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Abstract. This paper presents the potential of nonlinear and
linear versions of an observation operator for simulating po-
larimetric variables observed by weather radars. These vari-
ables, deduced from the horizontally and vertically polarized
backscattered radiations, give information about the shape,
the phase and the distributions of hydrometeors. Different
studies in observation space are presented as a first step to-
ward their inclusion in a variational data assimilation context,
which is not treated here. Input variables are prognostic vari-
ables forecasted by the AROME-France numerical weather
prediction (NWP) model at convective scale, including liq-
uid and solid hydrometeor contents. A nonlinear observation
operator, based on the T-matrix method, allows us to sim-
ulate the horizontal and the vertical reflectivities (ZHH and
ZVV), the differential reflectivity ZDR, the specific differen-
tial phase KDP and the co-polar correlation coefficient ρHV.
To assess the uncertainty of such simulations, perturbations
have been applied to input parameters of the operator, such
as dielectric constant, shape and orientation of the scatterers.
Statistics of innovations, defined by the difference between
simulated and observed values, are then performed. After
some specific filtering procedures, shapes close to a Gaus-
sian distribution have been found for both reflectivities and
for ZDR, contrary to KDP and ρHV. A linearized version of
this observation operator has been obtained by its Jacobian
matrix estimated with the finite difference method. This step
allows us to study the sensitivity of polarimetric variables to
hydrometeor content perturbations, in the model geometry as
well as in the radar one. The polarimetric variables ZHH and
ZDR appear to be good candidates for hydrometeor initial-
ization, while KDP seems to be useful only for rain contents.

Due to the weak sensitivity of ρHV, its use in data assimila-
tion is expected to be very challenging.

1 Introduction

For a couple of decades, convective-scale numerical weather
prediction (NWP) models have been developed to forecast
mesoscale meteorological phenomena such as storms, wind
gusts and fog, which can represent important socioeconomic
threats. Nowadays, most of operational convective-scale
NWP models have fine, kilometer-scale, horizontal resolu-
tions (see review by Gustafsson et al., 2018). In the present
study, the AROME-France model from Météo France (Seity
et al., 2011) is used with a resolution of 1.3 km (Brousseau
et al., 2016). In addition to a fully non-hydrostatic compress-
ible set of equations, this high resolution allows an explicit
representation of the deep moist convection and related dy-
namical parameters. As such models are run over a specific
geographical region, initial conditions and lateral boundary
conditions are required. Ducrocq et al. (2002) showed that
accurate initial conditions can be more important than lat-
eral boundaries to obtain skillful forecasts with such limited
area models (LAMs). Several methods exist to provide ini-
tial conditions but, as explained by Gustafsson et al. (2018),
better performances are obtained when a convective-scale
data assimilation step is considered, compared to an initial
state downscaled from a global model. In addition to ob-
servations that are representative of larger scales, observa-
tions at fine spatial resolutions and high sample frequencies
are required in order to get an accurate representation of the
dynamics occurring at these small scales (Benjamin et al.,
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2016; Brousseau et al., 2016). It is the case for data pro-
duced by weather radars: with a kilometric or finer resolution
and a few minutes’ temporal sampling, they are able to pro-
vide information about the intensity of precipitating systems
through the horizontal reflectivity and about their dynamics
from Doppler radial winds.

The dual-polarization radar technology allows us to go fur-
ther in the description of precipitating systems. Seliga and
Bringi (1976) were among the first to investigate the capa-
bilities of polarimetric radars for a better understanding and
representation of precipitating systems. Since then, numer-
ous studies have shown the interest in dual-polarized (DPOL)
variables to improve storm description and related processes.
In a first paper, Kumjian (2013a) first describes the DPOL
variables, their characteristics and ranges of values, while, in
a second one (Kumjian, 2013b), he explains their usefulness
for the detection of meteorological phenomena, such as hail,
supercells or bright bands. DPOL variables can also be used
to control the radar data quality as, for example, the deter-
mination of echo type, using a combination of several po-
larimetric variables. Gourley et al. (2007) use a fuzzy logic
algorithm to distinguish meteorological echoes from non-
meteorological ones, which is necessary for improving quan-
titative precipitation estimation (QPE). Detection of the ma-
jor hydrometeor type in meteorological echoes can also be
done with fuzzy logic algorithms, as proposed by Al-Sakka
et al. (2013), for example. Another application of DPOL vari-
ables, for QPE improvements, is to use new relationships be-
tween horizontal reflectivity (ZHH), DPOL variables and rain
rate, as in the Joint Polarization Experiment (Ryzhkov et al.,
2005).

Nowadays, however, only the horizontal reflectivity and
the Doppler wind are operationally exploited in the retrieval
of initial conditions of NWP models. From a data assimila-
tion (hereafter DA) point of view, the challenge is to extract
useful information about the main control variables from
ZHH, which is an indirect observation of model variables. At
Météo France, a two-step method is operationally performed
in the AROME-France model (Wattrelot et al., 2014). First,
a radar observation operator, based on the Rayleigh’s scatter-
ing theory, is used to simulate horizontal reflectivity within
the model geometry. To do so, the same equation as Eq. (1)
described in Sect. 2.1.2 is used. This operator accounts for
scattering by rainwater, snow, primary ice and graupel (Cau-
mont et al., 2006). Then, an interpolation of ZHH onto the
radar main lobe by a Gaussian function is performed. From
simulated ZHH, pseudo-profiles of relative humidity are re-
trieved using a 1D Bayesian inversion (as described by Cau-
mont et al., 2010). In the second step, these pseudo-profiles
are assimilated into a three-dimensional variational (3D-Var)
system. In this approach, the complex linearization of the
reflectivity observation operator is avoided. For any further
details, please refer to Caumont et al. (2006, 2010) and
Wattrelot et al. (2014). Such a procedure is also used op-
erationally at JMA (Ikuta and Honda, 2011) and by some

countries of the HIRLAM community (Ridal and Dahlbom,
2017). Other NWP models (e.g., UKV at the Met Office or
HRRR at NOAA) make use of ZHH (or radar-based precip-
itation rate analysis in the case of the UKV) through latent
heat nudging procedures (see, again, Gustafsson et al., 2018
for details). At Météo France, Doppler winds are also assim-
ilated into the AROME-France model, but independently of
horizontal reflectivities. Montmerle and Faccani (2009) show
that assimilating Doppler winds clearly improves storm dy-
namic and precipitation forecasts, especially when low-level
wind convergence is sampled. A range of studies have been
also undertaken to assimilate Doppler wind and ZHH using
methods based on ensemble Kalman filter (EnKF) (e.g., Tong
and Xue, 2005; Dowell et al., 2011 or Bick et al., 2016),
mostly for case studies. These methods avoid the lineariza-
tion of observation operators and can quite straightforwardly
consider hydrometeors in the control variable, but they are
particularly prone to sampling noise.

