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Abstract. Identification of atmospheric conditions within a
multivariable atmospheric data set is a necessary step in the
validation of emerging and existing high-fidelity models used
to simulate wind plant flows and operation. Atmospheric
conditions relevant for wind energy research include station-
ary conditions, given the need for well-converged statistics
for model validation, as well as conditions observed less fre-
quently, such as extreme atmospheric events, which are used
in wind turbine and wind plant design. Aggregation of ob-
servations without regard to covariance between time series
discounts the dynamical nature of the atmosphere and is not
sufficiently representative of atmospheric conditions. Identi-
fication and characterization of continuous time periods with
atmospheric conditions that have a high value for analysis
or simulation set the stage for more advanced model valida-
tion and the development of real-time control and operational
strategies. The current work explores a single metric for vari-
ation in a multivariate data sample that quantifies variability
within each channel as well as covariance between channels.
The total variation is used to identify conditions of interest
that conform to desired objective functions, such as station-
ary conditions, ramps or waves of wind speed, and changes
in wind direction. Total variation is somewhat sensitive to the
presence of outliers in the input data, and the method is best
complemented by quality-control procedures to ensure reli-
able results. The direct detection and classification of events
or conditions of interest within atmospheric data sets is vital
to developing our understanding of wind plant response and
to the formulation of forecasting and control models.

1 Introduction

Parsing multivariate data sets that are ever growing in size
and complexity can be a daunting task for researchers seek-
ing to identify periods or events of interest in time series
data (Preston et al., 2009; Shahabi and Yan, 2003). This
is especially true for wind energy research seeking to val-
idate high-fidelity numerical models against field observa-
tions (Barthelmie et al., 2015; Larsen et al., 2013; Sørensen
and Shen, 2002). Wind plants operate continuously over time
periods spanning years and across a broad range of atmo-
spheric conditions, each of which implicitly impact the oper-
ation of the wind plant, either in terms of power production,
operations and maintenance costs, or energy forecasting for
grid integration.

Field observations of wind plants are typically collected
by instrumentation mounted to wind turbines or meteoro-
logical towers, met masts, and by supervisory control and
data acquisition (SCADA) systems. Wind plant data sets typ-
ically include measurements of wind speed and direction, lo-
cal temperature and pressure, and wind turbine operational
data, such as operational status, power production, and na-
celle position. Each of the atmospheric quantities of interest
may be classified as non-ergodic stochastic variables that are
fundamentally connected (i.e., strongly interdependent).

Wind speed ramps are of particular interest in wind plant
power forecasting due to the need to balance energy produc-
tion against demand curves and in the planning of required
reserves and base loads (Sevlian and Rajagopal, 2012; Zhang
et al., 2014). Previous work has focused on the forecasting
of mesoscale changes in wind speed (Bossavy et al., 2013;
Ferreira et al., 2011), generally concentrating on risk and re-
liability issues for wind turbines. Ramp event detection has
been a research focus for more than a decade (Cutler et al.,
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2007; Ferreira et al., 2013; Hannesdóttir and Kelly, 2019)
and has produced some specific recommendations for indi-
vidual turbine controls and the influence on operations and
maintenance costs or activities. Previous research in wind
speed ramps is not easily generalized to the identification and
characterization of other dynamical events of interest, despite
parallels in the detection process and considerations for wind
turbine or plant operations and controls.

The detection of events in noisy data is of particular in-
terest in the case of turbulent atmospheric data sets, es-
pecially given the need for more sophisticated forecasting
systems (Belušić and Mahrt, 2012; Fulcher, 2018; Gam-
age and Hagelberg, 1993; Kang et al., 2014, 2017; Sun
et al., 2015). One of the more common event detection
methods leverages the continuous or discrete wavelet trans-
form (Gamage and Hagelberg, 1993; Kumar and Foufoula-
Georgiou, 1997; Lilly, 2017). Wavelet transforms leverage
time–frequency signals designed to have specific properties
that make them easy to use in signal processing applications.
However, wavelet transformation remains computationally
intensive and requires a fair amount of expertise to imple-
ment effectively and avoid the common pitfalls of signal shift
sensitivity and the poor representation of phase and direc-
tionality (Taswell, 2001). A more direct method simply con-
siders the covariance matrix of the input data, which repre-
sents the statistical spread of each data channel as well as
cross-correlated variability (Eaton, 1983; Wasserman, 2013).
Reducing the variability of a sample of multidimensional
observations to a single metric is a necessary step to using
numerical methods such as least-squares minimization for
event detection and classification. Another method for pars-
ing atmospheric conditions found in the literature leverages
the Hilbert transform, which convolves time series signals
with a Cauchy kernel and results in a phase-shifted set of
Fourier components. This method has been used successfully
to relate ocean wave conditions to atmospheric conditions
through the use of a reference signal (Hristov et al., 1998)
and has successfully been extended to turbulence modeling
(Kelly et al., 2009; Sullivan et al., 2000) and to relate turbu-
lent motions of various scales within the atmospheric bound-
ary layer (Mathis et al., 2009).

