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Abstract. Cloud cover estimates of single-layer shallow cu-
muli obtained from narrow field-of-view (FOV) lidar–radar
and wide-FOV total sky imager (TSI) data are compared
over an extended period (2000–2017 summers) at the es-
tablished United States Atmospheric Radiation Measurement
mid-continental Southern Great Plains site. We quantify the
impacts of two factors on hourly and sub-hourly cloud cover
estimates: (1) instrument-dependent cloud detection and data
merging criteria and (2) FOV configuration. Enhanced obser-
vations at this site combine the advantages of the ceilometer,
micropulse lidar (MPL) and cloud radar in merged data prod-
ucts. Data collected by these three instruments are used to
calculate narrow-FOV cloud fraction (CF) as a temporal frac-
tion of cloudy returns within a given period. Sky images pro-
vided by TSI are used to calculate the wide-FOV fractional
sky cover (FSC) as a fraction of cloudy pixels within a given
image. To assess the impact of the first factor on CF obtained
from the merged data products, we consider two additional
subperiods (2000–2010 and 2011–2017 summers) that mark
significant instrumentation and algorithmic advances in the
cloud detection and data merging. We demonstrate that CF
obtained from ceilometer data alone and FSC obtained from
sky images provide the most similar and consistent cloud
cover estimates; hourly bias and root-mean-square difference
(RMSD) are within 0.04 and 0.12, respectively. However, CF
from merged MPL–ceilometer data provides the largest esti-
mates of the multiyear mean cloud cover, about 0.12 (35 %)
and 0.08 (24 %) greater than FSC for the first and second
subperiods, respectively. CF from merged ceilometer–MPL–
radar data has the strongest subperiod dependence with a bias

of 0.08 (24 %) compared to FSC for the first subperiod and
shows no bias for the second subperiod. The strong period
dependence of CF obtained from the combined ceilometer–
MPL–radar data is likely results from a change in what sen-
sors are relied on to detect clouds below 3 km. After 2011,
the MPL stopped being used for cloud top height detection
below 3 km, leaving the radar as the only sensor used in cloud
top height retrievals. To quantify the FOV impact, a narrow-
FOV FSC is derived from the TSI images. We demonstrate
that FOV configuration does not modify the bias but impacts
the RMSD (0.1 hourly, 0.15 sub-hourly). In particular, the
FOV impact is significant for sub-hourly observations, where
41 % of narrow- and wide-FOV FSC differ by more than
0.1. A new “quick-look” tool is introduced to visualize im-
pacts of these two factors through integration of CF and FSC
data with novel TSI-based images of the spatial variability in
cloud cover. The influence of cloud field organization, such
cloud streets parallel to the wind direction, on narrow- and
wide-FOV cloud cover estimates can be visually assessed.

1 Introduction

Shallow cumuli (ShCu) have a number of important roles
in the Earth’s climate system due to their complex interac-
tions with radiation, the atmosphere and the surface (e.g.,
Arakawa, 2004; Vial et al., 2017; Park and Kwon, 2018).
For example, the amount of surface moisture can influence
the cloud properties by altering the humidity of the bound-
ary layer and by modifying the partitioning of the sensi-
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ble and latent heat fluxes (Zhang and Klein, 2013; Berg et
al., 2013), while the presence of ShCu provides a negative
feedback by shading the surface and reducing its solar heat-
ing (Berg et al., 2011; Xiao et al., 2018). The ShCu ex-
hibit strong spatial and temporal variability, which has been
a topic of increasing interest in recent years for both obser-
vational (Berg and Kassianov, 2008; Chandra et al., 2013)
and model (Yun et al., 2017; Angevine et al., 2018) studies.
To improve our understanding of cloud cover variability and
its impact on the intricate cloud–atmosphere–surface interac-
tions, both long-term and detailed diurnal observations of the
ShCu properties are highly desirable. There are two conven-
tional measurement-based estimates of cloud cover: (1) cloud
fraction (CF) obtained from zenith-pointing narrow-FOV ob-
servations and defined as the fraction of time when a cloud
is detected within a specified period and (2) fractional sky
coverage (FSC) obtained from wide-FOV observations and
defined as the fraction of cloudy pixels in a sky image. Note
that FSC is similar to that estimated by a cloudy-sky observer
(e.g., Henderson-Sellers and McGuffie, 1990; Kassianov et
al., 2005; Long et al., 2006).

Long-term measurement-based statistics of ShCu have
been employed for model–observation comparison (Zhang et
al., 2017; Endo et al., 2019). The observational studies take
advantage of the synergistic use of ground-based observa-
tions from the ceilometer, micropulse lidar (MPL) and mil-
limeter cloud radar at the Atmospheric Radiation Measure-
ment (ARM) mid-continental Southern Great Plains (SGP)
site to obtain vertically resolved hydrometeor layers with
high temporal resolution (https://www.arm.gov/, last access:
20 September 2018). A merged lidar–radar data product is
available from November 1996 to the present at the SGP
site and has served as a basis for developing ShCu climatol-
ogy at the SGP site (Berg and Kassianov, 2008; Zhang and
Klein, 2013) and observational test beds for model evaluation
(Zhang et al., 2017).

Efforts in improving both ground-based observations and
modeling of continental ShCu at the SGP site are currently
underway (e.g., Gustafson et al., 2017; Zhang et al., 2017).
Zhang et al. (2017) suggested that, on average, the modeled
areal cloud cover tends to underestimate observed CF sub-
stantially (up to 0.1 or 65 % for clouds with vertical extent
greater than 0.3 km). Although several potential factors for
the obtained model–data discrepancy have been considered,
including different model setups and selection of events with
different vertical cloud extents, the role of observational un-
certainties has not been directly addressed. For example, FSC
obtained from the wide-field-of-view (FOV) total sky imager
(TSI) data as the fraction of cloudy pixels in a hemispher-
ical image provides a better agreement with model outputs
than the narrow-FOV CF from merged ceilometer–MPL data
(Gustafson et al., 2018), indicating a potential consequence
of the FOV configuration. In addition, long-term averages
of CF obtained from merged ceilometer–MPL data tend to
be larger than FSC acquired from collocated TSI observa-

tions (Boers et al., 2010; Qian et al., 2012; Wu et al., 2014;
Kennedy et al., 2014), indicating a potential consequence of
instrument-dependent cloud detection differences. Moreover,
sampling of large eddy simulation (LES)-generated cloud
fields by a virtual instrument can be a helpful way to recon-
cile debated differences between the retrieved and predicted
values of cloud cover (Oue et al., 2016).

It is expected that the impacts of instrument-dependent
cloud detection and FOV configurations are entangled, and
our study aims to assess their relative importance on cloud
cover estimates of single-layer continental ShCu observed at
the SGP site. In 2010, upgrades of three instruments (TSI,
MPL and radar) took place, and data merging improvements
were implemented on the ceilometer–MPL and ceilometer–
MPL–radar (hereafter lidar–radar) merged datasets. Our
study uses the natural separation provided by these up-
grades and improvements to assess the relative impact of
instrument-dependent cloud detection on the ShCu cover de-
rived from three commonly used CF calculations and FSC.
Our study also uses wide-FOV and narrow-FOV TSI-based
observations to assess the relative impact of the FOV con-
figuration on FSC. Two main questions guide our investiga-
tion: (1) have significant changes in the observations of ShCu
cover occurred at the SGP site due to instrumental and algo-
rithmic upgrades? (2) what is the impact of FOV configura-
tions on hourly and sub-hourly observations of ShCu cover?
These questions are addressed using statistical approaches as
well as a new tool that integrates the narrow- and wide-FOV
observations to visualize the two considered impacts for a
given day of interest at user-specified temporal and spatial
scales.

2 Data

Eighteen years (2000–2017) of summertime (May–
September) observations of FSC, cloud base height (CBH),
cloud top height, and wind speed and direction were col-
lected at the ARM SGP Central Facility. The data described
below are available at https://www.arm.gov/data (last access:
20 September 2018), and references to detailed instrument
descriptions and records are in Table A1. Here is a short
summary of data used in our analysis, and Appendix A
contains all pertinent information.