In this paper, preliminary work is presented in order to pre-
pare the assimilation of DPOL variables in a convective-scale
variational DA system. Such a system is based on the mini-
mization of a cost function, which is composed of two terms
defining distances (i) between the model state and a back-
ground and (ii) between the model state in the observation
space and the observations. The second term requires nonlin-
ear (hereafter NL) observation operators in order to retrieve
the model equivalent of every observation at their locations.
Statistics between observed and simulated values (called in-
novations) are used at this stage to quantify the performance
of the model in this particular space and to perform quality
controls in order to produce innovation distributions that are
close to a Gaussian shape, such conditions leading to opti-
mal variational DA results. In this study, the NL observation
operator described by Augros et al. (2015) is used to simu-
late DPOL variables from the AROME-France model. This
operator is based on the T-matrix approach, which describes
scattering by particles (Waterman, 1965). This approach has
been used in several studies. For instance, in Bringi et al.
(1986), it allows us to study the melting of the graupel by
simulating the differential reflectivity ZDR. It is also used in
the observation operator proposed by Jung et al. (2008), with
a one-moment bulk microphysical scheme, to simulate all
DPOL variables. A more complex observation operator has
then been proposed by Ryzhkov et al. (2011) with a spectral
microphysical scheme. Even though it leads to more physi-
cally coherent results, its computational cost is not yet com-
patible with operational NWP requirements.

When error Gaussianity and operator linearity are re-
spected, the cost function of a variational DA system is close
to a quadratic function for which the minimum can be easily
obtained by, e.g., the method of least squares. The estimation
of its gradient, which needs linearized versions of the ob-
servation operators, is then required. For operators related to
precipitation, this is not straightforward as cloud microphys-
ical processes are often highly nonlinear due to the presence
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of on–off switches (Sun, 2005). Furthermore, Errico et al.
(2007) pointed out that these nonlinearities can severely af-
fect the analysis. Such difficulties explain why the 1D+3D-
Var approach has been initially preferred in AROME-France
as discussed above. In their first attempt to assimilate ZHH
in a 4D-Var, Sun and Crook (1997) did indeed find better
results when simply retrieving the rain mixing ratio from an
empirical relationship withZHH instead of directly assimilat-
ing ZHH by using an NL observation operator. This approach
based on empirical relationships has been more recently ex-
tended to solid precipitating species by Gao and Stensrud
(2011). Other attempts of direct assimilation of ZHH with en-
couraging results have been made in 3D-Var (Wang et al.,
2013b) and 4D-Var (Wang et al., 2013a; Sun and Wang,
2013). Nevertheless, no operational applications have been
performed yet, particularly because only warm microphysi-
cal processes are considered. In this paper, before trying to
linearize the highly NL DPOL observation operator, its Ja-
cobians have been computed in order to study the sensitivity
of simulated polarimetric variables to hydrometeor content
perturbations.

The main goal of this paper is to study an observation op-
erator of DPOL variables in order to determine its proper-
ties and suitability for DA, especially for hydrometeor con-
tents initialization in the variational context of the AROME-
France convective-scale NWP model. No assimilations are
thus performed yet, and only results in the observation space
are discussed at this point. The behavior of the operators pre-
sented in this paper in a variational DA system will be the
focus of a future paper. Section 2 first describes the NL obser-
vation operator, a quantification of its errors and examples of
DPOL variables simulation for different meteorological sit-
uations simulated by AROME-France. In Sect. 3, innovation
statistics are discussed and used to perform quality controls
on polarimetric observations. Finally, Sect. 4 focuses on the
DPOL observation operator Jacobians to determine the va-
lidity of the linearity hypothesis and to quantify the sensitiv-
ity of DPOL variables to the various simulated hydrometeor
contents. Conclusions and perspectives from this study are
given in Sect. 5.

2 A nonlinear polarimetric radar observation operator
(HDPOL)

2.1 HDPOL description

2.1.1 Generalities

The HDPOL observation operator has been developed by Au-
gros et al. (2015), and only the main characteristics are sum-
marized here. It uses the T-Matrix method (Mishchenko and
Travis, 1994) to compute the backscattering coefficients ac-
cording to frequency, temperature and type of hydromete-
ors. The microphysical scheme used to predict hydrometeor

contents is the one from the AROME model. This scheme,
called ICE3, is a one-moment microphysical scheme with
water vapor and five hydrometeors species: cloud droplets,
rain, snow, pristine ice and graupel (Caniaux et al., 1994;
Pinty and Jabouille, 1998). In the present study, only the last
four have been used for the DPOL simulations, in addition
to a melting species which has the characteristics of melt-
ing graupel. This melting species represents the sum of the
three solid hydrometeor contents when temperature is above
0 ◦C. In this microphysical scheme, the particle size distribu-
tion (PSD) of each hydrometeor is expressed as the product
between the total number concentration N0 and generalized
Gamma distribution. The slope parameter used to character-
ize the PSD shapes depends upon the hydrometeor content
M (expressed in kilograms per cubic meter), this last being
the ratio between the hydrometeor content (expressed in kilo-
grams per kilogram) and the density of an air parcel. The pa-
rameters describing the hydrometeor PSDs are given in Ta-
ble 1 of Caumont et al. (2006).

Two other parameters are required for the backscattering
coefficient computation: the hydrometeor shape and the di-
electric constant. The latter, which describes how a mate-
rial reacts to the application of electrical field, is simulated
by the Debye model for raindrops (Caumont et al., 2006),
and by the Maxwell–Garnett mixing formula for ice parti-
cles (Ryzhkov et al., 2011). This last formula allows us to
consider solid hydrometeors as ice particles with air inclu-
sions. For melting hydrometeor species, a dielectric constant
is computed with a weighted Maxwell–Garnett mixing for-
mula (Matrosov, 2008), which permits us to consider melt-
ing species as liquid water inclusions in ice and as ice inclu-
sions in liquid water, depending upon liquid water and grau-
pel fractions. For hydrometeor diameters lower than 0.5 mm,
all particles are regarded as spherical (axis ratio of 1). For
larger diameters, the axis ratios depend upon the hydrome-
teor types. Rain drops are described as spheroids, with an as-
pect ratio depending on diameter, in order to account for the
flattening which is proportional to their size (Brandes et al.,
2002). Concerning snow particles, a spheroid shape is also
assumed with axis ratios linearly decreasing from 1 to 0.75
when the particle diameter increases from 0.5 to 8 mm. For
higher diameters, the minimum value of 0.75 is kept. The
same characteristics are used for graupel and for melting hy-
drometeor species, but with axis ratios linearly decreasing
from 1 to 0.85. Finally, pristine ice is simulated as spherical.
All these parameters have been proposed by Augros et al.
(2015) as a result of sensitivity studies.

2.1.2 Simulated DPOL variables

Once the hydrometeors characteristics are defined, the T-
matrix method is used to compute the backscattering coef-
ficients for different values of particle diameters, radar ele-
vations, temperatures and water contents (as listed in Table 1
of Augros et al., 2015). These coefficients are then integrated
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over diameters and stored in look-up tables to speed up com-
putations. They are then used for the computation of the four
DPOL variables of interest from the following equations:

ZHH,VV = 10log(Zhh,Zvv)

= 10log
(

1018 4πλ4

π5|Kw |2

n∑
i=1

Dmax∫
Dmin

|Sb
HHi ,VVi (D)|

2Ni (D)dD
)
, (1)

where ZHH
1 and ZVV represent, respectively, the horizontal

and vertical reflectivities (in decibels relative to Z), Zhh(Zvv)

the horizontal reflectivity (vertical reflectivity) expressed in
radar reflectivity in linear units (mm6 m−3), λ the wavelength
(in meters), |Kw|2 the dielectric factor, function of the dielec-
tric constant, Ni(D) the number of particles with a diameter
D for the hydrometeor type i, and Sb

HHi and Sb
VVi the hor-

izontal and vertical backscattering coefficients, respectively,
the b exponent standing for “backward”.