Simultaneous observation of multiple thermodynamic
and kinematic quantities reported by met masts is neces-
sary to characterize the dynamical state of the atmosphere
(Barthelmie et al., 2014; Hansen et al., 2012). Directly con-
sidering multiple disparate data channels simultaneously rep-
resents a challenge in that each quantity has different en-
gineering units and that variation within each channel may
occur over a distinct scale. Atmospheric conditions are fre-
quently characterized by considering wind speed, wind di-
rection, and turbulence intensity or thermal stability, each
of which have different units, ranges, and statistical proper-
ties. Consideration of these variables independently may not
provide a complete picture of the state of the atmosphere,
as they are inherently correlated (Holtslag and Nieuwstadt,

1986; Kaimal et al., 1976); each variable offers a limited
range of insights as to the dynamical state of the atmosphere
relevant to the operation of wind energy assets. Direct com-
parison of the marginal distributions of atmospheric variables
aggregates observations without regard to the value of other,
potentially correlated variables. Even the use of conditional
statistical distributions or measures discounts any dynamic
coupling between them and may not fully describe the nature
of the atmospheric physics (Hannesdóttir and Kelly, 2019;
Preston et al., 2009; Shahabi and Yan, 2003).

The following work explores an application of numerical
analysis methods to atmospheric data to identify continu-
ous periods of interest within met mast time series data. The
source of the data and their treatment are discussed briefly,
although the wind plant and met mast are not in themselves
imperative to the demonstration of the method or its utility. A
discussion of aggregate statistical measures of the data is fol-
lowed by a formal definition of the total variability of a block
of time series data and applications using the total variation
as a metric to identify specific dynamical events of interest.
Alternate metrics exist that quantify the variability of mul-
tiple samples or multivariate data. The metrics’ total vari-
ability, overall variability, and summative variance in com-
mon use have slightly different definitions and interpreta-
tions from the total variation introduced in the current work.
Briefly, total variability is defined as the sum-of-squares total
of difference between expected or mean value and observed
qualities. Overall variability refers generally to the variance
or standard deviation of a population (i.e., a group of samples
considered together). Summative or pooled variance refers to
the inferred variance of a population of observations from the
collection of sample variances. In contrast, the total variation
used in the current work reduces the covariance between nor-
malized variables to a single value through the determinant
of the covariance matrix. A close analog to this method is the
generalized variance of a multidimensional random vector.
Generalized variance was introduced by Wilks (1932) and
Sengupta (2004) as a scalar measure of overall multidimen-
sional scatter. However, in most formulations of generalized
variance, the data are regarded as a p−dimensional vector.
The current work uses the same mathematical operations but
applies them to distinct variables that have been merged into
a matrix. Mechanically, the same operations are being ap-
plied to the data, but given the distinction in formulation,
the current work adopts the jargon of “total variation”. Fi-
nally, sensitivity of the method to outliers is analyzed, end-
ing with a discussion of broader applications and extensions
to the method.

2 Data and quality control

Data used to demonstrate the current method for detecting
conditions of interest issue from met mast signals at the Lill-
grund Wind Farm, located 10 km off the coast of southern
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Sweden in the Kattegat Strait. Lillgrund is comprised of 48
Siemens SWT-2.3-93 wind turbines and has a rated name-
plate capacity of 110 MW. The layout of the Lillgrund wind
plant is shown in Fig. 1a, where each turbine location is de-
noted with a marker whose color is representative of the av-
erage power produced over the time period analyzed below.
Operational data (SCADA, power production, turbine avail-
ability) from the wind farm are not discussed further in the
following analysis, although a brief summary of future appli-
cations of the method is provided in the Conclusions section,
including thoughts on wind plant performance and SCADA
data. Data used to demonstrate the calculation of total varia-
tion and identify periods of interest come from the met mast,
located at the southwest corner of the wind plant, indicated
in Fig. 1a with an open marker.

