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Abstract. This study presents and evaluates several candi-
date approaches for downscaling observations from the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) in or-
der to increase the horizontal resolution of subsequent cloud
optical thickness (τ ) and effective droplet radius (reff) re-
trievals from the native ≈ 3km× 3km spatial resolution of
the narrowband channels to ≈ 1km× 1km. These methods
make use of SEVIRI’s coincident broadband high-resolution
visible (HRV) channel. For four example cloud fields, the
reliability of each downscaling algorithm is evaluated by
means of collocated 1km× 1km MODIS radiances, which
are reprojected to the horizontal grid of the HRV channel
and serve as reference for the evaluation. By using these radi-
ances, smoothed with the modulation transfer function of the
native SEVIRI channels, as retrieval input, the accuracy at
the SEVIRI standard resolution can be evaluated and an ob-
jective comparison of the accuracy of the different downscal-
ing algorithms can be made. For the example scenes consid-
ered in this study, it is shown that neglecting high-frequency
variations below the SEVIRI standard resolution results in
significant random absolute deviations of the retrieved τ and
reff of up to ≈ 14 and ≈ 6µm, respectively, as well as bi-
ases. By error propagation, this also negatively impacts the
reliability of the subsequent calculation of liquid water path
(WL) and cloud droplet number concentration (ND), which
exhibit deviations of up to ≈ 89gm−2 and ≈ 177cm−3, re-
spectively. For τ , these deviations can be almost completely
mitigated by the use of the HRV channel as a physical con-
straint and by applying most of the presented downscaling
schemes. Uncertainties in retrieved reff at the native SEVIRI

resolution are smaller, and the improvements from downscal-
ing the observations are less obvious than for τ . Nonethe-
less, the right choice of downscaling scheme yields notice-
able improvements in the retrieved reff. Furthermore, the im-
proved reliability in retrieved cloud products results in signif-
icantly reduced uncertainties in derived WL and ND. In par-
ticular, one downscaling approach provides clear improve-
ments for all cloud products compared to those obtained from
SEVIRI’s standard resolution and is recommended for future
downscaling endeavors. This work advances efforts to mit-
igate impacts of scale mismatches among channels of mul-
tiresolution instruments on cloud retrievals.

1 Introduction

In studies of the role of clouds in the climate system, the bis-
pectral solar reflective method described by Twomey and Se-
ton (1980), Nakajima and King (1990), and Nakajima et al.
(1991) is widely used to infer cloud optical and physical
properties from satellite-based sensors. Based on observa-
tions of solar reflectance (r) from a channel pair at wave-
lengths with conservative scattering (usually around 0.6 or
0.8µm) and significant absorption by cloud droplets (com-
mon channels are 1.6, 2.2, and 3.7µm), respectively, this
method simultaneously estimates the cloud optical depth (τ )
and effective droplet radius (reff) of a sampled cloudy pixel.
This method however relies on a number of assumptions
which are often violated in nature: clouds are considered to
be horizontally homogeneous and to have a prescribed ver-
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tical structure, which is generally assumed to be vertically
homogeneous or to show a linear increase of liquid water
content as predicted by adiabatic theory (see the discussions
in Brenguier et al., 2000, and Miller et al., 2016). Moreover,
the observed cloud top reflectance field is usually described
by one-dimensional (1-D) plane-parallel radiative transfer,
which neglects horizontal photon transport between neigh-
boring atmospheric columns.

Use of the independent pixel approximation (IPA; see Ca-
halan et al., 1994a, b) produces uncertainties in the retrieved
cloud variables that are dependent upon the horizontal reso-
lution of the observing sensor. For sensors with a high spatial
resolution, the observations resolve the actual cloud hetero-
geneity, which are unaccounted for in the IPA approach. This
usually results in an overestimation of both τ and reff, as re-
ported in Barker and Liu (1995), Chambers et al. (1997), and
Marshak et al. (2006). Conversely, for observations with a
low spatial resolution, the actual cloud heterogeneity cannot
be resolved. Moreover, the chances of clear-sky contamina-
tion within a cloudy pixel increase with increasing spatial
resolution. As a result, an underestimation (overestimation)
of retrieved τ (reff) is usually observed (Marshak et al., 2006;
Zhang and Platnick, 2011; Zhang et al., 2012; Werner et al.,
2018b). These uncertainties are propagated to the liquid wa-
ter content (WL) and the droplet number concentration (ND),
which can be estimated from retrieved τ and reff. Estimates
ofND are especially susceptible to uncertainties in reff, which
impacts the reliability of aerosol–cloud-interaction studies
(Grosvenor et al., 2018). The analysis in Varnai and Mar-
shak (2001) suggests that a horizontal scale of around 1–2 km
minimizes the combined uncertainty from unresolved and re-
solved cloud heterogeneity. While strategies to mitigate the
effects of unresolved cloud variability have been recently re-
ported in Zhang et al. (2016) and Werner et al. (2018a), these
techniques become less successful with lower-resolution sen-
sors like those operated on geostationary satellites.

Remote sensing from geostationary platforms such as the
Meteosat Spinning Enhanced Visible and Infrared Imager
(SEVIRI) offers unique capabilities for cloud studies not
available from polar-orbiting satellites. These advantages in-
clude more frequent temporal sampling of individual regions
and the ability to capture the temporal evolution (Bley et al.,
2016; Senf and Deneke, 2017) and diurnal cycle of cloud
parameters (Stengel et al., 2014; Bley et al., 2016; Martins
et al., 2016; Seethala et al., 2018). However, SEVIRI pixels
are characterized by a lower spatial resolution of its narrow-
band channels compared to other operational remote sensing
instrumentation, like the Moderate Resolution Imaging Spec-
troradiometer (MODIS, Platnick et al., 2003) or the Visible
Infrared Imaging Radiometer Suite (VIIRS, Lee et al., 2006).
Given the increase in retrieval uncertainty due to the IPA con-
straints, there is a desire to increase the resolution for geosta-
tionary cloud observations.

The aim of this paper is to critically evaluate several candi-
date approaches for downscaling of the SEVIRI narrow-band

reflectances for operational usage and to identify the most
promising of these schemes, exploiting the fact that informa-
tion on small-scale variability is available from its broadband
high-resolution visible (HRV) channel. The study by Deneke
and Roebeling (2010) presented a statistical downscaling ap-
proach of the SEVIRI channels in the visible to near-infrared
(VNIR) spectral wavelength range. This method makes use
of the fact that SEVIRI’s high-resolution channel can be
modeled by a linear combination of the 0.6 and 0.8µm chan-
nels with good accuracy (Cros et al., 2006). This study ad-
vances these efforts in three ways: (i) it explores other pos-
sible downscaling approaches, which might improve upon
the statistical downscaling scheme; (ii) it introduces tech-
niques to accurately capture information on the small-scale
reflectance variability in the 1.6µm channel, which predom-
inantly arises from variations in effective droplet radius; and
(iii) it studies the impact of the various downscaling tech-
niques on the subsequently retrieved cloud properties.

A critical requirement, formulated at the start of this work,
is to maintain a target accuracy for the retrieved effective ra-
dius based on the lower-resolution observations, while hop-
ing for further improvements. This goal was set because the
error in effective radius will propagate into other cloud prod-
ucts such as vertically integrated liquid or ice water path or
the cloud droplet number concentration, thereby potentially
corrupting any gains in accuracy obtained from the improved
spatial resolution. However, without an independent refer-
ence data set, it is impossible to determine whether this target
can be met. Thus, higher-resolution reflectance observations
from Terra MODIS are remapped to SEVIRI’s HRV and
standard-resolution grids here as basis for a thorough evalu-
ation of the accuracy of the retrieved cloud parameters. This
allows us to objectively benchmark the accuracy of candidate
approaches by comparison of results from a true ≈ 1km res-
olution reflectance data set and processed with an identical
retrieval scheme. Note that even the retrieved cloud products
from a hypothetically perfect downscaling technique would
still be impacted by the effects of resolved and unresolved
cloud variability. Therefore, the results of this study will not
help to mitigate the uncertainties associated with the retrieval
schemes of similar ≈ 1 km sensors (e.g., clear-sky contami-
nation, plane-parallel albedo bias, three-dimensional radia-
tive effects).

The results of this study are relevant for many other pas-
sive satellite sensors, which, like the SEVIRI instrument, fea-
ture multiple resolutions for the conservative and absorbing
channels. Similar configurations exists for the MODIS in-
strument (250m horizontal resolution versus 500m for the
0.6 and 2.1µm channels, respectively), VIIRS (375m versus
750m), and GOES-R (500m versus 1km).

The structure of the paper is as follows: Sect. 2 describes
both the SEVIRI and MODIS instruments used as basis for
this study, as well as the covered observational domain. A
brief overview of the SEVIRI cloud property retrieval algo-
rithm is given in Sect. 3, followed by a description of the
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different candidate approaches for the downscaling of the
narrow-band SEVIRI channel observations in Sect. 4. An
example of lower- and higher-resolution cloud property re-
trievals is presented in Sect. 5. A statistical evaluation of
the different downscaling approaches based on remapped
MODIS observations follows in Sect. 6 for a limited number
of example cloud fields. Finally, a comparison between a full
downscaling scheme and a VNIR-only approach (similar to
Deneke and Roebeling, 2010) is given in Sect. 7. The paper
presents the main conclusions and an outlook in Sect. 8.

2 Data

This section gives an overview of both the SEVIRI and
MODIS instruments in Sect. 2.1 and 2.2. Here, the respective
spectral channels of interest for this study are listed. Subse-
quently, the observational domain is described in Sect. 2.3.

2.1 SEVIRI

The current version of European geostationary satellites is
the Meteosat Second Generation, which has provided opera-
tional data since 2004 (Schmetz et al., 2002). The SEVIRI
imager is installed aboard the Meteosat-8 to Meteosat-11
platforms, which are positioned above longitudes of 9.5◦ E
and 0.0◦, respectively. One SEVIRI instrument samples the
full disk of the Earth from 0.0◦ longitude with a temporal res-
olution of 15 min. However, a backup satellite positioned at
9.6◦ E also scans a northern subregion with a temporal res-
olution of 5 min (the so-called Rapid Scan Service). These
samples – in our case from Meteosat-9 – provide the obser-
vational SEVIRI data set for the following analysis.

