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Abstract. Methane emission fluxes from many facility-scale
sources may be poorly quantified, potentially leading to un-
certainties in the global methane budget. Accurate atmo-
spheric measurement-based flux quantification is urgently re-
quired to address this. This paper describes the first test (us-
ing unbiased sampling) of a near-field Gaussian plume inver-
sion (NGI) technique, suitable for facility-scale flux quan-
tification, using a controlled release of methane gas. Two
unmanned-aerial-vehicle (UAV) platforms were used to per-
form 22 flight surveys downwind of a point-source methane
gas release from a regulated cylinder with a flowmeter. One
UAV was tethered to an instrument on the ground, while the
other UAV carried an on-board prototype instrument (both of
which used the same near-infrared laser technology). Both
instruments were calibrated using certified standards to ac-
count for variability in the instrumental gain factor, assum-
ing fixed temperature and pressure. Furthermore, a water
vapour correction factor, specifically calculated for the in-
strument, was applied and is described here in detail. We
also provide guidance on potential systematic uncertainties
associated with temperature and pressure, which may require
further characterisation for improved measurement accuracy.
The NGI technique was then used to derive emission fluxes
for each UAV flight survey. We found good agreement of
most NGI fluxes with the known controlled emission flux,
within uncertainty, verifying the flux quantification method-
ology. The lower and upper NGI flux uncertainty bounds
were, on average, 17%± 10(1σ)% and 227%± 98(1σ)%

of the controlled emission flux, respectively. This range of
conservative uncertainty bounds incorporate factors includ-
ing the variability in the position of the time-invariant plume
and potential for under-sampling. While these average un-
certainties are large compared to methods such as tracer dis-
persion, we suggest that UAV sampling can be highly com-
plementary to a toolkit of flux quantification approaches and
may be a valuable alternative in situations where site access
for tracer release is problematic. We see tracer release com-
bined with UAV sampling as an effective approach in future
flux quantification studies. Successful flux quantification us-
ing the UAV sampling methodology described here demon-
strates its future utility in identifying and quantifying emis-
sions from methane sources such as oil and gas extraction in-
frastructure facilities, livestock agriculture, and landfill sites,
where site access may be difficult.

1 Introduction

Methane is the second most important anthropogenic green-
house gas (Etminan et al., 2016), with an important role
in atmospheric chemistry processes (Ehhalt et al., 1972).
There is more methane in the atmosphere today than there
has even been over the past 800 000 years (Etheridge et
al., 1998; Loulergue et al., 2008; Dlugokencky, 2020).
The global methane budget is subject to significant un-
certainties (Kirschke et al., 2013; Saunois et al., 2016b;
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Nisbet et al., 2019), particularly from inventory uncer-
tainty in facility-scale sources such as landfill sites (Scheutz
et al., 2009), herds of cattle (Blaxter and Clapperton,
1965), and oil and gas extraction infrastructure (Brant-
ley et al., 2014), which collectively contribute significantly
to global methane emissions (Dlugokencky et al., 2011;
Saunois et al., 2016a). These uncertainties can be reduced
through the accurate source identification and subsequent
quantification of methane emission fluxes using top-down
(atmospheric measurement-based) methods in order to val-
idate bottom-up (inventory-based) emission flux estimates
(Lowry et al., 2001; Nisbet and Weiss, 2010; Allen, 2016;
Desjardins et al., 2018).

Accurate top-down flux quantification from facility-scale
sources requires a combination of wind vector measurements
along with in situ measurements of atmospheric methane
mole fraction (Dlugokencky et al., 1994; Rigby et al., 2017).
Facility-scale emission fluxes can be derived from near-field
sampling (less than 500 m from the source), which may be
acquired from an unmanned-aerial-vehicle (UAV) platform
(Gottwald and Tedders, 1985). UAVs are cheap, versatile
and relatively easy to use (Villa et al., 2016) compared to
large, manned aircraft (Illingworth et al., 2014; Lehmann
et al., 2016). They can fly near the source and can be di-
rected automatically using waypoints to enable even and un-
biased spatial sampling (Greatwood et al., 2017; Feitz et
al., 2018). There are three principal approaches for measur-
ing methane mole fraction from a UAV in situ: on-board air
samples can be collected for subsequent analysis (Chang et
al., 2016; Greatwood et al., 2017; Andersen et al., 2018),
air can be pumped through a long tube to a sensor on the
ground for analysis (Brosy et al., 2017; Wolf et al., 2017;
Shah et al., 2019) or air can be analysed live using a sensor
mounted on board the UAV (Berman et al., 2012; Khan et
al., 2012; Nathan et al., 2015; Golston et al., 2017; Martinez
et al., 2020). Yet, a key limitation to accurate source identifi-
cation and flux quantification is the precision and accuracy
of methane mole fraction measurements (Hodgkinson and
Tatam, 2013). Miniaturised sensors suitable for UAV sam-
pling are emerging (Villa et al., 2016), but high-precision,
lightweight, in situ, closed-path sensors, featuring superior
techniques such as off-axis integrated cavity output spec-
troscopy, have not yet materialised.

Some studies have used UAV remote-sensing measure-
ments to derive emission fluxes (Golston et al., 2018; Yang
et al., 2018). However, to our knowledge, only Nathan et
al. (2015) have derived fugitive methane emission fluxes us-
ing UAV in situ measurements. In that study, a UAV with
an on-board in situ low-precision sensor (±0.1 ppm at 1 Hz)
flew in orbits around a gas compressor station, using mass
balance box modelling, with geospatial kriging for interpola-
tion, to derive the emission flux. However, this method was
not tested for UAV sampling with an accurate known (con-
trolled) methane flux rate. It is crucial that novel flux quan-
tification techniques are tested by sampling a known flux

prior to investigating unknown emission sources (Desjardins
et al., 2018; Feitz et al., 2018). Our previous study was the
first test of an in situ flux quantification technique using UAV
sampling downwind of a controlled methane release, where
a UAV was connected to a high-precision methane analyser
on the ground using 150 m of tubing (Shah et al., 2019).
A dataset of two-dimensional downwind sampling measure-
ments, on a vertical flux plane, was used to develop the
near-field Gaussian plume inversion (NGI) technique for flux
quantification, as other flux quantification approaches failed
(Shah et al., 2019). Fully manual UAV piloting was em-
ployed in this previous study to actively pursue the position
of the time-invariant emission plume on the sampling plane
using mid-flight knowledge of its position. This resulted in
calculated emission fluxes that were significantly positively
biased compared to known emission fluxes; this represents a
source of vulnerability in fully manual UAV sampling, which
we address in this work.

Here we test the application of the NGI method with unbi-
ased UAV sampling of controlled methane emission sources
by flying two UAVs downwind of the release. In this work,
the causes of positive flux bias reported in Shah et al. (2019)
were addressed in our sampling strategy by flying a UAV
without prior knowledge of the position of the time-invariant
emission plume. One UAV was connected to a commercially
available instrument on the ground and the other carried a
lighter prototype on-board instrument (Sect. 3). Both instru-
ments were characterised and calibrated, with the effects of
cell pressure and cell temperature also assessed (Sect. 2).
Our approach to water vapour correction is also outlined in
Sect. 2. Limitations to our sensor characterisation procedures
and future improvements are also outlined. Sampling was
then used to derive NGI flux uncertainty ranges (Sect. 4) for
each of the 22 flight surveys. In Sect. 5 the success of the
NGI method is assessed overall, and its sampling constraints
are summarised.

