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Abstract. Sudden wind direction and speed shifts from out-
flow boundaries (OFBs) associated with deep convection sig-
nificantly affect weather in the lower troposphere. Specific
OFB impacts include rapid variation in wildfire spread rate
and direction, the formation of convection, aviation hazards,
and degradation of visibility and air quality due to min-
eral dust aerosol lofting. Despite their recognized impor-
tance to operational weather forecasters, OFB characteriza-
tion (location, timing, intensity, etc.) in numerical models
remains challenging. Thus, there remains a need for objec-
tive OFB identification algorithms to assist decision support
services. With two operational next-generation geostation-
ary satellites now providing coverage over North America,
high-temporal- and high-spatial-resolution satellite imagery
provides a unique resource for OFB identification. A sys-
tem is conceptualized here designed around the new capa-
bilities to objectively derive dense mesoscale motion flow
fields in the Geostationary Operational Environmental Satel-
lite 16 (GOES-16) imagery via optical flow. OFBs are identi-
fied here by isolating linear features in satellite imagery and
backtracking them using optical flow to determine if they
originated from a deep convection source. This “objective
OFB identification” is tested with a case study of an OFB-
triggered dust storm over southern Arizona. The results high-
light the importance of motion discontinuity preservation, re-
vealing that standard optical flow algorithms used with pre-
vious studies underestimate wind speeds when background
pixels are included in the computation with cloud targets.
The primary source of false alarms is the incorrect identifi-
cation of line-like features in the initial satellite imagery. Fu-

ture improvements to this process are described to ultimately
provide a fully automated OFB identification algorithm.

1 Introduction

Downburst outflows from associated deep convection (Byers
and Braham Jr., 1949; Mitchell and Hovermale, 1977) play
a significant, dynamic role in modulation of the lower tropo-
sphere. Their direct impacts to society are readily apparent
– capsizing boats on lakes and rivers with winds that seem
to “come out of nowhere” (e.g., the Branson, MO, duck boat
accident; Associated Press, 2018), causing shifts in wildfire
motion and fire intensity that put firefighters in harm’s way
(e.g., the Waldo Canyon and Yarnell Hill fires; Hardy and
Comfort, 2015; Johnson et al., 2014) and threatening aviation
safety at regional airports with sudden shifts from head to tail
winds and turbulent wakes (Klingle et al., 1987; Uyeda and
Zrnić, 1986). In the desert southwest, convective outflows
can loft immense amounts of dust, significantly reducing sur-
face visibility and air quality for those within the impacted
area (e.g., Idso et al., 1972; Raman et al. 2014). These out-
flows are commonly associated with rapid temperature, pres-
sure, and moisture changes at the surface (Mahoney, 1988).
Furthermore, the collision of outflows from adjacent storms
can serve as the focal point of incipient convection or the in-
tensification of nascent storms (Mueller et al., 2003; Rotunno
et al., 1988).

Despite the understood importance of deep convection and
convectively driven outflows, high-resolution models strug-
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gle to characterize and identify them (e.g., Yin et al., 2005).
At present, outflow boundaries (OFBs) are instead most ef-
fectively monitored in real time at operational centers around
the world with surface, radar, and satellite data. Satellites of-
ten offer the only form of observation in remote locations.
The most common method for detecting outflows via satellite
data involves the identification of clouds formed by strong
convergence at the OFB leading edge. When the lower tropo-
sphere is dry, OFBs may be demarcated by an airborne “dust
front”, after passing over certain surfaces prone to deflation
by frictional winds (Miller et al., 2008). The task of identi-
fying OFBs can prove quite challenging and would benefit
greatly from an objective means of feature identification and
tracking for better decision support services.

The Advanced Baseline Imager (ABI), an imaging ra-
diometer carried onboard the Geostationary Operational En-
vironmental Satellite R (GOES-R) era systems, offers a leap
forward in capabilities for the real-time monitoring and char-
acterization of OFBs. Its markedly improved spatial (0.5 vs.
1.0 km visible, 2 km vs. 4 km infrared), spectral (16 vs. 5
spectral bands), and temporal (5 min vs. 30 min continen-
tal US, and 10 min vs. 3 h full disk) resolution provides
new opportunities for passive sampling of the atmosphere
over the previous generation (Schmit et al., 2017). The vast
improvement of temporal resolution alone (which includes
mesoscale sectors that refresh as high as 30 s) allows for dra-
matically improved tracking of convection (Cintineo et al.,
2014; Mecikalski et al., 2016; Sieglaff et al., 2013), fires and
pyroconvection (Peterson et al., 2015, 2017, 2018), ice flows,
and synoptic-scale patterns (Line et al., 2016). This higher
temporal resolution makes the identification of features like
OFBs easier as well because of greater frame-to-frame con-
sistency.

The goal of this work is to use ABI information towards
the objective identification of OFBs. One of the notable chal-
lenges in the satellite identification of OFBs over radar or
models is the lack of auxiliary information. When working
with a radar or a numerical model framework, for example,
additional information is available on the flow, temperature,
and pressure tendency of the boundary. Without that infor-
mation, however, forecasters must rely on their knowledge
of gust front dynamics to identify OFBs in satellite imagery.
Here, we introduce the concept of objectively derived motion
using GOES-16 ABI imagery for feature identification via an
advanced optical flow method, customized to the problem at
hand. A case study of a convectively triggered OFB and ac-
companying haboob dust front is presented in 5 min GOES-
16 contiguous United States (CONUS) sector information,
as a way of evaluating and illustrating the potential of the
framework.