Within any wind plant data, conditions of value for val-
idation are typically identified by way of aggregate statis-
tical metrics or by identifying “well-behaved” time periods
exhibiting a dynamical event or atmospheric condition of in-
terest. Kinematic and thermodynamic atmospheric quantities
that are expected to have the greatest impact on the perfor-
mance of a wind plant are the wind speed u, wind direction θ ,
and the atmospheric stability, considered either in an instan-
taneous or time-averaged sense. The stability of the atmo-
sphere (typically quantified by the Monin–Obukhov stabil-
ity parameter or the Richardson number) indicates the mag-
nitude of buoyant production or destruction of turbulent ki-
netic energy (TKE) relative to shear production of TKE and
whether it represents either a source or sink of (vertical) mo-
mentum (Kumar et al., 2006; Wyngaard, 2010). Forcing in
the momentum equations as indicated by the presence and
sign of a buoyancy term is manifested in atmospheric flow as
vertical turbulent mixing and is an important overall factor in
the energy balance relevant to wind plant operation. Thermal
stability has a significant effect on atmospheric turbulence
and the structure of wind turbine wakes, wake interaction,
and thus the overall energy balance within the wind plant
(Ali et al., 2019).

Data used in the current work do not contain any observa-
tions of the temperature or heat flux between the atmosphere
and the ocean surface, and thus no estimate for the traditional
stability metrics is available. Turbulence intensity (TI), al-
though an imperfect proxy of atmospheric stability from a
fluid mechanical or atmospheric perspective, provides some
sense of the energy contained in the fluctuating flow field and
is well-suited for presenting the utility of the total variation
method below. Additionally, TI is a quantity frequently used
in the wind energy community to characterize wind plant op-
erating conditions and structural loading of wind turbines
(Dimitrov et al., 2018; Kelly et al., 2014) and is often ac-
cessible through instrumentation on met masts or wind tur-
bine nacelles making it an appropriate choice for the current
demonstration.

Raw data used to demonstrate the current methods include
high-frequency (20 Hz) observations of u and θ reported

by the met mast between March and December 2009. Wind
speed and direction data were binned to a temporal resolu-
tion of 1 min, from which mean and standard deviations were
calculated. Turbulence intensity in each bin is estimated as
the ratio of the retained 1 min statistics for wind speed as
TI = σu/u. As with most field observations, data availability
from each channel is less than 100 %, as instruments require
maintenance, lose connectivity to data acquisition systems,
or shut down to prevent damage under certain conditions.
Binning the data into 1 min periods smooths the observed
time series of wind speed and direction and reduces the noise
reported by the cup anemometer and wind vane.

Additional quality-control steps for the data include omit-
ting from further consideration any 1 min period during
which any of the data channels are not correctly reported.
Any time stamp associated with wind speeds less than
1 m s−1, when wind speed observations reported by cup
anemometers and wind vanes are not considered to be reli-
able (IEC, 2005a), are also removed from the data set. Fig-
ure 1b shows data availability of the record as a percent of
the total number of data possible per day. The final quality-
control step implemented for the current study is to exclude
data that are not part of any continuous set of observations
of at least 60 min. The current method searches continuous
data samples to identify atmospheric conditions and events
of interest. Rather than infill or interpolate data, periods with
missing values are simply excluded from consideration.

3 Statistical view of atmospheric conditions

Characterization of atmospheric conditions is most often
pursued through aggregate statistics, that is without explic-
itly considering their evolution in time. Statistical quanti-
ties (arithmetic mean values, variances, and higher-order mo-
ments) may reflect the occurrence of infrequent events but do
not convey the dynamical evolution of variables or their cor-
relation in time. Considering atmospheric variables in terms
of either their marginal distributions (as in Fig. 2) or their
conditional distributions (as in Fig. 3) falls short of saying
anything about the dynamics embedded in those observa-
tions. For example, many steady-state and analytical wake
models are defined to represent the time-averaged flow be-
hind a wind turbine and many uses of high-fidelity models
assume that the bulk flow speed and direction do not change
in time. Effective validation of numerical modeling tools for
wind energy requires that observations conform to station-
ary atmospheric flow (Chenge and Brutsaert, 2005; Metzger
et al., 2007; Vincent et al., 2010, 2011; Guala et al., 2011)
or represent a dynamic event of interest. Histograms of each
of the data channels are provided in Fig. 2, showing charac-
teristic behavior for the wind speed and turbulence intensity
distributions.

