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Abstract. The use of radar for precipitation measurement in
mountainous regions is complicated by many factors, espe-
cially beam shielding by terrain features, which, for exam-
ple, reduces the visibility of the shallow precipitation sys-
tems during the cold season. When extrapolating the radar
measurements aloft for quantitative precipitation estimation
(QPE) at the ground, these must be corrected for the vertical
change of the radar echo caused by the growth and transfor-
mation of precipitation. Building on the availability of po-
larimetric data and a hydrometeor classification algorithm,
this work explores the potential of machine learning methods
to study the vertical structure of precipitation in Switzerland
and to propose a more localised vertical profile correction.
It first establishes the ground work for the use of machine
learning methods in this context: from volumetric data of 30
precipitation events, vertical cones with 500 m vertical res-
olution are extracted. It is shown that these cones can well
represent the vertical structure of different types of precipita-
tion events (stratiform, convective, snowfall). The reflectiv-
ity data and the hydrometeor proportions from the extracted
cones constitute the input for the training of artificial neu-
ral networks (ANNs), which are used to predict the vertical
change in reflectivity. Lower height levels are gradually re-
moved in order to test the ANN’s ability to extrapolate the
radar measurements to the ground level. It is found that ANN
models using the information on hydrometeor proportions
can predict from altitudes between 500 and 1000 m higher
than the ANN based on only reflectivity data. In comparison
to more traditional vertical profile correction techniques, the
ANNs show less prediction errors made from all height lev-
els up to 4000 m a.s.l., above which the ANNs lose predictive
skill and the performance levels off to a constant value.

1 Introduction

Precipitation constitutes a key meteorological variable for
ecosystems and societies; both as a primary input for fresh-
water resources and (in deficit or excess) as a potential threat
to infrastructure and human lives. Mountainous regions such
as the Alps, through their impact on the flow and stability of
air masses, influence the spatial distribution of precipitation
(Frei and Schär, 1998; Roe, 2005; Colle et al., 2013) as well
as precipitation growth processes and microphysics (Yuter
and Houze, 2003; Colle et al., 2005; Stoelinga et al., 2013).

Nevertheless, measuring precipitation in the Alps remains
a challenge. Ground rain-gauge networks are typically af-
fected by poorer spatial representativity, wind-induced er-
rors (especially in the case of solid precipitation, Nitu et al.,
2018) and practical difficulties related to access and mainte-
nance. On the other hand, quantitative precipitation estima-
tion (QPE) by radar is also limited by many factors (e.g. Ger-
mann and Joss, 2002; Villarini and Krajewski, 2010). While
the errors induced by ground clutter, hardware calibration
and – to a certain extent – attenuation (Germann, 2000; Ger-
mann et al., 2006, 2015; Gabella et al., 2016) can be satisfac-
torily dealt with within the Swiss polarimetric C-band radar
network, reduced visibility and the correction for the changes
in the vertical profile of precipitation remain important chal-
lenges (Jordan et al., 2000; Germann and Joss, 2002). Vis-
ibility reduction due to partial and total beam shielding by
mountainous terrain is partly overcome by the higher ele-
vation locations of the Swiss radars (between ∼ 900 and
∼ 3000 m a.s.l.) but this also exacerbates the effects of over-
shooting due to Earth curvature. As a result, the radars can-
not measure in the lowest layers of the atmosphere. For areas
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with reduced visibility, it is common practice to use radar
measurements from aloft to estimate precipitation quantities
at the ground level. These measurements must first be cor-
rected for the vertical profile of precipitation (VPP) which
includes changes in size, phase and fall speed of hydromete-
ors. Because vertical profile corrections are typically based
on and applied to the radar reflectivity measurements, this
technique is called the vertical profile of reflectivity (VPR)
correction.

The existing VPR correction methods can be subdivided
into three broad types (Germann, 2000; Zhang and Qi, 2010)
which are based on climatology, spatiotemporal averages and
modelled VPRs. Climatological VPRs are based on radar
data averaged over long time periods (days, seasons, years)
and over a certain spatial area (radar volume or well-visible
regions) (Joss and Pittini, 1991; Joss and Lee, 1995). The ad-
vantage of this type of VPRs is that, once calculated, they
are computationally inexpensive, based on actual radar data
and thus always available. However, the climatological VPR
assumes both spatial and temporal homogeneity, while in re-
ality important variations may occur, for example, depending
on whether precipitation is of stratiform or convective type.
Operationally, the climatological VPR is often used as a de-
fault VPR in the event that the real-time VPR is unavailable.

Compared to the climatological VPRs, spatiotemporally
averaged VPRs can better capture the temporal variations in
reflectivity since these are based on a few volume scans only
and regularly updated. They therefore also remain computa-
tionally inexpensive, and, among the few countries who cor-
rect for VPR in the operational processing, several are using
some version of spatiotemporally averaged profiles (Koisti-
nen, 1991; Joss and Lee, 1995; Germann and Joss, 2002).
In the MeteoSwiss operational network, profiles are calcu-
lated in well-visible (clutter-free) regions around the radar at
the meso-beta scale (integrated over a few hours and within a
range of 70 km). For the aggregation in space, the polar pixels
are weighted by the area of the corresponding pulse volume.
For the aggregation in time, a precipitation- and volume-
weighted exponentially decaying function is applied, using
the profile of the most recent precipitation event as a first
guess. The aggregation time is variable, such that it is more
regularly updated for widespread rainfall, while longer time
aggregation is performed for intermittent rainfall in order
to smooth the profile (Germann and Joss, 2002). This tech-
nique has the advantage of always providing a vertical pro-
file, with smooth transitions between subsequent radar scans
and within reasonable processing times.

An alternative method to better account for spatial vari-
ability of profiles is to use a VPR model to obtain a pro-
file at each location (e.g. Kitchen et al., 1994 and Kirstet-
ter et al., 2013). These can be determined using a set of
physically based parameters in order to remain computa-
tionally inexpensive. The UK Met Office, for example, uses
parameterisations for the melting layer (numerical weather
prediction (NWP) model freezing level height), orographic

growth (Hill, 1983) and the cloud top height (satellite in-
frared imagery) (Harrison et al., 2000). The parameterised
vertical profile is then weighed by the reflectivity factor mea-
sured just beneath the bright band (Harrison et al., 2000).
A suggested extension of this method includes the use of
linear depolarization ratio (LDR) measurements to identify
whether a stratiform or a convective type of profile should
be applied (Sandford et al., 2017). More recently, Le Bastard
et al. (2019) have proposed an approach based on simulated
VPRs from the Applications of Research to Operations at
Mesoscale (AROME) nowcasting system (AROME-NWC)
NWP model which are matched with the most similar ob-
served VPR by the radar. Although the model-based VPRs
have the advantage of providing a profile at each radar pixel,
the disadvantages include its dependency on the availabil-
ity and quality of information from external sources and, in
some cases, on a priori assumptions on the shape of the VPR
(i.e. the slope of the VPR in the solid layer).

Therefore, the majority of existing operational VPR cor-
rection schemes assume spatiotemporal homogeneity and
rely heavily on the reflectivity measurements. Due to the
spatial variability of precipitation microphysics, temperature
and humidity profiles, as well as the growth and decay pro-
cesses (Matsuo and Sasyo, 1981; Fabry and Zawadzki, 1995;
Bell, 2000; Roe, 2005; Stoelinga et al., 2013), VPP and thus
VPR profiles may be expected to vary considerably in space
and time, especially in an orographic context (Boodoo et al.,
2010; Campbell and Steenburgh, 2014).

The aim of this study is to propose a more localised verti-
cal profile correction technique using machine learning (ML)
and information on hydrometeor proportions to predict the
vertical change in reflectivity, referred to as growth and de-
cay (GD). To the best of our knowledge, in the literature,
there is no ML technique for the investigation of the verti-
cal structure of precipitation that is mature enough for op-
erational implementation, and therefore an important part of
this work is to present a proof of concept for the use of ML
in this context. Artificial neural networks (ANNs) comprise
a class of ML methods which are well established in the geo-
and environmental sciences and are also used for this study.

