (i.e., points outside
half of the running mean or 2 standard deviations). During
the process, if three consecutive points are determined to
be outliers, visual examination is performed to determine
if a permanent change in the instrument responsivity has
occurred. If such a change is confirmed, calculation of a
new running mean begins on the three points. In the second
step, a moving linear regression (LR) is used to smooth the
values at the center of each moving window. The moving
window size is ±3 months. If visual examination finds
significant value changes on a date of interest (the center
of a moving window), the regression is not performed on
that date. In the final step, the regression results from step
two are used as input into a weighted means algorithm to
generate continuous and smooth in situ calibration factors.
The inverse of year fraction between the current date of
interest and the date of each participating point is used to
calculate the weights. The weighting window is also ±3
months from the date of interest.

2.4 Validation method for 368 nm in situ calibration
factors

Ideally, to avoid additional uncertainties caused by the
interpolation among wavelengths, the calibration factors
should be validated via a direct comparison of direct
sun signals from the to-be-calibrated UV-MFRSR and a
reference instrument measuring at the 368 nm channel
(e.g., the standard precision filter radiometer (PFR) oper-
ated by the Physikalisches-Meteorologisches Observatorium
Davos, World Optical Depth Research Calibration Center
(WORCC)). However, such reference measurements are not
available at most UVMRP stations. Therefore, the estimated
mean normalized V0 (V0,norm) values from the GP regres-
sion and the other two comparison methods (i.e., MA and
OPER) are validated indirectly in terms of aerosol opti-
cal depth (AOD) against those obtained at the collocated
AERONET sites. As shown in Appendix C, the uncertainty
of UV-MFRSR AODs exceeds the World Meteorological Or-
ganization (WMO) U95 criterion (e.g., 95 % of the measured
data have uncertainty in the range of 0.005± 0.01 per air
mass; Kazadzis et al., 2018) at the UVMRP sites investigated
here because the stability assumption of the Langley method
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Figure 1. Main procedure for deriving the mean and confidence interval functions using Gaussian process regression (a) and detailed
procedure of the proposed input uncertainty estimation method (b).

may not be strictly fulfilled. Therefore, the AOD compari-
son in this study can only serve as indirect evidence to ver-
ify whether the calibration of UV-MFRSR is reasonably ac-
curate. AERONET sun photometers are routinely calibrated
with the uncertainty of AOD around 0.002 to 0.005 in the vis-
ible range and up to 0.01 in the UV region (Eck et al., 1999;
Holben et al., 2001) and are therefore considered a reliable
source for AOD intercomparison and radiometer validation
(e.g., Alexandrov et al., 2002, 2008; Augustine et al., 2003;
Krotkov et al., 2005a, b; Kassianov et al., 2007; Tang et al.,
2013; Yin et al., 2015; Zhang et al., 2016). During the recent
Fourth WMO Filter Radiometer Comparison held in Davos,
Switzerland (between 28 September and 16 October 2015),
most AOD values derived from the three AERONET CIMEL
sun photometers are within the ±0.01 range compared with
the PFR triad standard (Kazadzis et al., 2018). This in-
cludes those determined at 368 nm from the extrapolation of
AERONET AODs at 340 and 380 nm. The 2015 Davos cam-
paign also included four MFRSR instruments. Overall, the
results showed good agreement among the four MFRSRs and
the PFR triad standard, though one instrument exhibited a
positive bias and low precision compared to the sun-pointing
instruments (Kazadzis et al., 2018). However, such errors
were likely explained by instrument-specific uncertainties
(e.g., angular response correction, responsivity calibration,
and shadowband position issues) and do not suggest inherent
error in MFRSR AODs (Kazadzis et al., 2018). Augustine et
al. (2003) compared SURFRAD MFRSR AODs at the Table

Mountain station in Colorado with UVMRP MFRSR AODs
at the Pawnee station (85 km northeast of Table Mountain)
and with National Renewable Energy Laboratory (NREL)
sun-photometer-derived AODs at Golden station (50 km to
the south). The AOD difference in the test cases showed a
magnitude of 0.1 to 0.2 and was variable over time even
for the same comparison site. Krotkov et al. (2005a, b) vali-
dated the UVMRP UV-MFRSR AODs with the interpolated
AERONET AODs at the 368 nm at the National Aeronau-
tics and Space Administration Goddard Space Flight Center
(NASA/GSFC) site in Greenbelt, Maryland. They found that
the UV-MFRSR AODs at 368 nm channel on cloud-free days
had a daily RMSE of less than 0.01 when calibrated using
AERONET measurements and increased to approximately
0.02–0.05 (depending on the season) when calibrated using
the standard Langley method (Harrison and Michalsky, 1994;
Slusser et al., 2000). Alexandrov et al. (2002) developed
a comprehensive calibration method for the VIS-MFRSR
and validated the calibration at the four channels (i.e., 440,
500, 670, and 870 nm) by comparing the derived AOD val-
ues with interpolated AERONET values at the ARM Cloud
and Radiation Testbed (CART) site. The results showed a
small AOD difference (i.e., <0.005) at the 440, 500, and
870 nm channels for a variety of atmospheric conditions with
AODs ranging from 0.03 to 0.4 (at 500 nm). Alexandrov et
al. (2008) considered optical depth of NO2 and ozone dur-
ing the MFRSR AOD calculation, although they were small
enough to be ignored (i.e., 0.008 NO2 optical depth at 415 nm
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and 0.005 ozone optical depth at 615 nm) at their test lo-
cation at the ARM Southern Great Plains (SGP) site. The
long-term intercomparison showed a good agreement (i.e.,
difference between them <0.01) between the MFRSR and
AERONET AODs at the 440, 675, and 870 nm channels.
Kassianov et al. (2007) validated the MFRSR-retrieved opti-
cal properties and reported small RMSE values (i.e., 0.0043–
0.0075) among MFRSR, AERONET, and normal incidence
multifilter radiometer (NIMFR) AODs at the 500 and 870 nm
channels during the ARM program’s Aerosol Intensive Op-
erational Period (IOP) in 2003.