The wind direction (Fig. 2b) shows several key features
typical of atmospheric records; first, it identifies the prevail-
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Figure 1. Wind turbines, met mast, and data availability from Lillgrund wind plant.

Figure 2. Histograms of quality-controlled met mast data.

ing wind directions as per the number of observations within
each direction sector (10◦), and, second, it shows that vir-
tually no observations correspond with wind directly from
the north. According to the IEC (2005b) Standard for Power
Performance Measurements of Electricity Producing Wind
Turbines, met masts should be placed sufficiently far from
the nearest upstream obstacle or risk introducing bias and in-
creased uncertainty into the record. This limitation can be
difficult or prohibitively expensive to accommodate due to
logistical constraints, especially in offshore settings where
placement is often strictly limited.

Each of the histograms in Fig. 2 categorizes a single
quantity without regard to the variation in the others; each
single-variable histogram effectively integrates the observa-
tions over the other two variables. More complex treatment
of the data is required to take into account the simultaneous
variability of more than one channel. Figure 3 shows two-
dimensional histograms with two-way permutations of the
data channels. In each of the histograms, a threshold has been
applied to the frequency of observations. Any bin represent-
ing less than 0.5 % of the total observations has been filtered
out to highlight more common conditions. Two-dimensional
histograms demonstrate that the atmospheric conditions are
more complex than is possible to estimate from pairwise
consideration of any two of the one-dimensional histograms
in Fig. 2. An observation from the two-dimensional his-
tograms that is not immediately evident in one-dimensional

histograms is that the greatest turbulence intensity comes
from a single, distinct sector of wind directions. Placement
of the met mast with respect to the wind turbines contributes
to a sharp increase in TI in the range of 15 %–45 % and is
not typical of unobstructed measurements. Reports of high TI
likely result from the introduction of turbulence to the flow
by the wind turbines or wind plant from directions between
70 and 110◦.

Wind speed and TI roses contain the same information as
the two-dimensional histograms from Fig. 4 but convey it on
a polar projection representative of the compass, thus making
them more intuitive to read for many users. Figure 4 shows
wind and TI roses for the considered data. The rose diagrams
highlight directional dependence of the mapped variable. For
example, Fig. 4b demonstrates that the greatest turbulence
intensity is highly correlated with winds from the sector of
70◦–110◦. This is the range of directions in which the met
mast is waked by the wind turbine located to the west.

4 Total variation in dynamical data

Aggregate statistical representation accounts for interdepen-
dence of the three variables considered in the current exam-
ple but cannot account for the dynamic nature of the atmo-
sphere. A histogram, as a consequence of its composition,
only denotes how frequently a given condition is observed
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Figure 3. Two-dimensional histograms of met mast data. Color information conveys percent of total observations for each pair of variable
values.

Figure 4. Wind (a) and TI (b) roses from met mast data.

without regard to what condition may precede or follow. The
actual weather conditions could well be undergoing a dra-
matic change, but within any 1 min observation, the variables
of interest fall within the stated bounds of a single bin within
the full condition space.

An alternate path toward identifying conditions of interest
for model validation or benchmarking studies comes through
seeking continuous periods from the time series of observa-
tions that has properties of interest for a given study. An obvi-
ous choice would be a continuous period in which the atmo-
spheric conditions remain statistically stationary. Statistical
stationarity (i.e., time independence of statistical quantities)
is a common consideration in turbulence and atmospheric
science (Chenge and Brutsaert, 2005; Metzger et al., 2007;
Vincent et al., 2010, 2011; Guala et al., 2011). Stationarity
is not often assumed for wind energy research and modeling
applications, although it is rarely quantified or even consid-
ered in validation data. Additionally, retaining a time series
allows users to leverage the interdependence of the channels
within a data set by way of correlation or covariance metrics.

Quantifying the variability of a set of data must include
the correlation between data channels or risk discounting any
information regarding the relationship between variables.
Stated otherwise, any metric that combines the variability
of each channel independently without accounting for co-

variance between the channels is incomplete and will not be
sufficient to fully characterize the state of a given system.
Therefore, a method that accounts for variation within each
channel and the covariance between variables is necessary to
quantify the distribution of data across multiple channels into
a single metric.

Below, each data block, D, is a selected time period and
corresponds to an array of size of [m,n], where m is the
length of the time period – either 60 or 120 min – and n is
3, corresponding to the number of variables u, θ , and TI.