The selection of precipitation events, and the preparation
and extraction of the data will be addressed in Sect. 2, while
more details on the setup and the training of the ANN are
given in Sect. 3. The main objective of this work will be ad-
dressed through the following steps: first, the ANN is used to
learn about the contribution of hydrometeors to potentially
improve radar-based QPE in Switzerland; then, information
at lower height levels is gradually removed in order to test the
ANN’s ability to extrapolate the radar measurements to the
ground level. Finally, the ANN predictions will be evaluated
and compared with the current operational VPR correction
technique. Section 4 presents the exploratory data analysis,
the results of the machine learning predictions and their veri-
fication, while Sect. 5 puts the contribution of this study into
a broader perspective.
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2 The vertical cone database

The data used in this study are extracted from high-resolution
volumetric radar data acquired by the Albis radar located at
∼ 900 m a.s.l. on the Swiss plateau. The radar has good vis-
ibility from the southwest to the east and some regions with
residual ground clutter in the south due to the presence of the
first Alpine slopes (Fig. 1). Of the five Swiss radars, the Al-
bis radar is situated at the lowest altitude and can thus provide
measurements of the lowest parts of the atmosphere. More-
over, the Albis radar has been stably producing high-quality
data over the past years, allowing the ANN to be trained with
the best available quality data.

2.1 Radar data pre-processing

Like the other radars in the Swiss operational network (all
time synchronised), the Albis radar performs 20 plan posi-
tion indicator (PPI) scans within 5 min at elevations ranging
from −0.2 to 40◦ (Germann et al., 2015) with an interleaved
sweep pattern. For this study, the high-resolution data with
a range resolution of 83 m (corresponding to 12 bins every
1 km) were used.

The processing of the radar data was performed using the
Python-based open-source software Pyrad (Figueras i Ven-
tura et al., 2017), which was developed at MeteoSwiss as an
extension to Py-ART (Helmus and Collis, 2016). The signal-
to-noise ratio (SNR) of the horizontal channel was calculated
based on the estimated receiver noise at high-elevation an-
gles (40 or 35◦). Subsequently, the SNR and the ratio of the
receiver noise in the horizontal and vertical channels were
used to filter out the noise before computing the co-polar
correlation coefficient (ρHV) (Gourley et al., 2006). Clutter
was identified and removed using a filter based on textures
of reflectivity factor at horizontal polarisation (ZH), differen-
tial reflectivity (ZDR), co-polar cross correlation coefficient
(ρHV), total differential phase shift (ψdp) and the value of
ρHV. Range gates with an SNR below the threshold of 10 dB
were filtered out before performing a double window mov-
ing median filter on ψdp. The filtered differential phase (φdp)
was then used to estimate the specific attenuation (Ah) (us-
ing the ZPHI algorithm developed by Testud et al., 2000) in
order to correct for attenuation induced by precipitation and
to derive the specific differential phase shift on propagation
(Kdp) using the method described by Vulpiani et al. (2012).

The filtered and corrected polarimetric variables were then
used as input for the semi-supervised hydrometeor classifi-
cation scheme developed by Besic et al. (2016, 2018). This
method uses ZH (−10 to 60 dBZ, influenced by particle con-
centration, size and density), ZDR (−1.5 to 5 dB, influenced
by particle shape, orientation and density), Kdp (−0.5 to
5◦ km−1, influenced by particle concentration and shape),
ρhv (0.7 to 1, influenced by particle homogeneity) and a
liquid/melting/ice-phase indicator to distinguish nine classes
of hydrometeor types. These classes consist of aggregates

(AG), ice crystals (CR), light rain (LR), rimed particles (RP),
rain (RN), vertically oriented ice crystals (VI), wet snow
(WS), melting hail (MH), ice, hail or high-density graupel
(IH/HDG) and no classification (no valid radar data – NC).
Within the context of this study, light rain and rain were ag-
gregated into a single rain class and vertical ice was aggre-
gated into the crystals class. The motivation to use hydrom-
eteor proportions as input for the ANN models rather than
polarimetric variables is twofold. On the one hand, the hy-
drometeor classification is already filtered from the noise in
the estimated radar variables because it contains additional
“physical” information coming from scattering simulations
to identify which clusters correspond to which hydrometeor
types. On the other hand, from a physical point of view, hy-
drometeor class information can better describe the processes
involved in the growth and decay of precipitation than the
raw polarimetric variables.

2.2 Vertical cone definition

Because this study aims to propose a more localised vertical
profile correction technique, the filtered and corrected volu-
metric radar data need to be sampled at scales small enough
to capture the spatiotemporal variability and large enough to
give a robust estimate of the vertical profile at each location.
Rather than extracting a vertical column of a certain size, ver-
tical cones such as those illustrated in Fig. 2 were extracted.
The motivation for this is twofold: on the one hand, it fol-
lows the assumption that precipitation observed at a certain
point of interest (x, y) on the grid (Fig. 1) may have origi-
nated from a much wider region aloft, and, on the other, it
accounts for the decrease in the number of measurements at
higher altitudes by increasing the sampling size of the cone.

As described in Roe (2005), the terminal fall speed of hy-
drometeors varies between 1 m s−1 for snow and 10 m s−1

for heavy rain (excluding hailstones). This implies that when
taking into account a range of unidirectional wind speeds
from 5 to 30 m s−1, a hydrometeor originating at 3 km height
may get advected anywhere between 1.5 and 90 km before
reaching the surface (Roe, 2005).

However, within the context of this study, the choice of the
cone size, i.e. the diameter of its base and top, is related to
grid spacing: as is shown later, cone sizes were chosen which
do not overlap or touch at the base and partly overlap at the
top. In addition, the cone size should be chosen such that
there is a sufficient number of samples at each altitude and at
all distances from the radar.

Considering that for the lowest elevation angle the 1◦ beam
width diameter exceeds 1 km at distances further than 60 km,
it was estimated that a 500 m vertical resolution was the high-
est possible. Given the 500 m vertical resolution and dis-
tances of > 60 km from the radar, it was also estimated that
cones with a 4 km radius at the base and a 10 km radius at
the top would have sufficient samples at each height level
(Table 1).
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Figure 1. Location of the Albis radar within Switzerland overlaid on the digital elevation model (DEM; Jarvis et al., 2008) and the regular
grid for the vertical cone extraction.

Figure 2. Cones are extracted in well-visible regions of the radar and used to train the ANN. The trained ANN model can then be used to
extrapolate measurements from aloft to the ground level during other precipitation events or in regions with reduced visibility.

For this exploratory study, the dimensions of the cone have
been chosen for practical reasons (enough samples at each
height level in each of the cones up to a 60 km distance from
the radar). The possibility of using higher vertical resolutions
will be the subject of a follow-up study. In order to preserve
some spatiotemporal consistency and to further increase the
number of samples at each height level, the cones at each
location were aggregated over up to 30 min (six previous
scans). This spatiotemporal averaging has a solid physical–
meteorological motivation (Germann and Joss, 2002). The

10 km and 30 min scales have been selected because it is ex-
pected that at these scales the lower part of the VPP can be
related to the VPP and hydrometeor proportions aloft: if pre-
cipitation falls at an average speed of 5 m s−1 (slower above
and faster below the melting layer), it would cover a verti-
cal distance of 10 km in about 30 min. Such a relation is not
reasonable and difficult to observe at higher resolutions.
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Table 1. Median number of pixels for 500 m height intervals
(boundaries in first column) at increasing distances from the radar
based on geometry for a single volume scan and a cone with 4 km
radius at the base and a 10 km radius at the top. The altitudes given
in the first two columns are in metres above sea level.

hb (m) h (m) 20–30 km 40–50 km > 60 km

750
1250 1000 154 141 122
1750 1500 178 171 158
2250 2000 215 201 131
2750 2500 191 182 163
3250 3000 218 204 205
3750 3500 214 181 47
4250 4000 279 177 152
4750 4500 251 174 100
5250 5000 365 251 189
5750 5500 301 194 94
6250 6000 371 343 294
6750 6500 339 273 129
7250 7000 392 353 255
7750 7500 379 354 239
8250 8000 393 379 276
8750 8500 409 363 296
9250 9000 401 379 293
9750 9500 384 380 344
10 250 10 000 406 383 350

2.3 Extraction of variables

From each cone, the input data to train the ANN (i.e. the
horizontal reflectivity factor ZH and the hydrometeor class
(HC) proportions) were extracted within height level bands
of 500 m at levels ranging from 1500 m to 10 km altitude.
The lowest available level (1000 m a.s.l.) was considered the
“ground” reference. For ZH, the average reflectivity (in lin-
ear units) within each height band was calculated, including
measures of dispersion and location (standard deviation, per-
centiles 16, 25, 50, 75 and 84). For the hydrometeor classes,
the number of pixels pertaining to each class was counted
and these were transformed into proportions after temporal
averaging. The temporal averaging was performed as a last
step so that each individual cone could still be stored and ex-
amined and such that experiments could be performed with
shorter temporal averaging, if needed.