This paper is outlined as follows. The background for ob-
jective motion extraction and OFB identification is presented
in Sect. 2. The optical flow methods developed for this pur-
pose are discussed in Sect. 3. Section 4 presents the case
study test of the current algorithm, and Sect. 5 concludes the

Figure 1. Schematic of (a) the PM optical flow scheme used by
AMVs (e.g., Bresky et al., 2012), which finds a suitable target to
track (e.g., the cloud at time 1), forecasts the displacement with
numerical models (yellow arrow and dashed box), and iteratively
searches for the target at time 2 by minimizing the sum of square er-
ror to get the AMV (red arrow). (b) Example cloud evolution types
mentioned in the text for which the approach shown in (a) fails.

Figure 2. Flowchart of the B04 optical flow approach used here.
Note that SF, nK, nL, and nM are defined in Table 1.

paper with a discussion on plans for future work in objec-
tive feature identification from next-generation geostationary
imagers of similar fidelity as the GOES-R ABI, which are
presently coming online around the globe.

2 Background

2.1 Previous work in OFB detection

The objective identification of OFBs in meteorological data
has been a topic of scientific inquiry for more than 30 years.
Uyeda and Zrnić (1986) and Hermes et al. (1993) use detec-
tions of wind shifts in terminal Doppler radar velocity mea-
surements to isolate regions of strong radial shear associated
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with OFBs. Smalley et al. (2007) include the “fine line” re-
flectivity structure of biological- and precipitation-sized par-
ticles to identify OFBs via image template matching. Chipil-
ski et al. (2018) considered the OFB objective identification
in numerical models using similar image processing tech-
niques, but with additional dynamical constraints on vertical
velocity magnitudes and mean sea level pressure tendency.
Objective OFB identification has not been demonstrated to
date with the new ABI observations of the GOES-R satellite
series. Identification via satellite imagery would be valuable
for local deep convection nowcasting algorithms, which use
boundary presence as a predictor field (Mueller et al., 2003;
Roberts et al., 2012), and for operational centers around the
world that may not have access to ground-based Doppler
radar data.

Traditionally, forecasters have identified OFBs in satel-
lite imagery by visually identifying the quasi-linear low-level
cloud features and backtracking them to an associated deep
convection source. Previous objective motion derivation al-
gorithms are not designed to yield the dense wind fields, in
which motion is estimated at every image pixel, necessary
for identifying and tracking features such as OFBs (Bedka
et al., 2009; Velden et al., 2005). In fact, the original image
window-matching atmospheric motion vector (AMV) algo-
rithms produce winds only over targets deemed acceptable
for tracking by preprocessing checks on the number of cloud
layers in a scene, brightness gradient strength, and patch co-
herency. The targets are further filtered with post-processing
checks on acceleration and curvature through three-frame
motion and deviation from numerical model flow (Bresky et
al., 2012; Nieman et al., 1997; Velden et al., 1997; More in
Sect. 2.2). These practices were followed for a very practical
reason – AMV algorithms were tailored for model data as-
similation. In the formation of the model analysis, observa-
tional data must be heavily quality-controlled, with outliers
removed, to minimize data rejection. Here, information such
as OFBs would be rejected due to the detailed space–time
structure of actual convection, which is typically poorly rep-
resented by the numerical model.

Deriving two-dimensional flow information at every point
in the imagery would require either modification of previous
AMV schemes or post-processing of the AMV data via ob-
jective analysis (e.g., Apke et al., 2018). The latter typically
will not capture motion field discontinuities, resulting in in-
correct flows near feature edges (Apke et al., 2016). To cap-
ture such discontinuities in a dense flow algorithm, new com-
puter vision techniques, such as the gradient-based methods
of optical flow, must be adopted.

2.2 Optical flow techniques

Optical flow gradient-based techniques derive motion within
fixed windows, thus eliminating the reliance on models for
defining a search region. A core assumption of many optical
flow techniques is brightness constancy (Horn and Schunck,

1981). Considering two image frames, brightness constancy
states that the image intensity I at some point x =

[
x,y

]T is
equal to the image intensity in the subsequent frame at a new
point, x+U, where, with a translation model, U= [u,v]T

represents the flow components of the image over the time
interval (1t) between the two images:

I (x, t)= I (x+U, t +1t). (1)

Equation (1) can be linearized to solve for the individual flow
components, u and v:

∇I ·U+ It = 0. (2)

where ∇I = [Ix,Iy] represents the intensity gradients in the
x and y direction, and It represents the temporal gradient
of intensity. For one image pixel, Eq. (2) contains two un-
knowns with a simple translation model for U; therefore,
it cannot be solved pointwise. One well-known approach
to solving this so-called “aperture problem” is the Lucas–
Kanade method, hereafter the LK method, which consid-
ers a measurement neighborhood of the intensity space and
time gradients (e.g., Baker and Matthews, 2004; Bresky and
Daniels, 2006). The use of neighborhoods, or image win-
dows, to derive optical flow is called a local approach.
Another seminal approach was introduced by Horn and
Schunck (1981; the HS method), which solves the aperture
problem by adding an additional smoothness constraint to the
brightness constancy assumption and minimizing an energy
magnitude between two images:

E(U)=
∫ ∫
�

(∇I ·U+ It)
2
+α(|∇2u|

2
+ |∇2v|

2)dx, (3)

whereE(U) represents an energy functional to be minimized
over all image pixels�, α is a constant weight used to control
the smoothness of the flow components u(x) and v(x), and
∇2 = [∂/∂x,∂/∂y]

T . This derivation is called a global ap-
proach, whereby the optical flow u(x)and v(x) at each pixel
is found that minimizes the quantity of Eq. (3) by deriving
the Euler–Lagrange equations and numerically solving the
linear system of equations with Gauss–Seidel iterations.

Readers can contrast the HS method with the optical flow
algorithm used in GOES AMVs, referred to as “patch match-
ing” (PM; Fortun et al., 2015). In PM, a target (e.g., a 5× 5
pixel box) identified as suitable for tracking is iteratively
searched for in a sequential image within a reasonable search
area (Fig. 1a). The motion is identified by which candidate
target (e.g., another 5× 5 pixel box displaced by the optical
flow motion) in the sequential image best matches the initial
target, typically by minimizing the sum of square error be-
tween the target and the candidate brightness values (Daniels
et al., 2010; Nieman et al., 1997). The reader can draw simi-
larities to the HS method by formulating the PM approach as
an energy equation to be minimized:

E(U)=
∑
n∈T

|I (xn, t)− I (xn+U, t +1t)|2, (4)
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Figure 3. Schematic of coarse- to fine-scale warping optical flow in
GOES imagery. The largest displacements are found in the initial
coarse grid (yellow arrow at the top of the pyramid), which are used
as initial displacements for the next levels (red and blue arrows).
The final displacement is the sum of each displacement estimate
(white arrow). In this schematic, an example scale factor of 0.5 was
used over three pyramid levels; in this work, a scale factor of 0.95
for 77 levels was used.

Table 1. Settings used in the Brox et al. (2004) successive over-
relaxation scheme.

Parameter Value

Outer iterations (pyramid levels, nK) 77
Inner iterations (nL) 10
Successive over-relaxation iterations (nM) 5
Successive over-relaxation parameter 1.99
Pyramid scale factor (SF) 0.95
γ 10
α 50

where the minimum inE is found by computing Eq. (4) at ev-
ery candidate target in the search region. As E is only mini-
mized within the target area T , PM represents a local method.

Research and extensive validation have shown that, with
quality control, PM provides a valuable resource to derive
and identify winds in satellite imagery (Velden and Bedka,
2009). However, there are several types of motions for which
PM would fail (Fig. 1b), many of which occur frequently in
satellite OFB observations. AMVs found with Eq. (4) make
two key assumptions: (1) that the brightness remains con-
stant between sequential images at time t and t +1t and
(2) that the motion U is constant within the target. The first
assumption, brightness constancy, fails when there are ex-
cessive illumination changes in a sector that are not due to
motion. These illumination changes may be due to evapora-
tion or condensation or simply due to changes in solar zenith
angle throughout the day in visible imagery. The HS method
also uses assumption (1), though it is relaxed when combined

with the smoothness constraint. Assumption (2), which is not
made in the HS method or other global methods, implies that
the PM method has no way to handle rotation, divergence,
or deformation in an efficient manner unless it is known a
priori. Assumption (2) also fails to account for motion dis-
continuities, such as those near cloud edges or within trans-
parent motions. Furthermore, as there is no other constraint
aside from constant brightness, PM methods struggle when
there is little to no texture in the target and candidates. Qual-
ity control schemes are thus necessary to remove sectors that
are poorly tracked with Eq. (4) in most AMV approaches.

PM was a popular method for AMVs over other optical
flow approaches prior to the GOES-R era due to its simplic-
ity, computational efficiency, and capability to handle dis-
placements common in low-temporal-resolution satellite im-
agery (Bresky and Daniels, 2006). Linearizing the bright-
ness constancy assumption in Eq. (2) means that large and
nonlinear displacements (typically > 1 pixel between images)
will not be captured (Brox et al., 2004). Thus, most optical
flow computations initially subsample images to the point at
which all the displacements are initially less than 1 pixel
(Anandan, 1989; discussed more in Sect. 3.1), which can
cause fast-moving small features to be lost. Note that reduc-
ing the temporal resolution of GOES imagery (e.g., 10 min
vs. 5 min scans) increases the displacement of typical mete-
orological features between frames. Furthermore, constancy
assumptions are more likely violated with reduced tempo-
ral resolution since image intensity changes more through
the evaporation and condensation of cloud matter over time.
Thus, for the spatial resolution of ABI, it is impractical to
consider optical flow gradient-based methods at temporal
resolutions coarser than 5 min for several mesoscale meteo-
rological phenomena, including OFBs. Very spatially coarse
images do not need to be initially used with faster scanning
rates, such as super rapid scan 1 min information (Schmit et
al., 2013) or the 30 s temporal resolution mesoscale mode of
ABI (Schmit et al., 2017).

