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Abstract. Satellite cloud detection over snow and ice has
been difficult for passive remote sensing instruments due to
the lack of contrast between clouds and cold/bright surfaces;
cloud mask algorithms often heavily rely on shortwave in-
frared (IR) channels over such surfaces. The Earth Polychro-
matic Imaging Camera (EPIC) on board the Deep Space Cli-
mate Observatory (DSCOVR) does not have infrared chan-
nels, which makes cloud detection over snow and ice surfaces
even more challenging. This study investigates the method-
ology of applying EPIC’s two oxygen absorption band pair
ratios in the A band (764, 780 nm) and B band (688, 680 nm)
for cloud detection over the snow and ice surfaces. We de-
velop a novel elevation and zenith-angle-dependent thresh-
old scheme based on radiative transfer model simulations
that achieves significant improvements over the existing al-
gorithm. When compared against a composite cloud mask
based on geosynchronous Earth orbit (GEO) and low Earth
orbit (LEO) sensors, the positive detection rate over snow
and ice surfaces increased from around 36 % to 65 % while
the false detection rate dropped from 50 % to 10 % for ob-
servations of January 2016 and 2017. The improvement in
July is less substantial due to relatively better performance
in the current algorithm. The new algorithm is applicable for
all snow and ice surfaces including Antarctic, sea ice, high-
latitude snow, and high-altitude glacier regions. This method
is less reliable when clouds are optically thin or below 3 km
because the sensitivity is low in oxygen band ratios for these
cases.

1 Introduction

The Earth Polychromatic Imaging Camera (EPIC) on board
the Deep Space Climate Observatory (DSCOVR) was
launched in 2015. The unique orbit of DSCOVR allows the
EPIC instrument to take continuous measurements of the en-
tire sunlit side of the Earth from the nearly backscattering
direction (scattering angles between 168.5 and 175.5◦) from
the first Lagrangian (L1) point of the Earth–Sun orbit, ap-
proximately 1.5 million kilometers away. The EPIC instru-
ment has 10 narrow spectral channels in the ultraviolet (UV)
and visible/near-infrared (Vis/NIR) (317–780 nm) spectral
range that enable retrieval of atmospheric ozone, cloud, and
surface vegetation information. The focal plane of the EPIC
system is a 2048 pixel× 2048 pixel charge-coupled device
(CCD) array that covers the entire disk with a nadir resolu-
tion of 8 km. However, due to the limited transmission ca-
pacity, all channels except the 443 nm channel are reduced
to 1024×1024 arrays through onboard processing and inter-
polated back to full resolution after being downlinked. The
operation of the instrument and the downlink speed limit the
temporal frequency of measurements to be approximately
once every 1.5 and 2.5 h in boreal winter and summer, re-
spectively. Detailed descriptions of the EPIC instrument can
be found in Herman et al. (2018), Marshak et al. (2018), and
Yang et al. (2019).

The EPIC cloud products, including cloud mask (CM),
cloud effective pressure (CEP), cloud effective height (CEH),
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and cloud optical thickness (COT), are developed with fewer
spectral channels compared with many spectroradiometers
currently on board the polar and geostationary satellites
(Yang et al., 2019). For example, the Moderate-resolution
Imaging Spectroradiometer (MODIS) cloud algorithm uses
simultaneous two-channel retrievals of COT and cloud effec-
tive radius (CER) separately for water and ice clouds, with
the cloud phase predetermined by more spectral tests. Since
EPIC does not have a particle-size-sensitive channel, and has
limited capability to determine the cloud phase, the EPIC
COT retrieval uses a single channel and derives two sets of
COT, one for assumed ice phase and one for assumed liquid
phase, each with fixed CER (Yang et al., 2019; Meyer et al.,
2016). CEP is derived based on two oxygen (O2) band pairs,
each consisting of an absorption and a reference channel. The
A-band absorption channel is centered at 764 nm with a full
width at half maximum (FWHM) of 1.02 nm, and its refer-
ence channel is centered at 780 nm with a FWHM of 1.8 nm.
The B band’s absorption channel is centered at 688 nm with
a FWHM of 0.84 nm, and its reference channel is centered at
680 nm with a FWHM of 1.6 nm (Marshak et al., 2018). The
O2 absorption bands are sensitive to cloud height because
the presence of clouds, especially thick clouds, reduces the
absorbing air mass that light travels through; hence, the ratio
of the absorbing and reference bidirectional reflectance func-
tions (BRFs) becomes larger. Since O2 absorption at 764 nm
is stronger than at 688 nm, the A-band ratio has higher sensi-
tivity than the B-band ratio (Yang et al., 2013).

Satellite cloud detections are usually based on the contrast
between clouds and the underlying Earth surface. Clouds
are generally higher in reflectance and lower in temperature
than the surface, which makes simple threshold approaches
in the visible and infrared window channels effective in cloud
detection (e.g., Saunders and Kriebel, 1988; Rossow and
Garder, 1993; Yang et al., 2007; Ackerman et al., 2010).
However, there are many situations when simple visible and
infrared threshold tests are not able to separate clouds from
surface or from heavy atmospheric aerosols such as dust and
smoke. The contrasts between clouds and surface are weak in
the visible channels when the surface is bright and weak in
the IR channels when the surface temperature is very low or
the cloud is very low in height. Additionally, partially cloudy
pixels due to small-scale cumulus or cloud edges also in-
crease the detection difficulty. The official MODIS CM al-
gorithm uses more than 20 spectral channels to detect clouds
in various situations. In particular, it heavily relies on short-
wave infrared channels at 1.38, 1.6, and 2.1 µm and thermal
channels at 11 and 13.6 µm for cloud detection over snow and
ice (Frey et al., 2008; Ackerman et al., 2010)

The lack of infrared and near-infrared channels in EPIC
makes cloud detection very challenging, especially over
snow and ice surfaces. The current EPIC CM algorithm
adopts a general threshold method, which uses two sets of
spectral tests for each of the three scene types: ocean, land,
and ice/snow (Yang et al., 2019). Over ocean, the 680 and