ZDR = 10log
(
Zhh

Zvv

)
, (2)

with ZDR being the differential reflectivity (in decibels). This
variable brings information on target aspect ratio and phase.
It can be explained by its dependence upon the ratio between
the horizontal and vertical reflectivity when expressed in
radar reflectivity in linear units. For spherical hydrometeors
(i.e., with equivalent horizontal and vertical cross sections),
ZDR is equal to 0 dB. This variable will be positive (nega-
tive) when the hydrometeor horizontal dimension is larger
(smaller) than the vertical one. ZDR is very sensitive to the
hydrometeor dielectric factor: liquid hydrometeors will have
a higher ZDR value than the solid ones with a similar shape
and size distribution.
ρHV expresses the co-polar correlation coefficient:

ρHV =

|

n∑
i=1

Dmax∫
Dmin

Sb
HHi (D)× S

b
VVi (D)Ni (D)dD|√

n∑
i=1

Dmax∫
Dmin

|Sb
HHi (D)|

2Ni (D)dD×
n∑
i=1

Dmax∫
Dmin

|Sb
VVi (D)|

2Ni (D)dD

. (3)

This quantity gives information on homogeneity. When a
large variety of hydrometeor sizes, shapes, phases and orien-
tations are represented in the observed volume, ρHV values
will be close to 0.

The specific differential phase KDP (in degrees per kilo-
meter), is defined as

KDP = 103λ
180
π

n∑
i=1

Dmax∫
Dmin

<(Sf
HHi − S

f
VVi )Ni(D)dD, (4)

where <(fHHi − S
f
VVi ) expresses the difference between the

real part of the forward horizontal and vertical scattering co-
efficients (with the f exponent meaning “forward”). This po-
larimetric variable expresses the phase difference between

1The reader should note that “horizontal reflectivity” (ZHH) in
this paper relates to the horizontal equivalent reflectivity.

the horizontal and vertical polarized electromagnetic (EM)
wave between a specific distance. In the case of spherical hy-
drometeors, the same amount of matter will be crossed by
these two waves. Therefore, no phase difference will be ob-
served. For nonspherical particles, the horizontally and verti-
cally polarized EM wave will have to cross different amounts
of matter, which will cause a phase difference. Because this
variable only depends upon the phase difference and not
upon the cross section, it is affected neither by attenuation
nor by geographical masks.

2.2 Illustration of a case study

To assess qualitatively the ability of HDPOL to simulate
DPOL variables, PPIs (plan position indicators) of the dif-
ferent DPOL variables are compared for one particular mete-
orological case. On the 10 October 2018, an important con-
vective event strikes the South of France, mainly because of
a strong southwesterly flow that took place off the coast over
the Mediterranean sea. It represented an important source of
humidity, and, because of low-level convergence due to orog-
raphy, strong precipitation occurred over the Var, Bouches-
du-Rhône and Gard departments. Such meteorological events
are quite common over the Mediterranean region. For in-
stance, Llasat et al. (2010) report that, between 1990 and
2006, 185 flash-flood events occurred around the Mediter-
ranean basin, and about half of them happened during the
autumn season. The meteorological event which took place
on the 10 October 2018 produced more than 100 mm of rain
in 24 h over a large area of the Var department, and locally
more than 150 mm, with flash floods causing two casualties.
In addition to the heavy precipitation, strong wind gusts of up
to 100 km h−1 were observed. Meteorological fields from a
1 h AROME-France forecast, valid at 14:00 UTC, were used
as input to HDPOL.

Figure 1 represents the observed and the simulated DPOL
variables during this event, using the S-Band Collobrières
radar located along the French Mediterranean coast (indi-
cated by a dark cross), for an elevation angle of 2.2◦. The
simulated hydrometeor mixing ratios from the 1h AROME-
France forecast have been interpolated on the radar beam for
the same elevation angle (Fig. 2). All observations have been
filtered with the methodology described in Sect. 3.1. This
particular radar is part of the French radar network ARAMIS
(Tabary, 2007), which, in 2019, was composed of 31 weather
radars, 28 having a DPOL capacity.

The ZHH observations show a narrow band of very high
values over the sea near the radar, locally reaching more than
50 dBZ. An area of medium to high values (20 to 40 dBZ) is
located inland in the northwest quadrant, while an extended
stratiform area of ZHH values above 15 dBZ is located fur-
ther offshore. When examining the simulations, high values
of ZHH with comparable values are also present close to the
radar, however covering a wider area than in the observa-
tions. The inland area of ZHH is well represented, but with
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Figure 1. Observed (a, c, e, g) and simulated (b, d, f, h) ZHH (a, b), ZDR (c, d), KDP (e, f) and ρHV (g, h) for the Collobrières radar the
10 October 2018 at 14:00 UTC (elevation: 2.2◦).
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Figure 2. Hydrometeor mixing ratios from a 1h AROME-France forecast valid the 10 October 2018 at 14:00 UTC for (a) rain, (b) snow,
(c) graupel and (d) pristine ice.

lower values than observed. Finally, for the southern part of
the precipitating system far from the radar, ZHH is clearly
underestimated. Since solid hydrometeors are present in this
area, as displayed in Fig. 2, either AROME-France did not
simulate sufficient amounts of it or such an underestimation
comes from the observation operator. A combination of these
two hypotheses could also explain these differences.

In agreement with areas of large ZHH values, observed
ZDR can locally reach between 2.0 to 2.8 dB (Fig. 1c). Else-
where, values are predominantly lower than 1 dB, with many
small spots of higher values. Considering the simulations
(Fig. 1d), the range of values are close to the observations in
the area where simulated rain prevails. Nevertheless, as for
simulated ZHH and contrary to what is observed, the range
of values decreases with distance, which is typical of an evo-
lution from convective liquid precipitation to more spheri-
cal solid hydrometeors. As solid hydrometeors are simulated
in those areas (see, again, Fig. 2), comparison to observa-
tions clearly reflects the inability of the ICE3 microphysical
parameterization to represent the observed variability of hy-
drometeors, particularly in the ice phase.

The observed and simulated specific differential phase
KDP values are compared in Fig. 1e, f. In both cases, values

up to 1.5◦ km−1 are locally displayed in the main convec-
tive area close to the radar, which is characterized by intense
rainfall. As for ZDR, the area of the largest simulated ZHH
values is associated with significant KDP values. Elsewhere,
however, KDP values are close to zero. In general, these high
amounts of zero or close to zero values for KDP or ZDR are
associated with locations where the simulated ZHH is lower
than 20 dBZ, corresponding to small amounts of hydrome-
teor contents simulated by AROME-France.