While the HS method is designed for deriving dense flow
in imagery sequences, it also does not account for motion dis-
continuities in the flow fields. Hence, it suffers from incorrect
flow derivations near cloud edges and would perform poorly
for OFB detection and tracking. Black and Anandan (1996)
offer an intuitive solution to this problem, whereby the en-
ergy functional is designed to minimize robust functions that
are not sensitive to outliers.

E(U)=
∫ ∫
�

ρd (∇I ·U+ It)+ ρs

(
|∇2u|

2
+ |∇2v|

2
)

dx (5)

The robust function data term for the HS method is simply
ρd (r)= r

2 and smoothness ρs (r)= r , which implies that
energy functionals increase quadratically for r outliers. Other
robust functions can also be minimized with similar gradi-
ent descent algorithms to Gauss–Seidel iterations, while be-
ing less sensitive to outliers (Press et al., 1992; Black and
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Anandan, 1996). Robust functions are popular in recent op-
tical flow literature (Brox et al., 2004; Sun et al., 2014), and
a similar approach adopted here is discussed further in the
Methodology section. The reader is referred to works by Bar-
ron et al. (1994), Fleet and Weiss (2005), Sun et al. (2014),
and Fortun et al. (2015) for more comprehensive reviews on
optical flow background and techniques.

The relevance of optical flow in satellite meteorological re-
search continues to increase now that scanning rates of sen-
sors such as the ABI are routinely at sub-5 min timescales,
making motion easier to derive objectively (Bresky and
Daniels, 2006; Héas et al., 2007; Wu et al., 2016). The dense
motion estimation within fine-temporal-resolution data has
yet to be used for feature identification. Optimizing optical
flow for this purpose, and its specific application to OFBs, is
the aim of this study. The next section outlines our approach
to this end.

3 Methodology

3.1 Optical flow approach

As recently overviewed in Fortun et al. (2015), there are sev-
eral optical flow approaches that provide dense motion esti-
mates that account for the weaknesses highlighted in Fig. 1b.
Many have their own advantages and drawbacks in terms of
computational efficiency, flexibility, and capability to handle
large displacements, motion discontinuities, texture-less re-
gions, and turbulent scenes. We selected an approach here
by Brox et al. (2004) (Hereafter B04), given its simplicity,
current availability of open-source information, and excel-
lent documentation. The reader is cautioned, however, that
dense optical flow is a rapidly evolving field, and research
is currently underway to improve present techniques. While
dense optical flow validation for satellite meteorological ap-
plication research like OFB identification is taking place, the
reader is referred to the Middlebury (Baker et al., 2011), the
MPI Sintel (Butler et al., 2012), and the KITTI (Geiger et
al., 2012) benchmarks for extensive validation statistics of
the most recent techniques using image sequences for more
general applications.

The B04 approach handles the drawbacks described in
Fig. 1b and more, whereby the brightness constancy assump-
tion is no longer linearized, i.e.,

E(U)=
∫ ∫
�

ρd

(
|I (x+U, t +1t)− I (x, t)|2

+γ |∇2I (x+U, t +1t)−∇2I (x, t)|
2
)

+αρs

(
|∇2u|

2
+ |∇2v|

2
)

dx. (6)

Following B04, within the data robust function, we now
have also included a gradient constancy assumption, which
is weighted by a constant γ to make the derived flow more

resilient to changes in illumination. Avoiding linearization of
constancy assumptions improves the identification of large
displacements between images. The Charbonnier penalty is
used for the data and smoothness robust functions following
Sun et al. (2014),

ρd

(
r2
)
= ρs

(
r2
)
=

√
r2+ ε2, (7)

with ε representing a small constant present to prevent divi-
sion by zero in minimization, set to 0.001. The values for U
are found by solving the Euler–Lagrange equations of Eq. (6)
with numerical methods:

Eu−
dEux

dx
−

dEuy
dy
= 0, (8)

Ev −
dEvx
dx
−

dEvy
dy
= 0, (9)

with reflecting boundary conditions and subscripts that imply
the derivatives. Equations (8) and (9) are solved with a nested
fixed-point successive over-relaxation iteration scheme de-
scribed in B04 and summarized in Fig. 2. The reader is re-
ferred to Chap. 4 of Brox (2005) for details on the full dis-
cretization of the derivatives in the successive over-relaxation
scheme. Here, only the spatial dimensions are used for the
smoothing term, though it is possible to include the time di-
mension with this system as well.

A difficulty in solving Eqs. (8) and (9) is that the succes-
sive over-relaxation scheme may converge on a local mini-
mum of E(U) rather than finding the global minimum. The
typical approach to find the global minimum is to com-
pute optical flow with coarse- to fine-scale warping iterations
(e.g., Anandan, 1989). Coarse- to fine-scale warping itera-
tions work by subsampling the initial image at the native res-
olution to a coarser spatial resolution and computing the flow
initially at the coarsest resolution in the image pyramid. The
U results from the coarse image flow are then used as the
first-guess field for the next finest scale on the image pyra-
mid (Fig. 3), and the second image is warped accordingly.
The warping step ensures that estimated displacements at ev-
ery step in the image pyramid remain small.