In this study, for the UV-MFRSR at the 368 nm chan-
nel, AOD (AOD368 nm,UVMRP) is calculated by subtracting
Rayleigh optical depth (RLOD368 nm,UVMRP) from total op-
tical depth (TOD368nm,UVMRP) under cloud-free conditions.
The absorption of O3, NO2, and other trace gases is very
small at the 368 nm channel (e.g., NO2 optical depth is
around 0.002 to 0.003 at AERONET Cart_Site), so they are
ignored during the calculation of AOD368 nm,UVMRP:

AOD368 nm,UVMRP ≈ TOD368 nm,UVMRP

−RLOD368 nm,UVMRP. (8)

TOD is calculated using Beer’s law (e.g., Slusser et al.,
2000), for which the actual calibration factor at the top
of the atmosphere (V0,raw) is restored from GP-estimated
mean V0,norm. The cosine-corrected voltage and air mass
are obtained from the UVMRP web page (https://uvb.
nrel.colostate.edu/UVB/da_queryCosCorrected.jsf, last ac-
cess: 8 August 2018). RLOD is calculated by following the
equations in Bodhaine et al. (1999). The site latitude and
height for RLOD calculation are from the UVMRP web page
(https://uvb.nrel.colostate.edu/UVB/uvb-siteinfo.jsf, last ac-
cess: 8 August 2018), and the instantaneous site-level sur-
face pressure for RLOD calculation is obtained from the
collocated AERONET sites (https://aeronet.gsfc.nasa.gov/
cgi-bin/webtool_opera_v2_new, last access: 31 July 2018).

To obtain reliable AOD values, UV-MFRSR measure-
ments with quality concerns or cloud contamination are
excluded in the following comparison. More specifically,
(1) any measurements with UVMRP-provided quality con-
trol flag(s) relevant to the data quality of the direct beam at
the 368 nm channel are excluded; (2) data with small (direct
beam) measurements at 368 nm are also excluded because
they are more sensitive to noise or errors introduced during
various calibration steps; and (3) a simple variation check is
performed to reduce the potential of mixing cloud and AOD.
If the ratio between the standard deviation of TODs and the
mean TOD value in the 15 min time window exceeds 0.05,
they are excluded from further analyses.

AERONET (v2.0) provides AOD at the 340 and 380 nm
channels. These values are interpolated to the effective wave-
length of the UV-MFRSR 368 nm channel for compari-
son using the Ångström exponent as follows. Note that in
the log-transformed coordinate system (i.e., log(AOD) vs.

log(wavelength)), log(AOD) is generally linear between 340
and 380 nm (Krotkov et al., 2005a). First, the AERONET
AOD spectrum between the two wavelengths is derived by
linear interpolation of AERONET AODs at 340 and 380 nm
in the log-transformed coordinate system. Next, since the
UV-MFRSR AOD at 368 nm is a band-pass value over a nar-
row band (i.e 2 nm FHMW), the equivalent AERONET AOD
at that channel is derived by

AOD368 nm,AERONET =

∫ 380 nm
340 nm AODλFλdλ∫ 380 nm

340 nm Fλdλ
, (9)

where AODλ is the interpolated AERONET AOD spectrum,
Fλ is the spectral response function of the UV-MFRSR at
the 368 nm channel (http://uvb.nrel.colostate.edu/UVB/da_
queryFilterFunctions.jsf, last access: 8 August 2018), and the
wavelength interval for the integral is 0.05 nm. Note that neg-
ative AERONET AOD measurements are excluded from the
validation because of using log transformation.

Since AERONET and UV-MFRSR AOD values at 368 nm
are derived from measurements involving different instru-
ments and wavelengths, the uncertainties when comparing
these AOD values should be noted. Some important sources
of uncertainties include the following.

1. AERONET calibration error. At the time of calibra-
tion at Mauna Loa Observatory, AERONET reference
instruments have an uncertainty of ∼ 0.2 % to 0.5 %,
which is equivalent to a 0.002 to 0.005 uncertainty in
AERONET AOD (Holben et al., 2001). These calibra-
tion factors are likely to shift within the year following
calibration, which may result in a total AOD uncertainty
of ∼ 0.01 to 0.02 (wavelength dependent, higher in the
UV) (Holben et al., 2001).