780 nm channels are used for cloud detection, because clouds
and the sea surface contrast well in both channels. Over land,
because of large variations in surface reflectivity at 680 and
780 nm, these two channels can no longer be used alone for
cloud detection. Instead, the algorithm uses the 388 nm chan-
nel and the A-band reflectivity ratio, i.e.,R764/R780 for cloud
detection. The 388 nm channel is used because of its low re-
flectivity over land surfaces. The A-band ratio is used based
on the same mechanism as the cloud height retrieval because
clouds reduce O2 band absorption by increasing the height
of the effective reflective layer. Thus, the A-band ratio of
a cloudy pixel is expected to be higher than that of a clear
pixel in an otherwise identical situation. The A-band ratio
is selected for use over the land surface because it has higher
sensitivity than the B-band ratio. Over snow- and ice-covered
regions, the O2 A- and B-band ratios are used for cloud de-
tection since the contrast between surface and clouds is small
in the visible and UV channels. Evaluations using the collo-
cated cloud retrievals from other sensors show that the EPIC
CM performs very well in general. The EPIC CM has an
overall 80.2 % accuracy rate and 85.7 % correct cloud de-
tection rate (accuracy and correct cloud detection rate are de-
fined in Sect. 5), but a large discrepancy is found over the
snow- or ice-covered surfaces where the EPIC algorithm sig-
nificantly underestimates cloud fraction, especially over ice-
and snow-covered Antarctica (Yang et al., 2019). One of the
reasons is that the current algorithm uses empirically derived
fixed A-band and B-band ratio thresholds without consider-
ing the photon path changes due to Sun/sensor geometry and
surface elevation.

The current work aims to improve EPIC cloud masking
through a better understanding of the variability of the O2
band ratios under various clear and cloudy conditions over
snow and ice surfaces. Radiative transfer model simulations
and observed reflectance will be examined to derive dynamic
thresholds for the O2 band ratios so that the new algorithm
is applicable to all snow and ice surfaces, i.e., Antarctica,
Greenland, snow in high latitude, and glaciers over high
mountains.

To compute radiation fluxes from EPIC and NISTAR in-
struments on board the DSCOVR satellite (Su et al., 2018,
2020), the Clouds and the Earth’s Radiant Energy System
(CERES) team at the NASA Langley Research Center cre-
ated a composite cloud product from geosynchronous Earth
orbit (GEO) and low Earth orbit (LEO) satellites by project-
ing the GEO/LEO retrievals to the EPIC grid at each EPIC
observing time (Khlopenkov et al., 2017). The procedure
ensures that every EPIC image/pixel has a corresponding
GEO/LEO composite image/pixel with approximately the
same size and observation time. The LEO satellites include
NASA Terra and Aqua MODIS and NOAA AVHRR, while
geosynchronous satellite imagers include the Geostationary
Operational Environmental Satellites (GOES) operated by
NOAA, Meteosat satellites by EUMETSAT, and Multifunc-
tional Transport Satellites (MTSAT) and Himawari-8 satel-
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lites operated by the Japan Meteorological Agency (JMA).
Compared to EPIC, the GEO/LEO sensors are usually bet-
ter equipped for cloud detection over snow and ice. For this
study, the GEO/LEO cloud mask is used as a reference for
EPIC threshold finding and result comparison purposes. The
time differences between the GEO/LEO and the EPIC ob-
servations are included in the product files. To limit uncer-
tainties, we only use pixels where the GEO/LEO and EPIC
observations are within 5 min of each other.

The remainder of the paper is organized as follows: Sect. 2
provides an analytical discussion on the relationship between
the O2 band ratios with the relative air mass and surface el-
evation. Section 3 conducts sensitivity studies through radia-
tive transfer modeling and describes the threshold derivation
procedure using the model simulations. Section 4 describes
the new cloud mask algorithm for the EPIC instrument over
snow and ice. Section 5 reports on the new algorithm vali-
dation. Finally, Sect. 6 provides a brief summary and discus-
sion.

2 An analytical guide with monochromatic radiative
transfer

Oxygen absorption has been applied to remote sensing of
cloud and aerosol extensively (e.g., Grechko et al., 1973; Fis-
cher and Grassl, 1991; Min et al., 2004; Stammes et al., 2008;
Wang et al., 2008; Vasilkov et al., 2008; Ferlay et al., 2010;
Koelemeijer et al., 2001; Yang et al., 2013; Ding et al., 2016;
Richardson et al., 2019). The underlying physics is based
on the well-known gaseous absorption of well-mixed atmo-
spheric O2. Changes in observed radiance in the O2 band
are expected to contain information on how clouds or at-
mospheric aerosols interrupt the normal absorption photon
path and/or provide additional scattering at different verti-
cal levels. The cloud detection using the O2 absorption band
ratios is based on the fact that clouds decrease the photon
path length within the atmosphere. Clouds reduce the oxy-
gen absorption optical thickness while their impact on the
nearby reference channels is negligible. As a result, holding
everything else equal, the BRF ratios between the absorp-
tion and the reference channels are expected to be larger for
cloudy skies than clear skies. In reality, photon paths can be
very complicated: Yang et al. (2013) listed six pathways for
a photon to reach the sensor. To simplify the discussion, we
focus only on completely clear or cloudy cases. To determine
a threshold for separating clear sky and cloudy sky, the first
step is to understand factors that affect the clear-sky O2 band
ratios. The second step is to understand how O2 band ratios
change with the presence of different kinds of clouds. This
step helps determine where thresholds can be drawn between
clear skies and cloudy skies and what kind of sensitivity or
uncertainty can be expected with this method.

