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Abstract. Data gaps in surface air quality measurements sig-
nificantly impair the data quality and the exploration of these
valuable data sources. In this study, a novel yet practical
method called diurnal-cycle-constrained empirical orthogo-
nal function (DCCEOF) was developed to fill in data gaps
present in data records with evident temporal variability. The
hourly PM2.5 concentration data retrieved from the national
ambient air quality monitoring network in China were used
as a demonstration. The DCCEOF method aims to recon-
struct the diurnal cycle of PM2.5 concentration from its dis-
crete neighborhood field in space and time firstly and then
predict the missing values by calibrating the reconstructed
diurnal cycle to the level of valid PM2.5 concentrations ob-
served at adjacent times. The statistical results indicate a
high frequency of data gaps in our retrieved hourly PM2.5
concentration record, with PM2.5 concentration measured
on about 40 % of the days suffering from data gaps. Fur-
ther sensitivity analysis results reveal that data gaps in the
hourly PM2.5 concentration record may introduce significant
bias to its daily averages, especially during clean episodes
at which PM2.5 daily averages are observed to be subject
to larger uncertainties compared to the polluted days (even
in the presence of the same amount of missingness). The
cross-validation results indicate that our suggested DCCEOF

method has a good prediction accuracy, particularly in pre-
dicting daily peaks and/or minima that cannot be restored by
conventional interpolation approaches, thus confirming the
effectiveness of the consideration of the local diurnal varia-
tion pattern in gap filling. By applying the DCCEOF method
to the hourly PM2.5 concentration record measured in China
from 2014 to 2019, the data completeness ratio was sub-
stantially improved while the frequency of days with gapped
PM2.5 records reduced from 42.6 % to 5.7 %. In general, our
DCCEOF method provides a practical yet effective approach
to handle data gaps in time series of geophysical parameters
with significant diurnal variability, and this method is also
transferable to other data sets with similar barriers because
of its self-consistent capability.

1 Introduction

A large variety of ground-based monitoring networks have
been established worldwide to provide accurate measure-
ments of various aspects of the atmospheric environment
(Lolli and Di Girolamo, 2015). Many of these in situ mea-
surements, however, suffer from data losses due to various
unexpected reasons (e.g., instrumental malfunction, interrup-
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tion of power supply, and internet outage), thus resulting in
salient data gaps in the archived data records. Undoubtedly,
these gaps significantly impair the data quality and the explo-
ration of these valuable data sources. Therefore, filling data
gaps present in such data sets is critical for the further ex-
ploitation of these in situ measurements.

Due to the high frequency and severity of haze pollution
events, China started to establish the national ambient air
quality monitoring network in 2012 by extending the range
of the previous sparsely distributed monitoring network to
cover most major Chinese cities. To date, more than 1600
state-controlled monitoring stations are routinely operated
to measure concentrations of six primary air pollutants (i.e.,
PM10, PM2.5, O3, NO2, SO2, CO) on an hourly basis (Guo et
al., 2017; L. Li et al., 2017). These in situ measurements have
been publicly released online via the China National Envi-
ronmental Monitoring Center (CNEMC) in near real time as
of 2013 but without the provision of any direct data download
interface. Consequently, users oftentimes apply an automated
software program (also known as a web crawler) to retrieve
these valuable data sources from the CNEMC website. Such
an endeavor empowers us to acquire hourly air quality data
more efficiently.

As a critical air quality indicator, PM2.5 mass concen-
tration data have been widely used in many previous haze-
related studies (Gao et al., 2018; Miao et al., 2018; Bai et al.,
2019a, b; Zhang et al., 2019). Nevertheless, how data gaps
were treated in the data exploration process (e.g., data inte-
gration and data transformation), especially for those using
daily or monthly averaged PM2.5 data sets (e.g., Guo et al.,
2009; Miao et al., 2018; Ye et al., 2018; Zhang et al., 2018;
Q. Yang et al., 2019), is oftentimes unclear. Since ignoring
missing values would undoubtedly introduce biases into the
final results (Bondon, 2005; Larose et al., 2019), some stud-
ies have attempted to perform data analysis on a relatively
long timescale by integrating hourly records into a monthly
resolution so as to mitigate the impacts of data gaps (e.g., Bai
et al., 2019b; Zhang et al., 2019). On the other hand, many
previous studies preferred to exclude records on days subject
to a certain degree of missing values (e.g., no more than six
missing values within 24 h) in their analysis (e.g., van Donke-
laar et al., 2016; L. Li et al., 2017; Huang et al., 2018; Man-
ning et al., 2018; Shen et al., 2018; Bai et al., 2019a; Zhang
et al., 2019). Such a treatment of data gaps (e.g., ignoring
missing values or excluding records on days with missing-
ness) would either introduce new bias to the aggregated data
record or make the original PM2.5 time series temporally dis-
continuous, however.

Since a long-term PM2.5 concentration record without
gaps is essential to aerosol-related haze control and envi-
ronmental health risk assessment (Yin et al., 2020), filling
data gaps in the hourly PM2.5 concentration record is of
great value. Although there exist versatile gap-filling meth-
ods in the literature (e.g., Beckers and Rixen, 2003; Taylor
et al., 2013; Chang et al., 2015; Dray and Josse, 2015; Ger-

ber et al., 2018), most of them fail to properly restore miss-
ingness present in the data record with high temporal res-
olutions (e.g., hourly) and evident diurnal variability (e.g.,
PM2.5 concentration), in particular the daily extrema. For in-
stance, PM2.5 concentrations vary significantly in space and
time due to heterogeneous local emissions and atmospheric
conditions (Guo et al., 2017; Lennartson et al., 2018; Shi et
al., 2018). A similar barrier also applies to many other data
sets which are sampled at a high temporal resolution. There-
fore, a priori knowledge of the diurnal variation pattern of
the analyzed data is vital to the restoration of missing values.