2. Instrument field of view (FOV). AERONET CIMELs
have a FOV of 1.2◦ while the UV-MFRSR has a larger
FOV (e.g., ∼ 6.5◦; reported by Kazadzis et al., 2018).
AODs obtained from instruments with larger FOVs are
associated with greater AOD uncertainty due to larger
contributions of scattered light to the direct irradiance
measurement (Kim et al., 2005).

3. Instrument maintenance. Periodic soiling and cleaning
of the UV-MFRSR diffuser can result in spurious in-
creases and decreases in AOD, respectively. The fre-
quency of on-site maintenance (e.g., cleaning of the UV-
MFRSR dome) as well as rainfall events may therefore
account for some of the AOD difference (Kim et al.,
2005, 2008).

4. Trace gases. As mentioned above, AERONET AOD ac-
counts for NO2 optical depth (e.g., ∼ 0.002–0.003 at
OK02) while UV-MFRSR AOD does not.
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2.5 Datasets

2.5.1 Synthetic case

We generate a synthetic time series that is composed of
six segments with a varying base function and noise lev-
els (Fig. 2a). The base function (Eq. 10), including linear,
quadratic, and cubic functions, simulates a wide variety of
functions for which the proposed technique is applicable.
The noise levels are the same within each segment but differ-
ent across segments. The noise at segment i is sampled from
a fixed normal distribution N

(
0,σ 2

i

)
, where σi is equal to 4,

8, 6, 15, 7, and 3 from left to right segments. Each segment
originally contains 200 points. Their x coordinates are sam-
pled randomly from six uniform distributions within their do-
mains. Points with x coordinates in the three designated win-
dows (i.e., [64.2, 69.2], [80.8, 85.8], and [122.5, 127.5]) are
removed to simulate data gaps in reality.

y =



1.5x− 30, 0≤ x < 50
−1.2(x− 50)+ 45, 50≤ x < 100
−0.02(x− 100)2 100≤ x < 150
+2.3(x− 100)− 15,
−0.02(x− 150)2 150≤ x < 200
−0.5(x− 150)+ 50,

0.0004(x− 200)3 200≤ x < 250
+0.012(x− 200)2

+0.4(x− 200)− 25,
0.002(x− 250)3 250≤ x < 300
−0.1(x− 250)2

−2.5(x− 250)+ 75,

(10)

2.5.2 Application cases: in situ calibration factors

In this study, the in situ calibration factors of UVMRP UV-
MFRSRs are used as application cases to test the perfor-
mance of the three smoothing methods (i.e., GP, MA, and
OPER). These UV-MFRSR in situ calibration factors over
several months or years are obtained through the Lang-
ley method on clear days. Their varying uncertainties are
mainly attributed to two aspects. One is the optical stabil-
ity of atmospheric constituents (e.g., the aerosol, ozone, and
thin clouds) when the in situ calibration factor is derived
(Chen et al., 2015), and the other is the aging status of
the radiometer. UVMRP publish its in situ calibration fac-
tors on their website (http://uvb.nrel.colostate.edu/UVB/da_
queryVoIntercepts.jsf, last access: 8 August 2018). To re-
duce the chances of abrupt changes in the sequences, the
data associated with the same instrument (i.e., UV-MFRSR)
at the same UVMRP site (denoted as a deployment period)
are processed together. Three UVMRP sites with collocated
AERONET sites (for validation) were selected (Table 1). The
in situ calibration factors at these UVMRP sites represent
time series with contrasting densities, noisiness, and slopes
(Table 1). Appendix B uses the Oklahoma site (OK02) to

Figure 2. (a) The synthetic time series based on Eq. (10) (the blue
line) with varying noise levels. There are originally 200 samples
within every 50-wide interval (or segment) in the x coordinate, but
points between [64.2, 69.2] (highlighted in yellow, G1), [80.8, 85.8]
(highlighted in yellow, G2), and [122.5, 127.5] (highlighted in yel-
low, G3) are removed to simulate data gaps in practice. The final
number of points in the sequence is 1140. (b) The means (dark blue
circles) and confidence intervals (light blue area) of the estimated
uncertainty for the 200 synthetic sequences (all sampled from the
distribution of (a) but with different random noise). The true uncer-
tainty (red line segments) is also displayed. (c) The Gaussian pro-
cess regression results for the synthetic time series from (a). The
dark blue line is the predicted mean function and the light blue area
is the corresponding confidence intervals.

show that the UV-MFRSR 368 nm in situ calibration factors
obey normal distribution.

3 Results and discussion

3.1 Synthetic case

3.1.1 Estimation of input uncertainty for Gaussian
process

The proposed dynamic input uncertainty estimation method
is first applied to the synthetic case. To observe the statisti-
cal properties and characteristics of the estimated input un-
certainty, this procedure was applied to 200 synthetic time
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Table 1. The three UVMRP 368 nm UV-MFRSR in situ calibration factor time series for test.