The radiances entering the sensor consist of many com-
ponents, including sunlight directly reflected by clouds,

aerosols, and surfaces, as well as Rayleigh scattering through
single- and multiple-scattering processes. Rayleigh optical
thicknesses at the oxygen A- and B-band regions are about
0.02 and 0.04, respectively. Hence, for a clear sky over a
bright surface, we can neglect the contribution of single and
multiple scattering. Thus, the monochromatic BRF at the top
of atmosphere can be related to the column optical depth via
Beer’s law as
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where Rabs and Rref are the BRFs for the oxygen band and
its reference band, respectively. The BRF at the top of the
atmosphere is a product of downward transmittance (T dn),
spectral surface reflection albedo α, and upward transmit-
tance (T up). τ and τray are optical thickness values due to O2
absorption and Rayleigh scattering at nadir, respectively, and
are functions of surface elevation Z. m is the total air mass
accounting for the slant path for both incoming (T dn) and
reflected light (T up). The absorption channels are subject to
both absorption and Rayleigh scattering, while the reference
channels only incur Rayleigh scattering. The ratio of Rabs
and Rref led to the cancellation of Rayleigh scattering and
surface albedo since the two channels are very close, such
that
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)
= e−τ(z)×m. (4)

The absorption optical thickness at a given location decreases
exponentially with surface elevation following the approxi-
mate relationship in Eq. (5) (Petty, 2006):
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Here H is the scale height; and Ka, w1, and ρ0 are the mass
absorption coefficient, mixing ratio of oxygen, and density
of air at sea level, respectively. c =Kaw1ρ0H and can be as-
sumed constant for our problem. To relate the O2 band ratios
directly to surface elevation and zenith angles in two separate
terms, we take a double logarithm on both sides of Eq. (4)
and substitute τ with Eq. (5), which leads to
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Here db ln refers to the double logarithm, and the minus sign
before the second logarithm function is added to avoid neg-
ative values. Equation (8) decouples the effect of elevation
and zenith angles in db ln

(
Rabs
Rref

)
, which allows estimation of

coefficients in Eq. (8) with simple multivariate linear regres-
sion using two independent terms, Z and ln m:

db ln
(
Rabs

Rref

)
≈ c0+ c1Z+ c2 lnm. (9)

Here c0, c1, and c2 will be regression coefficients and can be
used to predict the expected db ln

(
Rabs
Rref

)
. Once db ln

(
Rabs
Rref

)
is solved, the O2 band ratios can be derived with Eq. (10):
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(
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(
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)))
. (10)

The above derivation shows that the clear-sky O2 band ra-
tios can be analytically predicted using surface elevation and
zenith angles. Of course, many approximations have been
used, such as the cancellation of Rayleigh extinction and
surface BRF for the pair channels and constant absorption
scale height. Due to large surface albedo, contributions of
Rayleigh scattering are also neglected. The contribution of
Rayleigh scattering in the reflectance is about 0.01–0.02, and
this may cause an uncertainty of 1 % to 2 % in the band ratio
for bright surfaces. In cases of dark surfaces such as oceans,
the surface albedo is so small (∼ 0.05) that the Rayleigh
scattering starts to dominate the observed reflectance, and
the simple equations derived here will result in a large bias.
However, with relatively large albedos (around 0.8), our sen-
sitivity studies find the ratios relatively stable, even though
the single-channel reflectances change in proportion to the
surface albedo. The coefficients in Eq. (9) can be derived
from either radiative transfer model simulations or real ob-
servational data from EPIC using multivariate least squares
fitting. The advantage of the former is the exact knowledge
of the model’s atmosphere and clear or cloudy conditions.
Conversely, its disadvantage is a limited number of atmo-
spheric profiles and sometimes simplistic or even unrealistic
cloud input to the model. The advantage of using observa-
tional data is the abundant radiance measurements that could
be used as a training dataset, while the disadvantage is the
limited knowledge of atmospheric profiles and uncertainties
in clear-pixel identification. A common practice for develop-
ing a cloud mask algorithm is to use retrievals of simultane-
ous measurements from other better-equipped instruments or
ground observations as the truth. Exact same-time overpass
is quite rare even with the vast data volume from the polar-
orbiting satellites such as Terra and Aqua, and cloud detec-
tion over snow and ice from instruments such as MODIS is
itself subject to large uncertainty. This could lead to some
false cloud/clear identification in the training dataset and bias
the results. Based on the above reasoning, we first derive the
O2 band ratio thresholds with both model simulations and

observations and then determine which set of coefficients is
better suited for the EPIC cloud mask algorithm.

3 Radiative transfer simulations

3.1 Model setup

We used a radiative transfer simulator for EPIC (Gao et al.,
2019) to generate the A-band and B-band reflectances over
snow and ice surfaces. The EPIC simulator is built upon a
radiative transfer model (Zhai et al., 2009, 2010) that solves
multiple scattering of monochromatic light in the atmosphere
and surface systems. Gas absorptions due to ozone, oxygen,
water vapor, nitrogen dioxide, methane, and carbon diox-
ide are incorporated in all EPIC bands. The gas absorp-
tion cross sections are computed from the HITRAN line
database (Rothman et al., 2013) using the Atmospheric Ra-
diative Transfer Simulator (ARTS) (Buehler et al., 2011).
Line broadening caused by pressure and line absorption pa-
rameters’ dependences on temperature are considered. In the
O2 A and B bands, radiances from line-by-line radiative
transfer simulations are convolved with EPIC filter transmis-
sion functions. The model atmosphere assumes a one-layer
cloud with a molecular layer both above and beneath. The O2
absorption within clouds is considered by assuming a fixed
O2 molecule vertical profile (US standard or other specified
atmospheres).

For clear-sky simulations, four atmospheric vertical pro-
files distributed with FASCODE (Chetwynd et al., 1994),
originally from the Intercomparison of Radiation Codes in
Climate Models (ICRCCM) project (Barker et al., 2003),
are used: 1976 US standard atmosphere, midlatitude winter,
subarctic summer, and subarctic winter atmospheres. Surface
albedo values used in the simulations are 0.6, 0.8, and 1.0 to
represent snow or ice surface. The snow albedo varies from
0.5 to 0.9 depending on snow age, grain size, purity, and Sun
angle (Warren, 1982), while ice albedo varies between 0.5
and 0.7. The daily mean snow albedo over Antarctica is gen-
erally over 0.8 (Pirazzini, 2004).

For cloudy-sky cases, simulations for both water and ice
clouds are conducted since both phases are found over the
polar regions (e.g., Cesana et al., 2012; Zhao and Wang,
2010). For water clouds, a gamma size distribution with ef-
fective radius of 10 µm and an effective variance of 0.1 is
assumed; for ice clouds, a fixed particle size (30 µm) with a
particle shape of the severely roughened aggregate of hexag-
onal columns is assumed (Yang et al., 2013). The cloud layer
has varied optical thickness ranging from 0.2 to 30 and cloud
top height (CTOP) from 1.0 to 15 km above the ground. The
cloud geometrical thickness (CGT) varies from 0.5 to 4 km.