The target value which the ANN was required to predict
was chosen to be the vertical multiplicative GD of precipita-
tion which was derived after the temporal averaging and for
each height level h. As such, the growth and decay between
any height level h and the ground reference at 1 km a.s.l.
(GDh−1 km) is given by

y = GDh−1 km = 10 · log10

(
Zh km

Z1 km

)
[dB], (1)

where Zh km is the average reflectivity at height level h and
Z1 km is the average reflectivity at the ground. The multi-
plicative definition of growth and decay was also used by
Foresti et al. (2019) but in the nowcasting context, more pre-
cisely to predict the horizontal (instead of vertical) change of
radar precipitation when advected downstream (Lagrangian
frame).

The choice for trying to predict growth and decay was
based on the accurate definition of the learning problem
at hand; here, we are interested in predicting the vertical
change in reflectivity between the lowest visible height level
and the ground rather than in predicting the absolute re-
flectivity value at the ground level. The reason for this is
twofold. Firstly, this is more comparable to the operational
VPR method, which is also based on a relative correction fac-
tor. Secondly, it simplifies the categorisation of the physical
processes into enhancement and dissipation of precipitation.

2.4 Selection of precipitation events and cone locations

Since the extraction and calculation of the variables inside
the cones is a costly operation in terms of computing time,
there is some trade-off between the number of cones to be
extracted per scan and the number of precipitation events
considered. For this study, 30 precipitation events over the
course of 3 years (2016, 2017 and 2018) and covering a broad
range of microphysical situations were selected. Within each
event, one scan per hour was selected, and for each scan the
six previous scans (equalling 30 min in time) were also ex-
tracted. The temporal spacing between the extracted scans
was adopted in order to reduce the correlation between suc-
cessive temporally averaged cones and allowed to further
limit processing time. Details of the events are given in Ta-
ble 2. Due to the higher frequency and duration of stratiform
events, these are slightly over-represented in the data.

Finally, for each single cone location, the vertical profiles
of reflectivity were calculated and averaged over the entire
data set. This was done to exclude cones with consistently
missing data at certain height levels related to the radar scan
geometry; this is different from the information in Table 1
which shows the theoretical median number of pixels within
cones at different ranges from the radar. Indeed, based on
this analysis, the cones at 85 locations, usually situated far
from the radar were removed. The reasons for removing these
data points were that the ANN cannot handle predictors with
missing data and that these cones resulted in aberrant GD val-
ues in the observation data set. For the same reasons, cones
which were less than 10 % filled in the bottom 4000 m of the
cone were also removed, such that a total of 17 123 cones
remained for input in the ANN models.
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Table 2. Statistics for the precipitation events used in this study.
Daily precipitation accumulations and wind speeds are from the
Cham ground station at approximately 15 km distance from the Al-
bis radar. The GWTWS weather type classification, which is the
adapted Grosswettertypes (GWTs) correlated with predefined “pro-
totype” classes, is also shown (more details in Weusthoff, 2011). LP,
HP and FP represent high-pressure, low-pressure and flat-pressure
situations, respectively; the other acronyms are abbreviations of
GWTWS flow directions. The letters A and C indicate advective
or convective types.

Date GWTWS Duration Max/µ Daily
type (hours) wind speed precip.

(m s−1) (mm)

8 Jan 2016 W (A) 11 5.8/1.6 11.1
31 Jan 2016 NW (A) 10 11.4/2.7 11.1
23 Feb 2016 W (A) 7 12.1/3.2 7.8
2 Mar 2016 W (A) 7 21.0/2.35 7.1
17 Apr 2016 SW (A) 17 9.8/1.9 17.6
12 May 2016 LP (C) 21 10.4/2.6 31.9
23 May 2016 SE (A) 22 8.0/2.6 25.0
16 Jun 2016 SW (A) 12 7.5/1.9 20.9
12 Jul 2016 SW (A) 19 6.6/1.4 47.9
25 Oct 2016 W (A) 20 5.9/1.2 20.8
31 Jan 2017 NW (A) 23 5.7/1.3 34.7
9 Mar 2017 NW (A) 17 5.7/1.6 16.3
18 Mar 2017 NW (A) 11 9.8/1.7 11.1
25 Apr 2017 W (A) 15 10.7/1.9 24.4
12 May 2017 LP (C) 4 10.8/1.6 6.6
28 Jun 2017 SW (A) 14 11.0/2.1 26.3
10 Jul 2017 SW (A) 6 19.1/1.8 23.7
18 Aug 2017 SW (A) 4 9.9/1.5 35.7
31 Aug 2017 SW (A) 20 5.8/1.5 29.4
1 Sep 2017 SW (A) 16 7.5/2.6 24.2
12 Nov 2017 W (A) 9 23.5/3.3 14.6
22 Jan 2018 NW (A) 22 9.4/2.2 29.1
17 Feb 2018 W (A) 14 5.8/1.5 16.4
28 Mar 2018 W (A) 13 9.9/2.2 6.1
30 Apr 2018 SW (A) 3 15.3/2.4 1.2
14 May 2018 E (A) 7 6.8/1.7 9.6
15 May 2018 N (A) 9 7.0/2.0 7.6
22 May 2018 FP (C) 6 9.7/1.5 39.8
30 May 2018 HP (C) 2 9.5/1.8 0.0
4 Jun 2018 FP (C) 2 13.9/1.8 0.8

3 Neural network and experimental setup

Machine learning algorithms are tools which, compared to
traditional statistical data models, are fully non-parametric
and designed to solve regression tasks in high-dimensional
input spaces. This means that ML aims to obtain the best
possible performance without making strong assumptions
about the distributions of or dependency between the vari-
ables (see, e.g. Kanevski et al., 2009). ANNs are a type of
ML which are particularly well adapted to treating multi-
dimensional input data and resolving non-linear problems. In
this study, we employed a classical back-propagation feed-

forward multilayer perceptron (MLP) for non-linear regres-
sion. The Python Scikit-learn (Pedregosa et al., 2011) library
was used for the experiments.

MLP models are typically composed of one input layer,
one or more hidden layers and one output layer (Fig. 3). The
neurons in the input layer correspond to the input variables
(predictors) and the neurons in the output layer to the target
variables (predictands). Each neuron is connected to the other
neurons of the network with synaptic weights wi (which can
take positive or negative values). The hidden neurons inte-
grate the input signals from the ones in the previous layer
and apply a bounded, non-linear sigmoid activation function
(typically logistic or hyperbolic tangent) before passing the
output oi to the next layer. The combined effect of the hid-
den layer is that it performs a non-linear transformation on
the weighted linear summation of the values coming from the
input neurons. Using a design with less neurons in the hid-
den layer than the input layer allows performing data com-
pression. Conversely, when the number of hidden neurons is
larger, it allows representing the input data in a higher dimen-
sional space to better shatter (discriminate) the data.

The training of the MLP is then achieved by performing an
iterative gradient-based optimisation of the network weights
w to minimise the mean squared error loss function between
the predicted and the target values in the output neuron:

EMSE(w)=
1
N

N∑
i=1

(
yobs
i − y

pred
i (x,w)

)2
, (2)

whereEMSE(w) is the expected mean square error for a com-
bination of network weights w, N is the total number of ob-
servations in the training data set, yobs

i is the observed value
for each observation i, and ypred

i is the predicted value for
each observation i, given the inputs x and network weights
w.

