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Abstract. Atmospheric climate monitoring requires obser-
vations of high quality that conform to the criteria of the
Global Climate Observing System (GCOS). Radio occulta-
tion (RO) data based on Global Positioning System (GPS)
signals are available since 2001 from several satellite mis-
sions with global coverage, high accuracy, and high vertical
resolution in the troposphere and lower stratosphere. We as-
sess the consistency and long-term stability of multi-satellite
RO observations for use as climate data records. As a mea-
sure of long-term stability, we quantify the structural uncer-
tainty of RO data products arising from different process-
ing schemes. We analyze atmospheric variables from bend-
ing angle to temperature for four RO missions, CHAMP,
Formosat-3/COSMIC, GRACE, and Metop, provided by five
data centers. The comparisons are based on profile-to-profile
differences aggregated to monthly medians. Structural uncer-
tainty in trends is found to be lowest from 8 to 25 km of al-
titude globally for all inspected RO variables and missions.
For temperature, it is < 0.05 K per decade in the global mean
and < 0.1 K per decade at all latitudes. Above 25 km, the un-
certainty increases for CHAMP, while data from the other
missions – based on advanced receivers – are usable to higher
altitudes for climate trend studies: dry temperature to 35 km,

refractivity to 40 km, and bending angle to 50 km. Larger dif-
ferences in RO data at high altitudes and latitudes are mainly
due to different implementation choices in the retrievals. The
intercomparison helped to further enhance the maturity of the
RO record and confirms the climate quality of multi-satellite
RO observations towards establishing a GCOS climate data
record.

1 Introduction

Consistent and long-term stable observations are critically
important for monitoring the Earth’s changing climate. In
the free atmosphere above the boundary layer, uncertainties
across data sets can be substantial, and observations of ther-
modynamic variables are sparse, especially when consider-
ing measurements capable of detecting changes in the cli-
mate state. This was identified as a key issue in the Fifth As-
sessment Report of the Intergovernmental Panel on Climate
Change (IPCC), stating the need for data with better accuracy
for monitoring and detecting atmospheric climate change,
particularly in the upper troposphere and in the stratosphere
(Hartmann et al., 2013).
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In order to ensure global homogenous and accurate mea-
surements, the Global Climate Observing System (GCOS)
program defined basic monitoring principles for climate data
generation (GCOS, 2010a, b), and requirements for climate
data records (CDRs) of essential climate variables (ECVs),
such as air temperature (GCOS, 2016). A CDR is based on
a series of instruments with sufficient calibration and qual-
ity control for the generation of homogeneous products. This
means that separate data sets from different platforms must
be directly comparable to give reliable long-term records,
as well as accurate and stable enough for climate monitor-
ing (GCOS, 2010a), which requires that the observations are
traceable to standards of the international system of units (SI)
(Ohring, 2007).

For climate observations, the accuracy requirement is
much more stringent than for weather observations (Tren-
berth et al., 2013). However, the key attribute is long-term
stability, defined as the extent to which the uncertainty of
measurement remains constant with time (GCOS, 2016). The
uncertainty of the measurement must be smaller than the sig-
nal expected for decadal change (Ohring et al., 2005; Bojin-
ski et al., 2014). Accordingly, ECV product requirements for
air temperature include global coverage, a vertical resolution
of 1–2 km in the troposphere and the stratosphere, a horizon-
tal resolution of 100 km, a measurement uncertainty of 0.5 K,
and a stability of 0.05 K per decade (GCOS, 2016). For a def-
inition of the metrological quantities we refer to Annex B of
GCOS (2016) and to JCGM (2012).

Global Navigation Satellite System (GNSS) radio occul-
tation (RO) has been identified as a key component for the
GCOS due to its potential as a climate benchmark record
(GCOS, 2011). Efforts of the RO community have been on-
going since the pioneering GPS/MET proof-of-concept mis-
sion in 1995 (Ware et al., 1996; Kursinski et al., 1997;
Rocken et al., 1997; Steiner et al., 1999, 2001) to establish
GNSS RO as an observing system for Earth’s atmosphere and
climate. Since 2001, continuous observations are available
from several RO satellite missions with beneficial properties
for climate use. Most missions have used only GPS signals
so far, including the ones analyzed in this study; multi-GNSS
use started with the Chinese FY-3C RO mission that also ex-
ploits BeiDou system (BDS) signals (Bai et al., 2018; Sun et
al., 2018).