D= [u(t), θ(t), TI(t)] (1)

In order for the variability of each channel in D and their re-
spective covariances to be given equal weight, the data must
be normalized to a single common range. Each variable has
been normalized by its standard deviation and mapped to an
interval determined by the range of each channel in standard
deviations according to the formulation

Dnorm =
D−D
σD

. (2)

In Eq. (2), the arithmetic mean and standard deviation (de-
noted by the overline and σ , respectively) are calculated sep-
arately for each column of D. Normalizing data before cal-
culating the total variation ensures that each data stream is
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weighted equally in the characterization of a given condition
or state.

In addition to the definition of D, a block, f, containing ob-
jective functions of interest to apply to each of the variables
in D is defined as

f= [fu(t), fθ (t), fTI(t)]. (3)

The difference between objective functions and their respec-
tive data will be referred to as a regularized data block and is
noted with a caret:

D̂= D− f. (4)

The purpose of defining an objective function block is to
tune the data to show covariance specifically with respect to
a desired form about which the data are regularized. Seeking
stationary conditions in which minimal variation occurs in all
data channels without regularization amounts to the special
case of setting the function block to f= 0 (or, more generally,
when the objective function is any constant value; f= c). The
objective function block is discussed in greater detail in the
following sections.

The total variation, V , of a system is a unitless metric to
quantify spread of a set of interdependent variables that ac-
counts for autocorrelation within each channel and for co-
variance between channels. A covariance matrix is calculated
for a subset of the data, representing a continuous period of
a specified duration:

C=
(

1
m− 1

)
D̂T D̂=

(
1

m− 1

)
 σ 2

u σuσθ σuσTI
σθσu σ 2

θ σθσTI
σTIσu σTIσθ σ 2

TI

. (5)

In Eq. (5), C is a square matrix of size n×n representing the
covariance between any pair of data channels. The total vari-
ation, V , of a given regularized data block, D̂, is expressed as
the determinant of the respective correlation matrix:

V = det(C). (6)

Larger values of V indicate that the data points are more dis-
persed in the condition space. In the observational data of
the atmosphere discussed here, V > 0. The case of V = 0
would indicate that the full n-dimensional condition space
is not occupied and some of the variables are perfectly cor-
related with, i.e., linearly dependent on, some of the others.
Metrics of the variation in a multivariate data set have some
history in the literature. Notable past contributions include
the pooled variance method to estimate population variance
from those of distinct samples (Ruxton, 2006) and the “total”
or “overall” variability (Anderson, 1962; Goodman, 1968)
which combines variances of individual variables either lin-
early or in a sum-of-squares sense. The generalized variance

Figure 5. Distribution of V for data blocks of 60 or 120 min (blue
and red, respectively).

(Wilks, 1932; Sengupta, 2004) shares a common formulation
with V but has historically been applied to a p-dimensional
random vector. In contrast, the total variation merges n dis-
tinct variables, whose relationship need not be known a pri-
ori, and seeks the determinant of the associated correlation
matrix.

4.1 Quiescent conditions: f = c

Figure 5 shows the distribution of V dividing the data record
into continuous periods of either 60 (blue) or 120 min (red).
Both distributions in Fig. 5 have been limited to V ≤ 0.30 to
emphasize differences between the two data block lengths.
In either case, the distribution is positively skewed, and high
values of V exist with very low frequency. Immediately vis-
ible in the histograms of V is that there is a range of val-
ues exhibited most commonly by the blocks of data. For
data broken into 60 min periods, 35.9 % of blocks have a to-
tal variation of less than 0.05, whereas for data broken into
120 min periods, only 25.0 % of blocks have a total variation
in the same range. Although V is a unitless metric, its rela-
tive value does convey the degree of variation represented by
all data within a respective time period. The values of V with
the greatest frequency of occurrence are larger for periods
of 120 min than for periods of 60 min. This is an expected
trend because of the greater changes in atmospheric condi-
tions that are possible within a larger window. There remains
an inherent trade-off between the length of a data block and
the degree of variation; longer blocks provide greater statis-
tical convergence of C but risk including more dynamical
variation, which contributes to higher values of V .

Periods of time corresponding to the minimum values of
V are those in which the total atmospheric conditions vary
the least. In these periods, small values of standard devia-
tion within each data channel as well as minimal covariance
between the channels is expected. Minimal covariance be-
tween channels is equivalent to observing only stochastic,
uncorrelated fluctuations in each channel. In contrast, peri-
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Figure 6. Scatter of data points of selected time periods within the full conditions space.