Provided that there are a sufficient number of neurons and
a non-constant, non-decreasing activation function at each
hidden neuron, an ANN can model any non-linear function
with the desired precision (Cybenko, 1989; Hornik et al.,
1989). This, however, means that a too-complex network ar-
chitecture may lead to overfitting of the data. On the other
hand, a too-simple network, or in the event that the training is
trapped in a local minimum of the error function, could cause
underfitting. Both cases lead to the inability of the ANN to
generalise the learnt patterns. In this paper, overfitting is ad-
dressed by early stopping, while stochastic gradient descent
is used to avoid getting trapped in local minima.

Thus, the main hyperparameters of MLP models are the
number of hidden layers, the number of hidden neurons
within these layers, the type of activation function, the learn-
ing rate for the update of the weights and the criteria for early
stopping.

The training of the MLP, the selection of hyperparameters,
as well as the evaluation of its performance on completely in-
dependent data is achieved by splitting the data. In this paper,
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Figure 3. Example of a multi-input single-output MLP model and setup as used in this study. The number of input neurons M equals the
number of V predictors (reflectivity, HC proportions) multiplied by H height levels used.

the data set is split into training (60 %), validation (20 %) and
testing (20 %) data sets. While the model is trained with the
training data set to find the appropriate weights to minimise
the training error, it is simultaneously applied to the valida-
tion data set in order to evaluate the predictive performance
of the MLP during training. The training error will continue
to decrease; however, as soon as the model starts overfitting
the training data, the validation error will start to increase.
The set of weights with the lowest training and validation
error is retained as the best model.

The testing data set is used as a completely impartial data
set to evaluate the models. In this study, the three data sets
(training, validation and testing) have been randomly com-
posed under the constraints that the data comes from sep-
arate precipitation events and that each data set contains at
least one event from every season.

Two main types of ANN models are trained and tested
within the scope of this study: one model is trained using
only values of average reflectivity at each height level (“dBZ-
only model”), while the second is trained with the average
values of reflectivity and HC proportions of rain, wet snow,
rimed particles, aggregates and crystals at each height level
(“HC+ dBZ model”). Occurrences of hail and melting hail
are so rare in the considered data set that they are not consid-
ered as input variables. The goal is to understand how rele-
vant is the information on hydrometeor types, in addition to
reflectivity, to extrapolate precipitation to the reference level.

For each ANN type, separate models starting at different
height levels are trained (i.e. starting at 1500 m a.s.l. and up-
wards, starting at 2000 m a.s.l. and upwards etc.). Because
the number of input neurons is equal to the number of vari-
ables multiplied by the number of altitudes, the dBZ-only
model, for example, has 20 neurons in the input layer for the
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ANN starting at 1500 m a.s.l., 19 neurons for the ANN start-
ing at 2000 m a.s.l. and so forth. For the HC+ dBZ model,
these numbers are 110 and 104, respectively.

4 Exploratory data analysis and results

The goal of exploratory data analysis (EDA) is to better un-
derstand the data set and extract some useful information be-
fore applying ML. The efficiency and accuracy of ML meth-
ods depend critically on the quality and quantity of the data,
as well as on the existence of statistical relations between
variables (patterns). EDA may therefore be useful for the
identification of relevant variables, clearly observable pat-
terns or outliers in the data set.

4.1 Vertical profiles of hydrometeor proportions

In order to evaluate the ability of the vertical cones to ro-
bustly describe the vertical structure of precipitation and as a
part of the EDA, the vertical profiles of hydrometeor pro-
portions, reflectivity and GD have been plotted. Figure 4
shows the medians and quartiles of the vertical profiles for
different events calculated over the entire spatial domain
and for a single 30 min time step. The profiles of hydrom-
eteor proportions show some distinctly different features for
events with snow at the ground, stratiform and convective
precipitation. For the event with snow reaching the ground
level (left panel Fig. 4), high proportions of aggregates and
rimed particles can be observed at lower altitudes, while
above 5500 m a.s.l. only crystals are present. For the strat-
iform event, crystals also dominate at altitude levels above
5500 m a.s.l., but a distinct increase in wet snow around
2000 m a.s.l. indicates the presence of a melting layer, with
rain dominating at the lower altitude levels. For the convec-
tive event, rain dominates up until 3000 m a.s.l. and an im-
portant proportion of crystals, aggregates and rimed particles
can be observed until at least 10 km altitude.

The vertical profiles of hydrometeor proportions in Fig. 4
indicate that different event types can be distinguished by the
HC proportions from the cones and that some types of events
may benefit more than others from the information aloft.

4.2 ANN predictions of growth and decay

The 2-D histogram plots in Fig. 5 show the observed (x axes)
and predicted (y axes) GD for the HC+ dBZ models (top
row) and dBZ-only model (bottom row) trained with data
from different altitudes and upwards (columns). As extrap-
olations are made from increasingly higher altitudes, both
the observations and the predictions move towards growth,
as can be expected. The colouring of the plots indicates the
point density, and while the blue points are single observa-
tions and thus show more scatter, the areas with high point
density (red/orange) fall better along the identity line for the
HC+ dBZ model than for the dBZ-only model. Especially

for predicting GD from 2500 m a.s.l. and aloft, the dBZ-only
models seem to have difficulty with predicting growth values
higher than 10 dB.

The 2-D histogram plots in Fig. 5 are summarised in Fig. 6,
which shows the root mean squared error (RMSE) and Pear-
son correlation coefficient (ρ) between the observed and pre-
dicted GD in dB units. It can be observed that the model
with HC proportions performs consistently better than the
model without HC proportions, i.e. at equal RMSE values,
the HC+ dBZ model can predict from altitudes between 500
and 1000 m higher than the dBZ-only model. The RMSE
for both model types seems to level off for ANNs trained
with data starting from 4000 m a.s.l. and aloft, highlighting
the upper limit of extrapolation (experiments performed up
to 10 km a.s.l. show that RMSE remains constant also at
these altitudes). At the lowest height level (1500 m a.s.l.), the
dBZ-only model and the HC+ dBZ model give similar er-
rors. A possible explanation for this is that for the predic-
tion of GD between 1500 m a.s.l. and the reference level (at
1000 m a.s.l.), the average reflectivity at 1500 m a.s.l. is the
dominant variable also for the HC+ dBZ model. The differ-
ences between the models and observations at this and sub-
sequent height levels are analysed in more detail in the fol-
lowing section.

4.2.1 2-D matrices of growth and decay

In this section, we want to explore the growth and decay pat-
terns in the space of predictors to visually verify whether the
ANN properly learnt the observed data dependencies.

The matrices in Fig. 7 show the binned averages of
GD based on combinations of HC proportions and aver-
age reflectivity values at the lowest height levels (1500
and 2000 m a.s.l.) for the observed data (left column), the
HC+ dBZ model (middle column) and the dBZ-only model
(right column). This is similar to computing a 2-D histogram,
but instead of counting the number of samples it evaluates the
average value. The GD values were calculated based on the
reflectivity at that height level and the 1000 m a.s.l. reference
level. The plots allow to distinguish different GD patterns
for different combinations of variables. Overall, higher aver-
age reflectivity values at any altitude h lead to observed de-
cay between that altitude h and the ground reference and, in-
versely, lower reflectivity values at altitude h lead to more ob-
served growth. This is also reflected by the models. However,
more specific patterns can also be observed, such as the pro-
nounced growth values for cones with low to moderate reflec-
tivity values at altitude h and high proportions of aggregates
or any presence of rimed particles at that same altitude h.
While these patterns are also visible in the HC+ dBZ model
output, the dBZ-only model is unable to reproduce them.
This is probably because the dBZ-only model does not have
the necessary predictors to explain this variability and thus
treats the high GD values as outliers, while the HC+ dBZ
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Figure 4. Examples of vertical profiles of reflectivity, GD and hydrometeor proportions for three different events. Thick lines show the
median values and shading the quartiles calculated over the entire spatial domain for a single 30 min time step.

model, with the additional information on hydrometeor pro-
portions, can recognise these patterns.