This study mainly considers observations from SEVIRI’s
solar reflectance channels 1–3, as well as from the spectrally
broader HRV band. These channels cover the VNIR and
shortwave-infrared (SWIR) spectral wavelength ranges. The
two VNIR reflectances (r06 and r08) are sampled in bands 1
and 2, respectively, and are centered around wavelengths λ=
0.635 and λ= 0.810µm. SWIR reflectances (r16) are pro-
vided by channel 3 observations, which are centered around
λ= 1.640µm. The horizontal resolution of the channel 1–3
samples is 3km×3 km at the subsatellite point and increases
with higher sensor zenith angles. Conversely, the broadband
reflectances rHV are sampled at SEVIRI’s HRV channel at a
horizontal scale of 1 km×1km at the subsatellite point. These
observations cover the spectral range of 0.4–1.1 µm.

As context for the present study, the reader is reminded
that the spatial resolution of geostationary satellites is signif-
icantly reduced at higher latitudes due to the oblique viewing
geometry. For Germany and Central Europe as considered in
this paper, the pixel size is effectively increased by a factor
of 2 in the north–south direction as a result. In addition, the
distinction between sampling and optical resolution needs to
be acknowledged. While the former determines the distance

between recorded samples, the latter is given by the effec-
tive area of the optical system, which is larger by a factor of
1.6 than the sampling resolution for SEVIRI (Schmetz et al.,
2002). The spatial response of optical systems is commonly
characterized by their modulation transfer function, which
describes the response of the optical system in the frequency
domain.

Further information about the spectral width of each SE-
VIRI channel, as well as the respective spatial response and
modulation transfer functions, can be found in Deneke and
Roebeling (2010).

2.2 Terra MODIS

The 36-band scanning spectroradiometer MODIS, which
was launched aboard NASA’s Earth Observing System satel-
lites Terra and Aqua, has a viewing swath width of 2330km,
yielding global coverage every 2 d. MODIS collects data in
the spectral region between 0.415 and 14.235 µm, covering
the VNIR to thermal-infrared spectral wavelength range. In
general, the spatial resolution at nadir of a MODIS pixel is
1000 m for most channels, although the pixel dimensions in-
crease towards the edges of a MODIS granule. Only observa-
tions from the Terra satellite launched in 1999 are used here,
due to broken detectors of the 1.64µm channel of the MODIS
instrument on the Aqua satellite. Information on MODIS and
its cloud product algorithms is given in Ardanuy et al. (1992),
Barnes et al. (1998), and Platnick et al. (2003). The current
version of the level 1b radiance and level 2 cloud products
used is data collection 6.1 (C6.1).

2.3 Domain

In this study, data from a subregion of the full SEVIRI
disk has been selected. This region, which is located within
the European subregion described in Deneke and Roebeling
(2010), is illustrated by the red borders in Fig. 1. It is cen-
tered around Germany due to its intended domain of appli-
cation (thus, from here on it is referred to as the Germany
domain) and comprises the latitude and longitude ranges of
≈ 44.30–57.77◦ and≈−0.33–21.65◦, respectively. This do-
main includes 240×400 lower-resolution pixels (i.e., the na-
tive SEVIRI resolution of channels 1–3) and is far away from
the edges of the full SEVIRI disk, ensuring that the observed
viewing zenith angles are < 70◦.

Due to the increased sensor zenith angles the spatial reso-
lution of each SEVIRI pixel is degraded. The average pixel
size is 6.20km× 3.22km and 2.06km× 1.07km for chan-
nels 1–3 and the HRV channel, respectively. To avoid con-
fusion, we will use the designations LRES (abbreviation for
lower resolution) and HRES (abbreviation for higher resolu-
tion) scales to refer to the 3km×3km and 1km×1km pixel
resolutions from here on.

A relatively small domain was chosen, because the number
of pixels to be processed will expand by a factor of 3× 3,
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Figure 1. Map of the European SEVIRI domain, as defined in
Deneke and Roebeling (2010). The red borders indicate the Ger-
many domain, which is the focus of this study.

increasing the computational costs of the subsequent cloud
property retrievals by roughly 1 order of magnitude. Except
for some regional dependencies introduced by changes in the
prevalence of specific cloud types, we expect results of our
study to also be valid for other domains.

3 SEVIRI cloud property retrieval algorithm

Retrieved cloud variables in this study are provided by the
Cloud Physical Properties retrieval algorithm (CPP; Roe-
beling et al., 2006), which is developed and maintained at
the Royal Netherlands Meteorological Institute (KNMI). It
is used as basis for the CLAAS-1 and CLAAS-2 climate
data records (Stengel et al., 2014; Benas et al., 2017) dis-
tributed by the Satellite Application Facility on Climate
Monitoring (Schulz et al., 2009). Using a lookup table (LUT)
of reflectances simulated by the Doubling–Adding KNMI
(DAK: ) radiative transfer model, observed and simulated re-
flectances at 0.6 and 1.6µm are iteratively matched to yield
estimates of τ and reff. The CPP retrieval uses the cloud mask
and cloud top height products obtained from the software
package developed and distributed by the satellite applica-
tion facility of Support to Nowcasting and Very Short Range
Forecasting (NWCSAF), version 2016, as input (Le Gléau,
2016). The former product identifies cloudy pixels for the re-
trieval, while the information on the height of the cloud is
used to account for the effects of gas absorption in the SE-
VIRI channels.

4 Candidate methods for downscaling SEVIRI
reflectances

This section describes the necessary steps to convert the
reflectances r06, r08, and r16, available at SEVIRI’s native

LRES, to reliable estimates of higher-resolution reflectances
r̂06, r̂08, and r̂16, together with matching cloud properties, at
the HRES scale of the HRV channel. This downscaling pro-
cess utilizes the high-resolution rHV observations.

As a first step, all reflectances are interpolated to the HRV
grid using trigonometric interpolation, implemented based
on the discrete Fourier transform and multiplication with
the modulation transfer function (see Deneke and Roebel-
ing, 2010, for details). While this step increases the spatial
sampling resolution, it does not add any additional high-
frequency variability. In fact, after interpolation, the re-
flectance values of the central pixel of each 3×3 pixel block
equal those of the corresponding standard-resolution pixel
reflectances. However, the pixels apart from the central one
contain information about the large-scale reflectance vari-
ability and can be considered as a baseline high-resolution
approach. This approach already improves the agreement
with true higher-resolution retrievals, as will be shown later
in this study.

Three conceptually different downscaling techniques to
improve upon this baseline method are described: (i) a sta-
tistical downscaling approach based on globally determined
covariances between the SEVIRI reflectances in Sect. 4.1;
(ii) a local method based on assumptions about the ratio
of reflectances at different scales in Sect. 4.2; and (iii) a
technique combining globally determined covariances be-
tween the VNIR reflectances and the shape of the SEVIRI
LUT, while assuming a constant reff within a standard SE-
VIRI pixel in order to constrain the SWIR reflectance in
Sect. 4.3. As variations of this last technique, two additional
approaches are considered to improve upon the constant reff
constraint in Sect. 4.4. As will be shown, each of these ap-
proaches has advantages and disadvantages, and the impact
on the cloud property retrievals will be evaluated in Sect. 6
for a number of example scenes by means of collocated
MODIS observations.

As is discussed in Sect. 4.1–4.4, the derived reflectances
r̂06 and r̂08, as well as r̂16, include an estimate of the spec-
trally dependent, high-frequency variability of an image and
are based on the actually observed rHV. These reflectances
are different from those obtained by trigonometric interpo-
lation of the respective channel observations at the native
scale to the horizontal resolution of the HRV channel (i.e.,
the baseline approach), which are denoted by r̃06, r̃08, and
r̃16. While these latter variables also have a higher horizontal
resolution of the HRV channel, they only capture the low-
frequency variability resolved by SEVIRI channels 1–3.

4.1 Statistical downscaling

The statistical downscaling algorithm for the two SEVIRI
VNIR reflectances was first reported in Deneke and Roe-
beling (2010) and assumes a least-squares linear model that
links r06 and r08 to the reflectances in the HRV channel (see

Atmos. Meas. Tech., 13, 1089–1111, 2020 www.atmos-meas-tech.net/13/1089/2020/



F. Werner and H. Deneke: High-resolution retrievals from Meteosat SEVIRI 1093

Cros et al., 2006) in the form

〈r̃HV〉 = a · r06+ b · r08. (1)

Here, the HRV channel observations are first smoothed
with the modulation transfer function of the lower-resolution
channels, which yields reflectances r̃HV at the same HRES
horizontal resolution, adjusted to the low-frequency variabil-
ity at the spatial scale of the channel 1–3 observations. Sub-
sampling the central pixel of each 3×3= 9 pixel block sub-
sequently yields 〈r̃HV〉 at the same LRES horizontal resolu-
tion as r06 and r08 (here, the subsampling of the field is de-
noted by 〈〉). The variables a and b are fit coefficients that are
determined empirically by a least-squares linear fit. In order
to derive a statistically significant and stable linear model, the
coefficients a and b are calculated hourly between 08:00 and
16:00 UTC within 16 d intervals. Results for the time step
08:00 UTC are derived from 5 min SEVIRI rapid-scan data
between 08:00 and 08:25 UTC, while the 16:00 UTC time
step is comprised of SEVIRI observations between 15:30 and
16:00 UTC. For all time steps in between, data are from all
samples after minute 25 of the prior hour up to minute 25 of
the current hour (e.g., fit coefficients for time step 09:00 UTC
are calculated from SEVIRI observations between 08:30 and
09:25 UTC).