UVMRP site UVMRP site location Collocated AERONET Deployment start and end dates Figure (original Time series characteristics
name site time series)

HI02 19.54◦ N, 155.58◦W, 3409 m Mauna_Loa 17 September 2015 to 1 July 2018 Fig. 3a1 dense, low noise, variable slope
IL02 40.05◦ N, 88.37◦W, 213 m BONDVILLE 21 March 2017 to 29 May 2018 Fig. 3b1 sparse, high noise, sharper slope
OK02 36.60◦ N, 97.49◦W, 317 m Cart_Site 17 January 2007 to 11 June 2011 Fig. 3c1 medium density, medium noise,

variable slope

series, each of which is generated by adding random noise
into the base function (Eq. 10) following the procedures dis-
cussed in Sect. 2.5.1.

Figure 2b shows the means (dark blue circles) and con-
fidence intervals (light blue area) of estimated uncertainty
of the 200 estimated input uncertainty sequences. The mean
of the estimated uncertainty is close to the true uncertainty
(RMSE= 0.6321) for the entire synthetic case as demon-
strated by a LR between estimated and true uncertainty with
a slope close to 1 (i.e., 1.0332) and a high R2 of 0.9759
(Table 2). Most true uncertainty (red line segments) is cov-
ered by the confidence intervals except for the areas near the
ends of the six segments. In these areas, the method averaged
the uncertainty from the adjacent segments and presented
a smooth transition between segments. This small RMSE
value suggests that using smaller subgroup size (e.g., three to
six points) does not significantly influence the estimation of
uncertainty (Fig. 2a). Therefore, smaller subgroups are pre-
ferred over larger ones as larger subgroups are more likely to
have gap(s) with large variation, which tends to increase its
estimated standard deviation (Eq. 7).

To demonstrate the improvements in the GP resulting from
the dynamic input uncertainty estimation, the GP is also run
with three typical constant input uncertainties: overall stan-
dard deviation of the synthetic time series (30.95), minimum
true uncertainty of the synthetic time series (2.00), and max-
imum true uncertainty of the synthetic time series (15.00).
The results from all three constant input uncertainties are
less accurate than the estimated input uncertainty generated
by the proposed method (Table 2). The proposed method has
a significantly smaller RMSE (i.e., 0.6321) compared with
the three constant input uncertainties (i.e., 24.1152, 6.5226,
and 8.7921, respectively). Similarly, the LR between the esti-
mated and true uncertainties shows that the proposed method
has slope and R2 values both close to 1 (i.e., 1.0332 and
0.9759) while the three constant uncertainties show no (lin-
ear) correlation with true uncertainties (i.e., the slope and R2

values close to zero).

3.1.2 Estimation of means and confidence interval and
its validation

The kernel function in the GP regression used in this study is
the RQ kernel, with two parameters: length scale and alpha
(Eq. 2). To use RQ with GP regression, we need to provide
the initial (estimated) values for these two parameters. First,

we round the original data points (red points in Fig. 2a) to the
nearest 0.25 interval grids. Then, we calculate the autocorre-
lation on these rounded data points from lags of 0.25 to 22.25
(approximately equivalent to lags of 1 to 90 points). Next,
we perform curve fitting on autocorrelation results and ob-
tain 9.80 and 1.05 as initial length scale and alpha estimates,
respectively. With these initial RQ parameters and the esti-
mated input uncertainty (from the proposed method or using
three representative constant input uncertainties), GP regres-
sion predicts the mean and uncertainty functions. Figure 2c
shows the GP results for the proposed method: dark blue line
for the mean function and the light blue area for the confi-
dence intervals (4.42 times of the GP-predicted uncertainty
function).

In terms of the GP-predicted mean function vs. the base
function (Eq. 10), the proposed input uncertainty estimation
method shows a 12.0 % to 15.7 % improvement on RMSE
over the three constant input uncertainties (i.e., 1.1785 vs.
1.3146, 1.3976, and 1.3146) (Table 2). Similarly, the slope
of the LR between the two functions is closer to 1 for the
proposed uncertainty estimation method (i.e., 1.0082) than
the three constant uncertainties (i.e., 1.0228). In addition, the
predicted mean function from the proposed method is close
to the base function even near the gaps (G1, G2, and G3 in
Fig. 2a, c). Additionally, the proposed method’s predicted
uncertainty function (or confidence intervals) shows better
agreement with the true uncertainty of the synthetic time se-
ries (Fig. 2c) while the three constant input uncertainties’ re-
sults show a consistent over- or underestimated pattern over
the entire time series (figures not shown). It is noted that the
predicted confidence intervals from the proposed method are
wider near the three gaps (G1, G2, and G3 in Fig. 2a) than
nearby locations with similar uncertainty. This is anticipated
because the constraint in the gaps are from distant points at
which the RQ kernel gives low correlation.