In order to evaluate how well the models reproduce the
observed GD patterns, Figs. 8 and 9 show the 2-D error ma-
trices. For each of the combinations of variables, the binned
2-D averages for the observations were subtracted from the
binned 2-D averages of the model outputs such that positive
values in Figs. 8 and 9 show model overestimation and neg-
ative values correspond to model underestimation.

Overall, the errors for the dBZ-only model have a greater
amplitude than the errors for the HC+ dBZ model (Figs. 8
and 9). Most notable is the overestimation by the dBZ-only
model for cases where crystals are present (col. 3). For exam-
ple, the RMSE for combinations of crystals and mean dBZ at
1500 m a.s.l. for the HC+ dBZ model is 3.05 dB, while for
the dBZ-only model it is 4.64 dB (row 1, col. 3). The dBZ-
only model also particularly underestimates for cases with
rimed particles and high proportions of aggregates (row 2,

col. 4). The HC+ dBZ model also underestimates slightly
the cases with rimed particles, though only when predicting
from 1500 m altitude levels and less so than the dBZ-only
model. More precisely, combinations of rimed particles and
mean dBZ at 1500 m a.s.l. result in an RMSE of 2.23 dB for
the HC+ dBZ model and 2.90 dB for the dBZ-only model
(row 1, col. 4). Overall, the HC+ dBZ-only model shows
less patterns in the errors, which indicates that the ANN
model better separated the signal from the error. The largest
deviations are located at the edges of the distributions and are
thus more likely related to outliers in the observations. This
is a good behaviour and highlights the ability of the ANN to
remain robust to outliers (no overfitting).

Figures 10 and 11 are the same as Fig. 5, but instead of
comparing the instantaneous predicted and observed growth
and decay values, they compare the binned averages of
Figs. 7, 8 and 9. The RMSE, the Pearson correlation coef-
ficient and the regression slope β are given. In this study, β
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Figure 5. The 2-D histograms for observed (x axes) and predicted (y axes) GD for the HC+ dBZ models (top row) and dBZ-only models
(bottom row) trained with data starting from higher altitude levels and aloft (columns). The number of points in each bin is indicated in
colour.

Figure 6. RMSE and Pearson correlation coefficient for dBZ-only models and HC+ dBZ models trained with data starting from increasing
altitude levels. The thick lines indicate the average values and the shading the quartiles calculated over 10 model runs using different
combinations of events for the training, validation and testing data sets.

measures the degree of conditional bias with respect to the
observations. It is given by the following formula:

β =
σpred

σobs
ρ, (3)

where ρ is the correlation coefficient between predictions
and observations, and σpred and σobs are the correspond-
ing standard deviations. In modelling studies, the regression
slope is typically calculated with respect to the predictions,
resulting in a β > 1 if the standard deviation of the predic-
tions is smaller than the standard deviation of the observa-
tions. Because machine learning methods rely on error min-
imisation principles, there is often a loss of variance in the
predictions with respect to the observations. As such, the β
calculated in this study with respect to the observations is
typically lower than 1.

As expected, the correspondence of the average values is
much better than the instantaneous ones. The numbers men-
tioned in the discussion below are relative to the 1500 m
level, but the statements are also valid at 2000 m. For the
HC+ dBZ model, the observed and predicted GD values
for combinations of average reflectivity and any hydrome-
teor class show good agreement with relatively low regres-
sion slopes (0.54< β < 0.74) and high correlation coeffi-
cients (> 0.77). The worst performance, for the crystals and
rain classes at 1500 m a.s.l., is clearly related to a few outliers
(Fig. 10). For combinations of hydrometeor classes, and es-
pecially rain plus aggregates or rain plus rimed particles, the
performance of the HC+ dBZ model is not as good (corre-
lations drop to 0.63 and 0.58, respectively), which could be
related to the more complicated and less frequent nature of
situations with these combinations of hydrometeor classes.
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Figure 7. The 2-D growth and decay matrices for 1500 m a.s.l. (a, b, c) and 2000 m a.s.l. (d, e, f) for the observed data (a, d), HC+ dBZ
model (b, e) and dBZ-only model (c, f). The colour of each bin is based on the average GD value.
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Figure 8. The 2-D error matrices from 1500 m a.s.l. for the HC+ dBZ model (a) and dBZ-only model (b). The colour for each bin is based
on the difference between the observed binned average and the binned average of the model output.
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Figure 9. The 2-D error matrices from 2000 m a.s.l. for the HC+ dBZ model (a) and dBZ-only model (b). The colour for each bin is based
on the difference between the observed binned average and the binned average of the model output.
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Figure 10. The 2-D matrices for observed (x axes) and predicted (y axes) GD for the HC+ dBZ model (a) and dBZ-only model (b) trained
from 1500 m a.s.l. and data aloft. The number of points in each bin is indicated in colour.
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Figure 11. The 2-D histograms for observed (x axes) and predicted (y axes) GD for the HC+ dBZ model (a) and dBZ-only model (b) trained
from 2000 m a.s.l. (bottom row) and data aloft. The number of points in each bin is indicated in colour.
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For the dBZ-only model, the agreement between observed
and predicted GD for combinations of average reflectivity
and hydrometeor class is much lower than for the HC+ dBZ
model. For combinations of hydrometeor classes, the dBZ-
only model gives similar predictions for the whole range
of observed GD values. This demonstrates the added value
of using polarimetric information (through HC proportions)
compared to using the reflectivity data alone.

4.2.2 Comparison ANN predictions with traditional
methods

The comparison between the ANN model outputs and tradi-
tional VPR correction techniques is made by adding the pre-
dicted GD to the lowest reflectivity measurement and com-
paring the predicted reflectivity at the ground level with the
observed reflectivity (dBZobs

i ) for each observation i in the
testing data set with N observations:

RMSE=
1
N

N∑
i=1

(
dBZobs

i − dBZpred
i

)2
, (4)

where dBZpred for the ANN models is obtained by

dBZpred = dBZh+GDh−1 km, (5)

where dBZh is the average reflectivity observed at the height
level h and GDh−1 km is the ANN predicted growth and de-
cay between the same height level h and the ground level at
1 km a.s.l.

The traditional models considered are

1. performing no correction, i.e. assuming vertical persis-
tence by taking the lowest available reflectivity mea-
surement:

dBZpred = dBZh; (6)

2. applying a constant gradient of 1.5 dBZ km−1:

dBZpred = dBZh+1h · 1.5, (7)

where dBZh is again the average reflectivity observed
at the height level h and 1h is the height difference in
kilometres;

3. the “meso-beta” profile correction factor is calculated
operationally at MeteoSwiss. For each altitude h, the
correction factor is extracted from the profiles and ap-
plied to the average reflectivity value at altitude h from
the cone. More details on the calculation of the correc-
tion factor can be found in Germann and Joss (2002).

The RMSEs for each of these VPR models as well as the
dBZ-only and HC+ dBZ models were calculated over 10
combinations of completely independent test data sets and
are given in Fig. 12.

Figure 12. RMSE for traditional VPR models and for the ANN
models trained with data starting from increasing altitude levels.
The thick lines indicate the average values and the shading the quar-
tiles calculated over 10 model runs using different combinations of
events for the training, validation and testing data sets.

For predictions made from altitudes up to approximately
2500 m a.s.l., assuming a constant gradient gives the worst
results, while assuming vertical persistence may be feasible
at lower elevations but results in large errors when the lowest
visible elevations are higher than 2000 m a.s.l.

The operational meso-beta profile is extracted from the
well-visible regions close to the Albis radar and gives a cor-
rection factor with respect to the reference altitude used op-
erationally and which is set to 1500 m a.s.l. Since the meso-
beta profiles have no information at 1000 m a.s.l. altitude,
the initial error for predictions from 1500 to 1000 m a.s.l. is
approximately 1.6 dB higher than for the ANN models. Be-
cause the meso-beta profile correction factors are calculated
to obtain a more or less constant rain rate in the vertical, the
RMSE of the meso-beta profile also remains quite constant
up to 4000 m a.s.l. The increase in RMSE at higher altitudes
is probably because the required correction exceeds the max-
imum threshold for the operational correction factor. Com-
pared to the traditional models, the ANN models show sub-
stantial improvement, especially when using the HC propor-
tions.