The model simulates a variety of cases with 17 solar zenith
angles (SZAs) ranging from 0 to 80◦, 18 view zenith an-
gles (VZAs) from 0 to 85◦, and 37 relative azimuth angles
(RAZMs) from 0 to 180◦, all with an increment of 5◦. In
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Table 1. Parameter setup in radiative transfer model simulations.

Clear-sky simulations Atmospheric profiles Standard US 1976; midlatitude winter; subarctic
summer; subarctic winter

Solar zenith angles 0–80◦, every 5◦

View zenith angles 0–75◦, every 5◦

Relative azimuth angles 0–180◦, every 5◦

Surface elevation 0.0, 2.5, 5.0, 7.5 km
Surface albedo 0.8, 0.6, 1.0

Cloudy-sky simulations Atmospheric profiles Standard US 1976
Solar zenith angles 0–80◦, every 5◦ (30, 60◦ for surface elevation

= 2.5 km and surface albedo = 0.6)
View zenith angles 0–75◦, every 5◦

Relative azimuth angles 0–180◦, every 5◦

Surface elevation 0, 2.5 km
Cloud top height 1.00, 3.00, 5.00, 7.50, 10.00, 12.50, 15.00 km
Cloud geometric thickness 0.50, 1.00, 2.00, 4.00 km
Cloud optical thickness 0.22, 0.82, 1.72, 3.06, 5.05, 8.03, 12.46, 19.09, 28.96
Surface albedo 0.8, 0.6

Table 2. Regression coefficients for Eq. (9) and multiple correlation coefficients (Rmulti) derived from model-simulated data and observa-
tions, respectively.

A band B band

c0 c1 c2 Rmulti c0 c1 c2 Rmulti

Simulations −0.3100 −0.1341 0.5202 0.998 −1.0201 −0.1361 0.4888 0.999
Observations −0.1764 −0.1152 0.4542 0.958 −0.8672 −0.1185 0.3995 0.934

addition to the varying Sun-sensor geometry, the reflecting
surface elevation is set from 0 to 7.5 km with a 2.5 km incre-
ment for the clear-sky sensitivity tests, while the cloudy-sky
simulations are performed at sea level and 2.5 km above sea
level. See Table 1 for a complete list of the model parameters.

3.2 Clear-sky simulations

We first examine whether the clear-sky radiative transfer sim-
ulations are consistent with the simplified relationship be-
tween the O2 band ratios and surface elevation and total
air mass at typical surface albedo of 0.8 as discussed above
(Eq. 9). A direct inspection of O2 band ratios at a fixed view
zenith angle and relative azimuth angles with surface eleva-
tion indicates a nearly linear relationship between the two
(Fig. 1a, b). The relationship depends on the solar zenith an-
gle. At a higher solar zenith angle, not only are the ratios
lower at all surface elevations but also the rate of change with
height ( ∂r

∂Z
) is larger. However, the same relationship can be

expressed as a quasi-linear relationship between Z and the
double logarithm of O2 band ratios at fixed zenith angles as
indicated by Eq. (9) (Fig. 1c, d).

The variation of O2 band ratios with solar zenith angles
has been discussed in previous works (Fischer and Grassl,
1991; Wang et al., 2008; Yang et al., 2013; Gao et al., 2019).

Here we show a more quantitative dependence of O2 band
ratios as a function of the total relative air mass (m) de-
fined in Eq. (3) at fixed surface elevation (sea level in this
case, Fig. 1e, f). The inverse relationship of O2 band ratios
with m is evident. Although EPIC is positioned close to the
backscattering direction, there is a small difference in θs and
θv , generally smaller than 6◦. The red dots show the simula-
tions when the difference between θs and θv is smaller than
6◦ to mimic the EPIC Sun–view geometry. The relationship
derived from samples with restricted view zenith angles is
not much different from that of all samples. Figure 1g–h fur-
ther project this relationship as the logarithm of m versus
double logarithm of O2 band ratios as shown in Eq. (9). We
notice that the linear relationship holds very well except for
very large relative air mass (ln (m) > 2.5, which corresponds
to zenith angles > 80◦).

To account for both elevation and zenith angle effect,
a multivariate least squares regression is applied in which
Z and ln (m) are taken as two independent terms and
db ln

(
Rabs
Rref

)
is the dependent variable for the simulations, as

suggested in Eq. (9), with the sample restricted to a zenith
angle difference of below 6◦. The results indicate high confi-
dence of the fitting, with multicorrelation coefficients reach-
ing 0.998 for both A-band and B-band simulations (Fig. 1i,
j). The coefficients c0, c1, and c2 are listed in Table 2. The
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Figure 1. Relationships between model simulations of clear-sky A-
band (left column) and B-band (right column) ratios with surface
elevation and relative air mass. (a, b) O2 band ratios as a function of
surface elevation; (c, d) double logarithm of O2 band ratios versus
surface elevation; (e, f) O2 band ratios as a function of total relative
air mass; (g, h) double logarithm of O2 band ratios versus logarithm
of total relative air mass; (i, j) scatter plot of fitted thresholds and
O2 band ratios. The red points in panels (e)–(j) show the simulations
when the difference between θs and θv is smaller than 6◦ to mimic
the EPIC Sun–view geometry. The fitted thresholds are computed
with a multivariable linear regression in which double logarithms
of O2 band ratios are expressed as a function of surface elevation
and logarithm of total relative air mass. The simulations use four at-
mospheric profiles: midlatitude winter, subarctic summer, subarctic
winter, and standard US atmosphere. Surface albedo is set at 0.8 to
represent snow and ice surface.

set of regression coefficients derived from simulations at sur-
face albedo equal to 0.8 also predict very well the A-band
ratios from simulations using different surface albedos (0.6
and 1.0) (Fig. 2a), with obvious divergence occurring only at
large zenith angles (> 80◦) where no retrieval is performed
for EPIC (Fig. 2b).

Table 2 also lists the set of coefficients derived from ob-
servations utilizing information from collocated GEO/LEO
pixels. Details will be discussed in Sect. 4.

