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S1 Prior distributions

This section includes Figures S1–S4; and Table S1.

5 10 15 20
0

2

4

6

aCH

M
S

E
C

V

5 10 15 20
10−40

10−30

10−20

10−10

1

P
ro

ba
bi

lit
y

5 10 15 20
0.00

0.01

0.02

0.03

0.04

0.05

COOH

5 10 15 20
10−40

10−30

10−20

10−10

1

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
aCOH

0 5 10 15 20 25 30
10−40

10−30

10−20

10−10

1

Number of components, k

Figure S1. MSECV curves (in units of µmole of FG, top row) and resulting prior probability distributions for k (bottom row). Horizontal
lines in in bottom row correspond to probability for a uniform distribution over the selected number of components.
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Figure S2. Distribution of equilibrium vapor concentrations C0 (µgm−3) for molecules taken from Rogge et al. (1993) and Rogge et al.
(1998) (“Primary”) and the MCM v3.3.1 database (Jenkin et al., 1997; Saunders et al., 2003) (“Secondary”). Only non-radical molecules with
C0 ≤ 103.5 µgm−3 are used in this study (excluded molecules below this threshold in the “Secondary” category represent radical species).
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Figure S3. Number of molecular structures associated with undetected carbon atoms for all semivolatile compounds selected in Figure S2.
Structures are colored by the elements that they contain. Structure names are described with illustrations in Table 1 of technical note by
Ruggeri and Takahama (2016).
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Figure S4. Estimates of OM/OC when normalized by mC and αmC. Secondary aerosol species contain many small but highly functional
molecules, but the overall mode of the true OM/OC distribution is 1.96; the mode for primary aerosol species is 1.17.

Table S1. Average number of atoms attached to each type of bond assumed for various types of mixtures. λC,COOH = λC,carbonyl = 1. Table
adapted from Takahama and Ruggeri (2017).

Study Mixture type λC,CH λC,aCOH

Allen et al. (1994) ambient 0.5
Russell (2003) ambient 0.5 1
Reff et al. (2007) indoor/ambient 0.48
Chhabra et al. (2011) α-pinene SOA 0.63 0.63

guaiacol SOA 0.88 0.88
Russell and co-workers∗ ambient 0.5 0.5
Ruthenburg et al. (2014) ambient 0.5 0
Takahama and Ruggeri (2017)∗∗ α-pinene SOA 0.39–0.5 0.09–0.52

∗reflects assumptions by Russell et al. (2009), Liu et al. (2009), and Day et al. (2010).
∗∗estimated from simulated molecular mixtures.
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S2 Contributions to the log-likelihood

In this section we outline calculations for assessing contribution of individual samples to the likelihood function (eq. 6). Let
r = (y−mC)/σ represent the model residual normalized by the measurement precision. The contribution from a single sample5
to the overall likelihood p(y|θ) =

∏
i∈S fi is given by:

fi =

(
1

2πσ2
i

)1/2

exp

[
−1

2
r2i

]
Isolines of ln(f) (dropping the subscript i) can be generated (Figure S5) for several combinations of σ and r:

lnf =−1

2

[
ln(2π)+ 2ln(σ)+ r2

]
. (S1)

This quantity gives an indication for the magnitude of contribution by individual data point (with uncertainty σ and relative10
deviation r) to the overall log-likelihood. For example, a sample near the detection limit (mC ∼ 3σ0) compared to one at the
limit of quantification (mC ∼ 10σ0) means σ = σ0(1+32κ2)1/2 and σ0(1+102κ2)1/2, respectively, from our heteroscedastic
error model (eq. 7). For identical r, the σ contribution of the higher concentration sample to lnf is ∼80% of the lower one for
a for σ0 = 0.37 µg cm−2 and κ= 0.07 (Section 3.2) but decreases to ∼25% for κ= 0.3.
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Figure S5. Isolines of lnf according to eq. S1.
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S3 Cluster analysis15

Hierarchical cluster analysis (Bishop, 2009; Hastie et al., 2009) is used to categorize samples into spectroscopically similar
groups (Russell et al., 2009; Liu et al., 2009; Ruthenburg et al., 2014). Spectra are first preprocessed by baseline correction
(Kuzmiakova et al., 2016) and wavenumber selection (retaining only regions in the range 3700–2500 cm−1 and 1820–1500
cm−1) to reduce the influence of substrate interference, particle scattering, and (carbon dioxide and water) vapors in the analysis
chamber (Russell et al., 2009). The spectra are then normalized by their respective L2 norms (i.e., Euclidean distances from20
the origin when spectra are represented as vectors) so that they vary by composition rather than absolute absorbance (which
includes the effect of mass loading in addition to composition). Finally, more than 1000 wavenumbers of the normalized spectra
matrix are reduced to 9 dimensions using mean-centered, unscaled principal component analysis. These 9 principal components
are selected from the eigenvalue profile (“scree plot”) and their capability to explain 99% of the variance of the original spectra
matrix. While instrumental noise does not contribute much to the overall signal (Debus et al., 2019), this preprocessing step25
additionally reduces the remaining water vapor contribution to the signal that is visible in spectra with low mass loadings, and
makes distance metrics used for characterizing similarity more meaningful than what can be obtained in higher dimensions of
correlated variables (Domingos, 2012).