In Fig. 1g and h, only co-polar correlation coefficient val-
ues higher than 0.85 are displayed, lower ones being asso-
ciated with non-meteorological echoes. Concerning the ob-
servations (Fig. 1g), the ρHV values are very close to 1 in
the area of large ZHH values, mostly composed of liquid hy-
drometeors. Then, a ring of values between 0.9 and 0.98 is
displayed, denoting the solid hydrometeors melting within
the so-called bright band. Far from the radar, ρHV values in-
crease up to 1, indicating more homogeneous solid hydrom-
eteor distributions. In the simulation (Fig. 1h), most of the
areas where ZHH is above 20 dBZ are associated with a ρHV
close to 1, corresponding to very homogeneous scenes. Fur-
thermore and contrary to what has been observed, the melting
layer is not visible in the simulation. Far from the radar and
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in regions where the hydrometeor contents are low, the simu-
lated ρHV decreases significantly, reaching values of less than
0.1 (not shown). It corresponds to areas where snow and ice
contents are similar (see, respectively, Fig. 2b and d). Due
to this specific condition, each hydrometeor type influences
equally the computation of ρHV. Nevertheless, due to the
large differences between the characteristics of each hydrom-
eteor type (listed in Sect. 2.1.1), a large non-homogeneity
is induced and leads to low ρHV values. Nevertheless, as
such values are usually associated with non-meteorological
echoes, these non-realistic simulated values are discarded.
These results show the strong limitation of HDPOL for simu-
lating realistic values of ρHV.

Considering all case studies (Table 1), it was generally
found that realistic simulations of DPOL variables can be ob-
tained especially in regions where liquid precipitation occur.
In the presence of solid hydrometeors, the simulation ofZDR,
KDP and ρHV increases in complexity and comparisons with
observation show large differences. It also appears that sim-
ulated ZHH can be underestimated when only solid hydrom-
eteors are present. The same patterns have been obtained for
both S-band and C-band radar simulations, confirming the
results of Augros et al. (2015). These misrepresentations are
probably partly due to hypotheses done in HDPOL on the hy-
drometeor shapes and aspect ratios, on their PSDs, and on
their dielectric constants. Indeed, these specified parameters
might not be adequate for all meteorological situations. This
is especially true for solid hydrometeors, for which the simu-
lation of DPOL variables is particularly complex and depen-
dent on hydrometeor characteristics simulated by the ICE3
microphysical scheme that does not describe them in enough
detail.

2.3 Assessment of model errors

In order to describe the uncertainties associated with the sim-
ulation of DPOL variables, the impact of changes to three
HDPOL main input variables has been examined. These vari-
ables are the dielectric constant, the hydrometeor aspect ratio
and the hydrometeor oscillation with respect to the horizon-
tal plane. For each type of hydrometeors, these parameters
have been tested independently by applying a perturbation to
the default value. For each parameter change, the look-up ta-
bles have been recomputed and a new simulation performed.
Six different meteorological cases sampled by S-band radars
of the French ARAMIS network (Tabary, 2007) (Table 1)
have been chosen and, coupled with a set of 23 different con-
figurations, it leads to a total of 138 different simulations.
Standard deviations have been computed for each combina-
tion of input parameters listed in Table 2 and for each radar
elevation. It can be noted that the oscillation parameter, for
which physically realistic values described in Ryzhkov et al.
(2011) have been used, has not been perturbed for primary
ice which is represented by spheres in ICE3. For the dielec-

Table 1. Simulated meteorological cases used to assess simulation
uncertainties. The two radars of interest operate in S-band. Times
are expressed in UTC.

Date Radar

19 October 2017 06:00 Nîmes
5 February 2018 19:00 Nîmes
29 May 2018 16:00 Nîmes
9 August 2018 06:00 Nîmes
7 October 2018 03:00 Collobrières
10 October 2018 14:00 Collobrières

tric constant and the hydrometeor aspect ratios, positive and
negative relative perturbations have been considered.

The results are displayed in Fig. 3 for each DPOL variable.
The first noticeable information about ZHH uncertainties is
the two quasi-linear tendencies observed near 0 and 1 dBZ.
The first one, around 0.1 dBZ, is induced by the perturbation
of the rain aspect ratios (not shown). It was found that this be-
havior comes from thresholds present in the computation of
the backscattering coefficients. The second quasi-linear sig-
nal, around 0.9 dBZ, appears to be mostly dependent upon
the perturbation of graupel dielectric constant, without being
constrained by a threshold. Overall, the uncertainty in ZHH
appears to be mostly dependent upon the representation of
the three types of solid hydrometeors. Indeed, each uncer-
tainty value higher than 0.2 dBZ in Fig. 3a is associated with
a perturbation of a parameter used to represent solid hydrom-
eteors, especially the dielectric constant. For ZDR, a maxi-
mum spread around 0.6 dB is displayed. It also comes from
thresholds in the backscattering coefficient computations for
the rain aspect ratio. Overall, there is more variability for
cases where the simulated ZDR is below 0.5 dB, which ex-
presses a higher sensitivity of HDPOL to parameters describ-
ing frozen hydrometeors or small raindrops. The raindrop as-
pect ratio parameter explains the major part of the uncertain-
ties appearing on ZDR simulation. Nevertheless, a small part
of these uncertainties can also be explained by the dielec-
tric constant of solid hydrometeors. Very small uncertainties
have been found for ρHV simulations. Indeed, no matter the
perturbed parameter, the highest uncertainty is lower than
1.10−3. Concerning KDP, a quasi-linear threshold of sensi-
tivity is displayed. As for the spread distribution of the other
DPOL variables (excepted ρHV), it comes from the rain as-
pect ratio. This parameter also explains the major part of the
variability of KDP uncertainties.

The results of these sensitivity tests show that ZHH is sen-
sitive to assumptions made on the simulation of the backscat-
tering coefficients for the different hydrometeor types, espe-
cially for the solid ones. Indeed, it appears that ZHH uncer-
tainties are, for their major part, explained by the hypothe-
ses regarding the dielectric constant of solid hydrometeors.
Then, this could explain the underestimates found for sim-
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Table 2. Parameters modified to study uncertainties in the HDPOL operator.

Default configuration Perturbed configurations

Dielectric Aspect ratio Oscillation Dielectric Aspect ratio Oscillation
constant constant

Rain Debye Brandes 0◦ Debye ±5 % Brandes ±20 % 5◦; 10◦

Snow MG∗ If d < 0.5 mm: 1.0; 0◦ MG∗ ±5 % Snow default ±20 % 10◦; 20◦

if 0.5≥ d < 8.0: LD∗;
else: 0.75

Ice MG∗ 1.0 0◦ MG∗ ±5 % Ice default ±20 % –

Graupel MG* If d < 0.5 mm: 1.0; 0◦ MG∗ ± 5 % Graupel default ±20 % 10◦; 20◦

if 0.5≥ d < 10.0: LD∗;
else: 0.85

∗ LD stands for linear decrease and expresses the linear aspect ratio decrease with the hydrometeor diameter increase between the two threshold diameter
values; MG stands for Maxwell–Garnett.