In this study, a novel yet practical gap-filling method
called DCCEOF (that is, the diurnal-cycle-constrained em-
pirical orthogonal function) was developed to better han-
dle data gaps present in time series with marked variabil-
ity in space and time, by taking the diurnal variation pattern
as a critical constraint in missing-value prediction. To our
knowledge, none of the existing gap-filling methods have ac-
counted for the diurnal variation pattern of the given data
in their missing-value restoration schemes, and hence the
predicted values from such methods would be subject to
large bias. As an illustration, the hourly PM2.5 concentra-
tion record retrieved from CNEMC during the time period
of 2014 to 2019 was applied to demonstrate the efficacy and
accuracy of the suggested DCCEOF method. Scientific ques-
tions to be answered by this study include the following:
(1) what is the frequency of data gaps shown in our retrieved
in situ PM2.5 record, (2) how many uncertainties can be in-
troduced into PM2.5 daily averages by missing values, (3) is
it feasible to reconstruct the local diurnal variation pattern of
PM2.5 from discrete observations in the neighborhood, and
(4) are missing values predicted by DCCEOF reliable?

2 Overview of existing gap-filling methods

Plenty of methods have been developed or adopted for gap
filling with respect to various theoretical bases, ranging from
simple replacement with surrogates (e.g., mean value) to spa-
tiotemporal interpolation as well as complex machine learn-
ing techniques. Generally, these methods can be classified
into different groups according to different criteria. For in-
stance, two major groups can be classified based on the num-
ber of variables (univariate versus multivariate; Ottosen and
Kumar, 2019) and the theoretical basis (likelihood-based ver-
sus imputation-based; Junger and Ponce de Leon, 2015). Ta-
ble 1 summarizes a selection of popular gap-filling methods
to deal with missingness in geophysical data sets accord-
ing to the domain-specific data dependence (Gerber et al.,
2018). Comparisons of the performance of these methods can
also be found in other fields of literature, e.g., Kandasamy et
al. (2013), Demirhan and Renwick (2018), Yadav and Roy-
choudhury (2018), and Julien and Sobrino (2019), to name a
few.

Atmos. Meas. Tech., 13, 1213–1226, 2020 www.atmos-meas-tech.net/13/1213/2020/



K. Bai et al.: Filling the gaps of in situ hourly PM2.5 concentration data 1215

Since each method is initially proposed to deal with miss-
ingness in one specific data set, adopting one method to use
with another data set is often a challenge due to distinct fea-
tures of missingness (e.g., missing at random versus miss-
ing not at random), in particular for data sets with signifi-
cant spatiotemporal heterogeneity such as air pollutants time
series (Junger and Ponce de Leon, 2015). PM2.5 concentra-
tion often exhibits evident diurnal variation patterns, which
are primarily governed by local air pollutant emissions and
regional meteorological conditions such as boundary layer
height (Guo et al., 2017, 2019; Z. Li et al., 2017; Huang
et al., 2018; Liu et al., 2018; Miao et al., 2018; Yang et
al., 2018; Y. Yang et al., 2019; Zhang et al., 2020). Con-
sequently, conventional approaches like those listed in Ta-
ble 1 may partially fail to accurately predict missing values
in hourly PM2.5 time series.

In general, most available gap-filling methods in Table 1
suffer from at least one of the following drawbacks: (1) par-
tial failure for data sets with prominent gaps; (2) not self-
consistent due to the requirement of supplementary data sets;
(3) computationally intensive (e.g., neural networks); and,
most critically, (4) unable to fairly predict daily peaks and/or
minima due to the lack of essential prior knowledge of the
diurnal variation cycle of monitoring targets. Given the sig-
nificant heterogeneity of PM2.5 concentration in space and
time (Guo et al., 2017; Manning et al., 2018), ignoring the
diurnal phases of PM2.5 would result in large biases in the
gap-filled PM2.5 data set.

3 The DCCEOF gap-filling method

Given the significant heterogeneity of the PM2.5 diurnal vari-
ation pattern associated with local emissions of air pollutants
and atmospheric conditions, we propose incorporating the lo-
cal diurnal variation pattern of PM2.5 to constrain the pre-
diction of missing values in each hourly PM2.5 concentra-
tion record. The goal is to better predict missing PM2.5 val-
ues, especially for the daily peaks and/or minima, which are
poorly predicted by conventional methods due to the absence
of prior knowledge of local diurnal phases of PM2.5. Figure 1
presents a schematic illustration of the suggested DCCEOF
method, which consists of the following four primary pro-
cedures toward the filling of data gaps present in each 24 h
PM2.5 time series.