Values of hourly derived fit coefficients for the Germany
domain between 1 April and 31 July 2013 are shown in
Fig. 2a and b for a and b, respectively. Here, circles repre-
sent the respective fit coefficient for each 16 d interval, which
is indicated by the first Julian day in the time period. Colors
highlight the different UTC time steps. It is obvious that both
coefficients a and b are very stable and show no noticeable
variation from hour to hour, as well as from one 16 d interval
to another. Considering all hourly data and each 16 d interval,
the median fit coefficients are 0.63 (for a) and 0.40 (for b),
with low interquartile ranges (IQR) of 0.03. The only excep-
tions are the fit coefficients derived for the first time period
of 1–17 April 2013, especially for the morning and afternoon
hours of 08:00–09:00 and 13:00–16:00 UTC. Here, a and b
deviate significantly from the other results, with values of
≈ 0.50 and ≈ 0.52, respectively, likely due to an abundance
of observations with large solar zenith angles of θ0 > 60◦ in
the eastern part of the domain.

The high-frequency reflectance variations for the SEVIRI
HRV channel (δrHV) are calculated as the difference be-
tween the observed rHV and r̃HV, which only resolve the low-
frequency variability:

δrHV = rHV− r̃HV. (2)

Following the linear model in Eq. (1), the high-frequency
variations of the channel 1 and 2 reflectances (δr06 and δr08)
are linked to δrHV via

δr06 = S06 · δrHV,

δr08 = S08 · δrHV. (3)

The optimal slopes S06 and S08, which minimize the least-
squares deviations, can be derived from bivariate statistics:

k1 =

√
b2
· var(r08)

a2 · var(r06)
,

S06 =
1+ k1 · cor(r06, r08)

a ·
[
1+ k1

2
+ 2k1 · cor(r06, r08)

] ,
k2 =

√
a2
· var(r06)

b2 · var(r08)
,

S08 =
1+ k2 · cor(r08, r06)

b ·
[
1+ k2

2
+ 2k2 · cor(r08, r06)

] . (4)

Here, cor(r06, r08) is the linear correlation coefficient be-
tween the channel 1 and 2 reflectances, while var(r06) and
var(r08) are the spatial variances of the respective samples.
Note that the sampling resolution of all reflectances is the
LRES scale (i.e., ≈ 3km× 3km).

As a result, the high-resolution reflectances r̂06 and r̂08,
which include the high-frequency variations, can be derived
from the interpolated reflectances as

r̂06 = r̃06+ δr06,

r̂08 = r̃08+ δr08. (5)

Note that only r̂06 is used for the retrieval.
Similar steps can be applied for the calculation of r̂16.

Again, a simple linear model is assumed to connect r16 to
the lower-resolution 〈r̃HV〉 at the spatial scales of the channel
1–3 observations:

〈r̃HV〉 = c · r16. (6)

The symbol c is used to denote the respective fit coeffi-
cient, which needs to be determined empirically. Similar
to the coefficients a and b from the linear model for the
VNIR reflectances, c is calculated hourly between 08:00 and
16:00 UTC within 16 d intervals. It has to be noted, however,
that in contrast to the VNIR reflectances this fit does not have
a clear physical motivation, as there is no spectral overlap
with the HRV channel.

The temporal behavior of the fit coefficient c for the
Germany domain for the time period between 1 April and
31 July 2013 is shown in Fig. 2c. In contrast to the coeffi-
cients a and b, there is a noticeable trend in the data, both di-
urnally and during the transition from 1 April to 31 July. For
each 16 d interval the variability in the hourly derived c val-
ues ranges between IQR= 0.05 and 0.15, while the median
16 d value varies between 1.04 and 1.25. Overall, the median
c is 1.16, with an IQR of 0.08 (i.e., almost 3 times larger than
the one for the coefficients a and b). The observed trends and
larger IQR in the c data set shown in Fig. 2c illustrate that the
linear model in Eq. (6) is not ideal and is expected to intro-
duce significant uncertainties in the calculation of r̃16. This
behavior is expected, as the relationship between VNIR and
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Figure 2. (a) Fit coefficients a, which are used to derive higher-resolution SEVIRI reflectances by means of statistical downscaling, as a
function of Julian day. Coefficients are derived hourly and in 16 d intervals for the Germany domain between 1 April and 31 July 2013.
Colors illustrate different UTC times. (b) Same as (a) but for fit coefficients b. (c) Same as (a) but for fit coefficients c.

Figure 3. (a) Joint probability density function (PDF) of smoothed SEVIRI HRV reflectances (〈r̃HV〉) and those obtained from a linear
model of observed SEVIRI channel 1 (r06) and channel 2 (r08) reflectances, specifically a · r06+ b · r08 (see Sect. 4.1). Data are from all
5 min SEVIRI observations of the Germany domain during June 2013. Only cloudy pixels are considered. The number of samples (n) and
correlation coefficient (R) are given. (b) Same as (a) but for a linear model for SEVIRI SWIR reflectances, specifically c · r16.

SWIR reflectance can usually not be described by a linear
function (see discussions in Werner et al., 2018a, b, as well
as the LUT examples in Fig. 4 later in this study). For a con-
stant reff there is a linear increase in r16 with increasing r06,
as the cloud optical thickness increases. However, the slope
of this linear relationship increases with decreasing reff. For
τ > 10 the relationship between r16 and r06 is characterized
by a prominent curvature, while for τ � 10 the r16 values
become independent of r06. Therefore, the fit coefficients c
depend on the distribution of cloud optical and microphysi-
cal parameters, which varies widely with cloud type, meteo-
rological conditions, and different dynamic processes.

Values of r̃16 can be derived similarly to Eqs. (3–5) for the
channel 1 and 2 observations:

δr16 = S16 · δrHV,

S16 =
cov(r16, 〈r̃HV〉)

var(r16)
,

r̂16 = r̃16+ δr16. (7)

Note that the use of linear models and bivariate statistics
means that the downscaling algorithm described in this sec-
tion is an example of statistical downscaling techniques,
which are common in climate science applications (e.g., Ben-
estad, 2011). While for the VNIR channels the spectral over-
lap with the HRV channel and the spectrally flat properties
of clouds provide a sound physical justification for this tech-
nique, this is not the case for the SWIR channel.

The reliability of the linear model in Eq. (1) depends upon
the correlation between channel 1 and 2 reflectances (i.e.,
cor(r06, r08)), as well as the stability of the fit coefficients
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a and b. The analysis in Deneke and Roebeling (2010) con-
cludes that the explained variance in the estimates of r̂06 and
r̂08 is close to 1, corresponding to low residual variances,
which indicates that the linear model is robust. Moreover, the
two fit coefficients are found to exhibit very low variability,
as shown in Fig. 2a–b.

To verify the reliability of the linear model with a large
SEVIRI data set, a joint PDF of the actually observed 〈r̃HV〉

and the results from Eq. (1) is shown in Fig. 3a; data are from
all SEVIRI observations within the Germany domain during
June 2013. In case of an ideal linear model, as well as a per-
fect correlation between the two reflectances, Eq. (1) would
replicate the 〈r̃HV〉 observations. Conversely, deviations from
these assumptions will yield different results from the sam-
pled SEVIRI reflectances. It is clear that the linear model
can reliably reproduce 〈r̃HV〉, as most of the observations lie
on the 1 : 1 line, and Pearson’s product-moment correlation
coefficient (R) is R = 0.999. While some larger deviations
exist, such occurrences are significantly less likely (i.e., the
joint probability density is several orders of magnitude lower
than the most-frequent occurrences along the 1 : 1 line). Re-
garding r16, the assumption of a linear model is evidently
flawed, because the relationship between VNIR and SWIR
reflectances depends on the optical and microphysical cloud
properties. As a result, a single linear slope, which describes
the whole relationship between the two reflectances for all
distributions of cloud properties, will introduce significant
uncertainties. This is illustrated in Fig. 3b, where the joint
PDF of 〈r̃HV〉 and the results from the linear model in Eq. (6)
are shown. The comparison between the two data sets reveals
a much larger spread around the 1 : 1 line and a lower correla-
tion coefficient. Overall, the relationship resembles the shape
of a LUT, displayed in the form of the well-known diagram
introduced by Nakajima and King (1990), where changes in
reff result in a spread in the observed SWIR reflectances (see,
e.g., Werner et al., 2016).

To test the impact of changes in a and b on the derived
r̂06 and r̂08, two experiments are conducted: (i) the fit coeffi-
cients are derived only from cloudy pixels and are compared
to the higher-resolution results from a and b, which are de-
rived for all pixels; and (ii) the Germany domain is divided
into 100km× 100 km subscenes, and the fit coefficients are
derived more locally within each subscene instead of glob-
ally from the full domain. Subsequently, statistics from the
difference between the two data sets are calculated. Data are
from 14 June 2013 at 14:05 UTC. For experiment (i), the 1st,
50th, and 99th percentiles of the relative difference in r̂06
(defined as the difference between the reflectances from only
cloudy data and the full data set, normalized by the full data
set) are −0.08, −0.02, and 0.03%, while for r̂08 the anal-
ysis yields −0.04, 0.02, and 0.19 %. Similarly, experiment
(ii) yields relative differences of−0.08, 0.03, and 0.36% and
−0.17, 0.00, and 0.19 % for r̂06 and r̂08, respectively. These
deviations are negligible compared to the measurement un-
certainty, and naturally the correlation coefficients between

the different data sets areR ≈ 1.00. This confirms the robust-
ness of the linear model described in Eq. (1). For the deriva-
tion of r̂16 from Eq. (6), a slightly increased sensitivity to the
fit coefficient c is observed. Here, experiment (i) yields per-
centiles of the relative difference of−0.16, 0.08, and 0.86 %,
whereas experiment (ii) results in−0.39,−0.01, and 0.40 %.
While slightly higher deviations are observed compared to
the linear model for the VNIR reflectances, the uncertainty in
r̂16 induced by the variability in c is still significantly lower
than the measurement uncertainty.