Figure 3. Simulation uncertainty for (a) ZHH, (b) ZDR, (c) KDP and (d) ρHV. N represents the sample size.
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ulated ZHH in the presence of solid hydrometeors (Fig. 1).
By contrast, the other DPOL variables appear to be less sen-
sitive to choices made for solid hydrometeors than for liq-
uid ones. Even if DPOL variables are highly influenced by
hydrometeor dielectric constants, they are also known to be
dependent upon hydrometeor shapes. For ZDR and KDP, un-
certainties have been found in the simulations for raindrop
aspect ratio perturbations, while, for solid hydrometeors, no
uncertainties or very small ones have been found by perturb-
ing their aspect ratios. These results can be explained by the
one-moment microphysical scheme ICE3 that characterizes
hydrometeors and related processes. Indeed, the PSDs are
deduced from the hydrometeor contents and from constant
parameters in order to characterize the generalized Gamma
distributions (see, again, Table 1 in Caumont et al., 2006).
Concerning the hydrometeor shapes, oblate spheroids appear
to be a good approximation of raindrop shapes, while it might
be very limiting for solid hydrometeors that exhibit a large di-
versity of shapes. For example, Liu (2008) proposed the use
of 11 solid particle shapes along with the discrete dipole ap-
proximation (DDA) method in order to compute more realis-
tic scattering. Clearly, the T-matrix method is comparatively
limited, as it is only applicable to spheres and rotationally
symmetrical particles.

A similar study to the one presented here with S-band
radars has been conducted with 11 different meteorologi-
cal cases, but with C-band radars (not shown). Compara-
ble results have been obtained, the spread being nevertheless
slightly larger for ZHH values higher than 30 dBZ, for ZDR
values higher than 1 dB and for the total range ofKDP values.
These results highlight the dependence of simulated DPOL
variables upon the wavelength. As suggested by the range of
values affected by a larger spread, Mie diffusion occurs for
large hydrometeors with C-band radars.

Nevertheless, despite choices made in HDPOL and, as dis-
cussed in Sect. 2.2, the polarimetric observation operator is
able to simulate DPOL variables in the presence of liquid and
solid hydrometeors, as shown for instance in Fig. 1d forZDR.
As discussed at the end of the next section, model errors that
have been quantified in this sensitivity study will be consid-
ered for specifying a proxy of the observation error standard
deviations, in addition to measurement and representative-
ness errors. Such values could then be used as diagonal ele-
ments of an observation error covariance matrix R necessary
for variational DA studies.

3 Statistics of innovations

As explained previously, the optimality of variational DA
requires Gaussianity of errors. For that purpose, innovation
statistics (differences between observation and model coun-
terparts) are examined. An ad hoc quality control could then
be defined in order to improve Gaussianity. In this study, such
statistics have been computed for 12 contrasted meteorologi-

Table 3. Meteorological cases selected to study the innovation
statistics of DPOL variables. Times are expressed in UTC.

Date Radar

17 January 2018 03:00 Trappes
14 February 2018 13:00 Toulouse
14 February 2018 13:00 Grèzes
26 May 2018 12:00 Momuy
6 June 2018 00:00 Trappes
29 July 2018 07:00 Plabennec
10 October 2018 14:00 Collobrières
24 April 2019 14:00 Nancy
25 April 2019 13:00 Toulouse
8 May 2019 04:00 Grèzes
10 May 2019 16:00 Toulouse
10 May 2019 19:00 Trappes

cal cases, encompassing convective and stratiform precipita-
tion. Among those cases, only the Collobrières case has been
observed by an S-band radar, while the others have been sam-
pled by C-band radars (see Table 3). The geographical radar
location is given in Fig. 1 from Tabary (2007).

3.1 Data preprocessing

Several filters are applied to the observations, principally to
remove non-meteorological echoes and regions of too low a
signal-to-noise ratio (SNR). Non-meteorological echoes are
filtered using an echo type determination algorithm devel-
oped by Gourley et al. (2007). A second filter removes possi-
ble remaining ones by excluding pixels for which ρHV values
are lower than 0.85. The third filter uses a threshold on SNR
values. Tabary et al. (2013) explain that polarimetric vari-
ables are very sensitive to noise and, for safety reasons, all
pixels with an SNR value lower than 15 dB are discarded. Fi-
nally, a median filter is applied to remove all residual isolated
noisy data.

Figure 4 shows the effects of these filters on ZDR val-
ues observed during a convective event that occurred in the
Paris area. In Fig. 4a, ground clutters, characterized by high
ZDR values, are present close to the radar. Medium to very
strong values can also be observed along two different az-
imuths. These patterns are often due to WLAN (wireless lo-
cal area network) interferences. In Fig. 4b, those patterns are
not present anymore, thanks to the application of the various
filters. One can note that other features, located far from the
radar, have also been removed. They correspond to data with
SNR values lower than 15 dB.

3.2 Results

In order to quantify the effect of the filters, innovations have
been computed on non-filtered and filtered observations. Fig-
ure 5a shows that filtering the ZHH observations leads to
a small decrease in the bias and standard deviation values:
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Figure 4. Filtering effects on ZDR observed by the Trappes radar during a convective event on June 2018 06:00 UTC, for an elevation of
0.4◦.

from 3.22 to 3.18 dBZ and from 11.44 to 11.15 dBZ, re-
spectively. Concerning ZDR (Fig. 5b), the filtering leads to
strong changes in the innovation statistics. Indeed, the bias
decreases from 0.37 to 0.33 dB, while the standard deviation
drops from 1.26 to 0.55 dB. For KDP (Fig. 5c), filters do not
influence innovation statistics. The use of filters mostly af-
fects the negative part of ρHV innovations (Fig. 5d), by re-
moving simulated values close to 1. Overall, these results
show small modifications of innovations statistics, except for
ZDR. For the latter, quality controls appear to be critical and
allow us to discard about 43 % of spurious ZDR observations.
The innovation distributions appear to have a Gaussian shape
for ZHH and ZDR, while it is not the case for KDP and ρHV.

In order to study if these conclusions depend on the hy-
drometeor phase, innovation statistics have been computed
for different vertical levels. Figure 6 represents such distri-
butions over altitude for the studied DPOL variables, when
filters are applied. The ZHH innovation distribution (Fig. 6a)
exhibits a positive bias which tends to slightly increase with
altitude. It expresses underestimations done in the presence
of solid-phase hydrometeors that have been already noted,
especially for pristine ice which is present at high altitudes.
One can note a small asymmetry present in the innovation
distribution below 4 km. Indeed, in this part of the atmo-
sphere, a larger number of innovation values are represented
in the distribution between 40 to 60 dBZ than in the sym-
metrical negative part. Depending upon the meteorological
situation, this range of altitudes correspond to the melting
layer. Large positive innovations in this particular area can
highlight melting layer misrepresentations in HDPOL which
lead to ZHH underestimations. Same phenomenon is present
for other DPOL variables for this range of altitudes, espe-
cially for the differential reflectivity. About ZDR (Fig. 6b), a
positive bias indicates an underestimation in the simulations.
Nevertheless, for altitudes higher than 10 km, the bias drops

to nearly 0 dBZ values. Concerning KDP (Fig. 6c), innova-
tions show a small bias which slightly increases with altitude.
Below 7 km, the innovation spread shows underestimations
and overestimations done in simulations, while above 7 km,
innovations are always positive, indicating systematic KDP
underestimations with HDPOL at those levels, in the presence
of solid hydrometeors. By contrast, ρHV innovation distribu-
tions (Fig. 6d) show a negative bias, indicating overestima-
tions in the simulations.