1. Merged lidar and lidar–radar data products. A time-
series of CBH and cloud top height values are ob-
tained from the combined 34.86 GHz millimeter cloud
radar (MMCR), MPL and ceilometer data in the Active
Remotely-Sensed Cloud Locations (ARSCL) value-
added product (data reference: Johnson and Gian-
grande, 1996). The merged dataset improves upon the
MMCR vertical profiling of hydrometeors by employ-
ing an MPL cloud mask to identify CBH and aide
in mitigating the significant impact of insect returns
(Clothiaux et al., 2000). The screened high temporal
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(10 s) and vertical (45 m) radar reflectivity best estimate
is used to identify the vertical distribution of hydrome-
teor layers above the SGP. The CBH best estimate is ob-
tained from merged ceilometer–MPL data. A cloud top
height estimate is derived from merging the radar reflec-
tivity best estimate, CBH best estimate and MPL cloud
mask. In 2011 the MMCR was replaced and renamed
to Ka-band Zenith Radar (KAZR) (Kollias et al., 2016),
and ARSCL was subsequently updated and renamed to
KAZRARSCL (data reference: Johnson et al., 2011). A
summary of the pertinent instrumental and algorithmic
differences to the results herein for the periods before
and after 2011 are provided in Appendix A.

2. Ceilometer. A time series of CBH values is obtained
from the ceilometer (data reference: Ermold and Morris,
1997). The ceilometer records up to three cloud bases at
heights up to a maximum of 7.7 km and 16 s resolution.
Only the lowest cloud-base is used here.

3. Total sky imager cloud mask. In addition to the sky im-
age, the TSI processing produces a cloud mask (data
reference: Morris, 2005) every 30 s that classifies each
image pixel as clear, opaque or thin cloud and identi-
fies a 25◦ FOV circumsolar region and an inner zenith
region (Long et al., 2006). The percent error in FSC re-
trieval is estimated to be 10 % for 95 % of observations
(Long et al., 2001).

4. ShCu event selection. The newly released ARM Shal-
low Cumulus data product (data reference: Shi et al.,
2000) identifies times of ShCu from lidar/radar cloud
boundary heights and includes FSC from TSI obser-
vations (Sunny Lim et al., 2019). The dataset provides
hourly flags for the presence of ShCu and a flag indicat-
ing the additional presence of other cloud types, such
as commonly overlying cirrus that can be either inter-
mittent or persistent throughout the day. From the Shal-
low Cumulus data product, we initially select days with
single-layer (no upper-level) ShCu with at least 2 h du-
ration. Once selected, all hours in this day with ShCu
are included, additionally extending the start and end
times by 1 h each. The extension allows for more accu-
rate determination of the start and end times of the event
on the finer timescale of the TSI FSC (15 min). Quality
control procedures (Sect. 3.4) are used to censor multi-
layer clouds and clear sky conditions on the 15 min and
hourly observations of cloud cover. The initial selection
provided 614 candidate days with a total of 2393 h.

5. 915 MHz radar wind profiler. Wind data are obtained
at CBH from the low power setting of the 915 MHz
radar wind profiler which has a range-gate spacing of
60 m and hourly reporting intervals (data reference: Mu-
radyan and Coulter, 1997). In the event of missing data
at CBH, the first available reading above 500 m is used.

In the event of missing data, 10 m surface wind data are
used as a tertiary means to impute wind data (data refer-
ence: ARM, 1994). The wind data are used qualitatively
in this analysis.

3 Methods

We calculate five estimates of the cloud cover from active
and passive observations. Three estimates define narrow-
FOV cloud fractions (CFs) retrieved from the lidar–radar ob-
servations (Sect. 3.1) to assess the impact of the instrument-
dependent cloud detection and data merging on cloud cover
estimates (Sect. 4.1). Two estimates define fractional sky
cover (FSC) with 100◦ FOV (Sect. 3.2) and narrow-FOV
(3 pixels×3 pixels within 100◦ FOV) (Sect. 3.3) obtained
from TSI observations to estimate the impact of the FOV
configuration on CF and FSC comparisons (Sect. 4.2). The
resulting five ShCu cloud cover estimates are then combined,
and data selection and quality control procedures are applied
to the dataset (Sect. 3.4). The cloud cover estimates are com-
pared for the entire period (2000–2017) and two subperiods
(2000–2010 and 2011–2017) separated by instrumental and
algorithmic upgrades (Sect. 4). Finally, a heuristic tool is
developed to visualize impacts of the cloud detection, data
merging and FOV configuration on the cloud cover estimates
(Sect. 4.3).

3.1 Narrow-FOV cloud fraction (CF)

We consider CF calculated directly from the ARSCL (or
KAZRARSCL) data products as a fraction of 10 s (or 4 s)
cloudy returns over a given time (e.g., Xi et al., 2010). Thus,
the CF defines the frequency of cloud occurrence from the
combined narrow-FOV lidar–radar measurements. ShCu re-
turns are defined using thresholds on 10 s (or 4 s) CBH and
cloud top height information (Table 1) in a binary fashion.
The three estimates of ShCu cover from lidar–radar obser-
vations are (1) CF from the merged lidar–radar products
uses CBH information from the merged ceilometer–MPL and
cloud top height from the merged MPL–radar. This method
has the advantages of low missing data due to use of multi-
ple instruments and incorporates information about cloud top
height consistent with the definition of shallow convection.
The MPL has the potential to attenuate in thick clouds, neces-
sitating radar data for cloud top height retrieval. Insect con-
tamination may contribute to significant uncertainty in the
radar-based retrievals of cloud boundaries; however, we do
not expect this to significantly impact our results for several
reasons. First, when using cloud top height in cloud fraction,
we still require cloud base to be identified by the ceilome-
ter or MPL, so we will not misclassify insect-only layers as
cloud. Second, our results are not very sensitive to the ac-
tual value of cloud top height as long as it is below 4 km,
and as most insects will be found in the boundary layer or
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Table 1. Variants of cloud fraction (CF) products used in this work: contributing instruments, thresholds on cloud base height (CBH) and
cloud top height (CTH).

Instruments used for CF Abbreviation CBH thresholds CTH threshold

Ceil. +MPL∗+ radar CFbt (bases & tops) 0.3 km < CBH < 3 km CTH < 4 km & CTH > CBH
Ceilometer +MPL CFb (bases only) 0.3 km < CBH < 3 km –
Ceilometer +MPL CFtot (all clouds) CBH > 0 –
Ceilometer CFceil (ceil. only) 0.3 m < CBH < 3 km –

∗ In 2011–2017 period, the MPL is not used to determine cloud top height below 3 km (Sect. A4).

immediately above it (Kollias et al., 2016; Wainwright et al.,
2017) they are not likely to cause the radar to misidentify
a cloud height above 4 km if a cloud does not exist at that
height. Finally, both the ARSCL and KAZRARSCL products
rely primarily on lidar–based cloud detections in identifying
insect-only events, so we do not expect any systematic differ-
ences in the cloud fraction determined by the two products
as a result of insects. (2) CF from merged ceilometer–MPL
uses CBH only and also has the advantage of low missing
data as either ceilometer or MPL are used to determine CBH.
(3) CF from the ceilometer alone is the most common method
that only uses CBH information, but it has a disadvantage of
missing data and a limited vertical range for detecting high-
level clouds (Table 1). Additionally, total cloud fraction CF
is calculated from merged ceilometer–MPL for any cloudy
return detected within the narrow-FOV vertical column to
screen multiple cloud layers (Sect. 3.4), this merged product
has an extended range of 10 km from the MPL.

Narrow-FOV observations of CF, CBH and wind are com-
puted for two averaging periods: (1) a 30 min period cen-
tered on the 15 min averaging time for FSC, meaning the CF
time period begins 7.5 min before the FSC averaging time-
bin and ends 7.5 afterwards; and (2) a 60 min period. The
extended observation time (30 min instead of 15 min) for the
CF measurement is aimed to compensate for the additional
sky area observed by the wide-FOV TSI during a 15 min
period. Hourly CF observations and FSC averages are com-
puted over identical averaging periods for consistency with
previous studies.