4.2 Constant reflectance ratio approach

Compared to the downscaling approach in Sect. 4.1, where
fit coefficients for a linear model are derived over a large
temporal and spatial domain, this second method uses local
relationships (i.e., on the pixel level) between the SEVIRI re-
flectances. The constant reflectance ratio approach was intro-
duced by Werner et al. (2018b) and is based on the assump-
tion that the inhomogeneity index of the HRV reflectance
(Hσ,HV, defined as the ratio of standard deviation σHV to
the average, pixel-level reflectance 〈r̃HV〉) equals that for the
channel 1 reflectance (Hσ,06). This implies a spectrally con-
sistent subpixel reflectance variability. The relationship can
be written as

Hσ,06 =Hσ,HV,

σ06

r06
=

σHV

〈r̃HV〉
,√

1
9−1 ·

∑i=9
i=1(r̂06,i− r06)2

r06

=

√
1

9−1 ·
∑i=9
i=1(rHV,i−〈r̃HV〉)2

〈r̃HV〉
, (8)

where the index i = 1,2, . . .,9 indicates any one of the nine
available HRES subpixels within a lower-resolution SEVIRI
pixel (i.e., at the LRES scale of channels 1–3). This relation-
ship can be further simplified, assuming that this relationship
is also true for individual pixels:

r̂06,i− r06

r06
=
rHV,i−〈r̃HV〉

〈r̃HV〉
,

r̂06,i

rHV,i
=

r06

〈r̃HV〉
. (9)

The relationship in Eq. (9) suggests that the ratio of chan-
nel 1 and HRV reflectances (i.e., narrowband and broadband
VNIR reflectances) remains constant for different scales.
Thus, this approach is called the constant reflectance ratio
approach.

Finally, we can mitigate some of the scale effects by
substituting the lower-resolution variables with the higher-
resolution reflectances that resolve the low-frequency vari-
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Figure 4. (a) Example SEVIRI lookup table for liquid-phase clouds, illustrating the lookup table approach (introduced in Sect. 4.3) for an
observation highlighted by the reflectance pair indicated by point A. For two different high-frequency variations of the channel 1 reflectance
(δr06,1 and δr06,2) the derived high-frequency variations of the channel 3 reflectance (δr16,1 and δr16,2) are shown. See text for more
description. (b) Same as (a) but illustrating the adjusted lookup table approach (introduced in Sect. 4.4) with the adiabatic adjustment for a
single δr06 example. (c) Same as (b) but with the LUT slope adjustment.

ability (i.e., r̃06 and r̃HV) and solve for r̂06:

r̂06 = rHV ·
r̃06

r̃HV
. (10)

Similarly, higher-resolution SWIR reflectances r̂16 can be
derived from

r̂16 = rHV ·
r̃16

r̃HV
. (11)

As before, the relationship implies that the ratio of VNIR
and SWIR reflectances remains constant for different scales.
This assumption has been shown to be reasonable, at least
for optically thin (i.e., τ ≤ 10) liquid water clouds over the
ocean (Werner et al., 2018b).

4.3 Lookup table approach

A third method to derive high-resolution cloud property re-
trievals for SEVIRI utilizes an iterative approach to deter-
mine δr06 and δr16 independently, based on the shape of the
LUT, while constraining the observed reff to that of the base-
line approach (i.e., simple trigonometric interpolation, which

yields reflectances r̃06 and r̃16 that only resolve the large-
scale variability). While the previous approaches can be im-
plemented as a preprocessor outside the actual retrieval, this
method requires access to the LUT and has thus been imple-
mented through modifications of the CPP retrieval algorithm.

Again, a simple linear relationship between δrHV, δr06 and
δr08 based on Eq. (2) is assumed:

δrHV = a · δr06+ b · δr08, (12)

where the fit coefficients a and b are determined from the
same techniques as described in Sect. 4.1. The variation δrHV
of the HRV channel is obtained from the observations follow-
ing Eq. (2), while δr08 is calculated as the difference between
r08 from high- and low-resolution optical thickness τ based
on the functional relation F of the reflectances and cloud
properties stored in the LUT (which motivates the name of
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this method). Therefore, δr06 can be derived from

δr06 =
1
a
· (δrHV− b · δr08) ,

r̂06 = r̃06+ δr06,

δr08 = F08
(
τ̂, r̂eff

)
−F08 (τ̃, r̃eff) . (13)

Note that the addition of δr08 in the calculation of δr06 helps
to account for the noticeable increase in surface albedo of
vegetation-like surfaces at λ > 700 nm (i.e., the vegetational
step). This should improve the estimation of δr06 for thin
clouds (i.e., τ < 10) and cloud-edge pixels. For the SWIR
reflectance, instead of relying on the imperfect linear model
in Eq. (6) or assumptions about the inhomogeneity index
Hσ,16, the adjustment δr16 is determined iteratively to con-
serve the coarse-resolution, pixel-level (i.e., LRES scale of
channels 1–3) value of the effective droplet radius. To reduce
some of the associated uncertainties, the effective droplet ra-
dius based on the reflectances from triangular interpolation
can be used instead of the LRES result. If τ̃ and r̃eff are the
cloud properties based on trigonometric interpolation, and τ̂
and r̂eff are the higher-resolution retrievals, which are derived
from an inversion of the functional relationship (F) between
the high-resolution reflectances r̂06 and r̂16 following(
τ̂, r̂eff

)
= F−1 (r̃06+ δr06, r̃16+ δr16) , (14)

then δr16 can be determined as

δr16 = F16
(
τ̂, r̂eff = r̃eff

)
−F16 (τ̃, r̃eff) . (15)

This implies that a positive or negative δr06 is connected to a
positive or negative δr16 using the LUT to adjust the SWIR
subpixel reflectance variations in such a way as to be repre-
sentative of the respective standard-resolution r̃eff. As a re-
sult, we do not expect any improvement for the reff retrieval
during the transition to smaller scales. Instead, we try to find
a physically reasonable constraint for δr16 to achieve a reli-
able retrieval of the higher-resolution τ̂ , while retaining the
accuracy of the standard-resolution retrieval of r̃eff.

The LUT approach is illustrated in Fig. 4a, where an ex-
ample SEVIRI liquid-phase LUT for a specific solar zenith
angle (θ0 = 40◦), sensor zenith angle (θ = 20◦), and relative
azimuth angle (ϕ = 60◦) is shown. Vertical dashed lines and
values below the grid denote fixed τ̃ , while the horizontal
dashed lines and values to the right of the grid denote fixed
r̃eff in units of micrometers. The green dot highlighted by
the capital letter A represents an example SEVIRI reflectance
pair of approximately r̃06 = 0.33 and r̃16 = 0.34, which maps
to τ̃ = 8 and r̃eff = 12µm (i.e., the retrieval result for the
high-resolution reflectances from trigonometric interpola-
tion). The red line highlights the r̃eff = 12µm isoline. The
two horizontal blue arrows indicate a positive (δr06,1) and
negative (δr06,2) adjustment to r̃06 based on Eq. (13). Without
an adjustment to r̃16, these newly derived higher-resolution
r̂06 values map to significantly larger and lower effective

droplet radii of about r̂eff = 29 and r̂eff = 5µm, respectively.
The adjustments δr16,1 and δr16,2 simply assure that the prior
effective radius retrieval is preserved (i.e., r̂eff = r̃eff). Due to
the curvature of the isolines of fixed r̃eff given by the LUT,
small deviations of the coarse-resolution average from r̃16
can still occur.

Note that the LUT approach requires a prior cloud phase
retrieval (either from the lower-resolution or interpolated re-
flectances) to determine the correct LUT for either liquid wa-
ter or ice.

4.4 Adjusted lookup table approach

In order to improve the estimation of δr16 in the LUT ap-
proach, two modifications to the previous assumption are in-
troduced in this section. The first one aims to provide a more
realistic estimate of r̃eff compared to the coarser LRES result,
which subsequently is used to determine δr16. The value of
r̃eff is derived from adiabatic theory, which provides a physi-
cally sound relationship between the derived high-resolution
cloud variables:

r̂eff = r̃eff

(
τ̂

τ̃

)a
. (16)

Based on observations, the study by Szczodrak et al. (2001)
confirmed the value of a ≈ 0.2 predicted by theory for ma-
rine stratocumulus, so this is the value also adopted here.
This approach is illustrated in Fig. 4b, where the r̃eff retrieval
based on the interpolated reflectances at point A is indicated
by the red reff isoline. During the first iteration step δr06 is
derived from Eq. (13) and δr16 = 0, which maps to τ̂ 1 in
the LUT (the exponent 1 indicates the first iteration step).
This value is highlighted by the vertical blue line. Based on
Eq. (16) the corresponding adiabatic r̂1

eff is calculated (high-
lighted by the horizontal blue line). This value determines the
adjustment δr16. Note that the resulting reflectances at point
B do not exactly map to τ̃ 1 after the first iteration. As a re-
sult, multiple iterations are necessary to derive the final cloud
properties. It has however been relatively simple to merge
this iteration into the iterative retrieval loop of the CPP re-
trieval.

A second approach to improve upon the LUT approach
again utilizes the shape of the LUT to derive a local slope
S = ∂r16/∂r06 from the simulated LUT reflectances. The
value of S is calculated at the position denoted by τ̃ and r̃eff.
In the iterative CPP retrieval, this requires that both low- and
high-resolution cloud properties are estimated during each it-
eration until convergence of both properties is achieved. This
approach is illustrated in Fig. 4c. Again, the initial r̃eff re-
trieval based on the interpolated reflectances at point A1 is
indicated by the red r̃eff isoline. The slope SA1 at this posi-
tion in the LUT is highlighted by the solid blue line. Based
on the derived slope and δr06 from Eq. (13) the correspond-
ing δr16 can be calculated for each iteration step. Two ad-
ditional examples for initial starting points (A2 and A3) and
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the respective slopes (SA2 and SA3) are also shown. These ex-
amples indicate the change in slope for different parts of the
LUT. For small τ̃ , the slope SA3 become steeper, which leads
to a larger adjustment δr16. Meanwhile, for large τ̃ > 30 (for
this specific viewing geometry and LUT) the τ̃ and r̃eff iso-
lines are nearly orthogonal and both the respective slope SA2
and δr16 are close to 0.