(1) A local PM2.5 neighborhood field is initialized: for a
PM2.5 missingness at site p on date t , an initial PM2.5 neigh-
borhood field in space and time (denoted as Xm,n

p,t ) was first
constructed using 24 h PM2.5 observations from nearby m

stations on date t and adjacent 2n d (n days before and after
t , respectively) at site p. Mathematically, the neighborhood
field Xm,n

p,t can be expressed as

Xm,n
p,t =

{
x1

t ,x
2
t , . . .,x

m
t , xt−n

p , . . .,xt−2
p ,xt−1

p ,xt+1
p ,

xt+2
p , . . .,xt+n

p

}
. (1)

It is clear that m and n are two critical factors modulating
the dimensions of Xm,n

p,t . Considering a too-compact neigh-
borhood field may be inadequate to reconstruct the local di-
urnal cycle of PM2.5 fairly due to limited valid samples (be-
cause missingness may also emerge in each candidate 24 h
PM2.5 concentration record); here m was defined as the num-
ber of stations within 100 km (spatial window size) of the
target station, while n was set to 7 (temporal window size) in
our case. The spatial and temporal window sizes used here
are based on our recent results in which an optimal window
size of 50 km and 3 d was found to attain a good autocorre-
lation of PM2.5 concentration in space and time, respectively
(Bai et al., 2019c). To have adequate samples for the con-
struction of Xm,n

p,t , here we enlarged both the window sizes
by simply doubling the values found in our previous study.
These two window sizes would have little effect on the per-
formance of the subsequent gap filling once they are large
enough (at least greater than the identified optimal window
sizes) to cover most similar observations nearby. This is be-
cause a sorting scheme is further applied to the neighborhood
field to pinpoint observations having similar diurnal variation
pattern with the target station. In other words, the two win-
dow sizes used here are simply to include adequate samples
while avoiding incorporating all available data for the subse-
quent data reconstruction, in particular those far away.

(2) A compact PM2.5 neighborhood field is constructed:
since the initial PM2.5 neighborhood field Xm,n

p,t might in-
clude many irrelevant observations with distinct diurnal vari-
ation patterns due to large spatial and temporal window sizes,
a compact neighborhood field needs to be constructed by
only retaining observations that are highly related to the tar-
get PM2.5 time series xt

p with respect to the diurnal varia-
tion pattern. Therefore, the covariance rather than correla-
tion between the target time series xt

p and every candidate
PM2.5 time series in Xm,n

p,t was first calculated (weighted by
the number of valid data pairs within 24 h). Subsequently,
the candidate PM2.5 time series were sorted in terms of the
magnitude of covariances in descending order. Finally, the
first k time series were retained to construct the optimized
PM2.5 neighborhood field ˆXk by complying with the crite-
rion that there were at least five valid observations at each
specific time from 00:00 to 23:00 CST. The aim was to avoid
large bias in the subsequent diurnal cycle reconstruction us-
ing empirical orthogonal function (EOF) analysis, since large
outliers might emerge at times without any valid observation.
Mathematically, the process to construct ˆXk can be formu-
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Table 1. Overview of several popular gap-filling methods to impute missingness in geophysical data sets.

Method Principle or core technique Reference

Te
m

po
ra

l

Weibull Weibull frequency distribution mapping Nosal et al. (2000)
EM Expectation–maximization Junger and Ponce de Leon (2015)
Interpolation Linear regression, spline, NAR, ARIMA, ARCH Stauch and Jarvis (2006), Neteler (2010),

Demirhan and Renwick (2018)
Machine learning Gradient boosting, neural networks Körner et al. (2018), Şahin et al. (2011)
SSA Imputation using singular spectrum analysis Mahmoudvand and Rodrigues (2016)
DS Conditional resampling of a temporal subset Dembélé et al. (2019), Oriani et al. (2016)
TIMESAT Savitzky–Golay filter, harmonic and asymmetric Jönsson and Eklundh (2004)

Gaussian functions
Hybrid method Fuzzy c means with support vector regression Aydilek and Arslan (2013)

and genetic algorithm

Sp
at

ia
l IDW Interpolate using inverse distance weighting Shareef et al. (2016)

Kriging Interpolate neighborhoods using Kriging Rossi et al. (1994), Zhu et al. (2015),
Singh et al. (2017)

NSPI/GNSPI Replace or interpolate with adjacent similar pixels Zhu et al. (2012), Chen et al. (2011)

Sp
at

io
te

m
po

ra
l

EOF/DINEOF Iteratively decompose and reconstruct spatial and Beckers and Rixen (2003),
temporal subsets using empirical orthogonal function Taylor et al. (2013),

Liu and Wang (2019)
Mosaicking Merge numerical outputs with satellite observations Konik et al. (2019)
Gapfill Quantile regression fitted to spatiotemporal subsets Gerber et al. (2018)
STWR Spatially and temporally weighted regression Chen et al. (2017)
SMIR Learning machine created from historical spatial and Chang et al. (2015)

temporal subsets
RFRE Learning from other information using random forest Bi et al. (2018), Chen et al. (2019)

SSA: singular spectrum analysis; DS: direct sampling; IDW: inverse distance weighting; NSPI: neighborhood similar pixel interpolator; GNSPI: geostatistical
neighborhood similar pixel interpolator; EOF: empirical orthogonal function; DINEOF: data interpolating empirical orthogonal function; STWR: spatially and
temporally weighted regression; SMIR: smart information reconstruction; RFRE: random forest regression.

lated as follows:

Cx′ = COV
(
xt

p,x′|Xm,n
p,t

)
and (2)