Figure 2. Scatter plot of model-simulated A-band ratios (y axis) at
surface albedo = 0.6 (blue), 0.8 (black), and 1.0 (red) versus com-
puted with regression derived with the set of simulations at surface
albedo = 0.8 (x axis) for (a) view zenith angles < 75◦ and (b) all
view zenith angles. Absolute solar zenith angle and view zenith an-
gle differences are smaller than 6◦ for both plots. The results are
from simulations using standard US atmosphere.

3.3 Cloudy-sky simulations

The coefficients in Table 2 can be applied to Eq. (9) to com-
pute expected clear-sky band ratios. In order to test the feasi-
bility of using the derived clear-sky band ratios as the thresh-
olds for clear- and cloudy-pixel separation, we first evaluate
the sensitivity of O2 band ratios to cloud properties. This is
done by adding clouds with different optical thickness, cloud
top height, and geometric thickness in the radiative transfer
simulations and then comparing the O2 band ratios of cloudy
sky with those of clear sky under the same Sun–view geom-
etry. The results from solar and view zenith angles of 30 and
60◦ and relative azimuth angle of 160◦ are shown in Fig. 3,
with the corresponding clear-sky values shown as the filled
and open triangles, respectively. We notice that the O2 band
ratios generally increase with the optical thickness and are
higher for cloudy skies than for clear skies but with cer-
tain exceptions. At low zenith angles (< 30◦), we find very
low sensitivity of O2 band ratios with cloud optical thickness
when cloud top height is 1 km (Fig. 3a, b). Likewise, the sen-
sitivity to cloud top height is very low at low optical thickness
(τ = 1.7) for the A band (Fig. 3c). For the B band, the O2 ra-
tios decrease with cloud top height up to 5 km before increas-
ing again at τ = 1.7 (Fig. 3d). Note that these figures show
that adding a layer of optically thin cloud (COT < 3) actu-
ally decreases the ratio at 30◦ zenith angle. The reason is that
under this circumstance the reflectance of the reference chan-
nel increases more than the absorption channel, which indi-
cates an increase in the photon path. The causes of the photon
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Figure 3. Model-simulated oxygen band ratios as a function of cloud optical thickness (COT) with cloud top height (CTOP) at 1.0 km
(black), 3.0 km (blue) and 5.0 km (red) and solar zenith angles at 30◦ (solid line) and 60◦ (dotted lines), respectively for the (a) A band and
(b) B band. Cloud geometric thickness is 1 km. Oxygen band ratios at solar zenith angle 30◦ as a function of CTOP with CGT of 0.5 km
(black), 1.0 km (blue), and 2.0 km (red) as well as COT of 1.7 (solid) and 5.0 (dotted line) for the (c) A band and (d) B band, respectively.
View zenith angle is the same as the solar zenith angle and relative azimuth angle is 160◦ for all the simulations. The clear-sky simulations
are marked with filled and unfilled triangles for solar and view zenith angles at 30 and 60◦, respectively. Both clear-sky and cloudy-sky
simulations use standard US atmosphere and zero ground elevation. Surface albedo is set at 0.8 to represent snow and ice surface.

path increase include multiple scattering inside the cloud and
surface–cloud interaction. The strong surface–cloud interac-
tion over the bright surface of snow and ice partly contributes
to the low sensitivity of O2 band ratios for the low and thin
clouds compared with relatively darker surfaces (further il-
lustrated in Fig. 4). The sensitivity of O2 band ratios to cloud
optical thickness and height increases with solar and view
zenith angles, as can be seen from the SZA = VZA = 60◦

curves.
As the cloud mask only works when cloudy-sky O2 band

ratios are greater than the clear-sky ratios, the difference be-
tween the two at low zenith angles (VZA = SZA = 30◦) is
shown as a function of two major factors: COT and CTOP
for the A band and B band at surface albedo equal to 0.8,
cloud geometric thickness of 1 km, and sea level conditions
(Fig. 4a, b), along with their sensitivities with altered ge-
ometric thickness (Fig. 4c, d), surface albedo (Fig. 4e, f),
and surface elevation (Fig. 4g, h). If a difference larger
than 0.01 is required to confidently detect cloud, the cases
at the lower left side of each figure, which correspond to
low COT and CTOP, will present difficulty in cloud detec-
tion. Smaller cloud geometric height (Fig. 4c, d) and sur-

face albedo (Fig. 4e, f) tend to increase the sensitivity, while
higher surface elevation (Fig. 4g, h) tends to decrease the
sensitivity as compared to the cases in Fig. 4a and b for the
A band and B band, respectively. These results show that the
O2 band ratios can be used to detect clouds that are thick
and/or high with much confidence over snow and ice sur-
faces. Difficulties still exist in detecting thin clouds or low
clouds at low zenith angles (< 30◦). Note that the A band has
better sensitivity than the B band, as expected. It should be
pointed out that, for most of the cases, the solar zenith angles
are larger than 30◦ since snow and ice are present mainly in
regions of high latitudes.

4 EPIC cloud mask over snow and ice surfaces

The regression results from Eq. (9) can be used as the thresh-
olds for cloud detection. As discussed in Sect. 2, we can de-
rive the thresholds using either radiative transfer simulations
or satellite observations. The previous section discussed the
path of using modeling results; here we attempt to derive the
thresholds based on the real EPIC data.
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Figure 4. The difference of O2 band ratios (cloudy sky – clear
sky) as a function of COT and CTOP at SZA = VZA = 30◦,
RAZM= 160◦ at (a, b) surface albedo (ALB)= 0.8, surface height
(SHT) = 0 km (sea level), and cloud geometric thickness (CGT) =
1 km; the rest are the same as (a, b) but with the change of one
parameter for (c, d) CGT = 0.5 km, (e, f) ALB = 0.6, and (g,
h) SHT = 2.5 km. The right panels are for the A band and the left
panels are for the B band.