3.2 In situ calibration factors cases

3.2.1 Applications

The same GP procedure is applied to three in situ cali-
bration factor (V0,norm, sun-earth distance normalized) se-
quences from three UVMRP deployment periods (Fig. 3) at
three different UVMRP locations previously described in Ta-
ble 1.The Hawaii site (HI02) sits at a clean, high-altitude lo-
cation, which means its atmospheric condition is more stable
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Figure 3. The results of the three smoothing methods (i.e., GP – Gaussian process; MA – moving average; OPER – UVMRP operational
algorithm) for the three UVMRP in situ calibration factor sequences: (a) HI02 (17 September 2015 to 1 July 2018), (b) IL02 (21 March 2017
to 29 May 2018), and (c) OK02 (17 January 2007 to 11 June 2011). Panels (a1), (b1), (c1) display the original in situ calibration factor
(V0,norm) sequence. Panels (a2), (b2), (c2) show the initial input uncertainty estimated for GP. Panels (a3), (b3), (c3) present the predicted
daily mean and confidence interval from the first iteration of GP. Panels (a4), (b4), (c4) show the final results of GP after iterations. Panels
(a5), (b5), (c5) show the results of MA. Panels (a6), (b6), (c6) show the results of OPER.
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than other UVMRP sites and its V0,norm has the lowest varia-
tion (Fig. 3a1). The Illinois site (IL02) is surrounded by crop-
lands/rangelands with the closest city (Champaign) located
12 km northwest (Fig. 3b1). The Oklahoma site (OK02) is
also surrounded by croplands/rangelands with the closest city
(Oklahoma City) located about 96 km south (Fig. 3c1). Both
wildfires and agricultural activities (e.g., cultivation and har-
vest) at IL02 and OK02 contribute to the relatively hazy and
unstable atmosphere condition for Langley regression. As a
result, V0,norm values at IL02 and OK02 have larger vari-
ation compared with HI02. The dynamic input uncertainty
estimation results confirm that the uncertainty at HI02 (15–
40; Fig. 3a2) is also lower than at the other two sites (100–
300; Fig. 3b2, c2). Generally, the proposed method gives
lower uncertainty values for time windows with more clus-
tered points (e.g., December 2008 and April 2010 at OK02,
Fig. 3c2; February 2017 at HI02, Fig. 3a2). There are no
obvious temporal patterns of uncertainty at any of the three
sites.

Figure 3a3, b3, and c3 show the estimated means (dark
blue line) and confidence intervals (light blue area) after the
initial pass through GP. The length scale parameters of the
RQ kernel for the HI02, IL02, and OK02 sites are 6.091,
6.369, and 6.228 (days), respectively. Their corresponding
alpha parameters of the RQ kernel function are all close to
1.0 (i.e., 0.948, 0.862, and 0.944, respectively). As expected,
the confidence interval is narrower near time windows with
more data points, and the confidence intervals are wider near
gaps (Fig. 3b3).

As depicted in Fig. 1, the outlier removal and GP are re-
peated following the initial GP regression, giving the final GP
results shown in Fig. 3a4, b4, and c4. After this final pass,
the length scale parameters of the RQ kernel function for
the HI02, IL02, and OK02 sites are 6.091, 11.149, and 6.907
(days), respectively. Compared with the first round, all length
scale parameters increase as more outliers are removed (ex-
cept for HI02). At HI02, the average ratio between GP means
and standard deviations is lower than the threshold (i.e., 0.01)
after the first round and the iteration stops. The correspond-
ing alpha parameters of the RQ kernel function are still all
close to 1.0 (i.e., 0.948, 1.010, and 1.110, respectively). Be-
cause of outlier removal, compared with the first-round re-
sults, GP generates smoother mean functions and narrower
confidence intervals at the last round.

The other two methods (i.e., MA and OPER) are applied
to the same in situ calibration time series. They can pro-
vide mean functions but not confidence intervals. The MA
(win_size= 20) results (Fig. 3a5, b5, and c5) are generally
smoother than OPER (Fig. 3a6, b6, and c6) but both are more
responsive to noisy points than GP. In addition, since OPER
is scheduled to run once per month on active deployments,
there may be some lags at the end of those deployments (e.g.,
Fig. 3a6).
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Figure 4. The 368 nm AOD scatter plots between UVMRP (y axis) and AERONET (x axis). The UVMRP 368 nm AODs are calculated
from UV-MFRSR direct normal voltages using calibration factors estimated by the three methods (i.e., from top to bottom: GP, MA, OPER)
at the three sites (i.e., from left to right: HI02, IL02, OK02). Panels (a), (b), and (c) display the scatter plots for the GP method at HI02,
IL02, and Ok02, respectively. Similarly, panels (c), (c), and (f) are for the MA method and panels (g), (h), and (i) are for the OPER method.
The AERONET 368 nm AODs are derived from collocated (i.e., Mauna_Loa, BONDVILLE, Cart_Site) AERONET AODs on the 340 and
380 nm channels. The linear regression line (solid, red) and the 1-by-1 line (dashed, black) are also plotted. “<y− x>” means the average
difference between AERONET and UVMRP AOD at the 368 nm channel. “SD(y− x)” means the standard deviation of their difference.