3.2 Wide-FOV fractional sky cover (FSC)

FSCs obtained from TSI observations within the 100 and
160◦ FOV are available from routine TSI processing. The
100◦ FOV is used in this analysis because it was previously
established to best correspond to nadir observations due to
a reduced impact of cloud sides on estimated cloud cover
(Kassianov et al., 2005). Prior to 2005, the TSI used 20◦

FOV rather than 100◦; therefore, we calculate 100◦ FOV
FSC for an additional period (2000–2005) directly from the
TSI cloud mask as the fraction of thin and opaque pixels
over total number of pixels. In our calculations, we remove
a 25◦ FOV ellipse surrounding the sun location for consis-

tency with the routine TSI processing. Our product com-
pares well with the available TSI product; only 2 % of the
calculated FSCs exceed the processed FSCs by more than
0.05. The total (opaque + thin) FSC is calculated for each
cloud mask and then averaged in nonoverlapping 15 min and
60 min intervals. Note that 15 min is consistent with the ex-
pected decorrelation time of a ShCu field (Kassianov et al.,
2005). The TSI does not contain CBH information; therefore
selection of single-layer ShCu time periods requires the joint
use of active sensors.

3.3 Narrow-FOV FSC (“CF-like”)

A narrow-FOV FSC is calculated from the TSI cloud
mask with the sampling, sensitivity and processing of the
wide-FOV FSC. These calculations are aimed to mimic
the narrow-FOV lidar–radar measurements (“CF-like”). The
narrow-FOV represents a 3 pixel×3 pixel region located
at a zenith angle of 20◦ and azimuthal angle of 315◦ from
each TSI cloud mask. There are three main reasons for se-
lection of this region. This region (1) is close to zenith
(the zenith region is obstructed by the camera box), (2) is
located outside of the sun circle region during the study
hours (local daylight 09:00–18:00) and (3) corresponds to
the best agreement with the wide-FOV FSC observations
(Wagner and Kleiss, 2016). The TSI image resolution has
been increased from 352 pixels×288 pixels (original resolu-
tion) to 480 pixels×640 pixels (improved resolution) in Au-
gust 2011. The narrow-FOV (3 pixel×3 pixel region) “CF-
like” observation has 4.1 (original) and 2.3◦ (improved) an-
gular resolution. For comparison, the narrow-FOV ARSCL
cloud products, including the lidar–radar CF, have much finer
angular resolution (about 0.2◦). The corresponding spatial
resolution of the lidar–radar CF can be estimated by multi-
plying wind speed at cloud base height by lidar–radar dwell
time (about 10 s). For example, its spatial resolution is about
100 m for 10 m s−1 wind speed.

3.4 Data selection and quality control procedures

Data selection and quality control procedures are applied to
the averaged and merged dataset. The scatterplots for 30 min
CF and 15 min FSC (Fig. B1) illustrate application of the
quality control criteria, while resulting data completeness is
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provided in Table B1. These screening criteria are executed
on the times with ShCu identified in Sect. 2 and includes the
following steps:

1. Periods with clear (averaged FSC < 0.05) or overcast
(averaged FSC > 0.95) conditions are removed from this
analysis for all variables.

2. Periods with multiple cloud layers are screened using
merged ceilometer–MPL data where the CF from all
clouds is required to be within 0.1 of the ShCu fraction
(Berg et al., 2011) (Fig. B1a)

3. Individual 10 s values from the merged ceilometer–
MPL product that were flagged as suspect are excluded
from the analysis. Incomplete data contribute to errors
in the CF calculation (Fig. B1b), and so only periods
with 100 % available data are used in the analysis.

4. Periods with questionable TSI retrievals are censored
using a threshold on allowed thin clouds. The thin cloud
classification of the TSI represents an uncertain pixel,
which is “not really clear or cloudy” and typically ap-
pears as a thin border surrounding the bright and eas-
ily visible ShCu clouds. However, camera degradation
and normal automated white balance adjustments of the
camera can lead to excessive thin cloud as well as erro-
neous opaque regions. Manual inspection of these time
periods results in a QC criterion that discards intervals
with thin cloud fraction greater than 0.3 (Fig. B1c).

5. Additional requirement for comparisons using the
ceilometer dataset. Individual observations in which the
quality-control flag was marked as good are retained,
and those with faults are censored from the dataset. Av-
eraging periods with missed or censored ceilometer data
are discarded. The 10-year (2000–2010) period has a
substantial (∼ 40 %) fraction of missed ceilometer data
(Table B1).

Initial selection criteria for the partially cloudy events with
single-layer ShCu (criteria 1 and 2) reduced the dataset from
614 to 609 d. Quality control (steps 3 and 4) on the 15 min
averaged data further reduced it to 569 d and from 2393 to
2048 h (Table B1). It is important to note that this dataset
is not strictly selective against cases that transitioned from
another cloud type (i.e., stratus to cumulus), nor is it selective
against cases that are driven by large-scale weather systems.

4 Results and discussion

4.1 Cloud detection and data merging

Instrument-dependent values of the estimated CF (Table 1,
Sect. 3.1) and the narrow- and wide-FOV FSCs (Sect. 3.2,
3.3) are generated for the whole 18-year period (2000–2017)

and two subperiods (2000–2010 and 2011–2017). The com-
parison of the cloud cover estimates from the subperiods il-
lustrates the joint and individual impacts of instrumental up-
grades (Sects. A2–A3) and data merging schemes (Sect. A4)
on the long-term statistics of cloud cover. The comparison
includes both 15 min (e.g., Lareau et al., 2018) and 60 min
(e.g., Zhang et al., 2017) averaging windows to assess the
impact of the shorter averaging time on the CF-FSC agree-
ment.

We begin our investigation of differences in cloud cover
estimates by comparing mean values (Tables 2 and 3). The
60 min average FSCs obtained for the two subperiods are
comparable (0.34 vs. 0.33), and their distributions are very
similar (comparison not shown), indicating weak changes
in the mean ShCu cloud cover for the two subperiods. The
ceilometer-based CF supports this interpretation as mean val-
ues show good agreement with FSC, particularly for the later
subperiod (2011–2017) where the ceilometer data have good
completeness. However, the mean CF values calculated from
the merged instruments are larger than FSC values by 0.12
for the ceilometer–MPL and 0.08 for the merged lidar–radar
in the early subperiod (2000–2010). The larger values of the
CF from the merged data in comparison with the ceilome-
ter and FSC in the early subperiod are consistent with pre-
vious studies which focus on all cloud types and sky con-
ditions (Boers et al., 2010; Qian et al., 2012; Wu et al.,
2014; Kennedy et al., 2014). However, the FSC–CF corre-
lation obtained for the single-layer ShCu is greatly improved
over those from the previous studies with all cloud types. For
example, Wu et al. (2014) reported a correlation coefficient
of 0.54 comparing hourly CF and FSC when ignoring clear
and overcast conditions. Here, the correlation coefficients for
hourly data are much higher (0.8–0.84) (Table B3). For the
later subperiod (2011–2017), the mean CF from the merged
instruments decreases by 0.05 for the combined ceilometer–
MPL and 0.09 for the combined lidar–radar. As a result, the
combined lidar–radar CF shows an improved agreement with
the FSC, whereas the CF from ceilometer–MPL is still larger
than the FSC by 0.08 (Table 2).

The changes in mean values of the merged instrument
CFs between the two subperiods are examined in the 1D
and 2D histograms in Fig. 1. The figure shows strong cor-
relation between merged ceilometer–MPL and merged lidar–
radar CFs in the early subperiod, indicating that the cloud top
height threshold employed has little influence on cloud frac-
tion. In contrast, in the later subperiod the RMSD between
the CFs is twice as large, and the correlation is only mod-
erate, indicating a higher influence of the cloud top height
criteria. The 1D histograms (Fig. 1a, b) show that both vari-
ables shifted to have more observations of low CF in the
second subperiod, although this is most pronounced for the
lidar–radar. These results suggest that changes in merging the
ceilometer–MPL cloud base height detection impacted CF
moderately, whereas changes in cloud top height detection in
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Table 2. Total number of observations (N ) and summary statistics for cloud amount estimated by five methods for three periods of interest
(second–fourth rows) at coarser temporal scales: 60 min FSC, “CF-like” and CF. These statistics include the mean (second column) and root
mean-square difference (RMSD) (third column). Values different from FSC by more than 0.05 are bold.