The B04 scheme includes coarse- to fine-scale warping it-
erations at every outer iteration k. This means that the first
iteration is run on a subsampled image, and the subsampling
is reduced by a scale factor at every k until the image reaches
the native resolution at the final k =nK. Images at every k in
this subsampling are found using a Gaussian image pyramid
technique with bicubic interpolation. The flow values of the
image at k−1 are also upscaled accordingly at k with bicubic
interpolation (the initial flow guess is u= v = 0 at k = 0).
For improved computation of spatial derivatives, the initial
image is also smoothed with a 9× 9 pixel kernel Gaussian
filter with a standard deviation set to 1.5 pixels. The specific
settings used for the coarse- to fine-warped flow scheme here
are shown in Table 1.
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Figure 4. The 6 July 2018 00:23 UTC GOES-16 0.64 µm visible
reflectance (a) and BT10.35 (b) over south–central AZ, centered on
an OFB of interest.

3.2 Objective OFB identification

There are two steps to the objective OFB identification pro-
cess. First, a linear feature or sharp boundary is identified
in visible or infrared imagery. In some cases, the first step
alone is enough to identify OFBs subjectively. The second
step is tracking that feature back in time to see where it orig-
inated from (typically, near an area with deep convection).
In the case of near-stationary convection and low-level flow,
a forecaster might also use radial-like propagation in this
decision-making process; however, since convection geome-
try and low-level flow vary from storm to storm, only the first
two steps are considered here. This approach aims to mirror
the subjective process, leveraging the information content of
optical flow to do so.

To handle the first step of line feature identification, a sim-
ple image line detection scheme was performed by convolv-

Figure 5. The KIWA radar 22:44 UTC 0.5◦ horizontal reflectivity
(top; dBZ) and correlation coefficient (bottom). Range rings in grey
indicate every 30◦ azimuth and 50 km in range.

ing the original brightness field with a set of line detection
kernels, so

L=

4∑
i=1

ai ?G(R), (10)

where ? is the convolution operator,G is a Gaussian smooth-
ing function (using a 21×21 kernel and standard deviation of
5 pixels), R is the reflectance factor (radiance times the inci-
dent Lambertian-equivalent radiance, or the “kappa factor”;
Schmit et al., 2010), L is the resulting line detection field,
and ai represents the two-dimensional line detection kernels
defined as follows.

a1 =

 −1 −1 −1
2 2 2
−1 −1 −1


a2 =

 −1 2 −1
−1 2 −1
−1 2 −1


a3 =

 2 −1 −1
−1 2 −1
−1 −1 2


a4 =

 −1 −1 2
−1 2 −1
2 −1 −1
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Figure 6. Surface high-frequency METAR observations of temperature (K; a), dew point (K; b), mean sea level pressure (middle c), wind
direction (◦ from N; d), wind speed (m s−1; e), and wind gusts (m s−1; f). The surface station was located at (32.95◦ N–111.77◦ E). The red
line indicates the approximate time of boundary passage over the station.

The resulting L field exhibits higher intensities wherein line
features exist (Gonzalez and Woods, 2007). A threshold of
L≥ 0.02 was used here to indicate that a pixel contained a
line feature. This method was compared to a subjective inter-
pretation of boundary location for validation.

To address the second step of the process, the constrained
optical flow approach described in Sect. 3.1 was used to track
the boundary pixels (both objectively and subjectively iden-
tified) back in time for 3 h. The values of motion at each step
in the backwards trajectory were determined with bilinear in-
terpolation of the optical-flow-derived dense vector grid. If a
back-traced pixel of the linear feature arrived within a 50 km
great-circle distance of a 10.35 µm brightness temperature
(BT10.35) pixel lower than 223 K (−50 ◦C; using previous
satellite imagery matched to the back-trajectory time), the
original point was considered an OFB. The area subtended
by the 50 km great circles derived from BT10.35 is hereafter
referred to as the “deep convection area.” While this bright-
ness temperature threshold is subjective and can vary from
case to case, it was found to produce a reasonable approxi-
mation of deep convection areas when compared to ground-
based radar information for the case study described in the
subsequent sections.

3.3 Data

The objective OFB identification methodology is tested using
a case study from 5 July 2018 over the southwestern United
States. This event featured a distinct OFB and associated
dust storm that was well-sampled by various ground- and
space-based sensors. GOES-16 was in mode 3, generating
one image over the study area every 5 min (continental US,
or CONUS, ABI scan domain, NOAA, 2019). Optical flow
computations employ the GOES-16 (GOES-East) ABI red
band (0.64 µm; ABI channel 2), provided at a nominal sub-
satellite spatial resolution of 500 m, but closer to 1 km at the
case study location. This channel is used at native resolution,
though it can be subsampled with a low-pass filter such that
future versions can implement color information from the
blue and near-infrared bands (e.g., Miller et al., 2012). This
means that the optical flow approach here is daytime only. A
similar B04 approach can be used on infrared data as well
for day–night independent information, though for detecting
OFBs in the low levels, proxy visible products would per-
form best. As described above, the clean longwave infrared
band (10.35 µm; ABI channel 13) is used as first-order infor-
mation on optically thick cloud-top heights and to assess the
convective nature of the observed scene (BT10.35 < 223 K).

www.atmos-meas-tech.net/13/1593/2020/ Atmos. Meas. Tech., 13, 1593–1608, 2020
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Figure 7. HRRR output of an OFB event, including (a) wind speed, (b) temperature, (c) simulated infrared brightness temperature, and (d) a
cross section along the black line in (c) with virtual potential temperature θv in black contours (K), omega in color-shaded pixels, and regions
of relative humidity > 90 % highlighted with dark shading (bottom right).