Figure 7. Time series of the 10 blocks with minimum and maximum values of V – (a) and (b), respectively.

ods corresponding to the maximum values of V are those in
which the subset of data experiences the greatest variability,
to which individual channel noise and correlated events be-
tween channels both contribute. Time periods of 120 min cor-
responding to the maximum (red) and minimum (blue) total
variation are shown in Fig. 6a. To provide a broader sense of
how other time periods are characterized in terms of V , five
randomly selected periods of 120 min are shown in Fig. 6b.
The principal components of each data block are shown with

black vectors and the total variation is listed in the legend.
The figure represents each block of data as a scatter of only
normalized wind speed and direction, although TI is also in
the calculation of V .

Figure 7 shows the wind speed, direction, and turbulence
intensity corresponding to the 10 periods of minimum and
maximum total variation. Each variable is shown in its orig-
inal (non-normalized) engineering units to provide insight
into the atmospheric conditions, although they were identi-
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fied using normalized data. Figure 7a shows that the periods
with minimal values of V have time series that appear con-
stant and experience only small stochastic variations within
each channel and that periods with large values of V exhibit
more spread. For each set of time series, the extreme val-
ues are shown in the boldest color (red, blue, and gray for
the wind speed, direction, and turbulence intensity, respec-
tively) and fade to lighter colors for more moderate values
of V . Starting and ending times are not included, as Fig. 7
is intended only to demonstrate the sorting capability of the
method.

4.2 Objective conditions: f 6= 0

Regularizing the data with respect to a set of nonzero objec-
tive functions centers V around specific conditions of inter-
est. For example, in the case of wind plant analysis, it may be
of interest to assess array performance during a wind speed
ramp event or change in wind direction. Such events may be
readily formulated according to accepted mathematical def-
initions and supplied to the total variation algorithm from
Sect. 4. Defining specific objective functions will quantify
the total variation around those conditions, which can then
be used to identify the time periods that match the event of
interest most closely.

An additional step is considered to sort the full data set for
a more general formulation. In such a case, events of inter-
est are defined in a suitably general formulation, and a least-
squares minimization is applied to seek the relevant param-
eter values. In the current demonstration, function types of
interest are wind speed ramps, wind speed waves, and wind
direction changes, shown in the function blocks Eqs. (7), (8),
and (9), respectively, distinguished with the subscripts A, B,
and C.

fA =


fu(t) = c0 t + c1

fθ (t) = 0
fTI(t) = 0

(7)

fB =


fu(t) = c0 sin(c1 t + c2)+ c3

fθ (t) = 0
fTI(t) = 0

(8)

fC =


fu(t) = 0

fθ (t) = c0 arctan(c1 t + c2)+ c3

fTI(t) = 0

(9)

In each of the equations for fA, fB , or fC , objective func-
tion parameters, ci , are sought through least-squares mini-
mization of the following expressions:

ρ =

∥∥∥D̂− f
∥∥∥2
=


min

∑
(u(t)− fu(t,ci))

2

min
∑
(θ(t)− fθ (t,ci))

2

min
∑
(TI(t)− fTI(t,ci))

2,

(10)

where ρ is the least-squares fit residual. Least-squares fit pa-
rameters and the respective fit residual from each time period
are retained, enabling an additional layer of filtering for con-
ditions of interest. After objective function coefficients are
determined, the total variation method is continued, yielding
a value of V for regularized data in each time period. Regular-
izing the data block by subtracting away objective functions
amounts to “detrending” the data such that the covariance
matrix reflects correlation among the remaining data.

Figure 8a compares distributions of V given the objective
function definitions in Eqs. (7), (8), and (9). The distributions
indicate that the total variation can be reduced by regular-
izing data around generalized sinusoidal (red), linear (blue),
and inverse tangent (black) functions as compared to the case
where f= 0 (gray). However, the reduction in V for the full
data set is caused by the general definitions of the objec-
tive functions. Defining the coefficient values ahead of time
would likely increase the average value and spread of V; for
example, it is not expected that a wind speed ramp with spe-
cific slope and vertical offset would fit every time period well
and thus would not necessarily reduce the total variation for
that period.

Noted earlier, the additional step of least-squares mini-
mization provides a fit residual for each time period under
consideration, shown in Fig. 8b. Fit residuals indicate the
goodness of fit of a given time period to the specified ob-
jective function forms. The distributions in Fig. 8b suggest
that inverse tangent and sinusoidal functions fit the data with
less residual error, ρ, than a linear objective function. This is
likely caused by the additional objective function parameters
(degrees of freedom) available for tuning the minimization.