Mean cloud cover RMSD: FSC vs. CF

Year N Nceil FSC CFb CFbt CFceil “CF-like” CFb CFbt CFceil “CF-like”

All 2250 1665 0.33 0.44 0.38 0.31 0.34 0.19 0.16 0.11 0.1
2000–2010 1259 708 0.34 0.46 0.42 0.3* 0.34 0.2 0.18 0.11 0.1
2011–2017 991 957 0.33 0.41 0.33 0.32 0.33 0.17 0.14 0.12 0.1

Each 60 min period excludes clear and overcast conditions using criteria 0.05 < FSC < 0.95. ∗ Note that the ceilometer data in 2000–2010 had a large
percentage of missing during quality control (see Table B1) and that the mean is calculated from a subset of times reflected by Nceil. CF abbreviations
defined in Table 1.

Table 3. The same as Table 2, except for fine temporal scales: 15 min FSC and 30 min “CF-like” and CF.

Mean cloud cover RMSD: FSC vs. CF

Year N Nceil FSC CFb CFbt CFceil “CF-like” CFb CFbt CFceil “CF-like”

All 8192 6070 0.34 0.45 0.39 0.32 0.35 0.22 0.2 0.14 0.15
2000–2010 4628 2586 0.34 0.47 0.43 0.3* 0.35 0.24 0.21 0.14 0.15
2011–2017 3564 3484 0.33 0.43 0.35 0.33 0.34 0.21 0.18 0.15 0.14

Each 15 min period excludes clear and overcast conditions using the following criteria 0.05 < FSC < 0.95. *This value is calculated from a much
smaller subset of times, Nceil. CF abbreviations defined in Table 1.

the merged lidar–radar data created significant differences in
CF between the two periods.

The 2D histogram comparisons of merged lidar–radar CF
and FSC (Fig. 2) show the elimination of bias across the en-
tire range of FSC in the later subperiod; however, this may
be due to the introduction of compensating errors when the
overprediction of clouds by the combined MPL–ceilometer
cloud base height is compensated by the under prediction of
clouds by the radar cloud top height in the later period when
only radar is used to detect cloud top height below 3 km.
Though the mean bias is reduced by 0.08 (Table 2) in the
later period, the scatter about the 1 : 1 line is little affected as
evidenced by only a 0.04 reduction in the RMSD in the later
subperiod; additionally, 51 % of CF values differ from FSC
by more than 0.1 in the early period compared to 41 % in
the later subperiod. The modest improvement in agreement
indicates the continued presence of cloud detection differ-
ences. The 2D histograms for the merged-lidar data CF vs.
FSC (Fig. 3) show better agreement across the entire range in
the later subperiod, consistent with an improvement in ShCu
cloud detection. The compensating error hypothesis is sup-
ported further by the comparisons of ceilometer CF to FSC
(Fig. 4), which return the highest correlation coefficients (Ta-
ble B3) and the lowest RMSD (Tables 2 and 3).

The new cloud radar (deployed in 2010) is expected to
have improved ShCu detection in the lower atmosphere over
the previous instrument. Therefore, it is not expected that the
changes in radar detection are responsible for the reduction
of merged lidar–radar CF in the later subperiod. We should
note that the small droplet size of continental cumuli has been

reported to impede their detection by both the new (Lamer
and Kollias, 2015) and retired radar (Chandra et al., 2013).
For example, Lamer and Kollias (2015) report that 37 % of
the hydrometeor detections by the ceilometer were missed
by the radar at the SGP site. Most certainly, in either period,
the radar would not contribute to an overestimation of CF.
Instead it is expected that changes in how MPL and radar
data are merged to retrieve cloud top height is likely the
source of these significant differences seen between subpe-
riods (Sect. A4). Though a number of differences exist, the
incorporation of MPL data (below 3 km) in the original cloud
top height retrieval would increase the number of detected
cloud tops compared to those retrieved from the radar data
alone for the initial period (2000–2010). Reliance only on
the radar data for cloud top detection in the updated algo-
rithm would result in fewer cloud top height detections and
therefore a lower CF (see Sect. A4 for more details).

Since ceilometer CF does not demonstrate dependence
on subperiods, it is unlikely that the decrease in merged
ceilometer–MPL CF between the two periods is due to the
ceilometer. The merged ceilometer–MPL CF is always the
same or greater than CF from the ceilometer alone, and the
bias decreases between the two subperiods from 0.19 to 0.11
(comparing times with complete ceilometer observations).
This decrease in bias also corresponds to a decrease in the
RMSD from 0.25 to 0.16 and an increase in Pearson’s cor-
relation from 0.86 to 0.91. The improvement in agreement
might be attributable to improvements in the MPL mask that
reduce false cloudy returns from boundary layer aerosols, re-
sulting in a lower MPL CF (Sect. A3). It is also consistent
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Figure 1. Relationship between CF from merged ceilometer–MPL
(clouds identified by CBH) and from merged lidar–radar (clouds
identified by both CBH and cloud top height). (a, b) Histograms of
CF from merged ceilometer–MPL (blue) and merged lidar–radar
(red). (c, d) Joint histograms (counts) for the two methods, ma-
genta line is 1 : 1. (a, c) Present data obtained from 2000 to 2010
(N = 4628), where the radar and MPL data are used jointly to de-
termine cloud top height (Table 1). (b, d) Present data obtained from
2011 to 2017, (N = 3564), where the cloud top height is determined
from radar data alone below 3 km. Each observation represents a
30 min average. RMSD (Pearson’s correlation coefficient) in (c) is
0.08 (0.98) and 0.17 (0.87) in (d).

with an increased reliance on the ceilometer for boundary
layer retrievals in the cloud base best estimate retrieval algo-
rithm (Sect. A4). Specifically, the updates of the merging al-
gorithm would likely result in more frequent “clear” returns.
The TSI and ceilometer data in comparison with the merged
ceilometer–MPL and/or ceilometer–MPL–radar data may be
preferable for consistent estimates of ShCu cloud cover at the
SGP site from 2000 to present.

4.2 Impact of FOV on cloud cover measurements

Recall that the CF obtained from lidar–radar observations
with narrow FOV represents a transect of a cloudy sky along
the wind direction, while FSC acquired from wide-FOV TSI
data defines an area of cloudy sky. Both the CF and the FSC
are widespread measurement-based estimates of cloud cover.
Fractional sky cover (FSC) from a 100◦ image spans about a
3 km width of the sky for a 1.5 km cloud base, whereas the
active remote sensing instruments (radar, MPL and ceilome-
ter) observe only a “soda straw” approximately 10 m wide –
essentially a point in the sky. Cloud fraction obtained from
these narrow field of view instruments is thus essentially a
1D transect through clouds that pass overhead. Previous stud-
ies have reported sampling uncertainties in transect measure-

Figure 2. Two-dimensional (2D) occurrence distributions of paired-
in-time CF and FSC for the three periods of interest: (a, b) 2000–
2017, (c, d) 2000–2010 and (e, f) 2011–2017. Solid magenta line
is 1 : 1 and dashed is least-squares fit, with regression coefficients
given in Appendix B (Tables B2 and B3). Left (a, c, e) and
right (b, d, f) columns define fine (15 min FSC and 30 min CF)
and coarser (60 min FSC and CF) temporal scales, respectively.
Color scale represents counts in increments of 10. Each included
data point excludes clear and overcast conditions using criteria
0.05 < FSC < 0.95. CF from merged lidar–radar method uses infor-
mation about cloud base height (ceilometer–MPL) and cloud top
height (radar–MPL).

ments for modeled random cloud fields (Astin et al., 2001;
Berg and Stull, 2002; Kassianov et al., 2005). The term “ran-
dom” refers to the random arrangement of clouds on a hori-
zontal plane within a given domain. In particular, the previ-
ous model studies (Astin et al., 2001; Berg and Stull, 2002)
have demonstrated that the cloud cover obtained from the
transect measurements mimics the area-averaged cloud cover
for non-organized (e.g., random) cloud fields well if the sam-
ple size is relatively large (or numerous individual clouds are
sampled). Recently Oue et al. (2016) showed that 10 or more
ceilometers equally spaced across a 25 km width in the cross-
wind direction are required to estimate the simulated cloud
cover in the small (30 km) domain. Certainly, the number of
ceilometers, their locations and averaging time required for
an accurate estimation of the cloud cover depend on the spa-

www.atmos-meas-tech.net/13/2099/2020/ Atmos. Meas. Tech., 13, 2099–2117, 2020



2106 E. A. Riley et al: Shallow cumuli cover and its uncertainties

tial arrangement of clouds and wind speed. Conversely, poor
agreement is expected for organized cloud fields, such as so-
called “cloud streets,” where individual clouds are arranged
in rows along the mean wind direction within a given pe-
riod of interest. To estimate the relative impact of the FOV
configuration on the estimated cloud cover, we use the “CF-
like” observations (Sect. 3.3) following an approach previ-
ously introduced by Wagner and Kleiss (2016). Recall that
the narrow-FOV “CF-like” and the wide-FOV observations
are both from the TSI and thus have identical sensitivities for
ShCu detection. Thus, the differences between “CF-like” and
FSC illustrate the FOV impact on the estimated cloud cover.