ˆXk
=
{
x1
′,x2

′, . . .,xk
′
|Cxk

′ < Cxk−1 ′ < .. . < Cx1 ′
}
, (3)

where x′ denotes the 24 h time series of candidate PM2.5 in
Xm,n

p,t and COV is the covariance function.
(3) The local diurnal cycle of PM2.5 is reconstructed: the

diurnal cycle of PM2.5 at site p on date t (denoted as β t
p) was

then reconstructed from the optimized PM2.5 neighborhood
field ˆXk using EOF in an iterative process similar to that of
the DINEOF method (Beckers and Rixen, 2003). In our sug-
gested DCCEOF method, the target PM2.5 time series at site
p on date t (denoted as xt

p) were also included to constrain
the reconstruction of β t

p, and the whole field can be denoted
as X̃:

X̃=
{
xt

p,
ˆXk
}
. (4)

In general, the EOF-based gap-filling process can be outlined
as follows: (a) 20 % of valid PM2.5 observations in X̃ were
first retained for cross validation, and then these data values
were treated as gaps by replacing them with nulls (i.e., miss-
ing values); (b) given that a small number of missing values

would not significantly influence the leading EOF mode for
the original data set, we assigned a first guess (here we used
the mean value of valid data on each specific date) to the data
points where missing values were identified to initialize the
EOF analysis; (c) EOF analysis was performed on the pre-
viously generated background field (that is, X̃ with gaps are
filled with the daily mean and denoted as < X̃ >) in a form of
singular value decomposition (SVD), and then data values at
missing-value points were replaced by the reconstructed val-
ues using the first EOF mode at the corresponding locations.
These processes can be expressed as

[U,S,V]= SV D
(
< X̃ >

)
and (5)

X′ = u1× s1× v1, (6)

where < X̃ > denotes the initial matrix in which the missing
values were filled with daily means. U, S, and V are three
matrices derived from SVD, while u1, s1, and v1 denote the
SVD components in the first EOF mode. X′ is the recon-
structed matrix using the first EOF mode; (d) the matrix was
iteratively decomposed and reconstructed while data values
at the missing-value points were updated using the first EOF
mode till the convergence was confirmed by the mean square
error at each iteration; (f) the above iterative processes were
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Figure 1. A schematic illustration of the suggested DCCEOF method to fill data gaps in hourly PM2.5 concentration records. The grey
squares denote missing values, while the ones outlined in green indicate restored data values.

repeated by including the following EOF modes till the final
convergence was reached (i.e., mean square error started to
increase when a new EOF mode was included). The diurnal
cycle β t

p was finally derived by standardizing the identified
leading EOF modes in the last round iteration.

(4) Missing values are predicted: a linear relationship was
then established between valid PM2.5 observations in the
original time series xt

p and the corresponding values in β t
p.

Missing values in xt
p were then predicted by mapping data

values in the reconstructed diurnal cycle β t
p at missing times

to the level of valid PM2.5 observations based on the estab-
lished linear relationship.

In short, our suggested DCCEOF method is a univariate
and self-consistent gap-filling method since no additional
data record is required for the restoration of missing values.
Rather, the method works relying primarily on the local di-
urnal cycle of PM2.5 that can be reconstructed from discrete
PM2.5 neighborhood fields in space and time. In contrast to
conventional gap-filling methods that work on a purely sta-
tistical basis (e.g., spline interpolation), the unique feature
and novelty of the suggested DCCEOF method lie in the ac-
counting for the local diurnal variation pattern of the input
data in their missing-value predictions, thus making the pre-
dicted values physically meaningful and highly accurate.

4 Case study

4.1 China in situ PM2.5 concentration records

The near-surface mass concentration of PM2.5 across China
is measured primarily using the tapered element oscillating
microbalance analyzer and/or the beta attenuation monitor at
each monitoring station. The instruments’ calibration, oper-
ation, maintenance, and quality control are all properly con-
ducted by complying with the Chinese environmental protec-
tion standards GB 3095-2012 and HJ 618-2011. PM2.5 con-
centration data are measured by these instruments with an
accuracy of±5 µg m−3 for 10 min averages and±1.5 µg m−3

for hourly averages (Guo et al., 2017; Miao et al., 2018). Al-
though the hourly PM2.5 observations in China have been
publicly available since 2013, the PM2.5 records used in the
present study have been retrieved since May 2014 via a web
crawler program.

Figure 2 depicts the spatial distribution of monitors in the
national ambient air quality monitoring network in China as
well as the starting year of the release of PM2.5 measure-
ments to the public at each individual station. Given the fact
that our data were retrieved after May 2014, stations de-
ployed before that should hardly be separated from those
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Figure 2. Spatial distribution of national ambient air quality mon-
itoring network stations in China from May 2014 to April 2019.
Circles with distinct color indicate the year in which the first PM2.5
observation was publicly released in our retrieved data record.

operated from 2014, and hence, they were all designated in
the same way in Fig. 2. At present, this network consists of
more than 1600 stations, in which about 940 stations were
established before 2015. The total number was increased to
1494 in June 2015, and then only four stations were newly
deployed in the following 1.5 years till December 2016. In
other words, the vast majority (92.4 %) of stations in the cur-
rent network was deployed before the middle of 2015.