Adding an auxiliary step to the search process of least-
squares minimization to a given objective function quantifies
the goodness of fit of each data block and can return the pa-
rameter values necessary for the desired fit. For example, a
least-squares fit to a linear relationship for any data channel
will provide values of slope and offset as well as a residual
value indicating the quality of the fit. In this way, the data
provide alternative values for which sorting may be applied
in addition to the total variation.

Figure 9a and b show a selection of periods with minimal
total variation around linear and sinusoidal objective func-
tions of wind speed, corresponding to wind speed ramps and
waves, respectively. The selection of the wind speed ramps
in Fig. 9a is conditioned to have the minimal total variation,
minimal fit residual, and maximum absolute values of slope.
These are the time periods in which the wind speed ramps are
simultaneously the most well-behaved (i.e., minimal fit resid-
ual) and most intense (i.e., greatest absolute value of slope).
Similarly, the wind speed waves shown in Fig. 9b were se-
lected by seeking the minimal total variation and then se-
lecting time periods in which the fit frequency fell between
desired limits. In Fig. 9b, the top subpanel shows 120 min
time periods in which the fit frequency is in the range of
[0.015,0.02] rad s−1 (in red), and the bottom subpanel shows
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Figure 8. Distributions of selected quantities for selected objective functions.

time periods in which the fit frequency is in the range of
[0.0075,0.008] rad s−1 (in blue). Frequency limits were se-
lected arbitrarily and are meant only as a demonstration of
the method’s independence of fit frequency. Figure 9c applies
an inverse tangent objective function to the wind direction
channel while seeking constant conditions in wind speed and
turbulence intensity, identifying the periods of wind direction
change with minimal total variation. Direction changes were
considered in an absolute sense, and Fig. 9c shows time pe-
riods with minimal V in which the absolute direction change
|1θ | falls in the range ([20◦,40◦]. Again, the particular mag-
nitude of direction change selected here is arbitrary, and was
selected only to demonstrate the fit to an inverse tangent ob-
jective function.

5 Sensitivity to outliers

A word of caution on using the total variation to identify
periods of interest: because principal component analysis is
sensitive to outliers contained in the data, the method may
falsely classify a time period as having a large value of to-
tal variation due to a few spurious data points. Consideration
of outliers in multivariate space requires a similar treatment
as for the consideration of total variation. Seeking outlying
points in each data channel individually discounts the pos-
sibility that the other data channels may be within accept-
able statistical limits for the same point. Determining out-
liers from individual data channels further discounts any cor-
relation that may exist between the channels. An effective
means of considering outliers in multivariate data is the Ma-

halanobis distance, χ , which quantifies the Euclidean dis-
tance of a point from the center of a data set in terms of stan-
dard deviations (De Maesschalck et al., 2000; Hadi, 1992;
Rousseeuw and Van Zomeren, 1990; Xiang et al., 2008):

χ =

√
(x−µ)TC−1(x−µ). (11)

The Mahalanobis distance is sought through the covariance
matrix of the data, and thus accounts for interdependence of
the data channels, as emphasized earlier. Setting a thresh-
old value for the Mahalanobis distance effectively draws an
n-dimensional ellipsoidal boundary around the data set in
nondimensional space, outside of which data are considered
invalid.

To quantify the sensitivity of V to the presence of outliers,
10 000 synthetic data sets are generated and outliers are de-
tected and eliminated. Total variation is compared for each
data set before and after outlier detection or elimination. Syn-
thetic data sets (n= 2 dimensions, 1000 points each) are nor-
mally distributed about a zero mean value with a standard
deviation that is randomly assigned in the range of [0, 10].
Each data set is normalized, given a random shape parame-
ter to stretch the data, and rotated to simulate covariance be-
tween data channels. The covariance matrix is calculated us-
ing Eq. (5), and V is calculated as in Eq. (6). Any point with
χ > 3 is flagged as an outlier and eliminated. With 2 degrees
of freedom (variables in the data block), values of χ > 3 are
expected to be observed with a probability of approximately
1.1 % (Penny, 1996; Ben-Gal, 2005; Gellert et al., 2012). The
total variation is then calculated for the cleaned data without
outliers, for comparison.
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Figure 9. Examples of time series identified by calculating covariance matrix around linear, sinusoidal, and inverse tangent objective func-
tions.