Comparison of “CF-like” and FSC shows symmetric vari-
ability around the 1 : 1 line (Fig. 5) and no indication of bias
in average values (Tables 2 and 3). For the 1 h (30 min) ob-
servations, 23 % (41 %) of “CF-like” values differ from FSC
by more than 0.1, and 5 % (14 %) differ by more than 0.2.
Reducing the averaging time from 1 h to 30 min increases
the RMSD by 0.05 (Table 2) and decreases the correlation
from 0.92 to 0.85 (Table B3). Similar trends in the RMSD
and correlation coefficients are seen for all the CF measure-
ments as well. This result is consistent with a 15 min decor-
relation time for the temporal FSC fluctuations (Kassianov
et al., 2005). The “CF-like”–FSC comparison allows us to
estimate that narrow-FOV observations are responsible for a
±0.1 uncertainty in hourly observations of CF (Table 2).

Using the passive “CF-like” observations, we also empha-
size the relative impact of the instrument-dependent cloud
detection and data merging for actively sensed CF measure-
ments. The variability in the best fits in Figs. 2–4 (comparing
FSC to CF) is greater than is expected from FOV impacts
alone (Fig. 5) for both hourly and sub-hourly observations.
For hourly measurements, 23 % of the “CF-like” values dif-
fer from FSCs by more than 0.1; this is the expected impact
of FOV alone. For the earlier subperiod (2000–2010), the
percentages of the CF values differing by more than 0.1 from
the wide-FOV FSC are 62 %, 51 % and 34 % for the merged
ceilometer–MPL, lidar–radar and ceilometer retrievals, re-
spectively. For the later subperiod (2011–2017), which has
the least bias, the corresponding percentages are 53 %, 41 %
and 30 %. The large percentages of observations with sig-
nificant uncertainty in both time periods highlight the im-
portance of distinguishing between FOV effects from instru-
mental detection differences when using data for sub-hourly
applications.

The effective spatial area sampled by either narrow or wide
FOV instruments is a function of both sampling duration
and wind speed. High wind speed in comparison with low
wind speed (1) increases sample size for a given period and
(2) tends to organize horizontal arrangement of clouds (e.g.,
Weckworth et al., 1999; Atkinson and Zhang 1996). These
two factors associated with sample size and spatial arrange-
ment of clouds should be considered when differences be-
tween cloud cover obtained from narrow- and wide-FOV ob-
servations as function of wind speed are considered (Fig. 6).

Figure 3. The same as Fig. 2, except CF from merged ceilometer–
MPL method only uses information about cloud base height.

In particular, Fig. 6 illustrates that both CF–FSC and “CF-
like”–FSC differences are reduced noticeably as the wind
speed increases from 1 to 3 m s−1 and continue to reduce
slightly as the wind speed grows up to 11 m s−1. The CF–
FSC and “CF-like”–FSC differences obtained at a higher
wind speed (above 11 m s−1) should be considered with cau-
tion due to limited number of the corresponding cases with
high wind speed (e.g., fewer than 100 cases for 60 min time
average). The increased sampling area associated with in-
creased wind speed does not necessarily result in an im-
proved agreement between the narrow- and wide-FOV ob-
servations for both hourly and sub-hourly observations due
to the impact of wind speed on cloud organization.

4.3 Heuristic tool to evaluate individual cloud cover
estimates.

We developed a tool to help understand the impact of differ-
ent sources on individual CF measurements. These sources
include data quality control, detection differences and spatial
cloud organization during the time period of interest (FOV-
impact). Many factors contribute to cloud field organization
including cloud cover, cloud size (Zhu et al., 1992), wind
speed, cloud growth and decay rates, and the presence of
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Figure 4. The same as Fig. 2, except CF only uses cloud base height
information from the ceilometer.

cloud streets and clusters. The “quick-look” tool is used to
distinguish the detection-based uncertainty from the FOV-
impact during different sky conditions.

TSI cloud mask images are analyzed for FSC differences
along the cross-wind direction to visually assess the spatial
inhomogeneity of the cloud field and its potential impact on
disagreement between narrow- and wide-FOV observations.
Prior to our analysis, the 25◦ FOV sun circle is removed and
the cloud mask is cropped to the 100◦ FOV and undistorted
from hemispherical to rectilinear coordinates (Chow et al.,
2011). Mean composite images are generated by summing all
images within 15 min and dividing by the number of images
(Fig. 7a). Each pixel in the averaged image can be interpreted
as a 15 min CF measurement from a narrow-FOV sensor. The
variability of CF in the cross-wind direction can indicate the
possible influence of cloud field organization on cloud cover
estimates by narrow-FOV observations. The composite im-
age is then divided into 21 equally spaced “lanes” parallel
to the wind direction at CBH (lane FOV is 5◦). The mean
and interquartile CF from each lane is then computed for this
15 min average. Figure 7b shows that the cross-wind variabil-
ity represented by the lane CF means exceeds substantially
the within-lane variability (vertical bars). The low variabil-

Figure 5. The same as Fig. 2, except for comparison between “CF-
like” and FSC, where both are derived from the TSI instrument.

ity within each lane indicates small changes in FSC within a
lane for this period.

Figure 8 shows an example of “quick-look” results gener-
ated for a single day (14 June 2017). The narrow-FOV (5◦)
lane-averaged FSC (Fig. 7) is used to estimate the FOV im-
pact for each 15 min interval. The variability in lane FSC for
each 15 min interval is visually displayed as one row in the
heatmap (Fig. 8a) and provides the spatial distribution of the
narrow-FOV FSC perpendicular to the wind direction. The
source of between-lane FSC variability can be inferred from
the 15 min mean composite images themselves (Fig. 8b). For
perfect data, the thumbnail images are a representation of the
mean cloud field within the 100◦ FOV image. For typical
wind speeds (4–15 ms−1) it is common to observe streaks,
as is seen in this example day, generated by the motion of
clouds (see also Fig. 9a, b). For low wind speeds (less than
4 ms−1), a mottled field of clouds emerges with pixel CF de-
pendent upon the rate of cloud formation and decay (Fig. 9c).
Less variability in cross-lane FSC is observed for large cloud
cover (FSC > 0.7) especially for typical winds (Fig. 9d).

The lane-averaged FSC is compared to actual 30 min CF
measurements in Fig. 8c. The intention of this plot is to com-
pare the narrow-FOV CF to the range of possible narrow-
FOV FSC observed over different sky regions. By quantify-
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Figure 6. Absolute difference between FSC and CF as a function
of wind speed at CBH (2 m s−1 bins). Markers indicate median,
and bars indicate 25th and 75th quartiles. Red: absolute difference
between FSC and “CF-like” from the TSI. Blue: absolute difference
between FSC and CF from the ceilometer. (a) The 15 min FSC and
30 min CF and (b) 60 min FSC and CF. Missing wind speed at CBH
is replaced by RWP wind speeds at 500 m; missing RWP data are
replaced using surface wind speeds.

ing the uncertainty in cloud cover estimates due to the spatial
variations in the mean cloud field, we are better equipped
to separate FOV impacts from detection differences. For ex-
ample, a noticeable cloud street appears from about 12:30–
13:15 local time, characterized by a wider spread in the lane-
FSC min−max and interquartile range (IQR). The mean FSC
is approximately 0.5 during this time, and the CF varies
between 0.25 and 0.3 and is nearly equal to the lane-FSC
minimum. The corresponding thumbnails in Fig. 8b appear
nonuniform, suggesting that the CF measurement is im-
pacted by the narrow FOV configuration. In contrast, from
13:15 to 14:15 local time a more uniform mean cloud field
is depicted, and the lane-FSC IQR is within 0.1 of the FSC.
During this period, ceilometer CF is also within the lane IQR.
Surprisingly, CF from the merged lidar–radar diverges from
the ceilometer value for the first time in the day and exceeds
the lane-FSC maximum significantly. We interpret the larger
merged lidar–radar CF to be an overestimation of cloud cover
associated with detection differences or data merging issues.