2 Methane instrumentation and calibration

2.1 Instrument overview

Two instruments were used to derive atmospheric dry
methane mole fraction ([X]) measurements during UAV
sampling. [X] is given in units of parts per million (ppm)
throughout this paper, which are defined here as the num-
ber of moles of methane per million moles of dry air
(10−6 molmethane mol−1), with parts per billion (ppb) defined
as the number of moles of methane per billion moles of
dry air (10−9 molmethane mol−1). In this section, the ABB
“Micro-portable Greenhouse Gas Analyzer” (MGGA) and a
lighter prototype MGGA (pMGGA), designed for UAV use,
are compared and characterised to assess their performance,
albeit under ambient (variable) laboratory temperature and
pressure conditions. The technical specifications of both in-
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struments are compared in Table 1. Both instruments use
off-axis integrated cavity output spectroscopy (ICOS) to de-
rive simultaneous empirical measurements of methane, car-
bon dioxide and water mole fractions from the absorption of
a near-infrared (1651 nm) laser, with the water and methane
absorption peaks separated by 0.2 nm. The pMGGA uses an
additional laser (1603 nm) to measure carbon dioxide mole
fraction more accurately. Off-axis ICOS techniques reflect a
tuneable laser between two mirrors in a high-finesse optical
cavity to obtain high-precision mole fraction measurements
(see Paul et al., 2001, and Baer et al., 2002, for further details
on off-axis ICOS).

The e-folding time of the high-finesse cavity in both sen-
sors was measured here by fitting an exponential decay func-
tion to the transition from a high-mole-fraction standard gas
to a low-mole-fraction standard gas (see Table 1 for results,
with sensor flow rate also given). This represents the time
taken for 63.2 % of the contents of the high-finesse cavity
to be replaced. The Allan variance of each sensor was also
derived (see Figs. 1 and 2) by sampling a dry gas standard
continuously (17 h and 23 min for the MGGA and 38 h and
30 min for the pMGGA) under ambient conditions. The 1 Hz
Allan deviation and the 0.1 Hz Allan deviation for both in-
struments are given in Table 1. for both instruments are given
in Table 1. The sampling noise uncertainty (σn), used within
the total mole fraction enhancement uncertainty (discussed
in Sect. 2.4), represents the Allan deviation at the maximum
sampling frequency. σn for the MGGA and pMGGA are
2.71 ppb (at 10 Hz) and 5.44 ppb (at 5 Hz), respectively. The
optimum Allan variance integration time was also assessed
for each sensor ((20±3) s for the MGGA and (70±10) s for
the pMGGA); this represents maximum sampling time be-
fore instrumental drift begins to dominate over instrumental
noise. During the MGGA Allan variance test, cell tempera-
ture (which varied between 24.9 and 27.8 ◦C) and cell pres-
sure (which varied between 1.0093 and 1.0128 bar) were also
recorded to assess their correlation with [X] (see Figs. S1
and S2 in the Supplement). Correlation of both cell tempera-
ture and cell pressure was poor, with Pearson correlation co-
efficients of −0.4849 and −0.3835, respectively, and linear
gradients of −0.0022 ppm ◦C−1 and −0.0022 ppm mbar−1,
respectively. Thus, over a limited cell pressure and cell tem-
perature range, there was no definitive correlation with [X]
for the MGGA under typical laboratory conditions, though
there may be a need for a more comprehensive cell tempera-
ture and cell pressure characterisation in the future, depend-
ing on the expected sampling conditions.

2.2 Empirical water vapour correction

Raw wet methane mole fraction measurements ([X]0)
recorded by each instrument were corrected for the influ-
ence of atmospheric water vapour on mole fraction retrievals.
Water vapour influences measurements of dry methane mole
fraction ([X]) for three main reasons (Karion et al., 2013;

Figure 1. Allan variance for the MGGA plotted against integration
time on logarithmic axes.

Figure 2. Allan variance for the pMGGA plotted against integration
time on logarithmic axes.

O’Shea et al., 2013; Rella et al., 2013). First and most sig-
nificantly, dilution effects occur, where the bulk presence
of water reduces the quantity of methane in the cavity at
a given pressure. Second, strong, broad infrared absorption
bands of water can interfere with the absorption spectrum
of methane, though this effect is thought to be small in this
case as the spectral lines are well separated in the spectral
sampling region of these instruments. Third, pressure broad-
ening can alter the shape of the methane spectral absorp-
tion band, due to collisional interaction between water and
methane molecules, compared to pressure broadening with-
out water in the cavity. The combined impact of pressure-
broadening absorption band changes and dilution has a net
effect of decreasing [X]0 in both instruments, based on lab-
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Table 1. General properties of the MGGA and the pMGGA.

MGGA pMGGA

Mass 4.8 kg 3.4 kg
Length 0.35 m 0.33 m
Width 0.30 m 0.20 m
Depth 0.15 m 0.13 m
Power consumption 35 W 32 W
Operating DC voltage 10–30 V 10–28 V
Cell pressure atmospheric pressure-controlled to 0.61 bar
e-folding time (1.6± 0.2) s (3.0± 0.1) s
Volumetric flow rate (27.90± 0.05) cm3 s−1 (5.08± 0.02) cm3 s−1

Maximum sampling frequency 10 Hz 5 Hz
σn ±2.71 ppb ±5.44 ppb
1 Hz Allan deviation ±0.71 ppb ±2.2 ppb
0.1 Hz Allan deviation ±0.24 ppb ±0.72 ppb
Optimum integration time (20± 3) s (70± 10) s

oratory observations at a range of methane and water mole
fractions under typical near-surface conditions.

To account for pressure-broadening absorption band
changes, both the MGGA and pMGGA use an internal re-
trieval algorithm to derive methane mole fractions, which in-
cludes empirically derived estimates of the effect of pres-
sure broadening as a function of varying empirical water
vapour mole fraction. The instruments then output raw dry
mole fraction measurements, which have additionally been
corrected for the effect of mole fraction dilution by water
vapour, and raw wet methane mole fraction measurements
([X]0), which have not been corrected for dilution (but are
still calculated using the same empirically derived pressure-
broadening correction, as a function of water mole fraction).
A typical pressure-broadening correction (as a function of
water mole fraction) is determined by the manufacturer based
on experiments conducted with a sample batch of instru-
ments, yielding an average correction applied to all instru-
ments. However, because the correction convolves pressure-
broadening absorption band changes due to water vapour
with pressure-broadening absorption band changes due to in-
strument factors, there is some variability from unit to unit.
Therefore, to obtain a more accurate correction for the in-
fluence of water vapour on the individual instruments used
here, we apply a further empirical post-processing correc-
tion factor to [X]0 measurements (without the dilution cor-
rection) reported by the instruments under ambient labora-
tory conditions, using reported measurements of water mole
fraction ([H2O]). Although [H2O]measurements reported by
the instruments may not be an accurate representation of the
true water mole fraction in the cavity, they are sufficient for
an empirical correction on [X]0, provided that [H2O] does
not drift and is independent of dry uncalibrated methane
mole fraction ([X]dry

0 ). Therefore, [H2O] was not calibrated
against standards and an instrument-reported value was used
for this empirical correction.