High-frequency Automated Surface Observing Stations
(ASOSs; NOAA, 1998), recording temperature, pressure,
wind speed, and direction once every minute, complement
the satellite imagery. The Weather Surveillance Radar-1988
Doppler (Crum and Alberty, 1993) dual-polarimetric data
also sampled the OFB event from the KIWA radar near
Phoenix, AZ. To highlight the OFBs and the presence of dust,
horizontal reflectivity and the correlation coefficient are used
(Van Den Broeke and Alsarraf, 2016). Finally, for informa-
tion on the full 3D dynamics of the case study, a numeri-
cal model representation of the environment was collected
from the High Resolution Rapid Refresh system (HRRR;
Benjamin et al., 2016). The combination of these model and
observation datasets is employed to confirm the presence of a
distinct convective OFB rather than some other quasi-linear
feature, such as a bore or elevated cloud layer.

4 Case study description

Convection was observed in south–central Arizona on
5 July 2018 after 18:00 UTC. A large and well-defined linear
structure emerged from below the convective cloud cover at
22:00 UTC to 6 July 2018 01:00 UTC propagating westward
in GOES-16 imagery (Fig. 4). This linear structure, demar-
cated by roll (arcus) clouds on the northern side and lofted
dust on the southern side, was apparent with strong visible
reflectance contrast against the relatively dark surface and
BT10.35 ∼ 10 K cooler than the underlying surface. The dust
lofted by this outflow produced low visibility and hazardous
driving conditions near Phoenix, AZ. Dust storm warnings
were issued by the local National Weather Service (NWS)
forecast office by 23:00 UTC. The structure’s observed radial
propagation away from nearby deep convection and associ-
ated cloud and dust features contributes to its interpretation
as a convective OFB.

The OFB was also captured in radar scans from KIWA
at 22:00 UTC (Fig. 5). The coincidence of a low correlation
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Figure 8. The 00:23 UTC GOES-16 0.64 µm visible channel shown with a (a) subjectively identified OFB (blue dots) and (b) linear feature
L≥ 0.02 field (blue shading). Also shown are linear features that contained fast storm-relative motion (red shading). The results of back-
tracking the (c) subjectively and (d) objectively identified OFB features are also shown; blue dots represent targets tracked back within 50 km
of a deep convection event, and orange dots are targets that were not.

coefficient (<∼ 0.5) and moderate to high reflectivity (near
20 dBZ) implies that the OFB contained non-meteorological
scatterers (e.g., Zrnic and Ryzhkov, 1999). The radar mea-
surements are consistent with previous reported values of
lofted dust (Van Den Broeke and Alsarraf, 2016). Surface ob-
servations taken at the ASOS reveal temperatures exceeding
317 K (44 ◦C) ahead of the OFB, with calm winds (Fig. 6).
Temperatures dropped by 4 K, wind speeds changed direc-
tion and increased sharply, and dew points increased rapidly
as the OFB crossed the station at ∼ 23:16 UTC. The rapid
change in low-level meteorology is consistent with convec-
tive OFBs sampled in previous studies (e.g., Mahoney, 1988;
Miller et al., 2008).

The HRRR model captured the broad characteristics of
this event (Fig. 7), showing moderate low-level winds in
excess of 10 m s−1 (Fig. 7a), cooler temperatures (Fig. 7b),
and simulated cumulus clouds from forced ascent (Fig. 7c).
Model cross sections (Fig. 7d) indicated a moderate increase
in vertical motion ahead of the numerically derived boundary
and a sharp decrease in virtual potential temperature behind
the boundary. The shape of the virtual potential temperature
profile is consistent with other model observations of OFBs

(e.g., Chipilski et al., 2018). The observation and model data
all show that the linear structure observed in Fig. 4 was modi-
fying the dynamics of the surface in a manner consistent with
OFBs and not some other linear cloud feature type that is de-
coupled from the surface and may be misidentified by the
satellite. Since such low-level linear features are often ob-
scured by cloud layers at higher altitudes, this case study in
some respects represents a best-case scenario for evaluating
optical flow capabilities towards identifying OFBs.

5 Results

The first step in OFB identification requires the identifica-
tion of a feature that appears linear in the imagery. Com-
pared to the subjective boundary identification (considered
truth here; Fig 8a, blue dots), the convolution method gives
a reasonable approximation of where the OFB is located
within the higher-intensity points in L (Fig. 8b). Unfortu-
nately, the simply applied convolution is also sensitive to lin-
ear features associated with the deep convection itself (the
blue shading in Fig. 8b). Hence, false alarms appear east of
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Figure 9. GOES-16 0.64 µm visible channel imagery on 5 July 2018 at (a) 22:58 UTC, (b) 23:38 UTC, (c) 23:58 UTC, and (d) 00:23 UTC
over central Arizona shown with every 20th optical flow vector in the x and y directions (subsampled for image clarity) illustrated with
yellow wind barbs (knots). Circles represent motion < 5 kn, which commonly occurs over ground pixels.

the boundary. These issues can be filtered out using either
cloud-top height or brightness temperature thresholding from
separate infrared channels. Alternatively, the storm-relative
motion (here > 15 m s−1), or the motion relative to the 6 h
forecast field of 0–6 km storm motion from the Global Fore-
cast System (GFS) numerical weather prediction model run,
was used here to filter the false alarms (the red shading in
Fig. 8b). The GFS forecast field was used over analysis to
simulate what would be available globally in real time.