Figure 8 is also useful for quality checks as the quick looks
are not censored based on the criteria of Sect. 3.4. For ex-
ample, on this day we can see little evidence of upper-level
clouds by the close agreement of the merged ceilometer–
MPL total CF (blue) and ShCu CF (red dashed). The thumb-
nails illustrate image artifacts such as incomplete removal
of sun glare (17:00–19:00 LT), which would cause FSC to
be overestimated. In this same period, the images otherwise

Figure 7. (a) A composite 15 min average cloud cover image
(Sect. 4.3) created from 100◦ FOV TSI cloud masks captured every
30 s with sun circle region removed and projected onto a rectilinear
grid. Color bar indicates the fraction of time each pixel observes a
cloud (thin or opaque). North is top of figure; streaks result from
cloud motion across the image field. Image is divided into 21 lanes
oriented parallel to the wind direction (red arrow points downwind)
obtained from a radar wind profiler at CBH. (b) The mean and in-
terquartile range (vertical bars) of CF observed within each of the 21
lanes. Note, the moderate (∼ 20◦) misalignment of the cloud streaks
and the wind vector, illustrating the challenges of wind-based anal-
yses.

show relatively uniform cloud cover; therefore CFceil might
be preferred over FSC. Sun glare is common in the TSI, and
a method has been proposed to identify and correct its effects
on the FSC (Long, 2010). The wind-direction, indicated by
the red arrow, is provided to verify cloud motion with ob-
served wind direction. This is particularly helpful if missing
wind data at CBH have been imputed from other sources, as
it can be incorrect. Sun glare and incorrect wind direction are
significant limitations of the extensibility of this method to a
statistical analysis.

There are two main expected applications of the intro-
duced “quick-look” tool. The first potential application is a
classification of spatial organization of cloud fields using, for
example, cross-wind cloud field variability (e.g., peaks and
valleys in Fig. 7b) and within-lane variance in cloud amount
(e.g., vertical bars in Fig. 7b). Numerous images generated
by the “quick-look” tool (e.g., Fig. 8b) for the extended pe-
riod (2000–2017) can be considered as a valuable training
dataset for machine learning with focus on automated detec-
tion of desired features of the cloud fields (e.g., cloud streets)
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Figure 8. Example of results from “quick-look” tool for comparing FSC and CF for 14 June 2017. (a) Heat map of 15 min average CF
indicated by the color bar. Cross-wind distance is calculated from the average CBH of 1.5 km, with zero representing the center lane of the
composite image – the row from 13:00–13:15 (LST) corresponds to the FSC values in Fig. 7b. (b) The 15 min composite images within the
100◦ FOV, projected onto rectilinear grid. Red arrows indicate wind direction at CBH. (c) Comparison of cloud amounts obtained from TSI
and lidar–radar data, including the following: 30 min averages of CFbt (CF “cloud bases and tops”) from merged lidar–radar for ShCu only
(red dashed with circles), CFceil (CF “from ceilometer”; red line with “x” symbol) and CFtot (CF “total”) from merged ceilometer–MPL for
any cloud detection (blue line with squares). The 15 min average FSC from TSI data (black with circles) and 15 min minimum and maximum
lane-averaged CF (light grey shading) and interquartile range of lane CF (dark grey shading). Markers are placed at time bin center.

and unwanted contaminations of TSI images (e.g., Fig. 9).
The second potential application is a visual inspection of the
generated images for a given period of interest (e.g., a short-
term field campaign) to check for the impact of instrumen-
tal detection differences and cloud field organization on the
observed cloud amount. Visual inspection may be feasible
given a limited number (about 40) of ShCu events annually
during the warm season. For example, a spread of the lane
CFs (gray region in Fig. 8c) gives an idea about the cross-
wind cloud field variability within a given FOV and thus aids
in understanding the difference between cloud amounts ob-
tained from the narrow- and wide-FOV observations.

5 Conclusions

We compare single-layer ShCu cover estimates obtained
from the narrow-FOV lidar–radar and the wide-FOV TSI
data collected at the continental SGP site. The data repre-
sent an extended period (2000–2017 summers) and two sub-
periods (2000–2010 and 2011–2017 summers), which mark
the instrumentation upgrades and corresponding improve-
ments in data merging. Our comparison includes the bias
between the long-term mean values of the cloud cover es-
timates, the corresponding RMSDs and correlation coeffi-
cients. The main conclusions are organized along the two
guiding questions highlighted in the introduction:

1. Have significant changes in the observations of ShCu
cover occurred at the SGP site due to instrumental and
algorithmic upgrades? We demonstrate that the best
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Figure 9. Illustrations of spatial patterns of ShCu manifest in 15 min averaged composite images (100◦ FOV, rectilinear coordinates) and a
representative all-sky image from the averaging period. Color bar is 15 min mean FSC for each pixel in the composite image; black arrow
indicates wind direction; red dot in sky image indicates location of the 3 pixels×3 pixels for “CF-like”. The 15 min FSC, 30 min CF from
merged lidar–radar method, “CF-like”, and wind speed are provided as text. (a) A bit of bird feces contaminates the mirror on the left-hand
side of the image, fortunately not within the 100◦ FOV, resulting in no error of FSC. (a–c) *1: wind source is radar wind profiler at CBH,
(d) *3 is 10 m surface wind speed.

agreement (bias and RMSD are within 0.04 and 0.12,
respectively) occurs between the CF obtained from the
ceilometer alone and FSC obtained from TSI data for
the entire period and two subperiods. In contrast, the
CF calculated from combined ceilometer–MPL data has
the largest disagreement with FSC in the first subperiod
(positive bias of 0.12; RMSD of 0.2), with improvement
in the second subperiod (positive bias of 0.08; RMSD
of 0.17). This improvement is likely associated with up-
dates to the MPL cloud mask and improved merging
strategies that rely more on the ceilometer. When incor-
porating a threshold on the cloud top height, the CF ob-
tained from the combined ceilometer–MPL–radar data
has better agreement with FSC in the first subperiod
(positive bias of 0.08; RMSD of 0.18),and good agree-
ment in the second subperiod (no bias; RMSD of 0.14).
The strong period dependence of CF obtained from the
combined ceilometer–MPL–radar data, is likely due to
a change in what sensors are relied on to detect cloud
top below 3 km. Post 2011, KAZRARSCL stopped us-
ing the MPL cloud top detection below 3 km leaving
the radar as the sole sensor for cloud detection in that
region. However, the radar has known difficulties in de-
tecting cumuli; therefore, the improved agreement is
likely due to partial compensating errors in cloud de-
tection.

2. What is the impact of FOV configurations on hourly
and sub-hourly observations of ShCu cover? TSI-based
narrow- and wide-FOV FSC comparisons have no bias
and RMSD of 0.1 for hourly observations for all con-
sidered time periods. The obtained small RMSD shows
that, on average, the narrow-FOV introduces an un-
certainty in cloud cover of ±0.1 for 1 h CF measure-
ments. The “penalty” for decreasing the averaging time
to 30 min (15 min FSC) is to increase the average uncer-
tainty in CF to ±0.15. The majority (77 %) of the com-
parisons are within 0.1 for hourly observations, whereas
only 59 % of the 30 min (narrow-FOV) versus 15 min
(wide-FOV) comparisons are within 0.1. This consider-
able impact of the FOV configuration on sub-hourly ob-
servations of ShCu, confounded with instrumental de-
tection differences, motivates the introduction of a new
“quick-look” tool.