For the water correction to be valid, [H2O] should be inde-
pendent of [X]dry

0 . However, both instruments reported small
but non-zero [H2O] when sampling dry air, which decreased
with increasing [X]dry

0 . Therefore, before a water correction
could be applied, a [H2O] baseline ([H2O]0) was derived
under ambient (variable) laboratory conditions up to 5 ppm,
which represents the upper limit of the World Meteorologi-
cal Organization greenhouse gas scale (WMO-X2004A) for
methane. Gases from two cylinders with different methane
compositions (1.901 and 5.049 ppm) were dried by passing
them through a water trap (a stainless-steel coil immersed in
solid carbon dioxide pellets) before being sampled by both
the MGGA and the pMGGA. Dry air from an additional
cylinder (2.167 ppm) was also sampled by the MGGA. Each
gas was sampled a minimum of 11 times for 4 min periods,
from which 1 min averages were taken. [H2O]0 decreased
with [X]dry

0 , given by Eq. (1), where a is the water baseline
offset and b is the water baseline coefficient. The data used
to fit [H2O]0 are plotted in Figs. S3 and S4.

[H2O]0 = a+
(
b · [X]

dry
0

)
(1)

Coefficients a and b for both instruments are given in Table 2.
The effect of [H2O]0 changes on [X]dry

0 beyond the 5 ppm
range was also tested up to approximately 100 ppm (see the
Supplement for details).
[H2O]0 is assumed here to be relatively constant over

time. To test this, an Allan variance test was conducted
on [H2O]0 for both instruments (see Figs. S5 and S6), us-
ing the same Allan variance dataset described in the previ-
ous section. This revealed a water baseline Allan deviation
precision for the MGGA and pMGGA of ±16× 10−6 and
±27×10−6 molwater mol−1, respectively, using a 1 min inte-
gration time (the averaging time used for each [H2O]0 point).
These 1 min Allan deviation averages are small compared to
the water vapour content of typical tropospheric air, suggest-
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Table 2. Water correction coefficients for the MGGA and pMGGA that are required to obtain ν using Eq. (4) and σν .

MGGA pMGGA

a −0.000312 molwater mol−1
+0.000195 molwater mol−1

b −0.000193 molwater mol−1 ppm−1
−0.0000257 molwater mol−1 ppm−1

α −1.556 mol molwater
−1

−1.640 mol molwater
−1

β −12.25 mol2 molwater
−2

−1.208 mol2 molwater
−2

σν 0.0004253 0.0002613

ing that [H2O]0 remains relatively stable. Having established
a stable and well-characterised water baseline (assuming am-
bient temperature and pressure conditions), a post-processing
empirical water correction factor (ν) was derived by sam-
pling gas from a single cylinder (2.205 ppm for the MGGA
and 2.183 ppm for the pMGGA), which was humidified to
nine fixed dew points (from 0 to 18 ◦C) using a dew point
generator (LI-610, LI-COR Inc.), following a similar exper-
imental set-up used by O’Shea et al. (2013). The humidified
gas was first sampled dry (to measure [X]dry

0 ), by passing it
through the water trap, and then sampled wet (to measure
[X]0 as a function of [H2O]). An example of sampled [X]0
and [H2O] measurements, used to calculate each data point,
is given in Fig. S8. A single gas standard was deemed suf-
ficient for this test as both dilution and pressure-broadening
absorption band changes affect the gain factor on methane
mole fraction measurements (i.e. they do not affect the in-
strumental methane offset). Thus, this water correction is as-
sumed to be independent of [X]dry

0 and solely dependent on
the amount of water in the cavity. However, any water cor-
rection may be systematically influenced by cell temperature
and cell pressure. This was not discussed in detail in this
work as these effects are deemed to be small under typical
near-surface environmental changes compared to the large
methane elevations that were measured (see the Supplement
for further discussion).
[X]0 is then corrected by dividing it by ν, as ν is effectively

the ratio between [X]0 and [X]dry
0 , as a function of [H2O].

The ratio of [X]0 to [X]dry
0 was plotted against [H2O] minus

[H2O]0 ([H2O]−[H2O]0), where [H2O]0 was the water base-
line measured during dry sampling (see Figs. S9 and S10).
Subtracting the baseline in this analysis minimised the ef-
fects of [X]dry

0 on [H2O]. A quadratic fit was applied to both
curves, with the intercept forced to unity. The first-order co-
efficient (α) and second-order coefficient (β) of the quadratic
fit, given in Table 2, were then used to derive ν using Eq. (2)
as a function of [H2O].

ν = 1+
(
α ·
(
[H2O]−[H2O]0

))
+

(
β · ([H2O]−[H2O]0)2

)
(2)

As [H2O]0 in Eq. (2) is typically unknown, [H2O]0 defined
in Eq. (1) can be substituted into Eq. (2) to yield Eq. (3).

ν = 1+
(
α ·

(
[H2O] − a−

(
b · [X]

dry
0
)))

+

(
β ·

(
[H2O] − a−

(
b · [X]

dry
0
))2)

(3)

As [X]dry
0 in Eq. (3) is also unknown, an approximation that

[X]
dry
0 is close to [X]0, in typical tropospheric humidity con-

ditions, can be used. Thus Eq. (3) can be rewritten in terms
of [X]0 and [H2O] using Eq. (4).

ν ≈ 1+
(
α ·

(
[H2O] − a−

(
b · [X]0

)))
+

(
β · ([H2O] − a− (b · [X]0))2

)
(4)

To check the above assumption, as a simple example (for the
MGGA), when [H2O] is 0.01 molwater mol−1 and [X]dry

0 is
5 ppm, Eq. (3) yields ν of 0.98089, whereas Eq. (4) yields a
similar value for ν of 0.98092. This small ν change supports
the use of Eq. (4) as an alternative to Eq. (3) by confirming
that [X]dry

0 is close to [X]0 in this simple example.
The fit given by Eq. (4) relies on a reliable water base-

line, independent of cell pressure and cell temperature. If
the MGGA sampled 5 ppm of dry methane and without a
baseline correction, ν would be 1.0020, thus representing a
methane mole fraction reduction of 0.0098 ppm (at 5 ppm),
assuming invariant environmental conditions. However, as
Eq. (4) acts to remove this small uncertainty, the residual un-
certainty would be very small. In addition, the uncertainty in
our empirical water correction fit was quantified using each
water correction residual (R) from Eq. (2), to derive a water
fitting uncertainty factor (σν) for each instrument (see Ta-
ble 2), using Eq. (5). This σν uncertainty is the standard de-
viation of the mean of the residuals and quantifies the qual-
ity of our applied water correction fits, where N is the total
number of residuals. However, there may be additional water
correction uncertainty due to effects of cell temperature and
cell pressure on ν, which may be useful to examine further
in future work.