The second step requires these linear fast-moving features
to be traced backward to a deep convection source using
the optical flow computation (Fig. 9). To the west of the
boundary, near-stationary optical flow vectors highlight the
background (or ground) pixels. The boundary itself exhibits
a westward movement near 15–20 m s−1 (∼ 30–40 kn). The
feature also appears to bow outwards after faster motions are
observed (near 33◦ N, −112◦ E) during 23:38–23:58 UTC
(Fig. 9b, c). Similar westward motion is derived in the wake
of the OFB, within the convective cold pool. This results
from the presence of airborne dust particles, which facilitate
the computation of optical flow vectors in this region.

The backwards trajectories of the subjectively and objec-
tively identified OFB pixels in Fig. 8c and d (B04 method)
show that many of the linear cloud features, particularly

those associated with the central arcus cloud, indeed origi-
nated near deep convection. However, when the backwards
trajectories of the B04 method were compared to other opti-
cal flow methods, such as the approach by Wu et al. (2016),
most were unsuccessful at obtaining coincidence between
linear cloud features along the OFB and a deep convection
source. Wu et al. (2016) used an approach introduced to the
community by Farnebäck (2001), which is a local window
method for optical flow.

Example points 1–7 examined within the subjectively
identified OFB backward trajectories highlight an issue with
local window approaches for this application (Fig. 10). The
B04 approach (Fig. 10, blue–yellow) produced motions that
were relatively consistent with the true boundary motion.
Thus, many points that are lost in the local approaches are
successfully backtracked to the initial deep convection (e.g.,
points 3–5). With the Wu et al. approach (Fig. 10, orange–
red), OFB targets move slower than the actual boundary and,
over a 3 h tracking period, eventually become stuck within
the stationary background pixels. This tracking issue stems
from an assumption made in many local approaches that pix-
els within an image window all move in the same direction
with the same speed. When background pixels are included
within an image window containing clouds or dust, the re-
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Figure 10. The GOES-16 0.64 µm visible imagery shown with image targets backtracked from subjective identification in Fig. 8a
at 00:23 UTC 6 July 2018 using the B04 method (blue–yellow) and the Wu et al. (2016) approach (orange–red) at (a) 00:23 UTC,
(b) 23:58 UTC, (c) 23:38 UTC, and (d) 22:13 UTC. Individual points are highlighted from each approach (yellow and red dots; see text).

sulting optical flow speed would then be underestimated. The
slow bias is observed in plots of optical flow speeds along the
OFB (Fig. 11), for which the Wu et al. approach was ∼ 5–
10 m s−1 slower than the B04 approach. While not shown,
we found similar backward trajectory issues using the LK
approach. Full loops of the optical flow in Fig. 9 and trajec-
tories in Fig. 10 are included in the Supplement to this paper.

For all approaches tested, however, the methods struggled
to backtrack the newly formed cumulus to the north and the
dust front to the south. With the cumulus to the north, the
issues with each algorithm appear to result from rapid cu-
mulus development between frames (e.g., points 1 and 2 in
Fig. 10a, b). Condensation like what is observed here is un-
fortunately not considered in the brightness constancy as-
sumption. Thus, condensing cloud features would only be
tracked back to when they initially form (after Fig. 10b) with-
out additional dynamic constraints to Eq. (6). An example
can be seen when points 1 and 2 become stuck in Fig. 10c.
This has important implications for the limitations of back-
tracking OFB features to deep convection with optical flow
from imagery. If no cloud or dust feature exists to visualize

an OFB in satellite imagery, some of the feature propagation
may be lost.

The dust to the south appears in the satellite imagery as
early as 22:00 UTC, though it was quite transparent relative
to the ground. It is therefore possible the stationary back-
ground pixels may be dominant in the optical flow com-
putation at points 6 and 7, resulting in slower wind speeds
than the true OFB propagation. Points 6 and 7 are also lo-
cated near cumulus moving across the OFB motion to the
south. This dust front tracking could be improved using mul-
tispectral techniques designed to highlight dust features over
ground pixels or by using additional color spectrum informa-
tion to discourage flow smoothness in Eq. (6) across the dust
front from the cumulus to the south (e.g., Sun et al., 2014).