To better understand the behavior of innovations, sepa-
rated distributions of simulated and observed values are ex-
amined. Figure 7 represents the distributions of first-guess
and observation distributions for ZHH and ZDR. Concerning
ZHH, first-guess and observation distributions (Fig. 7a and b,
respectively) look very similar for values above 20 dBZ,
which shows the HDPOL capacity to simulate such variables
in the presence of medium to heavy precipitation. Between
10 and 20 dBZ, the number of observations is larger than
the simulated ones, which reflects the HDPOL underestima-
tion of ZHH in the solid phase already pointed out. Between
0 and −10 dBZ, the number of simulated values is higher
than the observed ones, denoting HDPOL capacity to simu-
late small values in the presence of very low hydrometeor
contents. Simulated values below −10 dBZ, which are gen-
erally close to the radar SNR, cannot be considered for the
assimilation and thus have been discarded.

Concerning ZDR, first-guess and observation distributions
(Fig. 7c and d, respectively) appear to be quite different.
For positive ZDR values, both distributions are similar, es-
pecially for small values. Indeed, the higher the ZDR value
is, the larger is the difference between first-guess and obser-
vation distributions. It comes from the complexity of ZDR
simulations, especially in the presence of solid hydromete-
ors, where large underestimations occur. In addition, a large
fraction near 0 dB in the simulations is not represented in
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Figure 5. Innovations without (blue histograms) and with (green histograms) filters on observations for (a) ZHH, (b) ZDR, (c) KDP and
(d) ρHV. µ represents the innovation bias, σ the innovation standard deviation and N the sample size.

the observations. Finally, the negative ZDR values in the ob-
servations have not been simulated by HDPOL. They corre-
spond to hydrometeors with larger vertical axes than horizon-
tal ones. As such a hydrometeor shape is not represented in
HDPOL, simulated ZDR cannot reach negative values. Physi-
cally, such values are usually associated with particular situ-
ations in convective events which can cause preferential ver-
tical orientation of solid hydrometeors, as electrification pro-
cesses (Kumjian, 2013a).

Figure 8 is similar to Fig. 7, but forKDP and ρHV and only
in the presence of liquid hydrometeors. The KDP first-guess
distribution (Fig. 8a), in comparison to the observations dis-
tribution (Fig. 8b), emphasizes the large underestimations of
the simulations. Indeed, the largest simulatedKDP values are
about 2.0◦ km−1, while the maximal observed one reaches
7.5◦ km−1. This leads to an innovation distribution which is
far from Gaussian, with a strong positive bias (see Fig. 5c).
To be able to assimilate this variable, a strict data selection
should be done. Regarding ρHV, most of simulated values are
very close to 1.0 (Fig. 8d), while the observed values range
between 0.90 and 1.0. These results reinforce the lack of vari-
ability of simulated ρHV values found in Sect. 2 and lead to

an innovation distribution which is far from Gaussian (see
Fig. 5d).

These innovation statistics can also be used to define an
approximation of observation standard deviations. Indeed,
Errico et al. (2000) explain that, if innovation PDFs are nor-
mally distributed,

σ 2
d = σ

2
o + σ

2
b , (5)

with σ 2
d being the variance of the innovation PDFs and σ 2

o
and σ 2

b being, respectively, the observation and the back-
ground error variances. In order to obtain a very first approx-
imation of the observation standard deviation σo, it can be
assumed that σo and σb are equivalent. In such conditions,

σo =
σd
√

2
. (6)

Values of σo(ZHH)= 7.88 dBZ, σo(ZDR)= 0.39 dB,
σo(KDP)= 0.17◦ km−1 and σo(ρHV)= 0.02 have been
found. Nevertheless, such values must be refined, especially
for KDP and ρHV, for which Gaussianity has not been found
in the innovation PDFs.
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Figure 6. Innovation distributions over altitude for (a) horizontal reflectivity (ZHH), (b) differential reflectivity (ZDR), (c) specific differential
phase (KDP) and (d) co-polar coefficient (ρHV). N indicates the sample size for each DPOL variables.

4 Polarimetric variable Jacobians

4.1 Perturbation size determination

As explained in the introduction, the adjoint of the linearized
observation operator is required in the formulation of the gra-
dient of the cost function. HDPOL being an observation oper-
ator which deals with cloud microphysical processes, numer-
ous highly nonlinear processes are present. In this study, the
linearized version of HDPOL, denoted H, has been estimated
by its Jacobians, computed through the use of the finite dif-
ference method:

H(x)=
∂H
∂M
≈

H(M + δM)−H(M)
δM

, (7)

with H representing the nonlinear version of HDPOL and δM
a perturbation of the hydrometeor content M .

Then, the Jacobian matrix can be estimated as follows:
∂H1
∂Mi,1

. . . ∂Hl

∂Mi,1
...
. . .

...

∂H1

∂Mi,k

. . .
∂Hl

∂Mi,k

 , (8)

with k representing the model level number and l the radar
elevation and Mi,k being the hydrometeor content (in kilo-
grams per cubic meter) associated with type i.

First of all, it is important to evaluate the validity of the
linear regime, according to the size of the perturbation δM .
Duerinckx et al. (2015) proposed a method for examining
the absolute value of the difference of computations between
equivalent positive and negative perturbations. They explain
that, as long the problem stays in a linear regime, this dif-
ference should remain close to zero. In this study, hydrome-
teor contents can span a wide range of values (several orders
of magnitude). As a consequence, the perturbations are cho-
sen as a fraction of the hydrometeor content (instead of a
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Figure 7. First-guess (a, c) and observation distributions (b, d) for ZHH (a, b) and ZDR (c, d).

fixed value). The optimal value of perturbation for the Jaco-
bians has been estimated in the model space. As HDPOL com-
putes the DPOL variables independently for each pixel of the
domain before being interpolated on the radar beam, only
the diagonal elements of the Jacobian matrix are examined,
since pixels, in model space, are uncorrelated both horizon-
tally and vertically. These computations have been done for
several profiles but, for illustration, only a single profile as-
sociated with convective precipitation is presented. Figure 9
shows how the optimal rain content fraction δMr has been
chosen to compute the Jacobians δZHH/δMr. One can note
that the optimal rain content fraction lies between 10−2 and
10−6 g m−3.

For each hydrometeor type, a single fraction of hydrom-
eteor content has been determined for all DPOL variables,
by selecting the highest optimal fraction size in common be-
tween the four DPOL variables. It was found that the optimal
fraction size is 10−5 g m−3 for rain and primary ice contents,
while 10−4 g m−3 is more suitable for snow and graupel con-
tents.