Figure 10a shows a single example set of synthetic data.
Accepted data are shown in blue, outliers in red, and the prin-
cipal components of the data are shown as the black vectors.
Figure 10b shows distributions of V before and after the ex-
clusion of outlying data identified with a threshold of χ in
blue and red, respectively. As expected, the total variation
in data sets without outliers is smaller than data sets before
cleaning. Because of the large number of synthetic data sets
considered, statistics regarding sensitivity to outliers are also
within reach.

Figure 10c shows the distribution of the number of de-
tected outliers within each synthetic data set. Figure 10d
shows the mean relative error according to the number of
detected outliers according to

ε =
Vraw−Vclean

Vraw
, (12)

where the subscripts denote the presence and absence of out-
liers (raw and clean, respectively). Uncertainty of the error
is shown as the shaded bands around the mean relative er-
ror. The red band indicates the standard deviation of the rel-
ative error (σε), and the blue band denotes the standard er-
ror (σε/Noutliers). The roughly linear relationship shown in
Fig. 10d indicates that one could expect an increase in er-
ror of approximately 4 % for each additional percent outlier
content of a given data set.

It should be noted that the present error analysis is not ex-
pected to yield identical results for atmospheric data. Obser-
vations of wind speed, direction, and turbulence intensity can
vary considerably during any given period as part of the nor-
mal development of weather patterns. Mentioned briefly in
the Introduction, quality control of met mast and SCADA
data is an active research topic and is beyond the scope of
the current method development. However, it should be clear
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Figure 10. Outlier detection and the sensitivity of V to outliers.

from the sensitivity analysis undertaken here that a careful
quality-control process should be applied before calculation
of the total variation.

6 Conclusions

The definition of high-value conditions for wind plant anal-
ysis is ultimately up to the user but may not conform to the
most frequently observed state. For example, it may be of
greater concern to wind plant developers, owners, or oper-
ators to be able to validate models where wake losses are
greatest or during ramps of wind speed. These conditions
may be more relevant to control or curtailment actions of
wind plants and may have a greater impact on the return on
investment of wind energy assets.

The identification of continuous time periods that conform
to conditions of interest is not intuitive through aggregate
statistics, such as measures of central tendency or joint prob-
ability distributions. The method to quantify the total vari-
ation in a multivariate data set described earlier provides
a computationally economical means of parsing large and
complex data sets and includes a mathematically robust ap-
proach to sorting with respect to a desired condition or objec-
tive function. In addition, the method should be equally ap-
plicable to any data, regardless of which variables are part of
the data block and for data of any length and resolution, pro-

vided that enough observations are present to ensure reason-
ably converged statistics. Normalizing the data makes com-
bining disparate types of data into a single metric possible
and meaningful.

The total variation method for seeking conditions of in-
terest has applications far beyond the demonstration under-
taken in the current work. Once properly classified, any num-
ber of detection and forecasting models may be trained and
validated. Collecting time periods containing similar dynam-
ical events opens a path forward for more advanced anal-
yses, such as modal decomposition methods and reduced-
order modeling. Extreme atmospheric events, as from the In-
ternational Electrotechnical Commission (IEC) Standard for
Wind Turbine Design (IEC, 2005a), have well-defined char-
acteristic functions that could readily be incorporated into the
method explored in this article. Extreme atmospheric event
definitions can be included in the definition of the function
block and used to regularize the data, providing an algorith-
mic means of identifying extreme events in historical data
records for subsequent analysis.

The total variation method explored here details identifica-
tion and characterization of time series data from met masts
only. Validation of high-fidelity wind plant models frequently
relies on some form of operational data, most often power
production or some integrated statistic of wind plant perfor-
mance. SCADA signals and power production or fault events
could readily be identified with the total variation method. A
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further extension of the method would be to add functionality
that accounts for spatial variation in operational data within
a wind plant. A spatial aspect of the total variation method
would augment the process to be able to detect and charac-
terize the movement of weather fronts through a wind plant
or cases in which wake losses are particularly significant and
heterogeneous.

Data availability. An example Python library has been uploaded
to a public repository at https://github.com/nhamilto/total-variation
(Hamilton, 2020a, b) (https://doi.org/10.5281/zenodo.3630875). In
the repository, there can also be found a synthetic data generator
used for the analysis of outlier sensitivity and met mast data similar
to that used in the work above. Data in the example are derived from
a meteorological mast located at the National Renewable Energy
Laboratory’s Flatirons campus. Additional data from the met mast
are available at https://nwtc.nrel.gov/MetData (NREL, 2020) and
the atmospheric conditions at NREL are summarized in Hamilton
and Debnath (2019).
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