For this purpose, the Langley GEO/LEO composite cloud
product (Khlopenkov et al., 2017) and EPIC L1B data from
January and July 2017 are used as the training dataset, and
data from January and July 2016 are used for validation.
The cloud retrievals in the composite data follows Minnis et
al. (2011). Because of EPIC’s large pixel size, one EPIC pixel
corresponds to many GEO/LEO pixels each with its own
cloud mask and optical properties retrievals; hence a com-

posite pixel reports a cloud fraction based on cloud masks
of the GEO/LEO pixels within it. It should be noted that
cloud detections over snow and ice surfaces from instru-
ments on GEO/LEO satellites are difficult as well. For ex-
ample, the AVHRR-based cloud fraction was found to be ba-
sically unbiased over most of the globe except over the po-
lar regions where a considerable underestimation of cloudi-
ness could be seen during the polar winter when compared
with cloud information from the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) on board the CALIPSO
satellite. The overall probability of detecting clouds in the
polar winter could be as low as 50 % over the highest and
coldest parts of Greenland and Antarctica, with a large frac-
tion of optically thick clouds remaining undetected (Karlsson
et al., 2018). Wang et al. (2016) shows MODIS from Terra
and Aqua misidentifies cloud as clear as high as 20 % over
snow-covered or sea ice regions in Antarctica. They show
that misidentification of clear as cloud also occurs quite fre-
quently in eastern Antarctica during boreal spring and fall.
Over snow-covered high mountains over the Tibetan Plateau,
a recent study by Shang et al. (2018) found the cloud detec-
tion rate to be 73.55 % and 80.15 % for the Advanced Hi-
mawari Imager (AHI) and MODIS, respectively. All these
studies use the CALIOP cloud detection as ground truth and
highlight the large uncertainties in cloud detection from pas-
sive radiometers over snow and ice surfaces and over high
mountain areas.

Keeping these in mind, we use the GEO/LEO composite
cloud product as the training and validation dataset because
of its pole-to-pole coverage and availability. The cloud frac-
tion and surface scene types from the composite dataset are
used to select the clear pixels (100 % clear) over snow and
ice surfaces (when 90 % of the scene type is permanent snow
or ice, seasonal snow, or ice over water). Surface type is re-
ported in the Langley GEO/LEO dataset, which is based on
the IGBP surface type dataset and the Near-real-time Ice and
Snow Extent (NISE) dataset from the National Snow and Ice
Data Center (NSIDC) (Brodzik and Stewart, 2016). To re-
duce the uncertainties, we further restrict the difference be-
tween the GEO/LEO and the EPIC to be within 5 min. We
also restrict the analysis on pixels with view zenith angle
less than 80◦. The surface elevation data are from the Na-
tional Geophysical Data Center (NGDC) TerrainBase global
digital terrain model (DTM), version 1.0 (Row and Hastings,
1994).

The same type of multivariate least squares regression is
performed for the clear-sky pixels using the elevation and
logarithm of total relative air mass as independent variables
and the double logarithm of the O2 band ratios as the depen-
dent variables as suggested by Eq. (9). The derived regression
coefficients (Table 2) are quite close to those derived from
the model simulations with slightly larger scatter (Fig. 5a,
b). One major source of uncertainty may come from the
GEO/LEO cloud identification. As mentioned above, cloud
detection over snow and ice surfaces is very challenging even

Atmos. Meas. Tech., 13, 1575–1591, 2020 www.atmos-meas-tech.net/13/1575/2020/



Y. Zhou et al.: Cloud Detection over Snow and Ice 1583

Figure 5. Scatter plot of regression fit versus A-band (a, c) and B-band (b, d) ratios for clear-sky (a, b) and cloudy-sky (c, d) pixels from
EPIC measurements over global snow and ice surfaces in January and July 2017. The regression is derived with clear-sky oxygen band ratio
as a function of surface elevation and air mass. The pixels on the left (b, d) side of black lines could be identified as cloudy (clear) as the
observed ratio is larger (smaller) than the predicted threshold. The dashed lines (increase the predicted ratios by 0.025) provide better division
of clear and cloudy pixels.

Table 3. The logic table for combining the cloud mask results from
the A- and B-band tests. Acronyms: CldHC, cloud with high confi-
dence; CldLC, cloud with low confidence; ClrHC, clear with high
confidence; ClrLC, clear with low confidence.

A-band test

CldHC CldLC ClrLC ClrHC

B-band test CldHC CldHC CldLC CldLC CldLC
CldLC CldLC CldLC CldLC ClrLC
ClrLC CldLC CldLC ClrLC ClrLC
ClrHC CldLC ClrLC ClrLC ClrHC

for GEO/LEO satellites with more spectral channels. Cloud
contaminated pixels might have lower or higher O2 band ra-
tios than the clear-sky values depending on the optical thick-
ness of the cloud and the Sun–view geometry (Fig. 3). Other
sources of uncertainties, such as geolocation, surface eleva-
tion, and atmospheric profile, can also contribute to the larger
scatter in the observational data.

Obviously, the clear-sky thresholds predicted from obser-
vational data must be adjusted to provide a better overall
performance since the regression model is designed to pre-
dict the mean rather than the upper bound of clear-sky band
ratios. The same regression coefficients applied to cloudy-
sky samples indicate many overlapping of O2 band ratios

from clear-sky and cloudy-sky pixels (Fig. 5c, d). A threshold
value that is too high will guarantee the clear-sky identifica-
tion but underestimate cloudy pixels, and a value that is too
low will lead to overestimation of cloudy pixels. To achieve
the best overall clear-sky and cloudy-sky performance, i.e.,
a balanced correct detection rate and false detection rate as
discussed in Sect. 5, we set the threshold value by increasing
the ratios derived from Eq. (10) by 0.025 so that the cloud
mask threshold is close to the upper quantile of the clear-sky
values (dashed red line in Fig. 5c and d).

Results show that using the set of coefficients derived from
the model simulations captures most of the clear-sky sam-
ples without being adjusted (figures not shown). We found
that, even though the thresholds derived from the observa-
tional data perform slightly better when applied back to the
same training dataset, they underperform the model-derived
algorithm when applied to a different data period (January
and July 2016). One likely reason is that the cloud identifi-
cation in the observational training dataset has its own non-
negligible uncertainties. These uncertainties will not affect
the performance in the training dataset but affect the algo-
rithm performance in a different data period. For this pur-
pose, we adopt the algorithm derived from the model simu-
lations for the rest of this paper.