RO is a limb-sounding technique based on GNSS radio
signals, which are refracted and retarded by the atmospheric
refractivity field during their propagation to a receiver on a
low-Earth orbit (LEO) satellite. An occultation event occurs
when a GNSS satellite sets behind (or rises from behind) the
horizon. Its signals are then occulted by the Earth’s limb from
the viewpoint of the receiver. The atmosphere is scanned ver-
tically through the relative movements of the satellites, pro-
viding a good vertical resolution. RO accurately measures
the Doppler shifts of the refracted signals by relying on pre-
cise atomic clocks, which enables traceability to the SI unit
of the second (Leroy et al., 2006), long-term stability, and

small uncertainties. Therefore, a seamless observation record
can be formed using data from different missions without
the need for intercalibration or temporal overlap (Foelsche
et al., 2011; Angerer et al., 2017). Observations are available
in nearly all weather conditions as signals in the L-band mi-
crowave range are not affected by clouds.

GNSS RO provides high-vertical-resolution profiles of at-
mospheric bending angle and refractive index that relate di-
rectly to temperature under dry atmospheric conditions, in
which water vapor influence is negligible. For moist atmo-
spheric conditions, in the troposphere, a priori information
is needed in the retrieval. The vertical resolution is typically
about 100 m in the lower troposphere to about 1 km in the
stratosphere (Kursinski et al., 1997; Gorbunov et al., 2004).
Zeng et al. (2019) established the vertical resolution as 100–
200 m near the tropopause, about 500 m in the lower strato-
sphere at low to midlatitudes, and about 1.4 km at 22–27 km
at high latitudes.

Data products comprise profiles and gridded fields of
bending angle, refractivity, pressure, geopotential height,
temperature, and specific humidity for use in atmosphere
and climate studies (see the reviews of Anthes et al., 2011;
Steiner et al., 2011; Ho et al., 2019a). Various derived
quantities include planetary boundary layer height (e.g.,
Sokolovskiy et al., 2006; Xie et al., 2006; Guo et al., 2011;
Ao et al., 2012; Ho et al., 2015), tropopause parameters (e.g.,
Randel et al., 2003; Schmidt et al., 2005, 2008; Rieckh et
al., 2014), and geostrophic wind (e.g., Verkhoglyadova et
al., 2014; Scherllin-Pirscher et al., 2014). RO provides at-
mospheric profiles with essentially independent information
on altitude and pressure. This unique property ensures equiv-
alent data quality on different vertical coordinates, i.e., mean
sea level (m.s.l.) altitude, geopotential height, pressure lev-
els, or potential temperature coordinates (Scherllin-Pirscher
et al., 2017).

RO observations improve weather prediction (Healy et al.,
2005; Aparicio and Deblonde, 2008; Cardinali, 2009; Cucu-
rull, 2010; Cardinali and Healy, 2014) and hurricane fore-
casts (e.g., Huang et al., 2005; Kuo et al., 2008; Liu et al.,
2012; Chen et al., 2015; Ho et al., 2019b). The RO data an-
chor atmospheric (re)analyses (Poli et al., 2010; Bauer et
al., 2014; Simmons et al., 2017) and are useful for validat-
ing other types of observations (e.g., Steiner et al., 2007; He
et al., 2009; Ladstädter et al., 2011, 2015; Ho et al., 2009a,
2010, 2017, 2018) and climate models (Ao et al., 2015; Pin-
cus et al., 2017; Steiner et al., 2018). The importance of the
RO record for climate monitoring grows with its increasing
length (e.g., Steiner et al., 2009; Schmidt et al., 2010; Lack-
ner et al., 2011; Steiner et al., 2011; Gleisner et al., 2015;
Khaykin et al., 2017; Leroy et al., 2018).

An important prerequisite for CDRs is information on the
uncertainties of the provided variables. For individual RO
temperature profiles, the observational uncertainty estimate
is 0.7 K in the tropopause region, slightly decreasing into the
troposphere and gradually increasing into the stratosphere
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(Scherllin-Pirscher et al., 2011a, 2017). For monthly zonal-
averaged temperature fields, the total uncertainty estimate is
smaller than 0.15 K in the upper troposphere–lower strato-
sphere (UTLS) and up to 0.6 K at higher latitudes in win-
tertime (Scherllin-Pirscher et al., 2011b). Overall, the uncer-
tainties of RO climatological fields are small compared to
any other UTLS observing system for thermodynamic atmo-
spheric variables. An overview of the main properties of RO
is given in Steiner et al. (2011).

The systematic assessment of the accuracy and quality of
RO records is the focus of joint studies by the RO Trends
intercomparison working group, an international collabora-
tion of RO processing centers since 2006 (http://irowg.org/
projects/rotrends/, last access: 14 May 2020). The aim is to
validate RO as a climate benchmark by comparing trends in
RO products determined by different retrieval centers. This
is assessed by quantifying the structural uncertainty in RO
products arising from different processing schemes.