3.2.2 Validation

Following the procedures described in Sect. 2.4, the UVMRP
AODs at the 368 nm channel generated by GP, MA, and
OPER are validated against the corresponding AERONET
AODs at the three collocated sites (i.e., HI02 – Mauna_Loa,
IL02 – BONDVILLE, OK02 – Cart_ Site). The scatter plots
between these UVMRP and AERONET AODs are displayed
in Fig. 4. The performance of all three methods at HI02

(Fig. 4a, d, g) are similar. For example, the average bias
“<y− x>” is approximately 0.0054 and standard deviation
of the difference “SD(y− x)” is approximately 0.0066. For
IL02 (Fig. 4b, e, h) and OK02 (Fig. 4c, f, i), GP shows su-
perior agreements with AERONET to that of the other two
methods. For example, at IL02, the absolute value of GP’s
average bias (0.0036) is about 3.3 to 2.5 times lower than that
of MA (0.0119) and OPER (0.0091). Similarly, at OK02, the
average bias for GP (0.0032) is much lower than that for MA
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Figure 5. Time series of UVMRP and AERONET 368 nm daily average AOD at the HI02, IL02, and OK02 sites. The daily AOD mean
values derived from the GP mean in situ calibration factor (V0) functions (blue) and the corresponding AERONET values (purple) are shown
as solid blue lines. The corresponding lower and upper limits of AOD derived from the GP V0 confidence intervals are shown as dotted red
and green lines, respectively. The insets for HI02 (August 2016), IL02 (June 2017), and OK02 (July 2010) are also included in the respective
subplots to show the comparison details.

(0.0119) and OPER (0.0087). The validation results for GP at
OK02 are similar to the previous comparison results between
AERONET and MFRSR AODs at 415 and 440 nm (Tang et
al., 2013; Alexandrov et al., 2008). Furthermore, as shown
in Appendix C, the GP method improves agreement between
UVMRP and AERONET 368 nm AOD across all air masses.

Table 3 shows two additional statistical metrics for val-
idation: “Avg(|AOD368,UVMRP−AOD368,AE|)”, a measure
of absolute difference between the two quantities and
“Avg(|AOD368,UVMRP−AOD368,AE|/AOD368,AE)” a mea-
sure of relative difference between the two quantities. For
HI02, the GP V0,norm values improve both the absolute and
relative differences between AOD368,UVMRP and AOD368,AE
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Table 3. Statistical metrics (average absolute difference, average absolute relative difference, and linear regression) on comparing 368 nm
AOD between UVMRP (AOD368,UVMRP) and AERONET (AOD368,AE). The UVMRP 368 nm AODs at the three sites (i.e., HI02, IL02,
and OK02) are calculated using calibration factors estimated using the three methods (i.e., GP, MA, and OPER). The AERONET 368 nm
AODs are derived from collocated (i.e., Mauna_Loa, BONDVILLE, and Cart_Site) AERONET AODs on the 340 and 380 nm channels. LR
stands for linear regression. R2 stands for the coefficient of determination for linear regression. The “x” and “y” in LR refer to AOD368,AE
and AOD368,UVMRP of the respective methods.

Site Metrics
Method

GP MA OPER

HI02

Avg
(
|AOD368,UVMRP−AOD368,AE|

)
0.0062 0.0065 0.0067

Avg
(
|AOD368,UVMRP−AOD368,AE|

AOD368,AE

)
0.5803 0.6078 0.6261

LR y = 1.0550x+ 0.0045 y = 1.0551x+ 0.0047 y = 1.0601x+ 0.0043
R2 0.9000 0.8957 0.8812

IL02

Avg(|AOD368,UVMRP−AOD368,AE|) 0.0228 0.0291 0.0270

Avg
(
|AOD368,UVMRP−AOD368,AE|

AOD368,AE

)
0.1669 0.2087 0.1930

LR y = 0.9615x+ 0.0115 y = 0.9543x+ 0.0213 y = 0.9241x+ 0.0065
R2 0.9514 0.9420 0.9332

OK02

Avg
(
|AOD368,UVMRP−AOD368,AE|

)
0.0150 0.01785 0.01847

Avg
(
|AOD368,UVMRP−AOD368,AE|

AOD368,AE

)
0.1714 0.2067 0.1939

LR y = 1.0054x+ 0.0027 y = 1.0238x+ 0.0078 y = 1.0186x+ 0.0056
R2 0.9749 0.9726 0.9554

when compared to MA (by ∼ 4.5 %) and OPER AODs (by
∼ 7.5 %), respectively. Results from LRs performed between
AOD368,UVMRP and AOD368,AE are also reported in Table 3.
The LR results are similar between GP and MA, but GP has
a LR slope closer to 1 (1.0550) and higher R2 (0.9000) than
those of OPER (1.0601 and 0.8812) for HI02. For IL02, GP
shows 21.6 % smaller absolute difference and 20.0 % smaller
relative difference to AERONET than MA; GP shows 15.6 %
smaller absolute difference and 13.5 % smaller relative dif-
ference to AERONET than OPER. Similarly, for OK02, GP
shows 16.0 % smaller absolute difference and 17.1 % smaller
relative difference to AERONET than MA; GP shows 18.8 %
smaller absolute difference and 11.6 % smaller relative dif-
ference to AERONET than OPER.