Many line-like targets east of the OFB in Fig. 8d also
originated from the deep convection, which constitute false
alarms. These false alarms can be reduced by further im-
proving the OFB targeting step in the objective process in fu-
ture studies. For this case study, it may have been possible to
use convergence thresholding methods, analogous to radar-
based objective OFB identification, to isolate the boundary.
However, convergence as derived from the optical flow in-
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Figure 11. Color-shaded wind speed for 00:23 UTC 6 July 2018
over central Arizona from (a) the B04 optical flow method and
(b) the Wu et al. (2016) flow, shown with respective flow vectors
and the subjective position of the front edge of the OFB (blue line).

formation here would only work because of local, stationary
surface pixels ahead of the OFB. Thus, convergence would
be stronger with faster OFB velocity, which is undesirable
for an objective identification product as slow-moving OFBs
would be missed. The convergence would also be sensitive
to nearby cloud structures ahead of the OFB, which would
exhibit different (nonstationary) motion from the surface. It
is for this reason that a backwards trajectory approach was
selected instead of basing the detection on local horizontal
convergence. The optical flow approach used here does help
highlight the OFB when storm motion alone was considered
in addition to convolution, showing how additional tools can
be used in synergy to arrive at a more comprehensive objec-
tive feature identification approach in future studies.

6 Conclusions and future outlook

A new method for the objective identification of outflow
boundaries (OFBs) in GOES-16 Advanced Baseline Imager
(ABI) data was developed using optical flow motion deriva-
tion algorithms and demonstrated with provisional success
on a dust storm case study. An optical flow system con-
structed for this purpose shows promise in identifying and
backtracking object events to their source over traditional
flow derivation methods, which can potentially be used to
isolate convective OFB features. To the best of the authors’
knowledge, this study represents a first attempt to objectively
identify OFBs in geostationary satellite imagery.

The primary conclusion of this study is that optical flow
approaches are now a viable option to acquire mesoscale
flows relevant to OFB tracking and detection in 5 min geo-
stationary satellite imagery, though the successful backtrack-
ing of OFB features requires the use of flow algorithms that
can handle the presence of motion discontinuities and sta-
tionary background flow. The optical flow algorithm tested in
this study produced a dense motion field that was closer than
other methods to the true OFB motion and provided valuable
information towards full objective OFB identification in new
products.

While several OFB-related image pixels were successfully
identified, the algorithm here is relatively immature and re-
mains fraught with false alarms, whereby linear features are
incorrectly identified and correct features were not success-
fully backtracked to deep convection. The algorithm is still
limited by the assumptions made within optical flow, which
only account for changes in image brightness intensity re-
sulting from pure feature advection. Therefore, if no features
(e.g., clouds) exist to highlight an OFB boundary within the
imagery, the method proposed here would not function prop-
erly. The method also struggles to resolve true OFB motions
with transparent dust movement, for which a textured back-
ground beneath the dust may dominate the motion estimate
within a scene. Also, while infrared brightness temperature
was enough to identify deep convection in this case study,
convection may be missed by brightness temperature im-
agery if it is obscured by a higher cloud layer or if the mini-
mum cloud-top brightness temperature exceeds an arbitrarily
set threshold.

Given these limitations, future studies will explore more
advanced systems for linear structure identification to iden-
tify candidate features for tracking towards full objective
OFB identification. A machine-learning system will be used
to determine which linear characteristics of the image should
be backtracked instead of using two-dimensional convolu-
tion. Optical flow can be used to precondition training in-
formation for a machine-learning approach if the motion or
semi-Lagrangian fields are needed. Furthermore, it will be
prudent to use deep convection correspondence through op-
tical flow backtracking as one of many fields in future prod-
ucts, such as radial propagation away from storms and near-
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surface meteorological properties, to probabilistically decide
if an image pixel is associated with an OFB. To better iden-
tify deep convection areas, the GOES Lightning Mapper
(GLM) can be used, which provides information on lightning
location and energy at 8 km resolution with a 2 ms frame rate.

Feature identification with optical flow is not restricted
to OFBs alone. For example, the above-anvil cirrus plume
(Bedka et al., 2018) over deep convection has been identified
as an important indicator of severe weather at the ground, yet
no objective means of identification exists today. The proper-
ties from optical flow could be used as an additional source of
information in such algorithm designs, allowing researchers
to backtrack features to their apparent source (the overshoot-
ing top in the case of the above-anvil cirrus plume) and mon-
itor cloud temperature and visible texture trends or to sim-
ply use the dense motion itself to achieve better results. This
method will also be applicable to other cold pool outflow
phenomena, such as bores, for which new algorithms could
utilize numerical model or surface observations for further
clarification of linear feature type.

Motion-discontinuity-preserving optical flow will also
benefit several current algorithms for monitoring deep con-
vection in satellite imagery. Objective deep convection
cloud-top flow field algorithms (Apke et al., 2016, 2018)
will particularly benefit when sharp cloud edges and ground
pixels are present in an image scene. Systems that use in-
frared cloud-top cooling or emissivity differences for deep
convection nowcasting will also improve with better esti-
mates of pre-convective cumulus motion (Cintineo et al.,
2014; Mecikalski and Bedka, 2006).

While the utility of a backwards trajectory approach was
considered here, many other possible methods exist for ex-
ploiting the semi-Lagrangian properties of time-resolved ob-
servations in satellite imagery (e.g., Nisi et al., 2014). The
use of fine-temporal-resolution information will improve op-
tical flow estimates and in turn the estimates of brightness
temperature, reflectance, or cloud property changes in a mov-
ing frame of reference. We will explore these and other re-
finements in ongoing and future work on this exciting fron-
tier of next-generation ABI-enabled science.
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