Both approaches introduced in this section have advan-
tages and disadvantages but promise to improve on the stan-
dard LUT approach. While physically sound, adiabatic as-
sumptions might not always be appropriate, especially for
highly convective clouds or in the presence of drizzle. Mean-
while, large δr06 adjustments might map to a point in the
LUT where the derived local slopes at the position of τ̃ i and
r̃ i

eff might not be representative anymore.

5 Example retrievals

An example of a standard SEVIRI red, green, and blue
(RGB) composite and the respective cloud property re-
trievals, utilizing the native r06 and r16, are shown in Fig. 5a–
c. In comparison, the retrieval results using the downscaled
r̂06 and r̂16 from the adjusted lookup table approach, using
the LUT slope adjustment, are presented in Fig. 5d–f for the
same cloud field. The example is a ≈ 100km× 100km sub-
scene of SEVIRI observations of an altocumulus field, which
was acquired on 9 June 2013 at 10:55 UTC over ocean within
the Germany domain. The three illustrated parameters are an
RGB composite image of SEVIRI channel 3, 2, and 1 re-
flectances in panels a and c; the cloud optical thickness τ
and τ̂ in panels b and e; and the effective droplet radius reff
and r̂eff in panels c and f. For the cloud variables only liquid-
phase pixels are shown. An increase in contrast and resolved
cloud structures is visible in the higher-resolution RGB com-
posite. Regarding the retrieved cloud properties, the fields of
lower-resolution τ and reff are a lot smoother, and the results
exhibit a lower dynamical range than their higher-resolution
counterparts. One obvious example is the bright cloudy part
along 54.6◦ N, where τ > 45 are observed. Moreover, the re-
gion of low reff in the northeastern corner of the scene ex-
hibits more nuanced values in the higher-resolution data set.

6 Evaluation of downscaling techniques with MODIS
data

This section presents an evaluation of the different downscal-
ing techniques, which are introduced in Sect. 4, by means of
MODIS observations. MODIS provides reflectances at a hor-
izontal resolution of ≈ 1km× 1km. These observations are
remapped to the higher-resolution grid of the SEVIRI rHV-
band samples, thus simulating a hypothetical SEVIRI-like
geostationary instrument, where all channels are provided at
the HRES scale. This provides the means to derive reference
retrievals of τ and reff. Note that even though these reference

retrievals are performed at a higher resolution the “ˆ” notation
is omitted, because these cloud products are derived from ac-
tual observations and are not the estimates obtained from the
various downscaling techniques.

Remapping MODIS reflectances to SEVIRI’s LRES grid
(i.e., the native resolution of channels 1–3) subsequently pro-
vides the means to apply the various downscaling schemes,
as well as the simple triangular interpolation approach, in or-
der to compare the retrieved cloud products (i.e., τ̂ and r̂eff,
as well as τ̃ and r̃eff) to the reference results. Naturally, the
ideal downscaling approach would yield results that closely
resemble the MODIS-provided HRES observations. Further-
more, the ideal downscaling approach would also represent
an improvement upon the simple interpolation technique.
The reader is reminded that the latter data are still available
at a higher resolution than the native LRES grid of the SE-
VIRI r06, r08, and r16 channels but no longer contain any
information about the high-frequency reflectance variability.
As the simplest approach to derive higher-resolution cloud
products, these results are called the baseline results.

In addition, a comparison can be made to those cloud
variables, which would be obtained from reflectances at SE-
VIRI’s native spatial resolution by setting each 3× 3 HRES
pixel block to the LRES value.

Figure 6 shows RGB composites of the four example
scenes, which comprise the data set for the evaluation of
the different downscaling techniques. The scenes are increas-
ingly more heterogeneous, starting with a rather homoge-
neous altocumulus field in Fig. 6a, two more heterogeneous
broken altocumulus examples in Fig. 6b–c, and finally a bro-
ken cumulus field in Fig. 6d.

Meanwhile, Table 1 summarizes the different retrieval ex-
periments that form the comparison in this section. For the
sake of completeness, the reference data (i.e., the results from
the MODIS reflectances, which are remapped to SEVIRI’s
HRES grid) are also included. Retrievals based on remapped
MODIS data to SEVIRI’s native 3 km scale are reproduced
to each of the 3× 3 subpixels to match the horizontal reso-
lution of the reference results. Meanwhile, the cloud prod-
ucts derived from triangular interpolation of the remapped
LRES–MODIS samples are referred to as the baseline data
set, as this is the easiest approach and any reliable down-
scaling technique needs to add an improvement on those re-
sults. Experiment 1 denotes the statistical downscaling ap-
proach from Sect. 4.1, while retrievals based on the constant
reflectance ratio approach and the adjusted LUT approach
with LUT slope adjustment are indicated as experiments 2
and 3, respectively. Note that we also performed analysis
for the standard LUT approach, as well as the adjusted LUT
approach with adiabatic adjustment. However, we will only
briefly summarize the results of these downscaling schemes
where necessary.

First, the collocation and remapping procedure for the na-
tive MODIS reflectances is briefly described. A compari-
son between the retrieved cloud products from the LRES
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Figure 5. (a) RGB composite image of SEVIRI channel 3, 2, and 1 reflectances at the instrument’s native horizontal resolution of 3km×3km.
Data are from a ≈ 100km× 100km subregion within the Germany domain on 9 June 2013 at 10:55 UTC. (b) Similar to (a) but illustrating
a map of the cloud optical thickness (τ ). White colors indicate pixel with either a failed cloud property retrieval, a nonliquid cloud phase, or
noncloud designation by the cloud masking algorithm. (c) Same as (b) but for the effective droplet radius (reff). (d)–(f) Same as (a)–(c) but at
a horizontal resolution of 1km×1km. The reflectances and retrievals have been derived from the adjusted lookup table approach as described
in Sect. 4.4, using the LUT slope adjustment.

Table 1. Description for the different retrieval experiments, which are characterized by different assumptions for the downscaling of SEVIRI
reflectances from the native horizontal resolution of ≈ 3 km to the MODIS-like ≈ 1 km scale.

Experiment Description

Reference r06 and r16 from the native ≈ 1km× 1km MODIS scale, remapped onto SEVIRI’s HRES grid
Native 3 km r06 and r16 from the native ≈ 1km× 1km MODIS scale, remapped onto SEVIRI’s LRES grid
Baseline r̃06 and r̃16 from triangular interpolation, thus only accounting for low-frequency variabilities
1 r̂06 and r̂16 from the statistical downscaling approach as described in Sect. 4.1
2 r̂06 and r̂16 from the constant reflectance ratio approach as described in Sect. 4.2
3 r̂06 and r̂16 from the adjusted lookup table approach with LUT slope adjustment as described in Sect. 4.4

resolution–reflectances and those from triangular interpola-
tion, as well as the different downscaling procedures, and the
reference results follows in Sect. 6.2. These retrievals can be
used to derive estimates of the liquid water content (WL, W̃L,
and ŴL) and the droplet number concentration (ND, ÑD, and
N̂D), which are evaluated in Sect. 6.3.

6.1 Reprojection of MODIS swath radiances to the
SEVIRI grid

To obtain a reliable higher-resolution reference data set,
MODIS level 1b swath observations (MOD021km) have

been projected to the grid of SEVIRI’s rHV samples, which
corresponds to the geostationary satellite projection at the
HRES scale. Initially, the native HRV grid is oversampled
by a factor of 3 in each dimension (i.e., the target grid has
a ≈ 333 m resolution), and nearest-neighbor interpolation is
used for the projection. This oversampled field is subse-
quently smoothed with the modulation transfer function of
the HRV channel as given by EUMETSAT (2006), to remove
high-frequency variability not resolved by the sensor and, in
particular, the artifacts introduced by the nearest-neighbor
interpolation technique. Finally, this field is downsampled,
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Figure 6. (a) RGB composite image of remapped MODIS channel 6, 2, and 1 reflectances at the horizontal resolution of SEVIRI’s HRV
channel at a horizontal scale of 1km× 1km at the subsatellite point. Data are from example scene 1 sampled on 1 June 2013 at 10:05 UTC.
(b)–(d) Same as (a) but for example scenes 2 to 4, sampled on 9, 6, and 5 June 2013 at 10:55, 11:20, and 10:25 UTC, respectively.

such that only each central pixel of a 3× 3 block (each pixel
with a horizontal resolution of 333 m) is retained to represent
the HRES value.

To perform the subsequent downscaling experiments, a
second set of level 1b radiances are generated, where the spa-
tial variability is reduced to match that of the LRES channels
of Meteosat SEVIRI. This step again involves the smoothing
of the respective reflectance field with the channel-specific
modulation transfer function of the lower-resolution SEVIRI
channels (EUMETSAT, 2006). This data set represents hy-
pothetical SEVIRI-like observations at the native LRES.

In addition, a band-pass filter has been constructed from
the difference between the modulation transfer functions of
the HRV and the 0.6 and 0.8µm channels (weighted by the

coefficients of a linear model; see Deneke and Roebeling,
2010). This filter is used to extract the high-frequency signal
of the HRV channel.

It should be noted that retrievals based upon these ra-
diances will be different than those based upon the orig-
inal MODIS C6 radiances or from an absolutely accurate
representation of the (hypothetical) truly observed, high-
resolution SEVIRI samples. For one, it uses the linear model
of Cros et al. (2006) and Deneke and Roebeling (2010) as a
proxy for the HRV channel, thereby excluding a potentially
significant source of uncertainty. Moreover, MODIS acquires
these reflectances under different viewing geometries (note
that the true viewing angles are used in the CPP retrieval,
so within the limits of plane-parallel radiative transfer, this
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effect is accounted for), and the spectral characteristics of
the MODIS and SEVIRI channels are not entirely compara-
ble. However, the goal of this study is to provide a consistent
reference data set for a comparison of different retrieval data
sets, which are derived from a single retrieval algorithm core.
The actual absolute values of the retrieved cloud products are
not important here.