Overall, the 368 nm AODs by GP show higher correla-
tion, closer to 1 slopes, and lower absolute and relative bi-
ases compared to AERONET AODs than MA and OPER at
all three sites. The improvement of GP over MA and OPER
at IL02 and OK02 is more significant than at HI02. The main
reason may be that HI02 is the least polluted site among the
three sites. Both of its maximum and mean 368 nm AOD val-
ues are low: 0.35 and 0.016, respectively. As a result, higher
accuracy of Rayleigh and other optical depth components is
required to discern small improvement in AOD for HI02.
Since AERONET’s sun photometer is routinely calibrated,
the agreement on AOD values suggests that the calibration
factor mean functions generated by GP are more accurate
than those of MA and OPER.

In addition, Fig. 5 shows the 368 nm AOD time series
calculated using GP-generated in situ calibration factors at
the three UVMRP sites. The blue solid line represents the
AODs calculated using the GP means, and the green and
red dotted lines represent the AODs calculated using the GP
confidence intervals. It is seen that the AOD confidence in-
tervals are approximately ±0.0095, ±0.0480, and ±0.0273
at HI02, IL02, and OK02, respectively. The corresponding
AERONET AOD time series are also plotted (i.e., purple
lines in Fig. 5). The insets in Figure 5 show comparison
details at HI02, IL02, and OK02. For most of the AOD
time series, AERONET results are within the GP confi-
dence intervals. The average absolute differences of daily
AOD values between GP and AERONET are ∼ 0.006 for
HI02, ∼ 0.024 for IL02, and ∼ 0.014 for OK02. These val-
ues are close to or within the AERONET AOD uncertainty
level (i.e., 0.01), suggesting the high quality of the poten-
tial UVMRP AOD product. In addition, unlike the obvious
seasonal changes in AOD difference reported in the previous
study at the NASA/GSFC site by Krotkov et al. (2005a), this
study (Fig. 5) shows no discernible seasonal pattern in the
AOD differences at all three sites.

4 Conclusions

A new dynamic uncertainty estimation method for noisy time
series is developed in this study. Combining this method
with Gaussian process regression, we provide a solution to
estimate the underlying mean and uncertainty functions of
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time series with variable mean, noise, sampling density, and
length of gaps. For the synthetic case with linear, quadratic,
and cubic base functions; a noise level varying from 2 to 15;
and noticeable gaps, the proposed solution returns a mean
function with the RMSE of 1.1785 (linear regression R2 of
0.9986), which is at least 12.0 % lower than RMSEs associ-
ated with the three constant input uncertainties. Its estimated
input uncertainties determined by this method are close to
the true uncertainty levels except for the transitional region
between segments. The solution also gives accurate mean
values at the three gaps. The proposed GP solution as well
as the other two comparison methods (i.e., MA and OPER)
were then applied to three in situ calibration factor time se-
ries of UV-MFRSR (368 nm) at three UVMRP sites. The GP
solution handles the variation in slope, noise, sampling den-
sity, and length of gap in the three cases as expected. Since
irradiance at 368 nm is not measured by a collocated (and
calibrated) radiometer, the performance of the three methods
is validated against the collocated AERONET sites in terms
of AOD. The results show that AODs calculated using GP-
derived UV-MFRSR calibration factors (V0,norm) have con-
sistently better agreement with AERONET AODs than MA
and OPER in terms of average absolute and relative differ-
ences and linear regression R2 values. These results suggest
that the proposed GP solution is a robust method for time
series analyses of data with variable mean, noise, sampling
density, and length of gap and has potential for application
across disciplines.
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Appendix A: The formulation between the overall
standard deviation and the subgroup standard deviation

Given a time series {xi}, its total N points are divided into
J groups {xjk }, and the number of points in group j is Nj
(j = 1, 2, . . . , J ; k = 1, 2, . . . , Nj ). For data points in each
group, their sample mean and standard deviation are µj and

sj . For the entire time series, its sample mean isµ= 1
N

N∑
i=1
xi,

and the sample variance is

s2
=

1
N − 1

J∑
j=1

Nj∑
k=1
(x
j
k −µ)

2

=
1

N − 1

J∑
j=1

Nj∑
k=1
[(x

j
k −µj )+ (µj −µ)]

2

=
1

N − 1

J∑
j=1

Nj∑
k=1
(x
j
k −µj )

2
+

1
N − 1

J∑
j=1

Nj∑
k=1
(µj −µ)

2

+
2

N − 1

J∑
j=1

Nj∑
k=1
(x
j
k −µj )(µj −µ)

=
1

N − 1

J∑
j=1

Nj s
2
j +

1
N − 1

J∑
j=1

Nj (µj −µ)
2,

where the third term on the right-hand side is equal to zero

because
Nj∑
k=1

(
x
j
k −µj

)
= 0 (i.e., µj = 1

Nj

Nj∑
k=1

x
j
k ). If we as-

sume that the sample standard deviation of each data point is
invariant (i.e., s1 = s2 = ·· · = sJ = ŝ), then

s2
=
N − J

N − 1
ŝ2
+

1
N − 1

J∑
j=1

Nj (µj −µ)
2.