σν =
(∑(

R2)
N

) 1
2 (5)
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Our water correction approach (given by Eq. 2) is analogous
to the approach of previous work using the same spectro-
scopic technique (O’Shea et al., 2013); this previous work
found that the water correction is stable and does not drift.
Thus an uncertainty in our water correction fit was deemed
to be sufficient to characterise uncertainty empirically. To
summarise, this is a purely empirical instrument-specific cor-
rection to correct for the effects of water vapour in the cav-
ity, valid for the tested water mole fraction range of up to
0.016 molwater mol−1. For example, our correction (assum-
ing constant temperature and pressure) would increase an
MGGA [X]dry

0 measurement (at 2 ppm) by +0.27 % at a hu-
midity of 0.001 molwater mol−1, and by+1.8 % at a humidity
of 0.01 molwater mol−1, thus improving measurement accu-
racy.

2.3 Calibration

In order to convert [X]0 into [X], both instruments were cal-
ibrated by sampling a low standard-methane mole fraction
([X]low) of 1.901 ppm and a high standard-methane mole
fraction ([X]high) of 5.049 ppm (both of which were certi-
fied WMO-X2004A standards). Each gas was sampled in-
termittently for 4 min periods of continuous sampling. The
water trap was used throughout each calibration as an extra
precaution to ensure dry gas entered the sensor cavities. One-
minute averages from each 4 min sampling period were taken
to derive one value of low [X]dry

0 ([X]dry
0 low) and one value of

high [X]dry
0 ([X]dry

0 high) representative for each 8 min period.

The time increment between each [X]dry
0 low and [X]dry

0 high
value was then interpolated from 8 to 4 min, such that ev-
ery measured value of [X]dry

0 low had a corresponding interpo-

lated value of [X]dry
0 high and vice versa. Individual measured

and interpolated [X]dry
0 low and [X]dry

0 high values for both in-
struments are plotted in Figs. S11 and S12.

These measured and interpolated averages were used to
calculate an average gain factor (G) and gain factor uncer-
tainty (σG), from the average and standard deviation, respec-
tively, of a set of at least 24 individual gain factors (calculated
using Eq. 6) (Pitt et al., 2016).

gain factor=
[X]high− [X]low

[X]
dry
0 high− [X]

dry
0 low

(6)

The average offset (C) and offset uncertainty (σC) were cal-
culated by taking the average and standard deviation, respec-
tively, of individual offsets (calculated using Eqs. 7 and 8)
(Pitt et al., 2016).

low offset= [X]low−
(
G · [X]

dry
0 low

)
(7)

high offset= [X]high−
(
G · [X]

dry
0 high

)
(8)

G, σG, C and σC for both instruments are given in Ta-
ble 3. During these calibrations, the cell temperatures of

Table 3. Calibration coefficients for the MGGA and pMGGA.

MGGA pMGGA

G± σG 0.9970± 0.00023 0.9869± 0.00028
C± σC (+0.0132± 0.0020) ppm (−0.0019± 0.0015) ppm

the MGGA and pMGGA were (31.4± 0.7) ◦C and (24.6±
0.1) ◦C, respectively, and the cell pressures of the MGGA
and pMGGA were (1005.9± 0.2)mbar and (614.30±
0.01)mbar, respectively.

A key advantage of this calibration procedure is that un-
certainty in G is well quantified up to [X]high, assuming
stable cell temperature and cell pressure. Cell temperature
and cell pressure both effect spectral fitting parameters and
may consequently have an impact on G, though this effect
would be smaller for the pMGGA which is pressure con-
trolled. The effect of cell temperature onG is small; this was
tested by performing a short-term (test) calibration with the
MGGA at (44.08±0.02) ◦C, yielding a gain factor of 0.9979
(see the Supplement for details). In addition, the MGGA
was calibrated at (968.7± 0.3)mbar, yielding a gain factor
of 0.9967 (see the Supplement for details). These test gain
factors are both similar to G (from the main calibration) of
0.9970± 0.0002. Furthermore, there was no discernible cor-
relation for both cell temperature and cell pressure during
the MGGA Allan variance test (see above), which suggests
that G is negligibly insensitive to these parameters over the
limited environmental range for the duration of the Allan
variance test, though more comprehensive characterisation of
these parameters may be required in future work. Although
the pMGGA was not tested in this way, we assume similar
behaviour due to identical spectroscopic techniques. Nev-
ertheless, separate in-field calibrations would be preferable
to enhance measurement accuracy by characterising the ef-
fect of variability in cell temperature and cell pressure on G.
However, there are logistical challenges with in-field calibra-
tions, such as the need for calibration gases and the time re-
quired to perform calibrations in dynamic atmospheric tem-
perature and pressure conditions. The laboratory calibrations
described here required at least 3 h of sampling to charac-
terise variability inG: this may be impractical in field condi-
tions.

2.4 Methane enhancement and uncertainty

The calibration procedures described above show that G is
almost equal to 1 and C is almost equal to 0, relative to
the atmospheric methane background, for both instruments
(see Table 3) under ambient (but not controlled) conditions.
This means that both instruments record raw [X]0 measure-
ments with very little systematic error, even when uncali-
brated. Thus, for most methane measurement purposes, [X]0
may not need to be corrected. However, in this work, G was
applied to [X]0 for improved accuracy.
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[X] can be calculated (in ppm) using Eq. (9).

[X] =
(G
ν
· [X]0

)
+C (9)

However, during flux calculation, the enhancement in
methane mass density (E, in kg m−3), above some back-
ground, is required and was calculated here using Eq. (10).
The background methane mole fraction ([X]b) and corre-
sponding background uncertainty (σb) can be calculated from
a subset of [X] measurements, which can be acquired from
out-of-plume sampling (see Sect. 3). The molar density of
dry air (ρ) and the uncertainty in ρ (σρ) (in units of dry
mol m−3) can be derived from pressure, temperature and hu-
midity measurements. The molar mass of methane (M) is
fixed at 0.01604 kg mol−1

methane.

E =
(
[X] − [X]b

)
· ρ ·M (10)

To calculate the uncertainty in E (σE), the linearity in the
instrument response was characterised up to 5 ppm (i.e. the
extent of the WMO-X2004A scale). This was achieved by
characterising the MGGA response to five certified WMO-
X2004A standards. A linear fit was then applied to measured
[X], with residuals used to derive an uncertainty due to non-
linearity (σL) of±2.3 ppb (see the Supplement for further de-
tails). We adopt the same non-linearity uncertainty factor for
the pMGGA as both instruments use identical spectroscopic
techniques. σE can then be calculated by combining σb with
the precision and accuracy uncertainty components of [X]
using Eq. (11). Precision is characterised by σn and accuracy
is characterised by σL, σG and σν terms. σG also incorporates
the effects of drifts, as it was derived from a prolonged sam-
pling period over which drifts could develop. However, σE
does not incorporate uncertainties due to the potential sys-
tematic error of cell temperature and cell pressure variations
on E, which may manifest themselves as an accuracy term in
Eq. (11).

σE =E ·

(((
σ 2
n + σ

2
L + σ

2
b

)
·

(
ρ ·M

E

)2)
+

(σG

G

)2

+

(σν
ν

)2
+

(
σρ

ρ

)2) 1
2

(11)

Although M remains constant, ν in Eq. (11) changes as a
function of [X]0 and [H2O], for each value of E; σC is not
required in Eq. (11) as the offset cancels out in Eq. (10) when
substituting in Eq. (9). This is an important advantage of us-
ing E rather than [X] in the flux analysis used in the follow-
ing section.