Following the current EPIC cloud mask algorithm, we also
set an upper and a lower threshold that is 0.02 above or below
the model-predicted threshold (RT0). A cloud mask (CM)
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Figure 6. Section of an EPIC granule on 23 December 2017, 17:07 UTC time, with matching GEO/LEO overpass within 5 min of the EPIC
scan over western Antarctica. (a) A-band ratio, (b) B-band ratio, (c) cloud fraction from the GEO/LEO composite, and (d) cloud mask from
the new algorithm.

confidence level is determined for each pair of the O2 band
ratios based on whether the ratios fall between these inter-
vals/thresholds:

CM=


4 Ratio> RT0+ 0.02; CldHC

3 RT0 < Ratio < RT0+ 0.02; CldLC
2 RT0− 0.02< Ratio< RT0; ClrLC

1 Ratio< RT0− 0.02; ClrHC

 .
Here, CldHC, CldLC, ClrHC, and ClrLC refer to cloud with
high confidence, cloud with low confidence, clear with high
confidence, and clear with low confidence, respectively. The
final confidence level is determined by combing the two re-
sults from the A- and B-band tests according to Table 3. Note
that we only define high confidence cloud (CldHC) or high
confidence clear (ClrHC) when both tests show cloud or clear
with high confidence.

An illustration of EPIC O2 band ratios and the derived
cloud mask over the Antarctic on 23 December 2017 is
shown in Fig. 6, along with cloud fraction derived from the
GEO/LEO composite. In this figure, the A-band and B-band
ratios show not only the presence of clouds but also the ef-
fect of elevation, as the low values over the Ross Ice Shelf are
clearly influenced by the low elevation in that area. The new
cloud mask detects the majority of the cloud area, but some
portion of clouds over this region is missing. This could be
because the clouds in this scene over the Ross Ice Shelf are
low.

5 Algorithm validation

Using the thresholds from radiative transfer simulations, we
reprocessed the EPIC cloud mask over snow and ice surfaces

Atmos. Meas. Tech., 13, 1575–1591, 2020 www.atmos-meas-tech.net/13/1575/2020/



Y. Zhou et al.: Cloud Detection over Snow and Ice 1585

Figure 7. Percentage of pixels in each pixel-by-pixel matchup category between cloud mask from EPIC and GEO/LEO composite cloud
fraction over snow and ice surfaces for January 2016 (a, b), January 2017 (c, d), and July 2017 (e, f). Panels (a, c, e) are from the current EPIC
cloud mask algorithm, and panels (b, d, f) are from the new algorithm. The diagonal squares represent agreement between the GEO/LEO
and EPIC cloud mask, while the off-diagonal squares represent disagreement between the two products. The number of samples, accuracy,
probability of correct detection (POCD), and probability of false detection (POFD) are shown in the white area on top of each figure.
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Figure 8. Cloud fractions derived from (a) composite GEO/LEO retrievals, (b) original EPIC cloud mask, and (c) new EPIC cloud mask
over Antarctica in January 2017.

Figure 9. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from the (b) GEO/LEO composites, (c) original EPIC
cloud mask algorithm, and (d) new algorithm in 1◦× 1◦ grids for January 2016.

for all the collocated pixels in three months: January 2016,
January 2017, and July 2017.

We divide the GEO/LEO cloud fraction into four cate-
gories to match with the CM in EPIC:

GEO/LEO CM=


4 : cloud fraction ≥ 95%

3 : 50%≤ cloud fraction< 95%
2 : 5%≤ cloud fraction< 50%

1 : cloud fraction< 5%

 .
Figure 7 shows the 4× 4 fusion matrixes of the EPIC
cloud mask with the GEO/LEO cloud fraction for the three
months. The diagonal squares represent agreement between

the GEO/LEO and EPIC cloud masks, while the off-diagonal
squares represent disagreement between the two products.
For January 2016 and 2017, we notice that the original al-
gorithm has a high percentage of pixels in the bottom-left
corner (clear–clear) category, but there is a large percent-
age of GEO/LEO cloudy pixels in the > 95 % category miss-
identified by EPIC as clear (cloud mask = 1). There are also
a considerable amount of pixels in the low GEO/LEO cloud
fraction category (< 5 %) being classified as cloudy (CM =
3,4). Improvement is evident for the new algorithm, where
percentages of pixels in clear–clear (< 5 % and CM = 1) and
cloudy–cloudy (> 95 % and CM = 4) are significantly in-
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creased. The changes in July 2017 are less obvious, as the
original algorithm already captures large percentage of pix-
els in clear–clear and cloudy–cloudy categories.

To quantitatively measure the performance of the cloud
masking algorithms, we further define a binary partition
of negative (CM = 1, 2, or cloud fraction < 5 % and 5 %–
50 %) and positive (CM = 3,4, or cloud fraction 50 %–
95 % and > 95 %) cloud identification for both EPIC and
GEO/LEO, which results in four total combinations. Suc-
cessful retrievals consist of TP (true positive) and TN (true
negative) cases, in which both algorithms identify the pixel
as cloudy and clear, respectively, and unsuccessful retrievals
consist of FN (false negative) and FP (false positive) – where
EPIC identifies a pixel as clear and cloudy, respectively, op-
posite to the GEO/LEO cloud mask. Assuming GEO/LEO’s
retrievals are the “truth”, a number of parameters as a mea-
sure of EPIC’s CM accuracy are computed:

Accuracy=
TP+TN

TP+TN+FN+FP
, (11)

POCD=
TP

TP+FN
, (12)

POFD=
FP

TN+FP
. (13)

Here POCD and POFD are the probability of correct detec-
tion and probability of false detection, respectively. For Jan-
uary 2016 and 2017, compared to the current product, the ac-
curacies have been improved considerably from 57 %–60 %
to around 83 %. The POCD is nearly doubled (from 36 %
to 64 %–67 %) with a significant reduction of POFD (a drop
from around 50 % to 10 %). The original algorithm performs
relatively well in July 2017, with a probability of correct de-
tection (POCD) of 77.5 % and a low probability of false de-
tection (POFD) of 16.5 %; hence the improvement for this
month is relatively small.