Appendix B: The distribution of the 368 nm in situ
calibration factors of UV-MFRSR

Since the true 368 nm in situ calibration factors are not
available, their distribution is derived using the AERONET
368 nm AOD distribution via Beer’s law (transformed Lang-
ley regression).

Beer’s law links the irradiance (or voltage, V ) at the top of
the atmosphere with the one that reaches the ground at time
t with the equation Vt = V0e

−TODt ·mt , where mt is the air
mass at time t and TODt is the corresponding total optical
depth. For the 368 nm channel, AOD is the main contribu-
tor for the TOD variation. Therefore, for a short time period,
TODt can be expressed as the sum of a constant optical depth
(P ) and variable residual AOD (1AODt = AODt −AOD):
TODt = P +1AODt . Deriving an unbiased V0 using the
Langley regression (in the transformed lnV ·m−1 vs. m−1

coordinate system) requires the participating measurements
to have a constant TODt over the calibration period and lnV0
is the slope of the regression. The variation in 1AODt as
a linear function of the component vary linearly with m−1

t

(Chen et al., 2014). Therefore, we decompose1AODt as the
sum of a constant term (α) and a m−1

t term (βm−1
t ), where

α and β are obtained from daily AERONET 368 nm AOD
measurements via linear regression. With the TODt com-
ponents expanded, the original Beer’s law equation is ex-
pressed as lnVt ·m−1

t =−
(
P +α

)
+(lnV0−β)m

−1
t and the

(transformed) Langley regression obtains the slope (ln Ṽ0 =

lnV0−β) via linear regression. The disturbed distribution
of Ṽ0 is the same as the distribution of exp(lnV0−β). As-
suming the true V0 is 1500 mV (a typical value at OK02)
and using a long-term set of β values from AERONET at
Cart_Site (17 January 2007 to 11 June 2011), a set of Ṽ0 is
obtained. Removing the tails on the distribution of Ṽ0 (i.e.,
Ṽ0<1200 or Ṽ0>1800), the normal test of the Ṽ0 set (us-
ing the Python function scipy.stats.normaltest (D’Agostino
and Pearson, 1973)) returns the p value of 0.4689, which is
greater than the threshold (10−3), suggesting that the Ṽ0 set
comes from a normal distribution.

www.atmos-meas-tech.net/12/935/2019/ Atmos. Meas. Tech., 12, 935–953, 2019



950 M. Chen et al.: Using GP regression to improve UV-MFRSR calibration factors

Appendix C: Comparison of UVMRP and AERONET
368 nm AOD differences as a function of air mass among
the three methods

Figure C1. Box-and-whisker plots of AOD368,UVMRP−AOD368,AE as a function of air mass by the three methods (i.e., from top to bottom:
GP, MA, OPER) at the three test sites (i.e., from left to right: HI02, IL02, OK02). Panels (a), (b), and (c) display the box-and-whisker plots
for the GP method at HI02, IL02, and OK02, respectively. Similarly, panels (d), (e), and (f) are for the MA method and panels (g), (h), and
(i) are for the OPER method. Each blue bin covers a 0.25 air mass range. The dashed red lines show the WMO AOD U95 upper and lower
limits.

Figure C1 showed that GP had narrower error ranges com-
pared with the other two methods (i.e., MA and OPER) at
all three test sites (i.e., HI02, IL02, and OK02). The me-
dian values (the short black lines in blue boxes) of GP are
closer to zero at IL02 and OK02 sites, especially for lower air
masses. However, regardless of site, air mass, and method,
the difference between AERONET and UV-MFRSR AODs
still exceeds the WMO AOD U95 criterion for a number of
instances.
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Data availability. The in situ calibration factors (sun–earth dis-
tance normalized) used in this study are available from the UVMRP
website: http://uvb.nrel.colostate.edu/UVB/da_queryVoIntercepts.
jsf (last access: 8 August 2018). The cosine-corrected voltage and
air mass are available from https://uvb.nrel.colostate.edu/UVB/da_
queryCosCorrected.jsf (last access: 8 August 2018). The spec-
tral response functions of the UV-MFRSRs are available from
http://uvb.nrel.colostate.edu/UVB/da_queryFilterFunctions.jsf (last
access: 8 August 2018). The site latitudes and heights of the
three UMVRP sites tested in this study are available from https:
//uvb.nrel.colostate.edu/UVB/uvb-siteinfo.jsf (last access: 8 Au-
gust 2018). The AERONET (v2.0) data (i.e., aerosol optical depth
and surface pressure) used in this study are available from https://
aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_new (last access:
31 July 2018). These web sites provide their data freely to the pub-
lic. Data may be acquired by utilizing several download methods
and options.
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