The “quick-look” tool uses a spatially resolved analysis of
the cross-wind variability in cloud cover in the TSI 100◦ FOV
to provide an expected range of cloud cover that would be de-
tected by a set of 21 narrow-FOV instruments with the same
detection properties as the TSI. We demonstrate the utility of
the “quick-look” tool to identify the impacts of the FOV con-
figuration on the cloud cover estimates and to identify peri-
ods with organized cloud fields. In addition, the “quick-look”
tool can identify times with potential issues associated with
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data merging and cloud detection, as well as periods with
TSI data quality concerns. The developed data-centric tool
may supplement outputs from the existing and future narrow-
FOV lidar–radar simulators (Bouniol et al., 2010; Tatarevic
and Kollias, 2015; Lamer et al., 2018).

The presented dataset provides a unique opportunity to
(1) contrast the long-term cloud cover estimates with dif-
ferent instrumental sensitivities and data merging strate-
gies and (2) describe the across-wind variability in cloud
cover at user-specified temporal and spatial scales. These
data provide an observational foundation for a better inter-
pretation of quandaries such as the model-to-data discrep-
ancy of cloud cover (Zhang et al., 2017). Finally, the devel-
oped dataset is expected to facilitate evaluation of the mod-
eled shallow cumuli over small domains (∼ 4km× 4km)
at the SGP site. These studies with strong model and ob-
servational components include the recent large eddy sim-
ulation (LES) ARM Symbiotic Simulation and Observation
(LASSO) project (Gustafson and Vogelmann, 2015) and the
Holistic Interactions of Shallow Clouds, Aerosols, and Land-
Ecosystems (HI-SCALE) field campaign (Fast et al., 2017).
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Appendix A: Description of millimeter cloud radar
(MMCR), micropulse lidar (MPL) and merging
algorithm 2000–2017

A1 Active Remotely-Sensed Cloud Locations product
overview

MMCR, MPL and ceilometer data are combined in the
Active Remotely-Sensed Cloud Locations (ARSCL) value-
added product (Clothiaux et al., 2000). The product improves
upon the MMCR vertical profiling of hydrometeors by em-
ploying an MPL cloud mask to identify CBH and aide in mit-
igating the significant impact of insect returns. The screened
high temporal (10 s) and vertical (45 m) radar reflectivity best
estimate (Kollias et al., 2016) is further distilled to gener-
ate a user-friendly data stream of the vertical distribution of
hydrometeors above the SGP site (sgparsclbnd1clothC1.c1).
Within this data stream is a field for best estimate of
CBH (“CloudBaseBestEstimate”) from merging MPL and
ceilometer data and two fields containing up to 10 hydrome-
teor layer determinations of cloud bottom (“CloudLayerBot-
tomHeightMplCloth”) and top (“CloudLayerTopHeightM-
plCloth”) heights. These two fields are derived from the re-
flectivity best estimate, cloud base best estimate and MPL
cloud mask. In 2011, the ARSCL was replaced with the
KAZRARSCL with corresponding data stream name “sg-
parsclkazrbnd1kolliasC1.c1”. Although the reporting inter-
val of the MPL and ceilometer are 30 and 16 s, respec-
tively, the ARSCL reporting interval is 10 s corresponding
to the MMCR and 4 s for KAZRARSCL corresponding to
the KAZR.

Each instrument (MMCR, MPL and ceilometer) has chal-
lenges for detecting ShCu; therefore the data merging pro-
cess can significantly impact the resulting cloud fraction.
Radar reflectivity is weak for shallow cumuli with low liquid
water path (below 50 gm−2) due to the small cloud droplet
radii (3–7 µm); for this reason, approximately half of the
clouds identified by the ceilometer are not seen by the radar
(Chandra et al. 2013). Consequently, the lidar data (ceilome-
ter and MPL) are used for CBH information.

The MPL has a greater sensitivity to cloud droplets than
the ceilometer and MMCR, resulting in a larger CF (Dono-
van and van Lammeren, 2001; Kennedy et al., 2014). Some
weaknesses of the MPL include the following: (1) misiden-
tification of aerosol layers as clouds, due to the increased
sensitivity to aerosols of shorter wavelength of the laser;
(2) difficulty retrieving cloud bases in the “blind spot” below
500 m (Welton and Campbell, 2002; Sivaraman and Com-
stock, 2011); (3) quick attenuation of the backscatter signal
within clouds resulting in inaccurate cloud top height; and
(4) longer integration time (30 s), which may complicate re-
turns in partially cloudy conditions. It was previously found
that when MPL is merged with the ceilometer, the combined
lidar CF is larger by 0.03–0.06 than CF from the MPL alone
(Kennedy et al., 2014). The ceilometer has better visibility

and accuracy in the lower atmosphere than the MPL, but its
range is limited to 7.7 km. Below 3 km, the ceilometer is used
to define CBH if both MPL and ceilometer detect clouds; oth-
erwise if just one instrument detects cloud then a CBH is re-
turned from that instrument. Therefore, there is a preference
to report a 10 s period as cloudy if the lidars disagree.

The lidars are limited in determining cloud top height
owing to the attenuation of the backscatter signal. Cloud
top height from the MPL is typically assessed by setting a
threshold on the attenuation of the return; for this reason,
MPL cloud top heights are usually considered effective top
heights. Multiple cloud layer detection is better performed
by the radar, and the algorithmic updates in KAZRARSCL
processing reflect this strength (Sect. A4).

A2 Radar updates (2011)

Many continental cumuli are optically thin (liquid water con-
tent less than 50 g m−2) and have small droplets. As a result,
the cloud radars (both MMCR and KAZR) are not able to
detect a fraction of these clouds (e.g., Chandra et al., 2013;
Lamer and Kollias, 2015). The ARM radars have undergone
a number of upgrades over the years as was recently reviewed
by Kollias et al. (2016) (see their Table 17-2). The millime-
ter cloud radar (MMCR, 1997–2010) was replaced by Ka-
Band Zenith Radar (KAZR, 2011–present) with expected
improved sensitivity to cloud properties. The KAZR differs
from the MMCR particularly due to the change in radar pulse
compression type from Barker to nonlinear frequency mod-
ulation modes, which improve the sensitivity of the radar.
Importantly, the cirrus mode (pulse length of 8000 ns) was
dropped from the pulse sequence and a more sensitive mod-
erate mode (4000 ns) was added. The MMCR and KAZR
both employ a general mode (300 ns). The shorter pulse
widths serve to increase the visibility of the radar in the lower
atmosphere. This is a consequence of an expanded range in
the lower atmosphere that is gained when the transmission
time of the radar is decreased. Another key feature of the up-
grade was a transition from sequential pulse sequences em-
ployed in the MMCR to dual acquisition pulses in the KAZR.
The sequential pulse sequence required a sampling period of
36 s in the earliest period prior to 2004, then 12–14 s in 2004–
2010 to cycle through the different modes. The KAZR only
employs two modes (general and moderate), which can be
transmitted in tandem, which reduces the sampling period to
4 s. The improvement in sampling period is reflected in the
shortened reporting interval in the KAZRARSCL data prod-
uct. Cloud radars (both the MMCR and KAZR) are known to
miss detection of ShCu with small droplets compared to the
ceilometer. For example, Chandra et al. (2013) have found
that the MMCR misses the majority of continental ShCu ob-
served at the SGP site.
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Table A1. References to instrumentation descriptions and service records at the SGP site.

Instrument (abbreviation) Reference

Millimeter cloud radar (MMCR, 2000–2010) https://www.arm.gov/capabilities/instruments/mmcr (last access: 12 April 2020)
Ka-band zenith pointing radar (KAZR, 2011–present) https://www.arm.gov/capabilities/instruments/kazr (last access: 12 April 2020)
Micropulse lidar (MPL) https://www.arm.gov/capabilities/instruments/mpl (last access: 12 April 2020)
Ceilometer (Ceil) https://www.arm.gov/capabilities/instruments/ceil (last access: 12 April 2020)
915 MHz radar wind profiler (RWP) https://www.arm.gov/capabilities/instruments/rwp (last access: 12 April 2020)
Total sky imager (TSI) https://www.arm.gov/capabilities/instruments/tsi (last access: 12 April 2020)

A3 MPL updates (2010)

The MPL cloud mask calculates cloud boundaries predom-
inately from the attenuated backscatter signal. The original
cloud mask involved a signal-to-noise threshold based on
cloud droplet scattering (Campbell et al., 1998), whereas
the updated cloud mask incorporated information on differ-
ent scattering properties of aerosol and clouds (Wang and
Sassen, 2001). In 2004 the MPL non-polarized implemen-
tation was replaced with a polarized system. The MPL hard-
ware was upgraded in 2010 to a fast switching mode that
allowed for switching between linear and circular polariza-
tion channels (Coulter, 2012). The cloud mask algorithm
was also updated at this time to a methodology developed
by Wang and Sassen (2001), which has been used to pro-
cess the entire MPL record at the ARM facilities, though
this cloud boundary processing has only been used in AR-
SCL and KAZRARSCL since 2010. It is expected that the
updated cloud mask would improve cloud returns. Interested
readers are directed to the technical documentation for the
MPL mask (Sivaraman and Comstock, 2011).