2.5 Future improvements for instrumental
characterisation

There are a number of steps that can be taken to better charac-
terise both instruments to account for the effects of cell tem-
perature and cell pressure on instrumental output. The simple

tests at the end of Sect. 2.3 show that both cell temperature
and cell pressure can affect G, though this effect is subtle
over small variations. The Allan variance tests (see Sect. 2.1)
also show that influence of cell temperature and pressure on
instrumental output is small. Thus future calibrations should
be conducted in a controlled environment. Cell temperature
and cell pressure may also effect [H2O]0 (see the Supplement
for details). It would also be useful to characterise [H2O]0
under a wider range of environmental conditions. Further-
more, [H2O]0 is assumed to respond linearly to [X]dry

0 (up to
5 ppm) based on our sampling of two or three gas standards.
This linearity could be tested in future, under controlled con-
ditions, by sampling more standards. The linearity of instru-
mental [X]dry

0 response to [X] could also be tested by sam-
pling more certified standards to populate the range between
2 and 5 ppm. It may also be useful to sample below 2 ppm
to fully characterise linearity, including at 0 ppm (using syn-
thetic zero air). However, as the instruments are designed for
atmospheric sampling, it is rare to sample air below the atmo-
spheric ambient mole fraction background (approximately
1.9 ppm at the time of writing). On the other hand, although
the WMO-X2004A scale does not exceed 5 ppm, it would be
useful to test the linearity in instrumental response at higher
mole fractions, using specialised certified gas mixes. Never-
theless, we are confident that Eq. (11) adequately quantifies
uncertainties up to 5 ppm, incorporating terms for both accu-
racy and precision, assuming relatively constant temperature
and pressure. Measurement accuracy may be improved by
following the above suggestions, but this is not the focus of
this work and our instrumental testing was deemed sufficient
for our UAV sampling approach, described in the next sec-
tion.

3 Method testing

3.1 Experimental description

A UAV sampling methodology for source identification
and flux quantification was tested in two fields adjacent
to a natural gas extraction facility in Little Plumpton
(near Wesham), Lancashire, United Kingdom (coordinates:
+53.78785, −2.94758), prior to any drilling or hydraulic
fracturing, over five sampling days in August and Septem-
ber 2018. A map of the field site is given in Fig. 3. The two
adjacent grass fields, in which all UAV sampling took place,
belong to a fully operational dairy farm. Methane was re-
leased from within the operating site at one of two controlled
flux rates (F0) from 0.25 m above ground level (see the Sup-
plement for controlled release details). F0 was undisclosed
during flux analysis, prior to the comparisons shown later in
this paper, allowing for blind method testing.

Two adapted DJI Spreading Wings S1000+ octocopter
UAVs (labelled UAV1 and UAV2) were used to sample the
methane plume on a downwind vertical plane, roughly per-
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Figure 3. The two fields used for UAV sampling. The map extends 0.71 km horizontally and 0.50 km vertically. The controlled release
points are marked by labelled crosses (see Table S3 for details). The background image is taken from © Google Maps (imagery (2017):
DigitalGlobe, GetMapping plc, Infoterra Ltd & Bluesky, The GeoInformation Group).

pendicular to mean wind direction (see Table 4 for UAV de-
tails). The location of the UAVs in relation to the controlled
release and their sampling paths were decided on each day
based on public wind forecasts and on-site wind measure-
ments to horizontally centre (as best as possible) each UAV
flight track downwind of the controlled release. [X]measure-
ments from both platforms are given in Fig. 4. UAV1 was op-
erated using pre-programmed waypoints and ascended diag-
onally. Each UAV1 flight survey was composed of two parts:
one flight to the right of the source (projected onto the sam-
pling plane, perpendicular to mean wind direction) and one
to the left. Meanwhile each UAV2 flight survey was com-
posed of a single flight, to perform horizontal transects, with
each transect at a roughly fixed height, up to approximately
100 m laterally away from the take-off position. Seven sur-
veys were conducted by UAV1 (labelled, T1.1–T1.7) and 15
surveys were conducted by UAV2 (labelled, T2.1–T2.15). In-
dividual flight survey details are given in Tables S1 and S2.

UAV1 (see Fig. 5) was connected to the MGGA on
the ground using 150 m of perfluoroalkoxy (PFA) tubing
(4.76 mm inner diameter; 6.35 mm outer diameter). Air was
pulled through the tubing using a small pump (NMS 030.1.2
DC-B 12V, KNF Neuberger UK Ltd), from which the
MGGA subsampled. The sampling lag time between air en-
tering the UAV air inlet and air entering the MGGA cav-
ity was 25 s, with an average volumetric flow rate through
the tube of (110± 10) cm3 s−1 and a flow rate through the
instrument (at ambient pressure) of (27.90± 0.05) cm3 s−1.

Both the MGGA and the pump were powered by a 12 V lead-
acid battery. As the tether connected to UAV1 occasionally
kinked during flight, blocking air through the tube, 16 % of
all [X]0 sampling from UAV1 was discarded (such periods
were identified and recorded in the field from the flow of air
to the pump). The pMGGA was mounted on board UAV2
(see Fig. 5) beneath the centre frame. The sampling lag time
between air entering the external air inlet and air entering the
pMGGA cavity was 2 s, with a flow rate through the instru-
ment of (5.08±0.02) cm3 s−1. The pMGGA was powered us-
ing the on-board 22.2 V UAV2 battery. Both the MGGA and
pMGGA transmitted live, real-time mole fraction measure-
ments wirelessly to a tablet computer on the ground. Satellite
geolocation was recorded by the pMGGA, on board UAV2,
simultaneous with every [X]0 measurement. Satellite geolo-
cation was recorded on UAV1 by a separate on-board com-
puter (sampling at 1 Hz). Aerial UAV flight tracks are given
in Fig. S14 for UAV1 and Fig. S15 for UAV2.

A lightweight wind sensor (FT205EV, FT Technologies
Limited) was mounted on board UAV1 on a carbon fibre
pole 305 mm above the plane of the propellers (see the Sup-
plement for further details and testing). It recorded wind
speed and direction at 4 Hz. These measurements were used
to model change in wind speed with height above ground
level (z). A two-dimensional stationary sonic anemome-
ter (WS500-UMB smart weather sensor, G. Lufft Mess-
und Regeltechnik GmbH) was also situated on the southern
boundary of the operating site (see Fig. 3), (3.30± 0.03)m
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Table 4. A comparison between UAV1 and UAV2.

UAV1 UAV2

Flights per survey 2 1
Distance of sampling plane from source 47–50 m 64–114 m
Take-off and landing Manual Manual
Flight control Waypoints Manual (course-lock mode)
Average velocity across the sampling plane (1.5± 0.1)m s−1 (2.8± 0.6)m s−1

Payload PFA tubing and inlet, wind sensor pMGGA
Height of plane of propellers 0.540 m 0.680 m
Height of air inlet 0.845 m 0.370 m

Figure 4. [X] measurements acquired by the MGGA and the pMGGA, as a function of sampling duration, for each flight survey, with
sampling height above ground level also plotted (coloured dots). A logarithmic colour legend has been used. Vertical blue lines indicate an
interruption in continuous sampling.

above ground level. This provided wind speed, wind direc-
tion, relative humidity, temperature and pressure measure-
ments every minute. Wind measurements from both sensors
were combined to derive the average absolute wind speed as
a function of z (WS(z)) for the duration of each flight survey.
This is described in detail in the Supplement.