4.2 Jacobian profiles in the model space

The information provided by the DPOL variables depends
upon the interaction of the different hydrometeors scanned
by the radar beam. A primary step towards understanding
DPOL variable Jacobians is to exclude the radar beam effect.
In that case, it is proposed to first consider the diagonal ele-
ments of the Jacobian matrix computed in model space. The
perturbation used at each level in the Jacobian computation
is applied as follows:

M∗k =Mk +MkδM, (9)

with M∗k representing the perturbed hydrometeor content at
level k, Mk the hydrometeor contents at level k and δM the
optimal fraction of hydrometeor contents previously chosen.
The product MkδM represents the perturbation applied at
level k. Once the Jacobians are computed, a normalization by
10 % of the hydrometeor profile is applied. This procedure
allows a comparison between Jacobians of a given DPOL
variable for different hydrometeor types.

Figure 10 presents the DPOL variables Jacobians com-
puted from a particular profile extracted within a convective

www.atmos-meas-tech.net/13/2279/2020/ Atmos. Meas. Tech., 13, 2279–2298, 2020



2292 G. Thomas et al.: Toward a variational assimilation of polarimetric radar observations

Figure 8. Same as Fig. 7 for KDP (a, b) and for ρHV (c, d).

Figure 9. Difference between ∂ZHH/∂Mr at model level 80 (about
1 km of altitude), estimated with positive and negative perturbations
as a function of the perturbation size δMr.

cell forecasted by AROME-France (Fig. 10e). It shows that
an increase in hydrometeor content leads to higher ZHH Ja-
cobian values (Fig. 10a).2 It is explained by the fact that re-
flectivity is proportional to the total hydrometeor cross sec-
tion (see Eq. 1). Nevertheless, due to different dielectric con-
stants, Jacobian values are different according to the hydrom-
eteor type. Indeed, ZHH appears to be more sensitive to rain
content perturbations, while its sensitivity to snow content
perturbations is about 1 order of magnitude lower. ZHH sen-
sitivities to graupel and pristine ice perturbation are even
lower.

Contrary to ZHH, which mostly depends on the total cross
section and the dielectric factor, other DPOL variables are
also strongly dependent upon hydrometeor characteristics,
such as their shape or their orientation. ZDR, for instance,
as previously explained, depends upon hydrometeor dielec-
tric constant and shape as well as the proportion of each
type of hydrometeors with respect to the total hydrometeor

2The Jacobian study has been done with linear reflectivity units
in order to stay closer to a linear regime than would be possible with
the use of logarithmic reflectivity units.
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Figure 10. (a) ZHH Jacobians, (b) ZDR Jacobians, (c) KDP Jacobians and (d) ρHV Jacobians; (e) represents hydrometeor content profiles,
associated with a convective event which struck the Hérault and Gard departments on the 19 October 2017 06:00 TU. The Jacobians presented
here are normalized by 10 % of the hydrometeor contents. .

content. Figure 10b shows ZDR Jacobians for different hy-
drometeor content perturbations. Raindrops being simulated
as oblate spheroids, their larger horizontal cross section com-
pared to the vertical one leads to positive ZDR Jacobians for
a rain content perturbation (Fig. 10b). For other hydrometeor

content perturbations, Jacobian values can be negative. Such
values can be observed for ice content perturbation around
300 hPa and for snow content perturbation between 400 and
700 hPa. For pristine ice, the negative Jacobian values are
due to the increase in spherical particles in the presence of
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Figure 11. ZDR Jacobian for a rain content perturbation associated
with the AROME hydrometeor profile shown in Fig. 10 located at
80 km from the radar. The Jacobians are normalized by 10 % of the
hydrometeor content.

snow (see Fig. 10e). It causes a small decrease in the propor-
tion of nonspherical particles in the total hydrometeor con-
tent and then a decrease in ZDR. By contrast, an increase
in snow content in the same part of the atmosphere causes
positive Jacobian values due to the increase in nonspherical
particles in the total hydrometeor content. From 300 to ap-
proximately 600 hPa, the graupel content is increasing, while
snow amounts are increasing between 300 and 400 hPa and
then decreasing (Fig. 10e). Between these pressure levels,
the ZDR Jacobian associated with a snow content perturba-
tion is decreasing and reaches negative values. As the grau-
pel dielectric constant is higher than for snow, it becomes
predominant in the Jacobian values. So, even if there is an
increase in snow content, which is characterized by flatter
particles than graupel, their presence leads to a reduction in
ZDR when it is not the prevailing hydrometeor type. One can
note that the negative values of ∂ZDR/∂Ms between 300 and
600 hPa show vertical oscillations which are likely due to
changes in proportions of the different hydrometeor types.
Below 600 hPa, the snow content becomes lower than the
graupel one. Since an increase in snow adds flatter particles,
it also leads to an increase in ZDR Jacobian values in this
part of the atmosphere. Approximatively below 700 hPa, rain
content is increasing and, because of the large predominance
of the liquid water dielectric constant over the one from other
hydrometeor types, the ∂ZDR/∂Ms values drop to zero, even
though snow is still present near the melting layer. Overall,
as for ZHH, the highest Jacobian values are obtained for rain
content perturbations, due to the large difference in the di-
electric constant between liquid water and solid hydromete-
ors.

For KDP, sensitivity is found for rain content pertur-
bations, but the one for solid hydrometeors is negligible

(Fig. 10c). Indeed, a rain content perturbation will lead to
an increase in the amount of matter crossed by radar pulses
and then to aKDP increase. The same results are not obtained
for the other hydrometeor contents because of the smaller as-
sociated dielectric constant. Concerning ρHV, no sensitivity
has been found, except for rain content perturbations in the
melting layer.

To conclude this section, it has been found that DPOL vari-
ables are more sensitive to rain content perturbations than to
other hydrometeors, mainly because of large values of liquid
water dielectric constant. Another important information is
that the most sensitive DPOL variable appears to be the hor-
izontal reflectivity ZHH, followed by the differential reflec-
tivity ZDR and then by the specific differential phase KDP.
The co-polar correlation coefficient ρHV has very small sen-
sitivities to rain content perturbations only. Moreover, since
strongly non-Gaussian innovation statistics have been noted
in Sect. 3.2, this quantity can be hardly used in data assimi-
lation with the current observation operator and cloud micro-
physical scheme.

4.3 Jacobian matrix in the observation space

As observations are not available on the model grid, the NL
observation operator has to compute the model equivalent in
the observation space. To do so, after a horizontal interpola-
tion of the model profiles to the observation location, HDPOL
computes the DPOL variables on the model profiles and then
interpolates them over the main lobe of the radar beam (see
Wattrelot et al., 2014). Contrary to Jacobians computed in the
model space, the ones obtained in the observation space are
represented by a full Jacobian matrix. It has been computed
for the four DPOL variables, but only results for ZHH and
ZDR are shown and discussed here. Comparable conclusions
can be drawn for the other variables.

Figure 11 displays such a complete ∂ZDR/∂Mr for the pro-
file displayed in Fig. 10 located at 80 km from the radar. The
presence of rain sensitivity between the ground and approxi-
matively 700 hPa is consistent with the hydrometeor content
profiles (Fig. 10e). Nevertheless, it can be seen that the values
are now split over the two radar elevations which sample rain.
Indeed, for a rain content perturbation applied at 800 hPa, for
example, the impact on the Jacobian values is noted over the
two first radar elevations, with a larger impact on the 0.6◦

elevation. This behavior is explained by the Gaussian shape
used to represent the main lobe of the radar beam. In that
way, a perturbation applied near of the center of the radar
main lobe will have a more important impact on the Jacobian
than if applied to its sides.