Finally, as already observed in Fig. 6, the error levels off
around 4000 m a.s.l. for both ANN models. This may be
partly explained by some over representation of stratiform
events in the data set, which are less developed in the ver-
tical, so the models have very little information available at
these altitudes.

Figure 13 shows the models compared in Taylor diagrams.
These diagrams show the Pearson correlation coefficient on
the azimuthal angle, the centred RMSE (green contours) and
the standard deviation of the models as the radial distance
from the origin. The observed data are indicated by a star.
For the HC+ dBZ model predicting from 2500 m a.s.l. (first
row, third column, blue hexagon), the correlation coefficient
is about 0.72, the RMSE about 4.6 dB and the standard de-
viation about 5.8 dB. Taylor diagrams are able to show that
even if models may have a similar RMSE, one model may
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better correlate with the observations or have a similar stan-
dard deviation as the observations. For the models depicted
in Fig. 13, we can observe that while the traditional mod-
els have increasingly higher RMSEs and smaller correla-
tions when predicting from higher altitudes, the ANNs tend
to have similar correlations but smaller standard deviations.
This last observation is typical for ML methods and is due
to the mean square error minimisation (Eq. 2). Because the
RMSE is equal to the square of the bias plus variance (plus
the irreducible error), the reduction in RMSE also reduces
the variance in the model predictions.

5 Conclusions

The aim of this study was to propose a more localised ver-
tical profile (VPR) correction technique by making use of
machine learning (ML) and by exploiting polarimetric radar
information through the use of hydrometeor types and their
proportions. An important part of the work consisted of es-
tablishing the foundations for the use of ML for the investi-
gation of the vertical structure of precipitation.

Vertical cones were extracted on a regular grid up to
60 km distance and in the well-visible regions of the Al-
bis radar. The cones were divided into height levels from
1500 m a.s.l. up to 10 km a.s.l. with a 500 m vertical resolu-
tion. For each 500 m height level band, the average reflectiv-
ity values and hydrometeor proportions were calculated and
used as inputs for the artificial neural network (ANN) model.
The ANN model was chosen because it offers a smooth es-
timation of non-linear functions in high-dimensional spaces.
The target value (predictand) for the ANN model was the
vertical change in reflectivity (or growth and decay, GD)
between each height level and the reference “ground” level
(1000 m a.s.l.). A total of 30 precipitation events were ran-
domly split into training, validation and testing data sets,
each containing data from separate events. The ANN was
then trained, calibrated and evaluated with completely inde-
pendent test data sets.

Exploratory data analysis (EDA) of the vertical cone data
allowed to further filter the data set and to exclude cones with
consistently missing values at certain height levels due to
the geometrical constraints related to the radar scan strategy.
EDA also allowed to verify that the cones could successfully
capture the vertical structure and hydrometeor proportions of
the various types of precipitation events.

In order to evaluate the potential of operational informa-
tion on HCs to improve QPE in Switzerland, two main types
of ANN were trained: one using only the average reflectivity
values at different height levels (dBZ-only model) and one
using the average reflectivity values and hydrometeor pro-
portions at each height level (HC+ dBZ model). The ability
of each model to extrapolate the radar measurements from
higher altitudes to the ground level was then assessed by pro-
gressively removing information at the lower height levels of

the vertical cones and retraining the ANNs. It was found that,
for equal values of RMSE, the HC+ dBZ model could pre-
dict from altitudes between 500 and 1000 m higher than the
dBZ-only model. A more in-depth analysis of the GD pat-
terns as a function of hydrometeor types indicated that the
dBZ-only model overestimated (underestimated) GD espe-
cially in cases where crystals (aggregates) were present.

Finally, the ANN models were compared to traditional
VPR correction techniques by adding the ANN predicted
GD to the lowest observed reflectivity value. The other ap-
proaches considered were vertical persistence of reflectiv-
ity, a constant gradient and the operational meso-beta profile
which was extracted for each time step and applied to the
cone data. It was found that both ANN models performed
better at all height levels than the traditional VPR correc-
tion techniques. The higher error observed for the meso-beta
profile correction technique may have been partly caused
by the fact that this method uses 1500 m a.s.l. as the refer-
ence level and not 1000 m a.s.l. The performance for both the
dBZ-only model and the HC+ dBZ model levels off above
4000 m a.s.l., suggesting that the models have little or no pre-
dictive skill above this altitude. Finally, it could be observed
that for traditional models the RMSE increases for predic-
tions made from increasingly higher altitude levels, while
the correlation of the predictions with the observations de-
creases. For the ANN models, the RMSE increases less, but
the standard deviation of the predictions decreases.

Future work could include a sensitivity analysis of the
contributions of the input variables, as this would allow to
remove redundant predictors and further simplify the mod-
els. Similarly, an evaluation of the influence of the geometry
and spacing of the cones on the final result (within the afore-
mentioned constraints related to processing time, the resolu-
tion of the radar measurements and visibility at lower height
levels) would allow to further improve the results of this
method. Finally, the here-presented cone extraction and eval-
uation of the method have been performed entirely on data
from the Albis radar. As such, it assumes that the physical
processes and the relationship between these processes are
the same in other locations (such as above mountainous val-
leys). It would be valuable to perform and compare the verti-
cal cone correction method on one of the high-altitude radars
in Switzerland. However, this would require installing a ver-
tically pointing radar at the bottom of the valley to acquire the
reference observations below the lowest operational C-band
radar measurements (currently at around 3000 m a.s.l.).

The presented machine learning predictions are determin-
istic and are consequently affected by conditional biases,
which include a loss of variance of the predictions (with re-
spect to the observations) due to the error minimisation prin-
ciple (e.g. Foresti et al., 2019). Future research could con-
sider the combination of probabilistic machine learning mod-
els and stochastic simulation to generate radar rainfall en-
sembles (Jordan et al., 2003; Bowler et al., 2007; Kirstetter
et al., 2015; Foresti et al., 2019).
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Figure 13. Taylor diagrams of models trained from increasing altitudes. Each diagram shows the relative performance of the models making
predictions from increasing altitude levels and in terms of the centred RMSE (green contours), correlation coefficient (azimuth angle) and
standard deviation (radial distance).

The requirements for the operational implementation of a
new vertical profile correction technique are stringent, and
so the potential of the proposed method should also be eval-
uated in the light of these requirements. Firstly, an opera-
tional correction method should be able to function at all
times. The method proposed in this study could fail if for
some reason one of the polarimetric variables is unavailable
or compromised. In such cases, the dBZ-only model could
substitute the HC+ dBZ model. However, swapping mod-
els may also lead to discontinuities from one radar image
to the next, and some temporal aggregation may be neces-
sary to resolve such issues. In terms of processing costs, once
the cones are extracted and the model is trained, the applica-
tion of the ANN models to existing data should be relatively
fast. The ANNs could be re-trained and tested regularly after
hardware changes to the radar system and with newly avail-
able high-quality data. It may also be considered to train the
model and apply the correction to larger scales in some re-
gions such as the Swiss plateau and to smaller scales in other
regions such as the Alps. Within each area, the appropriate
ANN model (1500 and 2000 m a.s.l.) can be applied to the

lowest or best available radar elevation (and the data from
aloft) in order to estimate the GD towards the ground level.
Because the method is based on hydrometeor classification
data rather than polarimetric variables, the output of the clas-
sification scheme is more consistent between different radars,
and the ANN model can be applied in regions where more
than one radar cover the same area. Finally, the GD term
is added to the lowest available reflectivity measurement to
estimate reflectivity values and ultimately precipitation rates
at the ground. Operational implementation of this technique
still requires further study and improvements. Nevertheless,
the approach proposed in this study takes advantage of the
capability of ML techniques to learn complex non-linear re-
lationships between polarimetric radar variables (represented
by the HC proportions) along the vertical column. It demon-
strates their potential to improve the extrapolation of high-
altitude radar observations to lower levels, which is a rele-
vant step for the improvement of polarimetric radar QPE in
complex terrain.