6.2 Results for τ and reff

Figure 7a shows a comparison of τ at the native LRES (repli-
cated onto each subpixel) and the reference τ at the HRES
scale for the example cloud field in scene 2, which is shown
as an RGB composite image in Fig. 6b. A total of over 13000
cloudy pixels (liquid phase) are located in this scene. While
for small reference τ < 20 there is a reasonable agreement
between the two data sets, there is increased scatter around
the 1 : 1 line (indicated by the dashed gray line) for larger val-
ues of cloud optical thickness. For reference τ > 40, a sub-
stantial underestimation of the LRES τ is observed, which
yields a sizable contribution to the nRD of 15.8%. Fig-
ure 7b–c show similar scatter plots of τ and τ̂ from both
experiment 2 (constant reflectance ratio approach) and 3 (ad-
justed LUT approach with LUT slope adjustment), respec-
tively. It is obvious that the results from these two down-
scaling techniques improve the agreement with the reference
retrievals significantly. The explained variance (R2, which
equals the square of Pearson’s product-moment correlation
coefficientR) between the data sets is increased, and the nRD
is strongly reduced to values of 1.182% (experiment 2) and
1.589% (experiment 3).

A similar comparison between the reference reff at the
HRES scale and reff at native LRES, as well as r̂eff from
the same downscaling experiments, is presented in Fig. 7d–
f. Here, the native-resolution results show a much better
agreement with the reference retrievals, and, compared to the
cloud optical thickness, the nRD= 5.505% is much lower.
While experiment 2 exhibits a good agreement between ref-
erence τ and τ̂ , the comparison of retrieved r̂eff to the ref-
erence results is less favorable. Both the reduced explained
variance (R2

= 0.889 versus R2
= 0.929) and the increased

scatter around the 1 : 1 line (nRD = 6.630%) indicate that
the results from experiment 2 are less reliable than the ones
performed at the native LRES. Thus, the elaborate downscal-
ing procedure actually reduces the accuracy of the r̂eff re-
trieval. In contrast, the retrieved r̂eff values from experiment
3 improve upon the native-resolution results, with slightly
better values of R2

= 0.953 and nRD = 4.402%.
Statistics of the comparison between the reference and

native LRES, baseline, and experimental retrievals are pre-
sented in Fig. 8a–d for example scenes 1–4, respectively. The
parameters which are used to quantify the individual compar-
isons are the median of the relative difference (abbreviated
with p50) to indicate the average deviation from the refer-
ence results, the interquartile range (IQR; defined as the rel-

ative difference between the 75th and 25th percentile of the
deviation to the reference retrievals) to indicate the spread
between the different data sets, the nRD as a second mea-
sure of the spread of data points, and the explained variance
R2 between the different retrievals and the reference. Val-
ues with a green and red background highlight the respective
experiment with the best and worst comparison for the spe-
cific parameter. Yellow backgrounds, meanwhile, indicate all
other experiments in between the two extreme results. The
first noteworthy observation concerns the native and baseline
retrievals of τ , which universally exhibit the largest median
deviations and spread to the reference results, as well as the
lowest R2. Still, the difference between native and baseline
results indicates that the trigonometric interpolation to the
HRES grid has significantly improved the comparison.

In contrast, each retrieval of τ̂ that accounts for small-
scale reflectance variability yields significant improvements,
regardless of the approach. This is especially obvious in the
parameters that characterize the spread in the deviations, i.e.,
IQR and nRD, which are between 2–9 and 2–10 smaller for
the various experiments and example scenes, respectively.
Experiments 2 and 3 seem to achieve the best agreement with
the reference retrievals.

Regarding the effective droplet radius, the agreement be-
tween the native LRES and (i) baseline retrievals and (ii) the
reference results is significantly better. It is worth pointing
out that, similar to the optical thickness comparison, the r̃eff
retrieval based on interpolating reflectances to the HRES grid
performs better than the native-resolution reff retrieval for all
scenes. The most reliable downscaling approach seems to be
experiment 3, which performs noticeably better than exper-
iments 1 (note the increased nRD and reduced R2 for scene
3) and 2 (increased spread and overall issues for the hetero-
geneous cloud field in scene 4). This indicates that the linear
model in Eq. (6) or assumptions about a constant ratio of
VNIR and SWIR reflectances are not adequate to estimate
higher-resolution r̂16, at least not for certain cloud condi-
tions. In the case of experiment 2 this is understandable, be-
cause the technique was developed for partially cloudy pixels
(Werner et al., 2018b). These observations are characterized
by a low cloud optical thickness, where the relationship be-
tween VNIR and SWIR reflectance can reliably be consid-
ered to be linear (see example LUTs in Fig. 4).

There is a notably better performance of experiment 3, the
adjusted LUT approach with LUT slope adjustment, com-
pared to the standard LUT approach highlighted in Sect. 4.3.
Of particular note is the r̂eff retrieval based on the standard
LUT scheme, which compares significantly worse to the ref-
erence results (R2 of 0.890, 0.648, 0.751, and 0.581 for cloud
scenes 1–4, respectively). This is somewhat surprising, be-
cause the specified goal of the standard LUT approach is to
maintain the accuracy of the baseline r̃eff retrieval, which has
not been fully reached. We believe that this might be caused
by the sensitivity of the cloud property retrieval to small re-
flectance perturbations, in particular for broken clouds. It is
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Figure 7. (a) Retrieved cloud optical thickness (τ ) at SEVIRI’s native LRES as a function of the reference results (τ derived from the
remapped MODIS reflectances at the HRES scale of ≈ 1 km). Data are from example scene 2, sampled on 9 June 2013 at 10:55 UTC. The
dashed gray line represents the 1 : 1 line. The number of samples (n), explained variance (R2), and normalized root-mean-square deviation
(nRD; defined as the RD between the two data sets, normalized by the average reference τ ) are given. (b)–(c) Same as (a) but for the
comparison between τ and the downscaling results (τ̂ ) from experiments 2 (constant reflectance ratio approach) and 3 (adjusted lookup table
approach with LUT slope adjustment), respectively. (d)–(f) Same as (a)–(c) but for the effective droplet radius (reff and r̂eff).

also an indication that assuming constant subpixel reff values
within each LRES pixel is not sufficient. We plan to investi-
gate this effect further in future studies. However, the second
adjusted LUT approach, which determines SWIR reflectance
adjustments based on adiabatic theory, performs even worse
(R2 of 0.846, 0.579, 0.741, and 0.519 for cloud scenes 1–4,
respectively). This suggests that the observed cloud fields do
not follow adiabatic theory and the method is not adequate to
estimate higher-resolution r̂16.

6.3 Results for WL and ND

Retrievals of τ and reff (regardless of the resolution they are
derived at) provide the means to infer other commonly used
cloud variables. The WL, which describes the amount of liq-
uid water in a remotely sensed cloud column, can be derived
as the product of retrieved cloud products (Brenguier et al.,
2000; Miller et al., 2016):

WL ≈
2
3
· ρL · τ · reff. (17)

Here, ρL is the bulk density of liquid water. Assuming adia-
batic clouds, where the vertical structure of effective droplet
radius follows the adiabatic growth model, introduces an ex-
tra factor of 5/6 and the coefficient 2/3 changes to 5/6·2/3=

5/9. Meanwhile, ND describes the number of liquid cloud
droplets in a cubic centimeter of cloudy air. Calculating ND
from remote sensing products requires a number of assump-
tions, e.g., about the vertical cloud structure and shape of the
droplet number size distribution, which are summarized and
discussed in Brenguier et al. (2000), Schüller et al. (2005),
Bennartz (2007), and Grosvenor et al. (2018). A simplified
form of the resulting equation for ND is

ND ≈ α · τ
0.5
· r−2.5

eff , (18)

with α = 1.37 · 10−5 (see Quaas et al., 2006). Note that
Eqs. (17)–(18) can yield both baseline and downscaled re-
sults (i.e., W̃L and ÑD, as well as ŴL and N̂D) when they
are derived from the respective cloud optical thicknesses and
effective droplet radii.

Similar to the comparison in Sect. 6.2, scatterplots of the
reference WL, the native LRES WL, and the results from the
downscaling experiments 2 and 3 (ŴL) are shown in Fig. 9a–
c, respectively. As before, data are provided by example
scene 2 sampled on 9 June 2013 at 10:55 UTC. Compared
to the native LRES results, a noticeable improvement in the
correlation and nRD is achieved by utilizing the two down-
scaling experiments. Not only are retrieved ŴL values closer
to the 1 : 1 line, but the significant underestimation of the
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Figure 8. (a) Comparison of retrieved cloud optical thickness (τ , c, d) and effective droplet radius (reff, a, b) from the native LRES (at a scale
of ≈ 3 km) and baseline retrievals (i.e., only accounting for low-resolution reflectance variability), as well as the downscaling experiments
1 (statistical downscaling approach), 2 (constant reflectance ratio approach), and 3 (adjusted lookup table approach with LUT slope adjust-
ment), and the reference retrieval results. Parameters to quantify the comparisons are the median of the relative difference to the reference
(p50), relative interquartile range (IQR; 75th–25th percentile of the relative difference to the reference), normalized root-mean-square devi-
ation (nRD; defined as the RD between the two data sets, normalized by the average reference retrieval), and the explained variance (R2).
Green colors indicate the experiment that compares best to the reference results, i.e., highest R2 and lowest p50, IQR, and nRD. Red colors
indicate the experiment with the worst agreement with the reference retrievals, while yellow colors indicate all experiments in between. Data
are from example scene 1 sampled on 1 June 2013 at 10:05 UTC. (b)–(d) Same as (a) but for example scene 2 to 4, respectively.

LRESWL values for larger reference results is mitigated. Es-
pecially for experiment 3, the spread is less than one-third of
the value of the LRES results (4.857% versus 15.234 %). Re-
garding the comparison between reference and native ND, as
well as N̂D, downscaling experiment 2 yields less favorable
results. There is a slight decrease (increase) in R2 (nRD).
This is caused by the large IQR and nRD of the deviations
in the retrieved r̂eff, shown in Fig. 7e, which are amplified
due to the associated power of 2.5 in Eq. (18). However, the
derived values from experiment 3 show a significantly better
agreement with the reference ND.