Structural uncertainty in an observational record arises due
to different choices in processing and methodological ap-
proaches for constructing a data set from the same raw data
(Thorne, 2005). The challenge is thus to quantify the true
spread of physically possible solutions from a limited num-
ber of data sets. At least three independently processed data
sets are regarded as necessary for an estimate of the structural
uncertainty, but the more data sets the better. Thus, multiple
independent efforts should be undertaken to create climate
records.

In the first intercomparison studies, we have so far quanti-
fied the structural uncertainty of RO data from the CHAMP
mission (CHAllenging Minisatellite Payload for geoscien-
tific research) provided by different RO data centers. Profile-
to-profile intercomparisons (Ho et al., 2009b, 2012) were
based on exactly the same set of profiles from each data
center. Complementarily, we compared RO gridded climate
records based on the full set of profiles provided by each cen-
ter and accounted for the different sampling (Steiner et al.,
2013). The results for gridded CHAMP records were consis-
tent with those for individual profiles. The structural uncer-
tainty in the CHAMP RO record was found to be lowest in
the tropics and midlatitudes at 8–25 km and to increase above
and at high latitudes due to different choices in the retrievals.

Here we present an advanced assessment of the consis-
tency of multiyear RO records for multiple satellite missions
and for the full set of dry and moist atmospheric variables.
We systematically intercompare RO data products provided
by five international RO centers that are processing several
or all available RO missions and that provide RO data for
long-term records (from CHAMP to current RO missions).
We quantify the structural uncertainty for nine RO climate
variables from bending angle to temperature and specific hu-
midity. The comparisons are based on profile-to-profile dif-
ferences aggregated to monthly medians. We discuss the re-
sults with respect to GCOS stability requirements for climate
variables. The quantification of structural uncertainty as one

property of a climate benchmark data type is regarded as an
essential advance towards a multiyear RO climate record.

In this respect, our study contributes to enhancing the ma-
turity of RO data (Bates and Privette, 2012; Merchant et al.,
2017), which is a goal of the RO-CLIM project (http://www.
scope-cm.org/projects/scm-08/, last access: 14 May 2020)
within the initiative on Sustained and COordinated Pro-
cessing of Environmental satellite data for Climate Mon-
itoring (SCOPE-CM). SCOPE-CM supports the coordina-
tion of international activities to generate CDRs. It is also
a recommendation of the WMO/CGMS International RO
Working Group (IROWG; http://www.irowg.org, last access:
14 May 2020) to establish RO-based CDRs at the qual-
ity standards of the GCOS climate monitoring principles
(IROWG, 2018).

In the following, we give a concise description of the RO
data sets and the data processing in Sect. 2. In Sect. 3 we
describe the study setup and analysis method. We present and
discuss results on the consistency and structural uncertainty
of multi-satellite RO products in Sect. 3. Section 4 closes
with a summary and conclusions.

2 Radio occultation data and processing description

2.1 RO missions and data

The first continuous RO measurements were provided by the
German mission CHAMP from May 2001 to October 2008,
tracking about 250 RO events per day with a BlackJack
GPS receiver (Wickert et al., 2004, 2009). The US–German
GRACE (Gravity Recovery and Climate Experiment) twin
satellites (GRACE-A and GRACE-B) were launched in 2002
(Wickert et al., 2005; Beyerle et al., 2005). RO measurements
have been provided since 2006, when the BlackJack receivers
onboard GRACE were switched on. As the first constella-
tion mission, the Taiwan–US Formosat-3/COSMIC (Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate/Formosa Satellite Mission 3; denoted F3C here-
after) mission consists of six satellites for RO observations
(Anthes et al., 2008). Launched in 2006, the Integrated GPS
Occultation Receiver (IGOR) tracked both setting and rising
occultations, resulting in about 500 RO events per day. The
Metop series (Luntama et al., 2008) is operated by the Eu-
ropean Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT). Metop-A has delivered data since
the end of 2007 and Metop-B since spring 2013; Metop-
C only started data delivery in early 2019. All three Metop
satellites carry a GNSS receiver for Atmospheric Sounding
(GRAS) with four dual-frequency channels for the simulta-
neous tracking of two rising and two setting events, yielding
about 700 observed RO events per day.