The position of the UAV1 wind sensor and the position
of the air inlet for both UAVs, relative to the plane of the
propellers, are shown in Fig. 5. In hindsight, the UAV2 air
inlet should have been elevated above the plane of the pro-
pellers, as downwash from the rotating propellers can distort
the apparent plume morphology, leading to small errors in the
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Figure 5. Photographs of UAV1 and UAV2, indicating the position of the air inlet relative to the base of the UAV.

geospatial positioning of the sampled air (Schuyler and Guz-
man, 2017; Zhou et al., 2018). As UAV2 generally sampled
at a greater distance from the emission source than UAV1,
allowing the instantaneous plume to disperse across a larger
area, the impact of such a geospatial positioning error is ex-
pected to the small. Nevertheless care should be taken in fu-
ture work to reduce these potential sampling biases.

3.2 Flux density measurements

Each individual UAV1 survey resulted in (9± 1(1σ))min of
useable [X]0 measurements, and each UAV2 survey resulted
in (8± 1(1σ))min of useable [X]0 measurements (see Ta-
bles S1 and S2 for individual sampling periods). These data
were prepared for flux quantification by carrying out the fol-
lowing steps. The [X]0 timestamps from both instruments
were corrected to account for lag time. The 1 Hz satellite ge-
olocation measurements from UAV1 were interpolated to the
10 Hz [X]0 frequency of the MGGA. [X]0 was converted into
[X] using Eq. (9). E was calculated with [X] measurements
from both instruments using Eq. (10). [X]b was derived by
fitting a log-normal distribution to all recorded [X] measure-
ments from each flight survey, using the method described
by Shah et al. (2019) in our previous study. This background
was derived from a histogram of all useable [X] measure-
ments acquired during each flight experiment; a log-normal
fit can usually be applied to the lowest [X] measurements in
the histogram, which represent out-of-plume sampling. The
peak of the log-normal fit to these lowest [X] measurements
was taken to be [X]b. ρ was derived using average tempera-
ture, pressure and relative humidity recorded at the stationary
anemometer for the duration of each flight survey, with the
standard deviation in temperature, pressure and relative hu-
midity used to derive σρ .

Satellite-derived altitude was corrected to obtain the height
of the air inlet above ground level, by taking into account
take-off altitude and the height of the air inlet when on the
ground. This step ensures that the data represent the true
point of sampling. After converting longitude and latitude
from degrees into metres, metric longitude and latitude were

projected onto a plane perpendicular to and a plane parallel
to mean wind direction, respectively. Mean wind direction
was derived from the stationary anemometer for the duration
of each flight survey. The coordinate projection procedure is
described in further detail by Shah et al. (2019).

In order to calculate flux, flux density (q, in kg s−1 m−2)
was derived. To achieve this, each geospatially mapped E
measurement was combined with WS(z) using Eq. (12).

q = E ·WS(z) (12)

Geospatially mapped q, on a plane perpendicular to mean
wind direction, for each flight survey, is plotted in Fig. 6 for
UAV1 and in Fig. 7 for UAV2. Measurements of [X] (see
Fig. 4 for a time series for each survey) were not used in
the flux analysis, but they are nevertheless of interest, as they
show [X] to generally reduce with z, as expected, to support
observations of q enhancements shown in Figs. 6 and 7.

Both Figs. 6 and 7 show significant background sam-
pling (yellow data points), extending sufficiently far away
from the position of the source projected onto the sampling
plane (0 m), such that the narrow turbulently advecting time-
invariant plume centre across each transect (typically man-
ifested by q increase) had been passed. All of the UAV1
surveys in Fig. 6 took place from a similar distance from
the source of approximately 50 m. It is clear that during
most UAV1 surveys, enhancements in q were concentrated
near the ground (below 10 m) and close to the position of
the source, projected onto the sampling plane (0 m). How-
ever, T1.3 shows considerable enhancements in q above the
ground (up to approximately 30 m), which was possibly due
to a transient updraught. Meanwhile, the UAV2 flight surveys
in Fig. 7, many of which took place approximately 100 m
from the source, show large enhancements in q across the
flux plane, up to approximately 15 m above the ground. En-
hancements of q in Fig. 7 can also be seen at a much greater
lateral distance from the source, projected onto the sampling
plane. This is likely a consequence of many UAV2 flight
surveys sampling at a greater distance from the source than
UAV1 flight surveys, which gave the time-invariant plume
more time to disperse. On the other hand, UAV1 flight sur-
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Figure 6. UAV1 flight tracks (coloured dots) with the colour corresponding to q. Periods in which the tubing inlet kinked have been removed.
A logarithmic colour legend has been used. The position of the source projected on the plane perpendicular to mean wind direction has been
set to a reference of 0 m. The controlled emission flux and the parallel distance of the sampling plane from the source (weighted to the
position of q enhancements) are given in brackets.

veys, which took place nearer to the source, show that UAV1
intersected the time-invariant plume less often. Thus, it may
appear that the UAV flight track was not centred downwind of
the source, when in practice erratic variations in the position
of the time-invariant plume centre made it appear this way,
as the time-invariant plume did not have time to disperse.

3.3 Flux quantification

Calculated q from each flight survey was used to derive an
emission flux (in units of kg s−1) using the near-field Gaus-
sian plume inversion (NGI) flux quantification technique (see
Shah et al., 2019). In principle, the NGI method accounts
for turbulent wind variations using Gaussian statistics. The
method also takes into account sampling on a slightly off-
set sampling plane (compared to the plane perpendicular to
mean wind direction) by introducing a third dimension to
the traditional two-dimensional Gaussian plume model. The
NGI method uses a least-squares approach to compare mea-
sured and modelled values of q. Residuals in q are minimised

to output model parameters, which include an initial flux es-
timate (Fe).

Full details of the NGI method can be found in our previ-
ous study in Shah et al. (2019). We provide a brief overview
here. The size of the time-averaged plume is assumed to in-
crease linearly with distance from the source, by assuming q
to decrease according to the inverse square law with distance
(an assumption which is valid over short distances). There-
fore, instead of using constant crosswind and vertical dis-
persion terms, these terms are allowed to increase with dis-
tance from the source, with both terms being fixed at a 1 m
distance. The crosswind dispersion term (at 1 m) is charac-
terised using measurements of q rather than assumptions of
atmospheric stability, as these assumptions are valid for time-
averaged plumes characterised by dispersion rather than tur-
bulent advection. In addition, the centre of the time-averaged
plume in the crosswind direction is derived from measure-
ments of q, as the precise position of the source may be un-
known. The vertical dispersion term (at 1 m) and Fe can then
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Figure 7. UAV2 flight tracks (coloured dots) with the colour corresponding to q. The position of the source projected on the plane perpen-
dicular to mean wind direction has been set to a reference of 0 m. The controlled emission flux and the parallel distance of the sampling plane
from the source (weighted to the position of q enhancements) are given in brackets.

be acquired by inverting modelled values of q, which is de-
rived by minimising residuals, as described above.