Values of p50, IQR, nRD, and R2 for the WL and ND
comparison from the four example scenes are illustrated in
Fig. 10a–d. Due to the large deviations between the native τ
and the reference retrievals, WL values for the LRES results
almost universally show the largest deviations to the refer-
ence values and thus the largest IQR and nRD, as well as
the lowest explained variance. The exception is the heteroge-
neous cloud field in the fourth example scene, where the large
deviations between r̂eff from experiment 2 and the reference
retrievals yield the worst comparison for the respective ŴL.
The estimates based on the adjusted lookup table approach
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Figure 9. (a) Retrieved liquid water path (WL) at SEVIRI’s native LRES as a function of the reference results (WL derived from the remapped
MODIS reflectances at the HRES scale of ≈ 1 km). Data are from example scene 2, sampled on 9 June 2013 at 10:55 UTC. The dashed gray
line represents the 1 : 1 line. The number of samples (n), explained variance (R2), and normalized root-mean-square deviation (nRD; defined
as the RD between the two data sets, normalized by the average reference WL) are given. (b)–(c) Same as (a) but for the comparison
between reference WL and the downscaling results (ŴL) from experiments 2 (constant reflectance ratio approach) and 3 (adjusted lookup
table approach with LUT slope adjustment), respectively. (d)–(f) Same as (a)–(c) but for the droplet number concentration (ND and N̂D).

using the LUT slope adjustment (i.e., experiment 3) almost
universally exhibit the best agreement with the reference re-
sults of WL.

Overall, 27 of the 32 comparisons (four cloud scenes, two
cloud variables, and four statistical measures) exhibit the best
performance for experiment 3. For the example scenes con-
sidered in this analysis, it is obvious that the adjusted lookup
table approach with LUT slope adjustment is preferable to
the other downscaling techniques and yields more reliable
high-resolution cloud variables than the standard LRES re-
sults.

As before, we also tested the standard LUT approach high-
lighted in Sect. 4.3, as well as the second adjusted LUT
approach, which determines SWIR reflectance adjustments
based on adiabatic theory. Due to the poor performance of
the r̂eff retrieval, the N̂D results based on adiabatic assump-
tions show a similarly poor agreement with the reference re-
sults. Meanwhile, the cloud variables based on the standard
LUT approach never show the best or worst performance but
are almost universally worse than the adjusted lookup table
approach with LUT slope adjustment. This again illustrates
that assumptions of adiabatic clouds and constant subpixel
reff values within each LRES pixel are not suitable for the
cloud scenes analyzed in this study.

7 Full downscaling versus VNIR only

Apart from the constant reflectance ratio approach, the down-
scaling of r06 for each of the techniques presented in Sect. 4
uses the well-established relationship between r06, r08, and
the averaged 〈r̃HV〉 (see Fig. 3 and the discussion in Deneke
and Roebeling, 2010). In contrast, downscaling of r16 is
based on different assumptions about the microphysical
structure and cloud heterogeneity, which induces a level of
uncertainty in the subsequent cloud property retrievals. To
test whether assumptions about r16 actually improve the re-
trieval of τ̂ and r̂eff, this section presents retrievals that in-
clude the results from the adjusted lookup table approach
with LUT slope adjustment (i.e., experiment 3) for r̂06 but
do not include the respective downscaling schemes for r̂16.
Instead, the SWIR reflectance for each sample is provided
by the r̃16 value derived from trigonometric interpolation.

Figure 11a shows PDFs of the relative difference (1τ ) be-
tween τ̃ from the baseline test (black), as well as τ̂ retrieved
from the partial downscaling approach of only r̂06 (blue) and
the full downscaling approach (red), and the reference results
(i.e., distributions of the difference between the data sets,
normalized by the reference τ ). Data are from example scene
2, shown in Fig. 6b, sampled on 9 June 2013 at 10:55 UTC.
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Figure 10. (a) Comparison of derived liquid water path (WL, c, d) and droplet number concentration (ND, a, b) from the native LRES (at a
scale of ≈ 3 km) and baseline retrievals, as well as the downscaling experiments 1 (statistical downscaling approach), 2 (constant reflectance
ratio approach), and 3 (adjusted lookup table approach with LUT slope adjustment), and the respective reference results. Parameters to quan-
tify the comparisons are the median of the relative difference to the reference (p50), relative interquartile range (IQR; 75th–25th percentile
of the relative difference to the reference), normalized root-mean-square deviation (nRD; defined as the RD between the two data sets, nor-
malized by the average reference retrieval), and the explained variance (R2). Green colors indicate the experiment that compares best to
the reference results, i.e., highest R2 and lowest p50, IQR, and nRD. Red colors indicate the experiment with the worst agreement with the
reference retrievals, while yellow colors indicate all experiments in between. Data are from example scene 1 sampled on 1 June 2013 at
10:05 UTC. (b)–(d) Same as (a) but for example scenes 2 to 4, respectively.

The largest differences to the reference retrievals are ob-
served for the baseline results, which only account for the
large-scale reflectance variability of the cloud scene. Here,
relative differences cover the range of −20.44%<1τ <

28.22% (these values indicate the 1st and 99th percentile
of 1τ , respectively). The distributions for the full downscal-
ing experiment 3 are noticeably thinner, and these observed
ranges are reduced significantly to−2.33%<1τ < 3.14%.
The differences 1τ for the VNIR-only approach look closer
to the one from the full downscaling experiment. However,
the maximum of the distribution around 1τ ≈ 0 is lower

and the 1st percentile is actually higher than that from the
baseline retrievals. Clearly, the downscaling of both VNIR
and SWIR reflectances is preferable for the retrieval of τ̂ .
For the effective droplet radius, the experiment comparison
looks significantly different. Both relative differences 1reff
based on the baseline and full downscaling experiment re-
sults exhibit a similar behavior, and the full downscaling
approach only yields small improvements on the retrievals
from trigonometric interpolation. Conversely,1reff from par-
tial downscaling yields a noticeably larger spread and the re-
trievals become less reliable.
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Figure 11. (a) PDFs of the relative differences (1τ ) between the retrieved cloud optical thickness (τ ) from the baseline test (black), as well
as a VNIR-only and full downscaling approach for experiment 3 (shown in blue and red color, respectively), and the reference results (i.e.,
the original 1 km retrievals). Data are from example scene 2 sampled on 9 June 2013 at 10:55 UTC, which is shown in Fig. 6b. The 1st, 50th,
and 99th percentiles of 1τ for each experiment are given. (b) Same as (a) but for 1reff, which is the relative difference for the retrieved
effective droplet radius (reff). (c) Same as (a) but for 1WL, which is the relative difference for the derived liquid water path (WL). (d) Same
as (a) but for 1ND, which is the relative difference for the derived droplet number concentration (ND).

Regarding 1WL and 1ND, the results using the complete
downscaling approach yield the narrowest distributions, with
significantly smaller minimum and maximum deviations (up
to a factor of 5.6) compared to the VNIR-only technique.
Compared to the baseline results the reliability of derived liq-
uid water path is also improved, even though just the VNIR
reflectance is downscaled.

A summary of the performance of the partial and full
downscaling approach for experiments 1–3 for all four ex-
ample cloud scenes is given in Table 2. Here, the 1st, 50th,
and 99th percentiles of the relative differences between τ̂ and
r̂eff and the reference retrievals are listed. An almost uni-
versal reduction in the biases is observed when both VNIR
and SWIR reflectances are downscaled. These results pro-

vide strong evidence that simultaneous downscaling of the
SWIR reflectances is essential for providing reliable higher-
resolution retrievals of τ̂ and ˆreff, as well as the subsequently
calculated ŴL and N̂D. This confirms the findings in Werner
et al. (2018b), who illustrated that SWIR reflectances differ
significantly between the pixel level and subpixel scale and
that reliable cloud property retrievals should avoid scale mis-
matches between the reflectances from the VNIR and SWIR
channels.

This result is likely also relevant for retrieving cloud prop-
erties at the highest-possible resolution from other multires-
olution sensors such as MODIS, VIIRS, and GOES-R: here,
VNIR reflectances are generally available at the highest spa-
tial resolution, while SWIR reflectances have a 2–4-times-
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Table 2. Comparison of the cloud property retrieval results from downscaling experiments 1–3, which only account for the VNIR part, and
the full downscaling experiments, which include adjustments to both VNIR and SWIR reflectances. The comparison shows the 1st, 50th,
and 99th percentiles of the relative differences 1τ (for the cloud optical thickness τ ) and 1reff (for the effective droplet radius reff), which
illustrate the deviation of the different retrieval approaches from the reference results, normalized by the reference retrievals. Data are from
the four example scenes shown in Fig. 6.

τ (%) reff (%)

1 1 2 2 3 3 1 1 2 2 3 3

Scene VNIR Full VNIR Full VNIR Full VNIR Full VNIR Full VNIR Full

No. 1

1st −4.26 −2.61 −3.16 −1.97 −3.48 −1.77 −13.2 −5.56 −12.29 −5.08 −12.64 −5.21
50th 0.28 0.19 0.16 0.0 0.52 0.81 0.82 0.11 0.81 0.0 0.85 0.76
99th 4.57 2.95 3.49 2.18 4.13 2.86 17.58 8.38 16.57 6.99 16.94 6.11

No. 2

1st −26.88 −19.82 −24.3 −2.63 −25.15 −2.36 −47.95 −28.29 −46.02 −12.68 −46.58 −8.59
50th 0.45 0.29 0.2 0.12 0.42 0.73 1.51 0.5 1.48 0.62 1.53 1.57
99th 8.31 4.3 6.29 2.84 6.84 3.13 53.17 18.12 48.39 20.88 49.18 13.39

No. 3

1st −37.34 −31.79 −33.96 −24.76 −33.65 −20.27 −66.56 −45.93 −65.24 −25.3 −64.82 −23.41
50th 0.0 0.0 0.0 0.0 0.21 0.35 0.71 0.33 0.46 0.0 0.5 0.5
99th 38.04 31.24 35.97 23.53 36.03 25.52 126.95 61.12 116.84 34.17 118.59 42.76

No. 4

1st −78.26 −76.37 −66.67 −61.98 −76.74 −69.13 −53.23 −36.14 −50.26 −48.2 −51.68 −33.0
50th 2.4 1.08 0.65 7.52 2.29 2.17 −0.13 0.0 −0.13 0.3 -0.13 0.13
99th 304.24 284.16 320.0 450.08 299.43 280.93 191.15 43.01 136.45 103.77 179.74 37.54

lower sampling resolution. Based on the previous results,
smooth interpolation of the SWIR reflectances to the VNIR
resolution cannot be recommended. Instead, downscaling ap-
proaches such as those presented in Sect. 4 should be adopted
to avoid a scale mismatch in the spatial variability captured
by the VNIR and SWIR channels or, equivalently, a degraded
accuracy of the reff retrieval.