4.2 Results

4.2.1 Data incompleteness of in situ PM2.5 records in
China

Figure 3a–c present the daily averaged missing-value ratio,
the occurrence frequency of missingness (defined as the ra-
tio of days with missing values in each 24 h of PM2.5 obser-
vations divided by the total number of days), and the diur-
nal phases of the most frequently occurring missing values
at each monitoring station since the first release of PM2.5
observations to the public, while Fig. 3d–f show the corre-
sponding histograms, respectively. Although most of the sta-
tions have a daily averaged missing-value ratio of less than
10 % (Fig. 3a and d), significant data gaps are still observed
at several monitoring stations (red dots in Fig. 3a) with more
than 70 % of hourly PM2.5 observations lost in the daily
24 h measurements. After checking the retrieved PM2.5 data
records over these stations, we found that most of these sta-
tions stopped releasing PM2.5 observations after the middle
of 2015.

Despite the small magnitudes (∼ 10 %) of daily averaged
missing-value ratios (Fig. 3d), data gaps in our retrieved

hourly PM2.5 record are still significant, which is evidenced
by the occurrence frequency of missing values in daily PM2.5
observations (Fig. 3b). In contrast to the daily averaged
missing-value ratios (Fig. 3a), the frequency of days with
missing values has a relatively larger magnitude of about
40 % (PM2.5 data measured on 4 out of 10 d suffered from
missingness), indicating an extraordinary high chance of suf-
fering from data gaps in the retrieved PM2.5 record (Fig. 3e).
These results suggest an urgent need to fill data gaps in our
retrieved PM2.5 concentration record so as to facilitate the
further exploration of this valuable data set.

Figure 3c presents the diurnal variation pattern of the oc-
currence of missingness in the retrieved PM2.5 record in
terms of the detailed time (represented by the arrow direc-
tion) and frequency (represented by the relative length of
each arrow) of the most commonly occurring missing val-
ues, while Fig. 3f shows the histogram of the local time at
which missing values occurred most frequently at each mon-
itoring station. It is noteworthy that missing values occurred
more frequently in the morning over most stations (90.7 % of
total population of stations), particularly at 06:00 and 12:00
CST. Nevertheless, detailed reasons for this diurnal variation
pattern remain unclear.

4.2.2 Impacts of data gaps on PM2.5 daily averages

Given the common application of daily averaged PM2.5 con-
centration data in many studies, the possible impacts of data
gaps on PM2.5 daily averages were assessed here to examine
how well the estimated PM2.5 daily averages can be trusted
in the presence of data gaps, especially during different pol-
lution regimes. Toward such a goal, gap-free observations of
hourly PM2.5 concentration within 24 h were first extracted.
To make the computational workload manageable, we ran-
domly sampled 1000 d of observations rather than using ob-
servations from all gap-free days. Moreover, days with a
PM2.5 daily average lower than that of the 10th percentile
of all gap-free days were considered as the clean scenario,
while those with an average greater than the 90th percentile
were treated as the polluted scenario. Subsequently, a varying
number (ranging from 1 to 23) of data values were selected
and then treated as gaps in every 24 h of PM2.5 observations
randomly. Mean relative differences (MRDs) between PM2.5
daily averages derived from hourly records with and with-
out data gaps were finally calculated to examine the potential
impacts of missingness on PM2.5 daily averages.

Figure 4a shows the estimated MRDs at the 10th, 50th, and
90th percentiles associated with different numbers of missing
values in each 24 h of PM2.5 observations. There is no doubt
that larger biases could be introduced into PM2.5 daily av-
erages with an increase in the total number of missingness.
Given the symmetrical behavior of MRDs around zero (50th
percentile) for each given number of missingness, we may in-
fer that random biases could be introduced into PM2.5 daily
averages if missing values are ignored for the calculation of
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Figure 3. Statistics associated with missing values present in the site-specific hourly PM2.5 concentration record since the time of the release
of the first PM2.5 observation onward. (a) Percentage of missingness in each PM2.5 record, (b) frequency of days with missing values,
(c) diurnal phases of the maximum frequency of missing values occurring within 24 h, (d–f) histograms for (a–c), respectively. The arrow
direction in (c) indicates the local time (China standard time, CST) at which missing values occurred most frequently and the arrow length
shows the magnitude of frequency. The varying diurnal phases of missing values are represented by different colors: blue (00:00–06:00 CST),
green (06:00–12:00 CST), red (12:00–18:00 CST), and black (18:00–24:00 CST).

daily averages of PM2.5. These random biases, in turn, could
result in large uncertainties in the subsequent results such as
trend estimations. To further evaluate the impacts of missing-
ness on PM2.5 daily averages, in particular at different pollu-
tion scenarios, MRDs were also calculated on 1000 clean and
polluted days, respectively (Fig. 4b–d). On average, MRDs
vary with larger deviations on clean days than polluted days
(Fig. 4b). Regarding MRDs at the 10th and 90th percentiles,
we may deduce that missing values would result in larger bias
in PM2.5 daily averages on clean days than in polluted condi-
tions given the larger MRDs during clean scenarios (Fig. 4c–
d). This effect is in line with expectations since PM2.5 con-
centration often exhibits relatively larger diurnal variations
on cleaner days than during polluted episodes due to the pos-
sible boundary layer height effect (Z. Li et al., 2017; Miao et
al., 2018). Moreover, six missing values in 24 h of observa-
tions would result in as large as approximately 5 % of devia-
tions (10 % for 12 missing values) from PM2.5 daily averages
during clean days (Fig. 4c–d).