A measurement flux uncertainty (σF) is calculated by com-
bining the uncertainties in individual E and WS(z) values.
A lower uncertainty bound (σ−) is calculated using resid-
uals between modelled and measured q values. An upper
uncertainty bound (σ+) is calculated by incorporating σ−

with the potential effects of negative flux bias due to under-
sampling using a random walk simulation. The simulation
is repeated 180 times for each flight survey. In each simula-
tion, a static Gaussian plume (simulating a prescribed arbi-
trary target flux) is sampled across three dimensions, where
sampling is constrained to the spatial limits of UAV sam-
pling and is limited to the UAV sampling duration. The NGI
method is used to derive a flux from these random walk sim-
ulations. The average fractional target flux underestimation
from these simulations can be incorporated into σ+. Ran-

dom walk flux underestimation occurs due to limited spa-
tial sampling coverage (i.e. sampling gaps) and limited spa-
tial sampling extent. This simulation step therefore gives an
important indication of the systematic error due to potential
under-sampling. All Fe, σ−, σ+ and σF values for each flight
survey are given in Table S5.

4 Flux results and discussion

Calculated NGI emission fluxes were compared to the known
(controlled) emission fluxes using the ratio between the NGI
flux uncertainty range and F0 (see Fig. 8). As this was a blind
flux analysis, F0 was not revealed to the analysis team prior
to calculating the NGI flux uncertainty range. Figure 8 shows
that the NGI flux uncertainty range agrees well with F0 for
most flight surveys. Only three surveys (T2.1, T1.1 and T1.7)
had a flux uncertainty range that fell short of F0. Although
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Figure 8. NGI flux uncertainty range (thick cyan bars), for each
method testing flight survey, as a fraction of F0. The σF uncertainty
range (horizontal blue lines) is given on either side of Fe (vertical
blue lines). F c, F− and F+ averages (vertical blue lines) are plot-
ted for UAV1, UAV2 and for all flight surveys. Standard deviation
uncertainty ranges (horizontal blue lines) and standard error uncer-
tainty ranges (thick yellow bars) are given on either side of F c, F−
and F+ values.

no flux uncertainty range exceeded F0, T2.3 spanned a large
flux range, much of which fell above F0. Flux underesti-
mation may be explained using the plots shown in Figs. 6
and 7, which demonstrate the following: a limited sampling
duration made it possible to almost entirely avoid the time-
invariant emission plume, thus resulting in low flux results;
similarly, some flights intersected the time-invariant emis-
sion plume multiple times, resulting in flux overestimation
in some cases, although large NGI uncertainty ranges can
conservatively account for this effect. Therefore, it is clear
that the Fe value obtained using the NGI method must not be
taken at face value, and the full NGI flux uncertainty range
must be considered. Furthermore, the flux ranges in Fig. 8
represent uncertainty bounds of 1 standard deviation; it is
statistically realistic to expect some discrepancy between F0
and the NGI flux uncertainty range.

The flux uncertainty ranges given in Fig. 8 are asymmet-
ric, although the magnitude of this asymmetry was different
for flight experiments conducted by the different UAVs. σ+

was 0.33±0.14(1σ) times larger than σ− for UAV2 but was
only 0.08±0.03(1σ) times larger for UAV1. This is because
UAV2 sampled further from the source, on average, and on
a similar sized sampling plane to UAV1. As UAV2 was fur-
ther from the emission source, the time-invariant plume had
a greater likelihood of extending beyond the sampling plane
and being missed (beyond the horizontal edges of the sam-
pling plane), due to spatially limited sampling extent. This

potential loss of in-plume sampling may have otherwise con-
tributed towards the overall flux, thus enhancing σ+. There-
fore, σ+ is comparatively larger than σ− for flights con-
ducted by UAV2.

The suitability of our experimental sampling methodol-
ogy can be assessed by quantifying σF as a fraction of Fe,
which was on average (±45± 8)%. To assess the dominant
sources of σF, the contribution of WS(z) and E uncertainty
components towards it were analysed (see the Supplement
for details and results). As σF is derived by combining in-
dividual components in quadrature, this analysis was con-
ducted by assuming other uncertainties to be zero. The test
showed that if wind speed was the only source of uncer-
tainty, it would on average result in (±90±8)% of σF, repre-
senting therefore a dominant source of uncertainty. The stan-
dard deviation variability in cell temperature and cell pres-
sure within each flight survey (see Table 5) was, on average,
far smaller than maximal cell temperature changes (2.9 ◦C)
and cell pressure changes (3.5 mbar) observed during the
MGGA Allan variance test. The average cell temperature and
cell pressure during each flight survey was also derived (see
Figs. S18 and S19) with averages given in Table 5. The val-
ues in Table 5 are not dissimilar to conditions during cal-
ibrations (plotted in Figs. S18 and S19). As there was no
discernible correlation between [X] and cell temperature and
cell pressure from the MGGA Allan variance test and consid-
ering the dominance of winds contributing towards σF, one
can assume that variation in cell temperature and cell pres-
sure had negligible net effect on σF. Furthermore, the (poorly
correlated) temperature trend from the MGGA Allan vari-
ance test reveals a maximum uncertainty of 20 ppb for the
MGGA and 14 ppb for the pMGGA (derived from the maxi-
mum difference between average calibration cell temperature
and average UAV sampling cell temperature). These uncer-
tainty values are far smaller than the average mole fraction
enhancement uncertainty (expressed as a dry mole fraction)
within each flight survey of (55± 47) ppb (see Table S7 for
individual values), though further laboratory testing would
be needed to better characterise these effects (see Sect. 2.5).

It is important to recognise the magnitude of the NGI un-
certainty ranges in Fig. 8, relative to F0, which are due to the
difficulties in inverting sparse spatial sampling to derive an
emission flux, following the NGI method. These uncertain-
ties reflect the limited sampling duration and the effects of
variability in wind. While we fully acknowledge that flux un-
certainty ranges in Fig. 8 are large, the true value of the NGI
method with UAV sampling is to derive snapshot rapid flux
estimates at low cost, with an order-of-magnitude level pre-
cision, for subsequent flux investigation using more precise
approaches. Although longer sampling periods in each flight
survey may reduce the uncertainties in Fig. 8, this is practi-
cally difficult with limited UAV battery life and comes with
little additional benefit. Tethered power or multiple UAV
flights may alternatively be used, as was the case with UAV1,
but wind conditions can quickly change when sampling for
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Table 5. Average cell temperature and cell pressure standard deviation variability within each UAV flight survey which was recorded by the
MGGA and the pMGGA. The average cell temperature and cell pressure mean is also given.

UAV1 UAV2

Instrument MGGA pMGGA
Average cell temperature standard deviation within flight surveys (±0.16± 0.09) ◦C (±0.28± 0.28) ◦C
Average cell pressure standard deviation within flight surveys (±1.15± 0.86) mbar (±0.40± 0.01) mbar
Average cell temperature mean across flight surveys (25± 2) ◦C (22± 4) ◦C
Average cell pressure mean across flight surveys (1025.6± 5.4) mbar (614.4± 0.1) mbar

prolonged periods with too many lengthy intervals between
flights.