Atmos. Meas. Tech., 13, 2481–2500, 2020 https://doi.org/10.5194/amt-13-2481-2020



F. van den Heuvel et al.: Learning about the vertical structure of radar reflectivity 2499

Data availability. The Py-ART Radar Toolkit by ARM-DOE
which was used within the context of this paper is available at
http://arm-doe.github.io/pyart/ (last access: 14 May 2020) (Helmus
and Collis, 2016). For access to the data sets, please contact the
authors affiliated with MeteoSwiss.

Author contributions. All authors contributed to the development
of the concept and methodology presented in the paper as well as the
interpretation of the results. FvdH and LF performed the analyses.
FvdH, with contributions from all authors, prepared the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors would like to thank their col-
leagues at LTE (EPFL) and MeteoSwiss for their useful suggestions
and support. In particular, we are indebted to Bertrand Calpini for
his support to our collaboration and we would like to emphasise the
help of Daniel Wolfensberger and Jordi Figueras i Ventura with the
extraction and processing of the data. We would also like to thank
the Swiss National Supercomputing Centre (CSCS) which facili-
tated the data extraction, as well as Hidde Leijnse and the anony-
mous referee for their help and valuable suggestions.

Review statement. This paper was edited by Gianfranco Vulpiani
and reviewed by Hidde Leijnse and one anonymous referee.

References

Bell, C.: Detection of the Riming Process with a Vertically Pointing
Radar, PhD thesis, McGill University, Montreal, Quebec, 2000.

Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Ger-
mann, U., and Berne, A.: Hydrometeor classification through
statistical clustering of polarimetric radar measurements: a
semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445,
https://doi.org/10.5194/amt-9-4425-2016, 2016.

Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazi-
oli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling
hydrometeor mixtures in polarimetric radar measurements, At-
mos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-
11-4847-2018, 2018.

Boodoo, S., Hudak, D., Donaldson, N., and Leduc, M.:
Application of dual-polarization radar melting-layer detec-
tion algorithm, J. Appl. Meteorol. Clim, 49, 1779–1793,
https://doi.org/10.1175/2010JAMC2421.1, 2010.

Bowler, N. E., Arribas, A., Mylne, K., Robertson, K., and Neare, S.:
The MOGREPS short-range EPS, Q. J. Roy. Meteor. Soc., 133,
937–948, https://doi.org/0.1002/qj.234, 2007.

Campbell, L. S. and Steenburgh, W. J.: Finescale Orographic Pre-
cipitation Variability and Gap-Filling Radar Potential in Lit-
tle Cottonwood Canyon, Utah, Weather Forecast., 29, 912–935,
https://doi.org/10.1175/WAF-D-13-00129.1, 2014.

Colle, B. A., Wolfe, J. B., Steenburgh, W. J., Kingsmill, D. E., Cox,
J. A. W., and Shafer, J. C.: High-Resolution Simulations and Mi-
crophysical Validation of an Orographic Precipitation Event over
the Wasatch Mountains during IPEX IOP3, Mon. Weather. Rev.,
133, 2947–2971, https://doi.org/10.1175/MWR3017.1, 2005.

Colle, B. A., Smith, R. B., and Wesley, D. A.: Theory, Observa-
tions, and Predictions of Orographic Precipitation, in: Moun-
tain Weather Research and Forecasting: Recent Progress and
Current Challenges, edited by: Chow, F. K., De Wekker, S. F.,
and Snyder, B. J., Springer Netherlands, Dordrecht, 291–344,
https://doi.org/10.1007/978-94-007-4098-3_6, 2013.

Cybenko, G.: Approximation by Superpositions of a Sigmoidal
Function, Math. Control Signal., 2, 303–314, 1989.

Fabry, F. and Zawadzki, I.: Long-term radar observations of the
melting layer of precipitation and their interpretation, J. Atmos.
Sci, 52, 838–851, 1995.

Figueras i Ventura, J., Leuenberger, A., Kuensch, Z., Grazioli, J.,
and Germann, U.: Pyrad: A Real-Time Weather Radar Data Pro-
cessing Framework Based on Py-ART, in: 38th AMS Conference
on Radar Meteorology, Chicago, IL, USA, 28 August–1 Septem-
ber 2017, 2017.

Foresti, L., Sideris, I. V., Nerini, D., Beusch, L., and Ger-
mann, U.: Using a 10-year radar archive for nowcast-
ing precipitation growth and decay – a probabilistic ma-
chine learning approach, Weather Forecast., 34, 1547–1569,
https://doi.org/10.1175/WAF-D-18-0206.1, 2019.

Frei, C. and Schär, C.: A precipitation climatology of the
Alps from high-resolution rain-gauge observations, Int. J.
Climatol., 18, 873–900, https://doi.org/10.1002/(SICI)1097-
0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9, 1998.

Gabella, M., Boscacci, M., Sartori, M., and Germann, U.: Cal-
ibration accuracy of the dual-polarization receivers of the
C-band swiss weather radar network, Atmosphere, 7, 76,
https://doi.org/10.3390/atmos7060076, 2016.

Germann, U.: Spatial Continuity of Precipitation, Profiles of Radar
Reflectivity and Precipitation Measurements in the Alps, PhD
thesis, Swiss Federal Institute of Technology (ETH), Zurich,
2000.

Germann, U. and Joss, J.: Mesobeta profiles to extrapolate radar
precipitation measurements above the Alps to the ground level,
J. Appl. Meteorol., 41, 542–557, 2002.

Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar pre-
cipitation measurement in a mountainous region, Q. J. Roy. Me-
teor. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190,
2006.

Germann, U., Boscacci, M., Gabella, M., and Sartori, M.: Peak Per-
formance; radar design for prediction in the Swiss Alps, Meteo-
rological Technology International, 4, 42–45, 2015.

Gourley, J. J., Tabary, P., and Parent du Chatelet, J.: Data quality of
the Meteo-France C-band polarimetric radar, J. Atmos. Ocean.
Tech., 23, 1340–1356, https://doi.org/10.1175/JTECH1912.1,
2006.

Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving pre-
cipitation estimates from weather radar using quality control and
correction techniques, Meteorol. Appl., 6, 135–144, 2000.

Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit
(Py-ART), a Library for Working with Weather Radar Data in
the Python Programming Language, Journal of Open Research
Software, 4, e25, https://doi.org/10.5334/jors.119, 2016.

https://doi.org/10.5194/amt-13-2481-2020 Atmos. Meas. Tech., 13, 2481–2500, 2020

http://arm-doe.github.io/pyart/
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.5194/amt-11-4847-2018
https://doi.org/10.5194/amt-11-4847-2018
https://doi.org/10.1175/2010JAMC2421.1
https://doi.org/0.1002/qj.234
https://doi.org/10.1175/WAF-D-13-00129.1
https://doi.org/10.1175/MWR3017.1
https://doi.org/10.1007/978-94-007-4098-3_6
https://doi.org/10.1175/WAF-D-18-0206.1
https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9
https://doi.org/10.3390/atmos7060076
https://doi.org/10.1256/qj.05.190
https://doi.org/10.1175/JTECH1912.1
https://doi.org/10.5334/jors.119


2500 F. van den Heuvel et al.: Learning about the vertical structure of radar reflectivity

Hill, F. F.: The use of annual average rainfall to derive estimates
of orographic enhancement over England and Wales for different
wind directions, J. Climate, 3, 113–129, 1983.

Hornik, K., Stinchcombe, M., and White, H.: Multilayer Feedfor-
ward Network are Universal Approximators, Neural Networks,
2, 359–366, 1989.

Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled
seamless SRTM data V4, Tech. rep., International Centre for
Tropical Agriculture (CIAT), available at: http://srtm.csi.cgiar.
org (last access: 12 March 2018), 2008.

Jordan, P., Seed, A., and Austin, G.: Sampling errors in radar
estimates of rainfall, J. Geophys. Res., 105, 2247–2257,
https://doi.org/10.1029/1999jd900130, 2000.