In addition to the total number of missing values, possi-
ble impacts of diurnal phases of missing values on PM2.5
daily averages were also examined. This analysis shows that
different diurnal phases were observed for MRDs associated
with missingness at different pollution levels (Fig. 5). Specif-
ically, missing values in the afternoon and evening would be
more likely to overestimate PM2.5 daily averages, whereas
an opposite effect (underestimations) was observed for miss-
ingness in the morning and at night. Moreover, the missing-

ness in the afternoon during clean days has a larger poten-
tial to overestimate PM2.5 daily averages than during other
times. This effect could be largely associated with the diurnal
phases of PM2.5 as daily peaks are oftentimes observed in the
early morning (Wang and Christopher, 2003), though such a
diurnal variation pattern may differ by region (Lennartson
et al., 2018). Also, the diurnal phases of PM2.5 are largely
dominated by the diurnal variation in regional emissions and
boundary layer processes (Guo et al., 2016; Lennartson et al.,
2018; Miao et al., 2018; Y. Yang et al., 2019). In contrast, the
diurnal phases of MRDs are not evident during polluted days.
The above findings collectively suggest the need to fill data
gaps in hourly PM2.5 observations, especially for those mea-
sured during clean days, since missing values would result
in larger biases in PM2.5 daily averages than during polluted
episodes.

4.2.3 Performance of the DCCEOF method

Cross-validation experiments were first conducted at two
monitoring stations to evaluate the efficacy of the sug-
gested DCCEOF method in reconstructing the diurnal cy-
cle of PM2.5 from the discrete neighborhood field. Specif-
ically, gap-free PM2.5 records on 3 distinct days with dif-
ferent pollution levels were first extracted randomly at each
station, and then six valid observations in each 24 h record
were treated as missing values. Subsequently, the DCCEOF
method was applied to reconstruct the diurnal cycle of PM2.5
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Figure 4. Impacts of the number of missing values on daily aver-
ages of PM2.5. Mean relative deviations were calculated between
PM2.5 daily averages estimated from 1000 hourly PM2.5 records
with a given number of missing values and the original ones with-
out missing values. (a) Deviations at different percentiles in all-sky
conditions; (b) deviations at the 50th percentile under different pol-
lution scenarios; (c) same as (b) but for the 10th percentile; (d) same
as (b) but for the 90th percentile. Thick lines represent mean devia-
tions, while shaded regions are uncertainties of 1 standard deviation
from the mean.

for each specific case. Figure 6 compares the reconstructed
diurnal cycles of PM2.5 with their actual PM2.5 concentra-
tions. The results indicate that the reconstructed diurnal cy-
cles of PM2.5 have a good fit with their actual observations,
thus confirming the effectiveness of the DCCEOF method
in reconstructing the diurnal variation pattern of PM2.5 from
the discrete neighborhood field. In particular, the DCCEOF
method also succeeded in restoring the missing PM2.5 infor-
mation even at the inflection times, e.g., the peak value in
Fig. 6c and the minimum value in Fig. 6e, which are hard to
recover by statistical interpolation approaches. Nonetheless,
compared with actual PM2.5 observations, the reconstructed
diurnal cycle of PM2.5 is still unable to totally restore all
types of local variations (e.g., PM2.5 observations between
07:00 and 11:00 shown in Fig. 6f). This is consistent with
our initial understanding that PM2.5 concentrations vary sub-
stantially in space and time, whereas the reconstructed di-
urnal cycle of PM2.5 is derived from a limited number of
leading EOF modes, and hence it only captures the dom-
inant variation pattern of PM2.5 in the neighborhood field
while some local variations could thus be ignored. In spite
of this potential defect, the suggested DCCEOF method still
exhibits promising accuracy in restoring the local diurnal cy-
cle of PM2.5 even from a discrete neighborhood field.

To better assess the performance of the DCCEOF method,
we retrieved the hourly PM2.5 observations at one monitor-
ing station in Beijing during the time period of 1 to 7 Au-

Figure 5. Impacts of diurnal phases of missing values on
PM2.5 daily averages. Hourly PM2.5 values in the morning
(07:00–11:00 CST), afternoon (12:00–16:00 CST), evening (17:00–
21:00 CST), and night (22:00–06:00 CST) were removed from the
original hourly PM2.5 time series throughout the day to resemble
missing values. On each box, the black dots represent medians of
mean relative deviations, while the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively, and the bottom
and top whiskers extend to the 10th and 90th percentiles, respec-
tively.

gust 2014, and then some valid observations were retained
and then treated as missing values for the subsequent gap-
filling practices. Both the DCCEOF method and a spline
interpolation approach were used to practically restore the
retained PM2.5 observations. The comparison results shown
in Fig. 7 indicate higher accuracy of the DCCEOF method
than the spline interpolation approach in restoring those re-
tained PM2.5 observations, especially for those at the inflec-
tion times at which spline interpolation failed to predict with
good accuracy (e.g., peak values on 3 August). However,
both methods failed in predicting the minimum values on
2 August. After checking the original data record, we found
that the local variation in PM2.5 at this station differed largely
from all neighboring stations at that time. For such situations,
the suggested DCCEOF method also fails to properly predict
the missing values given large differences in diurnal variation
patterns in space and time.