8 Conclusions

In this work, several candidate approaches to downscale SE-
VIRI channel 1–3 reflectances are evaluated, which increases
their spatial resolution from the native horizontal resolution
(3km× 3km at the subsatellite point) to the 3-times-higher
spatial resolution of the narrowband HRV channel observa-
tions. The goal is to identify a reliable downscaling approach
to provide the means to resolve higher-resolution, subpixel
reflectance and cloud property variations, which are only re-
solved by reflectances from SEVIRI’s coincident HRV chan-
nel. The higher-resolution reflectances are subsequently used
to retrieve cloud optical thickness (τ̂ ) and effective droplet
radius (r̂eff). These subsequently provide the means to derive
estimates of the liquid water path (ŴL) and droplet number
concentration (N̂D).

Three different methods are presented and evaluated: (i) a
statistical downscaling approach using globally determined
fit coefficients based on bivariate statistics; (ii) a local ap-
proach that assumes a constant heterogeneity index for dif-
ferent scales (i.e., the constant reflectance ratio approach);
and (iii) an iterative approach utilizing both global statis-
tics and the shape of the SEVIRI LUT (which consists of
simulated SEVIRI reflectances for different viewing geome-
tries and combinations of cloud properties), while assuming a
constant subpixel r̃eff (i.e., the LUT approach). For the latter
technique, two modifications (by assuming adiabatic cloud
conditions or by deriving local slopes within the LUT) are
introduced, which avoid the constraint of a fixed r̃eff. The dif-
ferent downscaling approaches are evaluated using MODIS
observations of four example cloud fields at a horizontal res-
olution of≈ 1km×1km (i.e., comparable to SEVIRI’s HRV
channel), which are remapped onto the higher-resolution SE-
VIRI grid, followed by smoothing with the modulation trans-
fer functions of SEVIRI.This approach has the benefit of pro-
viding a reference data set to which the results from the dif-
ferent downscaling techniques can be objectively compared.

The retrievals based on native-resolution reflectances (at a
scale of ≈ 3 km) are characterized by significant deviations
from the reference retrievals, especially for τ̂ and ŴL. Here,
random absolute deviations as large as ≈ 14 and ≈ 89 g m−2
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are observed, respectively (determined from the 1st or 99th
percentiles of the absolute deviations between native and ref-
erence results for each cloud scene). For r̂eff and N̂D devia-
tions of up to ≈ 6µm and ≈ 177cm−3 exist, respectively.

Simply applying trigonometric interpolation of the re-
flectance to the higher-resolution grid of the HRV chan-
nel (i.e., the baseline approach) provides a significantly im-
proved agreement with the reference data set for τ and reff
(i.e., the actual higher-resolution retrievals) compared to SE-
VIRI’s native lower-resolution results. This improvement can
be attributed to the use of higher-resolution reflectances,
which resolve the large-scale variability of the scene. It is
shown that either downscaling approach, which applies es-
timates of the unresolved small-scale variability to the re-
flectance field, yields reliable retrievals of τ̂ at the horizon-
tal resolution of the SEVIRI HRV channel. These results
compare noticeably better with the reference retrievals than
the ones from the baseline approach. The improved perfor-
mance is illustrated by a lower median absolute bias and
spread (factor of 2–10), as well as a higher observed cor-
relation between the data sets. The reliability of r̂eff utilizing
the LUT approach with an adjustment based on the calcu-
lation of isoline slopes in the SEVIRI LUT is comparable
to the baseline results and improves upon the retrievals at
the native LRES. The performance of the other downscaling
approaches depends on the observed cloud scene. For more
heterogeneous cloud fields the performance of the statistical
downscaling approach and the constant reflectance ratio ap-
proach decreases noticeably. The former technique relies on
large-scale statistical relationships between the reflectances,
which might vary with the size of the observed region, preva-
lence of different cloud types, and viewing geometry. The
latter technique, meanwhile, was developed for optically thin
clouds, where the relationship between VNIR and SWIR re-
flectance can be approximated by a linear function (Werner
et al., 2018b). Conversely, for more homogeneous altocumu-
lus fields the LUT approach with adiabatic adjustment seems
inadequate and yields the worst comparison to the reference
effective radius. The study by Miller et al. (2016), following
similar studies, illustrated that drizzle and cloud top entrain-
ment yield vertical cloud profiles closer to homogeneous as-
sumptions and away from the adiabatic cloud model. Similar
processes might affect the retrieval for the presented cloud
scenes in this study.

Due to the fact that these variables are derived from re-
trieved τ̂ and r̂eff, a similar behavior is observed for the de-
rived ŴL and N̂D. Again, the adjusted LUT approach in com-
bination with the use of local slopes exhibits the best agree-
ment with the reference results for 27 out of the 32 compar-
isons (i.e., four example scenes, two cloud variables, and four
evaluation parameters). Based on these results, this method
seems to be favorable compared to the other downscaling ap-
proaches. The results are preferable to those obtained from
the standard-resolution SEVIRI narrowband reflectances and
pave the way for future higher-resolution cloud products by

the MSG-SEVIRI imager. Especially for τ̂ and ŴL, these im-
provements are significant, as even the baseline results show
deviations from the reference data set of up to ≈ 11 and
≈ 70gm−2 for the observed example scenes.

Most of the presented downscaling techniques utilize
a well-established relationship between the observed re-
flectance from SEVIRI channels 1 and 2, as well as the
one from the broadband HRV channel. To test the valid-
ity of the different assumptions for the downscaling of the
SWIR band reflectance, the reliability of VNIR-only down-
scaling approaches is compared to the corresponding full
downscaling procedure. For the former, the higher-resolution
SWIR observations are provided by the baseline technique.
An almost universally improved reliability of the retrieved
cloud products is observed when both VNIR and SWIR
reflectances are downscaled. This illustrates that, in order
to achieve reliable higher-resolution retrievals, all channels
need to capture small-scale cloud heterogeneities at the same
scale. These results confirm the findings of Werner et al.
(2018b), who compared SWIR reflectances at different spa-
tial scales and demonstrated the need for effective downscal-
ing approaches to match the spatial scale of the VNIR re-
flectance. This also has implications for other multiresolution
sensors, such as MODIS, VIIRS, and GOES-R ABI. To avoid
a scale mismatch of resolved variability in the VNIR and
SWIR channels, the higher-resolution observations can either
be degraded to match the lower-resolution samples (which
yields overall lower-resolution cloud property retrievals) or
downscaling techniques can be applied to one or both chan-
nel reflectances, which yields matching scales and higher-
resolution estimates of cloud properties. It is important to
note that downscaling might result in increased retrieval un-
certainties if the spatial resolution is below the radiative
smoothing scale (≈ 200–400 m; see Davis et al., 1997).

Naturally, these results require more evaluation with a
larger data set to validate the reliability of the approach un-
der different observational geometries and cloud situations.
If a similarly good agreement with a set of reference re-
trievals is found for a broad range of different test scenes,
a significant step towards higher-resolution SEVIRI cloud
observations is achieved. If our results are confirmed, such
retrievals would represent a noticeable improvement upon
SEVIRI’s current standard-resolution retrievals. Meanwhile,
more elaborate downscaling schemes could potentially im-
prove upon the methods presented here. As an example, one
possible improvement on the adjusted lookup table approach
with adiabatic adjustment would be an explicit fit of the re-
lationship in Eq. (16) from the native, lower-resolution vari-
ables. This might also reveal valuable insights into the valid-
ity of the adiabatic assumption commonly adopted in remote
sensing (Merk et al., 2016). In addition, a comprehensive
evaluation of the benefits of the higher-resolution SEVIRI
cloud products for the subsequent estimation of solar surface
irradiance is planned. In particular, a comparison of satellite
retrievals based on Greuell et al. (2013) with observations of
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a dense network of pyranometers following the approach of
Deneke et al. (2009) and Madhavan et al. (2017) is planned,
which will enable detailed studies of the effects of spatial and
temporal resolution of satellite observations.

This work clearly demonstrated that the adjusted LUT ap-
proach with LUT slope adjustment yields reliable higher-
resolution cloud products. A follow-up study by Deneke et al.
(2020) will provide a comprehensive description of the over-
all retrieval scheme for obtaining cloud properties and solar
radiative fluxes from the Meteosat SEVIRI instrument at the
spatial resolution of its HRV channel, which will be estab-
lished based on the findings of this study. That companion
paper also includes a statistical comparisons between the op-
erational MODIS C6.1 and SEVIRI results, as well as the
new high-resolution SEVIRI products. Moreover, some in-
teresting use cases are demonstrated in that study, which can
benefit from an increase in the spatial resolution of the de-
rived SEVIRI cloud parameters. The companion paper also
presents an important extension of this approach to the re-
trieval of solar surface irradiance, based on the schemes pre-
sented in Deneke et al. (2008) and Greuell et al. (2013).
Satellite products with high temporal and spatial resolution
are of particular interest for forecasting the production of so-
lar power.
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