Jordan, P. W., Seed, A. W., and Weinmann, P. E.: A
Stochastic Model of Radar Measurement Errors in
Rainfall Accumulations at Catchment Scale, J. Hy-
drometeorol, 4, 841–855, https://doi.org/10.1175/1525-
7541(2003)004<0841:ASMORM>2.0.CO;2, 2003.

Joss, J. and Lee, R.: The Application of Radar-Gauge Com-
parisons to Operational Precipitation Profile Corrections, J.
Appl. Meteorol., 34, 2612–2630, https://doi.org/10.1175/1520-
0450(1995)034<2612:TAORCT>2.0.CO;2, 1995.

Joss, J. and Pittini, A.: Real-time estimation of the vertical pro-
file of radar reflectivity to improve the measurement of precip-
itation in an Alpine region, Meteorol. Atmos. Phys., 47, 61–72,
https://doi.org/10.1007/BF01025828, 1991.

Kanevski, M., Pozdnoukhov, A., and Timonin, V.: Machine Learn-
ing for Spatial Environmental Data, EPFL Press, Lausanne,
https://doi.org/10.1201/9781439808085, 2009.

Kirstetter, P. E., Andrieu, H., Boudevillain, B., and Delrieu, G.: A
Physically based identification of vertical profiles of reflectivity
from volume scan radar data, J. Appl. Meteorol. Clim., 52, 1645–
1663, https://doi.org/10.1175/JAMC-D-12-0228.1, 2013.

Kirstetter, P.-E., Gourley, J. J., Hong, Y., Zhang, J., Moazami-
goodarzi, S., and Langston, C.: Probabilistic precipitation rate
estimates with ground-basedradar networks, Water Resour. Res.,
51, 1422–1442, https://doi.org/10.1002/2014WR015672, 2015.

Kitchen, M., Brown, R., and Davies, A. G.: Real-time correction of
weather radar data for the effects of bright band, range and oro-
graphic growth in widespread precipitation, Q. J. Roy. Meteor.
Soc, 120, 1231–1254, 1994.

Koistinen, J.: Operational correction of radar rainfall errors due to
the radar reflectivity profile, in: Proceedings of the 25th Inter-
national Conference on Radar Meteorology, American Meteoro-
logical Society, Paris, France, 91–94, 24–28 June 1991.

Le Bastard, T., Caumont, O., Gaussiat, N., and Karbou, F.: Com-
bined use of volume radar observations and high-resolution
numerical weather predictions to estimate precipitation at the
ground: methodology and proof of concept, Atmos. Meas.
Tech., 12, 5669–5684, https://doi.org/10.5194/amt-12-5669-
2019, 2019.

Matsuo, T. and Sasyo, Y.: Melting of Snowflakes below Freez-
ing Level in the Atmosphere, J. Meteorol. Soc. Jpn., 59, 10–25,
https://doi.org/10.2151/jmsj1965.59.1_10, 1981.

Nitu, R., Roulet, Y.-A., Wolff, M., Earle, M., Reverdin, A., Smith,
C., Kochendorfer, J., Morin, S., Rasmussen, R., Wong, K., Alas-
trué, J., Arnold, L., Baker, B., Buisán, S., Collado, J., Colli,
M., Collins, B., Gaydos, A., Hannula, H.-R., Hoover, J., Joe, P.,
Kontu, A., Laine, T., Lanza, L., Lanzinger, E., Lee, G., Lejeune,

Y., Leppänen, L., Mekis, E., Panel, J.-M., Poikonen, A., Ryu,
S., Sabatini, F., Theriault, J., Yang, D., Genthon, C., van den
Heuvel, F., Hirasawa, N., Konishi, H., Motoyoshi, H., Nakai, S.,
Nishimura, K., Senese, A., and Yamashita, K.: WMO Solid Pre-
cipitation Intercomparison Experiment (SPICE) (2012–2015),
World Meteorological Organization, Geneva, Tech. rep., IOM
Report No. 131, available at: https://library.wmo.int/opac/ (last
access: 6 May 2020), 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Roe, G. H.: Orographic Precipitation,
Annu. Rev. Earth. Pl. Sc, 33, 645–671,
https://doi.org/10.1146/annurev.earth.33.092203.122541, 2005.

Sandford, C., Illingworth, A., and Thompson, R.: The poten-
tial use of the linear depolarization ratio to distinguish be-
tween convective and stratiform rainfall to improve radar
rain-rate estimates, J. Appl. Meteorol. Clim., 56, 2927–2940,
https://doi.org/10.1175/JAMC-D-17-0014.1, 2017.

Stoelinga, M. T., Stewart, R. E., Thompson, G., and Thériault,
J. M.: Microphysical Processes Within Winter Orographic Cloud
and Precipitation Systems, in: Mountain Weather Research and
Forecasting: Recent Progress and Current Challenges, edited by:
Chow, F. K., De Wekker, S. F., and Snyder, B. J., Springer
Netherlands, Dordrecht, 345–408, https://doi.org/10.1007/978-
94-007-4098-3_7, 2013.

Testud, J., Bouar, E. L., Obligis, E., and Ali-Mehenni, M.: The rain
profiling algorithm applied to polarimetric weather radar, J. At-
mos. Ocean. Tech., 17, 332–356, https://doi.org/10.1175/1520-
0426(2000)017<0332:TRPAAT>2.0.CO;2, 2000.

Villarini, G. and Krajewski, W. F.: Review of the differ-
ent sources of uncertainty in single polarization radar-
based estimates of rainfall, Surv. Geophys., 31, 107–129,
https://doi.org/10.1007/s10712-009-9079-x, 2010.

Vulpiani, G., Montopoli, M., Della Passeri, L., Gioia, A.,
Giordano, P., and Marzano, F. S.: On the Use of Dual-
Polarized C-Band Radar for Operational Rainfall Retrieval in
Mountainous Areas, J. Appl. Meteorol. Clim., 51, 405–425,
https://doi.org/10.1175/JAMC-D-10-05024.1, 2012.

Weusthoff, T.: Weather Type Classification at MeteoSwiss – Intro-
duction of new automatic classification schemes, Arbeitsberichte
der MeteoSchweiz, 2011.

Yuter, S. E. and Houze, R. A.: Microphysical modes of precipita-
tion growth determined by S-band vertically pointing radar in
orographic precipitation during MAP, Q. J. Roy. Meteorol. Soc.,
129, 455–476, https://doi.org/10.1256/qj.01.216, 2003.

Zhang, J. and Qi, Y.: A Real-Time Algorithm for the Correction
of Brightband Effects in Radar-Derived QPE, J. Hydrometeorol.,
11, 1157–1171, https://doi.org/10.1175/2010JHM1201.1, 2010.

Atmos. Meas. Tech., 13, 2481–2500, 2020 https://doi.org/10.5194/amt-13-2481-2020

http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
https://doi.org/10.1029/1999jd900130
https://doi.org/10.1175/1525-7541(2003)004<0841:ASMORM>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004<0841:ASMORM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2
https://doi.org/10.1007/BF01025828
https://doi.org/10.1201/9781439808085
https://doi.org/10.1175/JAMC-D-12-0228.1
https://doi.org/10.1002/2014WR015672
https://doi.org/10.5194/amt-12-5669-2019
https://doi.org/10.5194/amt-12-5669-2019
https://doi.org/10.2151/jmsj1965.59.1_10
https://library.wmo.int/opac/
https://doi.org/10.1146/annurev.earth.33.092203.122541
https://doi.org/10.1175/JAMC-D-17-0014.1
https://doi.org/10.1007/978-94-007-4098-3_7
https://doi.org/10.1007/978-94-007-4098-3_7
https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2
https://doi.org/10.1007/s10712-009-9079-x
https://doi.org/10.1175/JAMC-D-10-05024.1
https://doi.org/10.1256/qj.01.216
https://doi.org/10.1175/2010JHM1201.1

	Abstract
	Introduction
	The vertical cone database
	Radar data pre-processing
	Vertical cone definition
	Extraction of variables
	Selection of precipitation events and cone locations

	Neural network and experimental setup
	Exploratory data analysis and results
	Vertical profiles of hydrometeor proportions
	ANN predictions of growth and decay
	2-D matrices of growth and decay
	Comparison ANN predictions with traditional methods


	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