Figure 8 presents a more general evaluation of the pre-
diction accuracy of the suggested DCCEOF method, which
compares the predicted values with the retained observations
at distinct pollution levels. As indicated, there is a good fit be-
tween the predicted values and the actual observations, with
a correlation coefficient of 0.82 on clean days (Fig. 8a) and
0.95 during polluted episodes (Fig. 8b), respectively. This
is in line with our expectation as higher prediction accu-
racy would be reached by the DCCEOF method in filling
data gaps on polluted days given the smaller variability in
PM2.5 concentrations. This effect can also be evidenced by
spread scatters shown in Fig. 8a, which in turn reveal the
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Figure 6. Comparisons of reconstructed diurnal cycles of PM2.5 with their actual concentrations at distinct pollution levels. For each trial,
six valid PM2.5 observations were selected to simulate gapped PM2.5 time series prior to the diurnal cycle reconstruction for a given day.
Note that the number of neighboring stations differs between these two cases (58 for a–c and 16 for d–f).

Figure 7. Comparison of predicted hourly PM2.5 concentration val-
ues between the suggested DCCEOF method and spline interpola-
tion at the Wanshou Temple station in Beijing during the period of
1 to 7 August 2014 (time is given as MM/DD on the x axis). The
green line shows the practical PM2.5 observations that were selected
to simulate data gaps, while their original values were retained for
cross validation.

large spatiotemporal heterogeneity of PM2.5 concentrations
during clean scenarios.

Given the inherent principle of utilizing discrete neighbor-
hood fields in space and time to reconstruct the local diurnal
cycle of PM2.5 for the subsequent missing-value prediction,
the performance of the DCCEOF method could be impacted
by the number of missing values and the total number of
neighboring stations. To examine the possible dependence of
prediction accuracy on these two factors, sensitivity experi-
ments were also conducted. Figure 9a shows the response of
prediction accuracy (in terms of the correlation coefficient)
of the DCCEOF method to the varying number of missing
values in each sampled 24 h PM2.5 time series. It clearly
shows that the prediction accuracy generally decreases with
the increase in the number of missing values. This effect can

Figure 8. Comparisons of PM2.5 observations with the recon-
structed data values during clean (a) and polluted (b) phases. For
each scenario, the results were derived from 1000 d of gap-free
PM2.5 observations with five valid values being randomly retained
from 24 h of observations on each sampled date for cross validation.

be ascribed to the fact that the target PM2.5 time series is also
applied as a critical constraint for the screening of similar
PM2.5 observations in space and time to construct the neigh-
borhood field for the reconstruction of the local diurnal cycle
of PM2.5. As a consequence, more missingness would make
the constructed neighborhood field prone to larger uncertain-
ties due to less information for the selection of relevant time
series of PM2.5, which in turn undermines the overall accu-
racy of the final predictions.

Figure 9b shows the influence of the total number of neigh-
boring stations on the prediction accuracy at the target sta-
tion. The total number of neighboring stations within a ra-
dius of 100 km of the target station was first calculated, and
then sensitivity experiments were performed for each specific
number. Specifically, 10 stations were randomly selected for
each given number, and then 20 d of gap-free PM2.5 observa-
tions were sampled at each individual station. For each gap-
free PM2.5 observation within 24 h, six values were retained
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Figure 9. Impacts of the number of missing values present in hourly
PM2.5 records for every 24 h (a) and the total number of neighbor-
ing stations within 100 km (b) on the performance of the proposed
gap-filling method. The error bars denote 1 standard deviation of
each value from the mean on each side.

and then treated as gaps for cross validation while the DC-
CEOF method was finally applied to restore these values.
It is indicative that the DCCEOF method would have high
prediction accuracy with an adequate number of neighboring
stations, as three neighboring stations suffice to yield promis-
ing prediction accuracy (Fig. 9b). On the other hand, large
biases could be introduced into the final predictions with a
limited number of neighboring stations (< 3) due to the lack
of sufficient prior information from neighbors to reconstruct
the diurnal cycle of PM2.5. Nevertheless, good accuracy can
still be guaranteed even in the absence of prior spatial infor-
mation (that is, no neighboring station within 100 km), which
in turn corroborates the beneficial effect of the inclusion of
temporal neighborhood in gap filling. Although the predic-
tion accuracy improves with the increase in the number of
neighboring stations, the gains in accuracy are not signifi-
cant at stations with more than three neighboring stations.
This is because we only use the similar observations rather
than all available observations within 100 km to reconstruct
the diurnal cycle of PM2.5; otherwise, irrelevant observations
would distort the reconstructed diurnal variation pattern and
in turn the final predictions. Nevertheless, the increase in the
number of neighboring stations would reduce the uncertain-
ties in the final predictions, which is evidenced by smaller
standard deviations of correlation coefficients for those with
more neighboring stations (Fig. 9b). Moreover, the diurnal
cycle reconstructed from the neighborhood field in space is
more accurate than that using PM2.5 observations from near-
term days, which is evidenced by smaller correlation values
with limited neighboring stations. Such an effect is also in
line with our recent results when comparing the beneficial
effects of spatial and temporal neighboring terms in advanc-
ing gridded PM2.5 concentration mapping (Bai et al., 2019c).

Figure 10 shows the benefits of the DCCEOF method to
our retrieved in situ hourly PM2.5 concentration record at
each individual monitoring station in terms of the improve-
ment of the data completeness ratio as well as the reduc-
tion of gap frequency. After applying the DCCEOF method,
the data completeness ratio of hourly PM2.5 concentration
records in China has been improved by approximately 5 %

on average nationwide, with the overall data completeness
ratio increasing from 89.2 % to 94.3 % (Fig. 10a). Despite
the small magnitude of improvement to the data complete-
ness ratio, the occurrence frequency of missingness has been
significantly reduced, with the averaged frequency of days
with missingness declining from 42.6 % to 5.7 % nationwide
(Fig. 10b). In general, the gap-filled PM2.5 record is tempo-
rally more complete given fewer data gaps, and this data set
can thus be used as a promising data source for PM2.5-related
studies in the future.