Some flux results (T1.1 for example) intersected the time-
invariant plume more often than others (T1.2 for example)
but resulted in a lower NGI flux range. On closer inspection
of the mole fraction time series given in Fig. 4, flight surveys
such as T1.2 sampled higher mole fraction enhancements
(and hence q) than T1.1. However, as the time-invariant
plume may have largely been centred near to the ground, it
can be more difficult to distinguish from a simple plot of the
flux density UAV flight track. The comparative magnitude of
mole fraction enhancements is clear on examination of the
mole fraction time series. Thus it is important to take into ac-
count both the number of plume intersections and the mag-
nitude of q during each plume intersection when assessing
NGI flux results.

In order to assess whether multiple flight surveys could
be used effectively to capture the known controlled emission
flux, within uncertainty, the upper and lower NGI uncertainty
bounds were averaged for all surveys (see penultimate row
of Fig. 8). The average lower NGI flux uncertainty bound
as a fraction of F0 (F−) was 0.2± 0.1(1σ) and the average
upper NGI flux uncertainty bound as a fraction of F0 (F+)
was 2± 1(1σ), for all surveys. Thus F0 (i.e. 1 in Fig. 8) falls
comfortably within the average NGI flux uncertainty range
over 22 independent flight surveys. F− and F+ were also
calculated for surveys conducted by UAV1 and UAV2, sepa-
rately. These separate F− and F+ values for each UAV also
comfortably overlap with the F− and F+ values for all sur-
veys combined. This suggests that the sampling strategies
employed by both UAVs were capable of deriving the known
emission flux, with a similar degree of both lower and upper
uncertainty. The percentage standard error in F− and F+,
over all 22 flight surveys, was 12 % and 9 %, respectively.
The large standard errors in F− and F+ may be reduced
with more surveys in order to better constrain the NGI flux
uncertainty range. However, more precise flux estimates can
be obtained using other approaches such as tracer dispersion
methods. Although we recognise that the F− and F+ uncer-
tainty averages are large, we emphasise that our methodology
has been adapted for rapid flux analysis rather than precise
flux estimates for inventory publication.

The ability of the NGI method to calculate a target emis-
sion flux was further assessed by calculating the central flux
estimate as a fraction of F0 (Fc) for each flight survey us-
ing Eq. (13). Fc is distinct from Fe (as a fraction of F0) in
that Fc finds the centre of an asymmetric flux uncertainty,
whereas Fe is an initial flux estimate calculated using the
NGI method, which does not take into account the potential
effects of under-sampling, which may result in a potential
negative flux bias.

Fc =

Fe+

(
σ+−σ−

2

)
F0

(13)

The mean of Fc (F c) and the mean standard error in F c for
the 22 surveys (see bottom row of Fig. 8) treats each survey
as an independent quantification of the flux, with no weight-
ing for sampling time (as flight times were broadly similar).
This clearly demonstrates the improvement in flux accuracy
(for a constant source) that can be obtained with greater sam-
pling time or repeated flights, as expected. F c was also calcu-
lated for surveys conducted by UAV1 and UAV2 separately:
these separate F c values both overlap with the combined
F c value for all flight surveys (within 1 standard deviation);
there is no discernible difference in the NGI flux results ob-
tained by either UAV. This suggests that both UAV sampling
strategies were equally capable of delivering the same emis-
sion flux estimate (by taking the average of multiple flight
surveys).

The overlap of the standard deviation in F c (shown in
Fig. 8) with the known emission flux (i.e. 1 in Fig. 8) also
suggests that there was no apparent flux bias (within uncer-
tainty) in this study. This indicates that we have successfully
overcome the causes of positive biases reported in our pre-
vious study (Shah et al., 2019). Shah et al. (2019) sampled
downwind of a controlled emission source and actively pur-
sued the time-invariant emission plume (projected onto the
sampling plane) using mid-flight knowledge of its position,
inferred by releasing smoke grenades during flight surveys.
However, in this current work, manual sampling was avoided
by either flying UAV1 using pre-programmed waypoints or
by flying UAV2 using lateral transects in course-lock mode.
Both of the approaches presented here successfully avoided
biased sampling.
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To conclude, UAV sampling can be used to practically de-
rive unbiased snapshot emission fluxes with the NGI method,
with an order-of-magnitude level precision, by sampling on a
plane perpendicular to wind direction from at least approxi-
mately 50 m away from the source. Although typical flux un-
certainties were high, NGI UAV fluxes serve as an important
tool for snapshot source identification and flux quantifica-
tion. Our UAV methodology fills an important gap between
cheap leak detection techniques (such as infrared cameras),
which do not provide fluxes, and reliable flux quantification
techniques (such as the tracer dispersion method), which re-
quire expensive instrumentation and may be more difficult to
organise. For example, tracer methods can be problematic in
cases where site access for tracer release is impossible or in
cases where the plume may be lofted. The UAV methodol-
ogy we describe is highly suitable for regulatory leak detec-
tion and source isolation, with the added capability to gauge
the severity of flux leaks, for subsequent investigation using
other approaches. We anticipate a combination of UAV sam-
pling with a tracer release, where both a target gas (in this
case methane) and a proxy tracer can be measured simul-
taneously downwind, taking advantage of vertical sampling
enabled by UAVs, as a powerful future toolkit for precise
facility-scale flux quantification.

5 Conclusions

Two UAVs were used to test the near-field Gaussian plume
inversion technique for flux quantification. One UAV was
connected to the MGGA on the ground using a tether, while
the other carried a new ABB pMGGA prototype instrument
on board. Both instruments measured atmospheric methane
mole fraction, which was calibrated and corrected for the in-
fluence of water vapour, following laboratory testing under
ambient conditions, assuming the effects of cell temperature
and cell pressure to be small.

The flux approach was tested for 22 UAV flight surveys
by deriving fluxes from a controlled release of methane gas.
This yielded successful results, with 19 out of 22 fluxes
falling within the UAV-derived flux uncertainty range. This
demonstrates that the near-field Gaussian plume inversion
methodology used here could be used to derive emission
fluxes from UAV sampling of plumes from facility-scale
(point) sources, where such sources are relatively invariant
over the period of such UAV sampling. The lower flux uncer-
tainty bound was, on average, 17%± 10(1σ)% of the con-
trolled emission flux and the upper flux uncertainty bound
was, on average, 227%± 98(1σ)% of the controlled emis-
sion flux. Thus the known emission flux was comfortably
encapsulated by the UAV flux results (within uncertainty).

A key advantage of the methodology used here is the abil-
ity to sample downwind of sources to obtain off-site mole
fraction measurements. Such sampling allows for indepen-
dent and portable studies of methane emissions without the

need for heavy infrastructure, special permissions, runway
access or prior notification. We conclude that the near-field
Gaussian plume inversion flux quantification method can
be used confidently in future with UAV sampling to derive
snapshot methane emission fluxes from relatively constant
facility-scale sources such as oil and gas extraction infras-
tructure, livestock agriculture, and landfill sites. An exciting
future application may be the incorporation of UAV sam-
pling within a tracer release methodology, where simultane-
ous measurement of a target gas and a proxy tracer can take
advantage of vertical sampling enabled by UAVs. This avoids
the limitation of current mobile vehicle sampling which can-
not sample lofted plumes. Together, this may represent a
powerful future toolkit for precise and efficient flux quan-
tification.

Data availability. The raw sensor testing data can be accessed from
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