The Euclidean distance metric with complete linkage is used for clustering samples based on their principal component
scores. The number of clusters is heuristically selected by examining how the overall variability is reduced within each clus-30
ter (using the within sum-of-squares metric), and how well individual samples are served by the algorithmically-determined
associations (with the Silhouette coefficient) with the creation of each additional cluster (Figure S6). Eleven superclusters are
selected from this procedure, and model parameters θ estimated for each cluster and applied every member within it to predict
FG-OC and FG-OM. As low signal-to-noise ratio samples can adversely affect the operations involving normalized spectra
(i.e., principal component and cluster analyses), 10% of samples with the lowest L2 norms are initially excluded in the proce-35
dure above, but are assigned to the most appropriate cluster through k-nearest neighbor (k-NN) classification in the principal
component space a posteriori for completeness.

This section includes Figures S6– S9.
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Figure S6. Number of samples in each cluster, minimum silhouette coefficient, and within sum-of-squares of each cluster as a function of
the number of clusters formed. Gray points represent individual clusters, and red points and lines are values averaged across clusters.
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Figure S7. Comparisons of relative tracer concentrations. “*” denotes PM2.5-normalized quantities. Normalized values are first
logarithmically-transformed to be approximately symmetric, and then autoscaled (mean-centered and normalized by standard deviation
of the variable for the entire data set). Values greater than zero for a particular cluster indicates that this substance or ratio is enriched in
samples belonging to this cluster, relative to the rest of the samples.
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Figure S8. Composition of clusters.
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Figure S9. Posterior distributions of parameters for each cluster from MCMC (blue histograms) and L-BFGS-B (red lines) compared to prior
distributions (black lines).
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Figure S10. Probability distributions of OM/OC ratios segregated by site type.
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S4 Posterior predictions

After obtaining the posterior parameter distributions, probability distributions and intervals of predictions of the target variable40
y are obtained for model checking (Robert, 2007; Vehtari and Ojanen, 2012; Gelman et al., 2013). The posterior predictive
distribution for new ỹ from spectrum x̃ is given by

p(ỹ|y) =
∫
θ

p(ỹ|θ)p(θ|y)dθ . (S2)

For model checking, ỹ corresponds to replications of the data used for fitting; the integral in eq. S2 can be numerically evaluated
using the values of θ generated from MCMC. The expected value of this posterior distribution corresponds tomC (eq. 5). While45
mC is uniquely determined for a given realization of θ, ε and therefore ỹ varies according to the sample drawn from a normal
distribution characterized with the value of κ2. The posterior predictive distribution is generally symmetric, and the mode or
mean of ỹ can simply be approximated by the mode or mean of the posterior parameter distributions (Figure S11).

More generally, for any scalar-valued property z (e.g., mC or OM/OC) dependent on ψ = θ \ {κ2}, p(z|y) and its cor-
responding central estimate or intervals can also be constructed by transforming the Markov sequence of the parameters:50
{z(ψ[1]),z(ψ[2]), . . . ,z(ψ[n])} (Hoff, 2009). In applying this strategy toward the calculation of OM/OC ratios, we obtain poste-
rior probability distributions for each sample. Due to the nonzero probabilities of several discrete values of kaCOH and kCOOH,
OM/OC estimates can become multimodal when contributions from these oxygenated FGs are substantial (examples shown in
Figure S12). We find that the median or peak of the largest mode of the posterior distribution of OM/OC is well-approximated
by the maximum a posteriori estimate (MAP; Section D) of the parameters (slope and correlation coefficient of 1.0) and so we55
report this value as the single-point estimate of OM/OC for each sample. The span of 95% prediction intervals (representing
uncertainties in sample-specific OM/OC values due to uncertainties in FG-OC model parameters) generally corresponds to
less than 6% the reported OM/OC for most samples, except for clusters 8 and 11 where many samples had interval spans
extending up to 20 and 10% of the value of the mode, respectively. Cluster 8 had larger intervals due to the two noncontiguous
sets of kaCOH with substantial probabilities, leading to separation in the modes of OM/OC. In such instances these samples,60
may benefit from further disaggregation for parameter estimation or incorporation of observations more specific toward the
oxygenated fraction to reduce posterior parameter uncertainties. The high uncertainty in prediction for samples in cluster 11
is due to the small number (N = 8) samples in this cluster, resulting in broad posterior parameter distributions. Hierarchical
Bayesian modeling (Gelman and Hill, 2007) may be beneficial in leveraging relationship of small subgroups of samples to the
greater population to better handle such cases.65
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Figure S11. Comparison of central values of the posterior predictive distribution with predictions from single-point estimates of parameters
obtained from their respective distributions.
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Figure S12. Posterior distributions for OM/OC. Red vertical lines indicate the reported value using MAP estimates of the parameters.
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S5 Spatial and temporal prevalence of cluster types

This section includes Figures S13 and S14.
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Figure S13. Frequency of clusters as fraction of samples at each site and season. “urban-PHOE” refers to Phoenix, AZ, and “urban” refers
to all other urban sites.
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Figure S14. Frequency of clusters as fraction of samples during each year and season for six sites.
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