4.3 Discussion

Compared with conventional interpolation approaches, the
suggested DCCEOF method has better accuracy in predict-
ing missing values for the data gaps that emerged in hourly
PM2.5 time series given the principle of accounting for the lo-
cal diurnal variation pattern of PM2.5 concentration. Specif-
ically, the site-specific diurnal cycle of PM2.5 was recon-
structed from the discrete spatial and temporal neighborhood
using EOF and was then used as a reference to predict miss-
ing values. Such a scheme enabled DCCEOF to capture the
local variation pattern of PM2.5 with good accuracy in re-
gions with dense neighboring stations (e.g., eastern China)
and fewer temporal dynamics of PM2.5. In contrast, rela-
tively poor accuracy could be attained in the western part
of the country given the lack of adequate neighboring infor-
mation due to the sparse monitoring stations therein. In such
contexts, the performance of DCCEOF could be further im-
proved using a general diurnal variation pattern of PM2.5 that
is firstly determined though a typical classification. However,
such an endeavor needs us to have clear prior information on
diurnal variability in PM2.5 in space and time. On the other
hand, the diurnal variation pattern of other relevant factors
that are highly related to PM2.5 variations, e.g., meteorologi-
cal factors such as mixing layer height, might be also applied
to advance the reconstruction of the local diurnal cycle of
PM2.5.

Although the DCCEOF method has a promising accuracy
in filling data gaps present in hourly PM2.5 concentration
time series, the current method only works for days with at
least several valid observations. In other words, the DCCEOF
method is incapable of restoring values for days with all 24 h
of data missing. This is because the remnant valid observa-
tions within 24 h are used as a critical constraint not only to
convolve with other neighboring observations in space and
time to identify similar observations but also to determine the
data magnitude of predicted values for missingness. More-
over, the severity of data gaps in the initial neighborhood
field is also associated with the final prediction accuracy be-
cause significant data gaps in the neighborhood field could
introduce large bias to the reconstructed local diurnal varia-
tion pattern. In such contexts, the aforementioned proxy in-
formation such as the diurnal variation pattern of meteoro-
logical conditions could be applied as a good complement.
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Figure 10. Benefits of the DCCEOF method to our retrieved in situ hourly PM2.5 records at each individual monitoring station. (a) Improve-
ment of data completeness ratio and (b) reduction of the percentage of days with missingness.

5 Conclusions

A novel yet practical gap-filling method termed DCCEOF
was introduced in this study to cope with annoying data
gaps in geophysical time series, particularly those time se-
ries with significant diurnal variability. Compared with the
conventional interpolation methods, the suggested DCCEOF
method is self-consistent, physically meaningful, and more
accurate, given that the local diurnal variation pattern of the
monitoring target is accounted for in missing-value restora-
tions. Such an endeavor enables the DCCEOF method to pre-
dict missing values even at inflection times, like daily peaks
or minima that conventional methods always fail to predict
properly, with promising accuracy.

A practical application of the DCCEOF method to our re-
trieved in situ hourly PM2.5 concentration record reveals a
good prediction accuracy of the DCCEOF method in restor-
ing PM2.5 missingness. The method performs even better at
predicting missing values during polluted phases than it does
on clean days given the smaller variations in PM2.5 con-
centration in space and time. Further sensitivity experiments
suggest that the overall accuracy of the DCCEOF method
would slightly decrease (from 0.96 to 0.9) with an increase
in the amount of missingness in daily 24 h PM2.5 observa-
tions. This effect is associated with larger uncertainties in the
reconstruction of local PM2.5 neighborhood fields since valid
observations are required to convolve with other observations
to pinpoint observations with similar variation patterns. Also,
an adequate number of neighboring stations in space is essen-
tial to the final prediction accuracy of missing-value restora-
tion. The experimental results suggest that three neighbor-
ing stations within 100 km of the target station would yield
a promising prediction accuracy, and the more neighboring
stations there are, the fewer the uncertainties in the final pre-
dicted values.

In addition, we also assessed the severity of data gaps
in our retrieved China in situ hourly PM2.5 concentration
records. In general, the missingness ratio was less than 10 %

over most stations across China, while data gaps occurred
more frequently at 06:00 and 12:00 CST than during other
times. After gap filling, the data completeness ratio of the
China in situ hourly PM2.5 concentration record was im-
proved to 94.3 %, while the frequency of days with missing-
ness was markedly reduced from 42.6 % to 5.7 %. The gap-
filled hourly PM2.5 concentration record can thus be used as
a promising data source for better PM2.5 concentration map-
ping and exposure assessment.

Overall, the DCCEOF method developed here provides a
realistic and promising way to deal with missingness that
emerges in hourly PM2.5 concentration records which often-
times exhibit significant diurnal variation patterns. Given its
self-consistent nature, the suggested DCCEOF method can
be easily applied to PM2.5 data sets measured in other regions
and other geophysical records with similar barriers. A more
general comparison of this method with many other conven-
tional gap-filling methods will be conducted in the future to
further examine the performance and accuracy of the DC-
CEOF method in handling various types of data gaps.
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