An interesting feature is also present on the ZDR Jaco-
bians for rain content perturbation. Indeed, ZDR is known
to increase when the scanned atmosphere is composed of
nonspherical particles. However, the Jacobian values around
700 hPa indicate that a positive rain content perturbation
leads to a small decrease in the ZDR value. As rain water
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Figure 12. ZHH Jacobian for a snow content perturbation associated with the AROME hydrometeor profile shown in Fig. 10, artificially
located at (a) 20 km and at (b) 120 km from the radar. The Jacobians are normalized by 10 % of the hydrometeor content.

content is small, this is actually caused by the addition of
very small rain drops. Indeed, as described in Sect. 2.1.1, the
hydrometeor content is the variable which influences the par-
ticle size distribution through the shape distribution parame-
ter. For small hydrometeor contents, a majority of small par-
ticles are regarded as spherical. In consequence, with small
rain contents, a positive perturbation will cause the addition
of spherical or nearly spherical particles in the scanned vol-
ume and then a decrease in the ZDR value.

Another important parameter to consider when dealing
with radar geometry is the distance to the radar. With the
radar beam being represented as a cone (see Fig. 3 in Wat-
trelot et al., 2014), the width of the beam and the altitude
of the sampled volume are proportional to the distance to
the radar. To quantify this effect on the Jacobian values,
the convective hydrometeor content profile has been artifi-
cially placed at 20 and 120 km from the radar. Figure 12
presents such Jacobians for ZHH with respect to a snow con-
tent perturbation. First, no matter the distance to the radar,
the positive snow content perturbation leads to an increase
in ZHH, related to the increase in the total cross section.
Concerning the radar geometry, two effects due to the dis-
tance to the radar (beam width and altitude) are observed.
The first one is the beam width enlargement. For an eleva-
tion of 2.4◦, ZHH sensitivity information lies between about
675 and 550 hPa (Fig. 12a) at 20 km from the radar, while,
at 120 km, it lies between 500 and 300 hPa. The side effect
of radar beam broadening is a sensitivity reduction due to a
repartition of the same amount of information in a larger vol-
ume. Indeed, at 20 km, the highest Jacobian value is about
1.4.10−2 dBZ g−1 kg×0.1Ms (Fig. 12a), while at 120 km, it
drops to 8.10−3 dBZ g−1 kg×0.1Ms (Fig. 12b). The second
effect of the radar geometry is related to the altitude. Indeed,
the further the observation from the radar is, the higher in the

atmosphere it is. This effect is visible in Fig. 12. At 20 km
from the radar (Fig. 12a), the elevation angle 5.0◦ is low
enough to get information in the snow region. Nevertheless,
at 120 km from the radar and with an elevation angle of 5.0◦,
the radar beam is located aloft of the snow region.

5 Conclusions

This paper focused on studying operators required for
the variational assimilation of polarimetric variables from
ground-based weather radars in convective-scale NWP mod-
els. For that purpose, a radar observation operator HDPOL,
based on the T-matrix theory, was used for the simulation
of the following polarimetric variables: horizontal reflectiv-
ity ZHH, differential reflectivity ZDR, specific differential
phaseKDP and co-polar correlation coefficient ρHV. To simu-
late these variables, HDPOL uses hydrometeor contents (rain,
snow, graupel and pristine ice) from the AROME-France
model. It has been found that more realistic simulations are
obtained in the presence of liquid hydrometeors, especially
for KDP. To investigate the complexity of DPOL variable
simulations, parameters used to characterize hydrometeors in
the T-matrix method have been perturbed, such as hydrome-
teor aspect ratios, dielectric constant or oscillation. A weak
sensitivity of the simulations to those parameters has been
found, except for the dielectric constants of solid hydromete-
ors in the case of simulated ZHH and for the rain aspect ratio
for ZDR and KDP.

Even if polarimetric radars are able to detect fine spatial
structures, filters need to be applied in order to remove non-
meteorological data as well as the possible noise. A positive
effect of these filters has been found on innovation statis-
tics for the four DPOL variables computed for 12 different
meteorological cases, with reductions in biases and standard
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deviations. Nevertheless, only ZHH and ZDR innovations dis-
tributions appear to be close to a Gaussian shape. Innovation
distributions as a function of altitude show the complexity of
simulations in the presence of solid hydrometeors but also
for levels where a melting layer can be encountered.

A linearized version of the polarimetric observation oper-
ator has been evaluated by computing its Jacobians with the
finite difference method. The results show that polarimetric
variables are more sensitive to rain content perturbations than
to solid hydrometeor ones, especially because of their differ-
ent dielectric constants. The Jacobian computation also sup-
ports the fact that ZHH appears to be the most sensitive vari-
able to hydrometeor content perturbations, followed by ZDR.
Small KDP sensitivity to rain content contents was found,
while no sensitivity was detected for ρHV. Then, radar mea-
surement geometry was considered to study DPOL variables
sensitivities. Long distances between radar and the profile
of interest decrease the sensitivity due to the beam broaden-
ing but also induce sensitivities at higher altitudes due to the
radar elevation angle.

The present results show that only some DPOL variables
appear to be promising for the initialization of hydrometeor
contents through variational data assimilation. Among them,
the horizontal reflectivityZHH and the differential reflectivity
ZDR are good candidates. The specific differential phaseKDP
might also be useful for rain. Nevertheless, the simulation of
the polarimetric variables for certain types of precipitation
or meteorological cases remains difficult. The main reason
comes from the ICE3 one-moment microphysical scheme
that has been used both in the calibration of the T Matrix
and in the AROME-France NWP model from which the sim-
ulations have been performed. In this microphysical scheme,
the generalized Gamma distributions, used to describe hy-
drometeor distributions, have shapes which are only driven
by the hydrometeor content. DPOL variables being very sen-
sitive to hydrometeor size distributions, such microphysical
scheme appears to be limiting. Another limitation is the use
of a single particle shape affected by an axis ratio, while
DPOL variables are known to be sensitive to hydrometeor
shapes. A two-moment microphysical scheme coupled with
more complex hydrometeor shapes and scattering computa-
tion method such as DDA proposed by DeVoe (1964) could
lead to large improvements.

Despite the difficulties encountered forKDP and ρHV sim-
ulations, assimilation tests should be run for ZHH and ZDR
for all types of hydrometeors, while KDP could be used for
rain content initialization only. This will be done in a fu-
ture study performed in a 1D-Var DA system, in which both
nonlinear and linear operators presented here will be ex-
ploited. The quantification of errors in HDPOL and the study
on innovation statistics that have been presented in this pa-
per will also be very useful for characterizing observation
errors. Nevertheless, these values constitute first approxi-
mations which need to be diagnosed with a more objective
method, as the one proposed by Desroziers et al. (2005). In

that context, the impact of the DPOL assimilation for analyz-
ing hydrometeor contents as well as temperature and humid-
ity will be studied in this framework.
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