A4 Cloud detection algorithm developments (2011)

Many changes occurred between the summers of 2010 and
2011 including the following: (1) ARSCL was changed to
use the MPL cloud mask of Wang and Sassen (2001) in
2010; (2) the new KAZR was deployed, and the MMCR
was decommissioned; and (3) KAZRARSCL replaced AR-
SCL in 2011, including updates to how retrievals of cloud
layer boundaries (bases and tops) are handled in the MPL
cloud mask. It is beyond the scope of this paper to identify
all the possible changes that could result in differences in the
ARSCL- and KAZARSCL-based cloud detections. However,
it is important to note that both the MPL and MMCR are used
to determine the cloud top heights within the boundary layer
in ARSCL, whereas in KAZRARSCL only the KAZR is
used to determine cloud top heights below 3 km due to well-
known MPL difficulties detecting low clouds (Berg and Kas-
sianov, 2008; Karen Johnson, private communication, 2018).
In KAZRARSCL the MPL mask is still used for removing
clutter in the radar returns.

Updates to the cloud base best estimate algorithm are also
implemented. In particular, when the ceilometer observed

clear skies and the MPL had no return, the ARSCL data are
flagged as “possibly clear”, whereas the KAZRARSCL data
are flagged as clear. The ceilometer is used to judge clear
or cloudy below 500 m in KAZRARSCL. Otherwise in both
versions the cloud base of the ceilometer is preferred if both
instruments return cloud below 3 km, and if either detects
cloud then a cloud base height is returned (with the excep-
tion noted above).

Appendix B: Supporting figures and tables

Scatter plots of sequential application of quality control pro-
cedures (Sect. 3.4) for 30 min CF and 15 min FSC are shown
in Fig. B1, while data completeness for each summer in this
study is provided in Table B1. The regression coefficients
and correlation coefficients for Figs. 3–6 are provided in Ta-
bles B2 and B3, respectively.
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Table B1. Summary of single-layer ShCu events by year and percent data completeness after applying quality control steps. Entries corre-
spond to scatterplots in Fig. B1. In particular these periods comply to the requirement that 0.05 < FSC < 0.95.

Year 20xx ’00a ’01 ’02 ’03 ’04 ’05b ’06 ’07 ’08 ’09 ’10c ’11 ’12 ’13 ’14 ’15 ’16 ’17 All

Daysd 12 29 43 28 44 22 36 37 56 43 6 21 33 47 45 30 42 35 609
Hoursd 52 93 205 124 191 88 135 150 227 155 20 86 98 179 182 112 149 148 2393
QC pval (%)e 100 70 100 91 93 98 97 96 98 86 14 100 100 100 100 99 99 100 95
QC thin (%)f 91 98 68 88 100 41 100 98 91 86 97 90 96 99 95 79 91 98 90
QC “ceil ok” (%)g 91 2 0 0 1 1 99 97 91 86 95 90 94 99 95 76 84 96 65

Final daysf 12 20 36 28 41 12 36 36 56 38 3 21 33 47 45 29 42 34 569
Final hoursf 47 63 139 98 176 35 131 141 203 121 2 78 95 178 173 88 135 146 2048

a TSI data begins 2 July. b TSI missing most data in June and July. c In 2010, 19 d with shallow cumuli are identified, of which six contained events longer than 2 h that also satisfied single layer conditions,
CF(all clouds) – CF (ShCu) < 0.1. Only 14 % of the observations satisfied the 100 % instrument validity criterion. The values in this table are generated from the 15 min dataset. These values do not correspond
to the 1 h values (i.e., the 1 h values are not generated from the 15 min values and are subject to passing the same quality control thresholds but on the hourly timescale). d Data in Fig. B1a. e Percent of
observations that pass a 100 % quality control (QC) percent valid test for ARSCL/KAZRARSCL; data shown in Fig. B1b. f Data shown in Fig. B1c. g “Ceil-ok” is the field in the original dataset indicating the
ceilometer data passed automated quality control.

Table B2. Regression coefficients for Figs. 3–6.

15 min: CF = β0+β1× FSC 1 h: CF = β0+β1× FSC

Year “CF-like” (β0|β1) CFceil (β0|β1) CFb (β0|β1) CFbt (β0|β1) “CF-like” (β0|β1) CFceil (β0|β1) CFb (β0|β1) CFbt (β0|β1)

All 0.01 0.99 0.01 0.92 0.12 1 0.09 0.9 −0.01 1.06 −0.01 0.96 0.1 1.03 0.07 0.93
2000–2010 0.01 0.99 0 0.91 0.13 1.01 0.13 0.87 −0.01 1.06 −0.02 0.94 0.11 1.04 0.11 0.89
2011–2017 0.01 0.99 0.02 0.93 0.11 0.98 0.04 0.92 −0.01 1.07 0 0.98 0.08 1.02 0.02 0.97

CF abbreviations defined in Table 1.

Table B3. Pearson’s correlation coefficient for FSC vs. CF for fine and hourly timescale.

30 min CF, 15 min FSC Hourly CF and FSC

Year CFb CFbt CFceil “CF-like” CFb CFbt CFceil “CF-like”

All 0.77 0.74 0.83 0.85 0.84 0.81 0.89 0.92
2000–2010 0.78 0.74 0.86* 0.85 0.84 0.8 0.9* 0.92
2011–2017 0.77 0.77 0.82 0.84 0.84 0.83 0.88 0.92

∗ This value is calculated from a much smaller subset of times (see Nceil, Tables 2 and 3). CF abbreviations defined in
Table 1.

Figure B1. Comparison of 15 min FSC and 30 min CF from the merged ceilometer–MPL method after data screening steps. (a) Single-layer
cases: CF (all clouds) – CF (ShCu) < 0.1 and 0.05< FSC < 0.95 (N = 9571); (b) Data as in (a), with additional requirement to discard
periods with missing CBH returns (N = 9128); (c) Data as in (b), with periods when 15 min FSC from thin cloud exceeds 0.3 are removed
(N = 8192). Each point represents 15 min period.
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Data availability. The analysis dataset is derived from observa-
tions collected at the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) site Central Facility in northern Ok-
lahoma, USA, and are freely available at links listed below. Spe-
cific data streams in Sect. 2 can be requested through the in-
teractive search tool at https://adc.arm.gov/discovery/ (last access:
16 April 2020). The individual datasets are as follows:

– Ceilometer cloud base height (Morris et al., 1997) available at
https://doi.org/10.5439/1181954.

– Active Remotely-Sensed Cloud Locations (ARSCL) cloud
boundaries (Giangrande and Johnson, 1996) available at
https://doi.org/10.5439/1027284.

– ARSCL product using Ka-band ARM Zenith Radars
cloud boundaries (Fairless et al., 2011) available at
https://doi.org/10.5439/1350629.

– ARM best estimate for 10 m surface wind data (Chen and Xie,
1994) available at https://doi.org/10.5439/1095313.

– 915 MHz Radar Wind Profiler for vertically resolved wind
speed and direction (Coulter et al., 1998.) available at
https://doi.org/10.5439/1025135.

– Total sky imager cloud mask (Morris, 2000) available at
https://doi.org/10.5439/1025306.

The data from the figures and novel “quick-look” tool can be ac-
cessed online for all 614 d with detected shallow cumuli: TSI com-
posite images merged cloud fraction product for shallow cumulus
cases (tsiQLtable) (Kleiss, 2020), available on the ARM archive at
https://doi.org/10.5439/1523254.
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