Figure 8 shows the cloud fraction on a 1◦×1◦ grid for Jan-
uary 2017 over snow- and ice-covered Antarctica. Note that
here we lift the 5 min time difference limitation and use all
available pixels with view zenith angles less than 75◦ from
the GEO/LEO composites (Khlopenkov et al., 2017) in or-
der to have a full coverage of the region. The cloud frac-
tion map from GEO/LEO shows a belt of high cloud frac-
tion originated from the midlatitude storm track reaching the
edge of the continent. Onto the icy plateau of East Antarc-
tica, cloud fraction quickly decreases. High cloud fraction
is found over West Antarctica. The cloud fraction from the
original algorithm shows quite an opposite cloud distribution
pattern between West and East Antarctica. This is likely due
to the fixed threshold that is too low for the high elevation
in East Antarctica and too high for the low elevation in West
Antarctica. By taking the elevation into account, the new al-
gorithm identifies the regional cloud distribution much better.
In addition, the new algorithm also has a better cloud fraction
match around the edge of the Antarctic continent.

To examine the performance of the new algorithm on the
global scale, we plotted the gridded cloud fraction over snow
and ice surfaces for the entire globe in January 2016 (Fig. 9).
The number of snow/ice pixels used for the map is also
shown, because sample numbers affect the quality of the
monthly mean. We notice that the number of snow/ice pix-
els per grid is much higher in January over Antarctica. There
are also considerable amounts of snow/ice pixels in Northern
Hemisphere high-latitude regions and the southern tip of the
Andes. There is no retrieval north of 50◦ N due to no daylight
or view zenith angle too large in January (DSCOVR only has
observations for the daytime Earth). Comparisons show that
the new algorithm improves cloud distributions noticeably.

Figure 10 shows a similar map but for July 2017. Dur-
ing the boreal summer, the cloud mask algorithm has re-
trievals over the entire Northern Hemisphere but not for the
part of Antarctica south of 65◦ S due to the polar night.
The GEO/LEO cloud fraction map indicates cloud fraction
> 80 % over snow and ice surfaces over most of the regions in
July except over Greenland. The original algorithm has sim-
ilar cloud fraction in most areas over snow and ice surfaces,
except over southeast Greenland, where it has significantly
more cloud than the other parts of Greenland. This is likely
due to the original algorithm’s failure to take into consider-
ation the high elevation there. On the other hand, the under-
estimation of cloud fraction at the southern tip of the Andes
could be due to its failure to take into account the large solar
and view zenith angles in summer. The new algorithm detects
a significantly lower amount of cloud fraction in Greenland
and improves the cloud detection in the aforementioned high
mountain areas.

Even though the new cloud mask has improved the accu-
racy and general distribution compared with the GEO/LEO
retrievals, regional differences between the two can still be
quite large. This is partly due to the large uncertainty of cloud
detection from GEO/LEO over snow/ice itself and partly due
to the intrinsic difficulty of using O2 band ratios in detecting
the low cloud and thin cloud as discussed before. In addi-
tion, the time difference between EPIC and GEO/LEO ob-
servations can also impact the comparison between the two.
Stratifying the performance based on difference in the obser-
vation time, we find a larger difference in the observing time
leads to slightly lower POCD, higher POFD, and an overall
decreasing accuracy (Fig. 11).

6 Summary and discussion

Due to limited spectral channels, especially the lack of in-
frared and near-infrared channels in the DSCOVR EPIC in-
strument, cloud detection for EPIC over snow and ice poses
a great challenge. The existing EPIC cloud mask algorithm
employs two oxygen pair ratios in the A band (764, 780 nm)
and B band (688, 680 nm) for cloud detection over the snow
and ice surfaces. This method is based on the mechanism that
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Figure 10. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from (b) GEO/LEO composites, (c) original EPIC cloud
mask algorithm, and (d) new algorithm in 1◦× 1◦ grids for July 2017.

Figure 11. Performance metrics for January 2017 as a function of
time difference between EPIC and GEO/LEO instrument measure-
ments. POCD: probability of correct detection; POFD: probability
of false detection.

photons reflected by clouds above the surface will travel, on
average, a shorter distance through the atmosphere and so ex-
perience less absorption by O2; hence a threshold can be set
to separate cloudy pixels from clear pixels. However, clear-
sky O2 band ratios depend on a number of factors such as
surface elevation and Sun–view geometry that impact the to-
tal absorption air mass; these factors need to be accounted
for.

In this study, we use both the radiative transfer theory
and model simulations to quantify the relationship between
the O2 band ratios with surface elevation and zenith angles.

Thresholds are derived as a function of surface elevation and
Sun–view geometry based on both model simulation results
and observations. The model-derived algorithm is chosen be-
cause it performs better when applied to the observations
that were not used in the training dataset. The new algo-
rithm increases the accuracy of the EPIC cloud mask over
snow and ice surfaces in winter by more than 20 %. This is
achieved through a significant reduction of the false detection
rate from 50 % to 10 % and through nearly doubling the cor-
rect detection rate (from 36 % to 64 %–67 %). The improve-
ment in July is mild, with the main improvement observed
over Greenland. Of course, these performance metrics are
based on comparison with GEO/LEO cloud mask, which has
quite a large uncertainty over snow and ice surfaces itself. In
addition to significant improvement in cloud detection over
Antarctica, the new algorithm also improves cloud detection
over Greenland and some midlatitude high mountain areas.

Limitations of this method include difficulties in identify-
ing thin clouds with optical thickness less than 3 or low cloud
below 3 km due to the lack of sensitivity in O2 band ratios un-
der these circumstances. Compared with the infrared-based
techniques, one advantage of this oxygen band technique is
that it is relatively insensitive to the surface and atmosphere
temperature. Therefore, the method presented in this work
provides a solution to polar cloud detection when infrared
channels are not available or struggle to distinguish between
cloudy and clear scenes. We anticipate that cloud detection

Atmos. Meas. Tech., 13, 1575–1591, 2020 www.atmos-meas-tech.net/13/1575/2020/



Y. Zhou et al.: Cloud Detection over Snow and Ice 1589

using the oxygen band technique will be of great value in
future missions.
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