Data from these four satellite missions have been deliv-
ered for the assessment of the consistency of multi-satellite
RO records. The following processing centers provided re-
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processed RO data products from bending angle to temper-
ature for this study: Danish Meteorological Institute (DMI),
Copenhagen, Denmark; German Research Centre for Geo-
sciences (GFZ), Potsdam, Germany; Jet Propulsion Labo-
ratory (JPL), Pasadena, CA, USA; University Corporation
for Atmospheric Research (UCAR), Boulder, CO USA; and
Wegener Center/University of Graz (WEGC), Graz, Aus-
tria. Each center has implemented an independently devel-
oped processing system for the retrieval of RO data products.
While the basic steps in the retrieval (Kursinski et al., 1997)
are essentially the same, different implementation options are
chosen by the centers for specific processing steps.

2.2 General RO data processing description

Here, we briefly describe the basic retrieval steps from
the phase measurements to atmospheric variables for dry
and moist atmospheric conditions. Table 1 gives a concise
overview of the retrieval steps and the implementation at
each center.

The fundamental measurement is the GNSS signal phase
change as a function of time, which varies according to the
optical path length between the transmitter satellite and the
LEO receiver satellite. Highly accurate atomic clocks are
the heart of the system, ensuring long-term frequency stabil-
ity. Two coherent carrier signals are transmitted, in the case
of the US Global Positioning System (GPS) at wavelengths
of 0.19 m (L1 signal) and 0.24 m (L2 signal) (Hofmann-
Wellenhof et al., 2008; Teunissen and Montenbruck, 2017),
which enables removing contributions due to Earth’s iono-
sphere in a later retrieval step.

In the retrieval, the Doppler shift, i.e., the time derivative
of the phase, is propagated further (e.g., Melbourne et al.,
1994; Kursinski et al., 1997). The kinematic contribution to
the Doppler shift due to the relative motion of the GNSS
and LEO satellites is determined from precise position and
velocity information, i.e., precise orbit determination (POD)
(Bertiger et al., 1994; König et al., 2006). Removing it yields
the Doppler shift due to the Earth’s refractivity field. Errors
in the receiver clock are removed by single differencing with
a second reference satellite link or with double differencing
by using additional ground clock information (Wickert et al.,
2002). No differencing is needed, i.e., zero differencing, if
there are ultra-stable clocks aboard the LEO satellites and
clock errors are very small, such as for GRACE or Metop
(e.g., Wickert et al., 2002; Schreiner et al., 2010, 2011; Bai
et al., 2018). Geodetic processing systems are used to esti-
mate errors in the GNSS transmitter clocks.

For microwave refraction, geometric optics retrieval is
applied to convert Doppler shift to bending angle profiles,
assuming local spherical symmetry of the atmosphere. In
the lower troposphere, multipath and diffraction effects be-
come important due to atmospheric humidity. Here, wave
optics methods are applied for the retrieval of bending an-
gle using phase and amplitude information (e.g., Gorbunov,

2002; Jensen et al., 2003, 2004; Gorbunov et al., 2004;
Sokolovskiy et al., 2007). The ionospheric contribution to the
signal is largely removed by differencing the dual-frequency
GNSS signals, typically at bending angle level (Vorob’ev and
Krasil’nikova, 1994). Current research aims at further min-
imization of the residual ionospheric error (Danzer et al.,
2015). The ionosphere-corrected bending angle represents
the cumulative signal refraction due to atmospheric density
gradients.

The next retrieval step is the computation of refractivity
from bending angle by an Abel transform (Fjeldbo et al.,
1971). This involves an integral with an upper bound of in-
finity. Also, the signal-to-noise ratio of the bending angle de-
creases with increasing altitude (above about 50 km depend-
ing on the thermal noise of the receiver). Therefore, an ini-
tialization of bending angle profiles with background infor-
mation is performed at high altitudes. The optimized bending
angle profiles are then converted to refractivity profiles.

Refractivity at microwave wavelengths in the neutral at-
mosphere mainly depends on the thermodynamic conditions
of the dry and the moist atmosphere and is given by the
Smith–Weintraub formula (Smith and Weintraub, 1953) or
updated formulations (Aparicio and Laroche, 2011; Healy,
2011; Cucurull et al., 2013). Dry density profiles are cal-
culated from atmospheric refractivity by neglecting the wet
term in the formula. Dry pressure profiles are retrieved using
the hydrostatic equation and dry temperature profiles using
the equation of state for dry air conditions in the upper tro-
posphere and lower stratosphere. In the lower to middle tro-
posphere, the retrieval of (physical) atmospheric temperature
or humidity requires additional background information in
order to resolve the wet–dry ambiguity information inherent
in refractivity (e.g., Kursinski et al., 1996; Healy and Eyre,
2000; Kursinski and Gebhard, 2014). Different methods are
applied for moist air retrievals, including a priori knowledge
of the state of the atmosphere. Finally, quality control (QC)
is implemented at several processing steps.

Atmospheric profiles are provided as a function of mean
sea level (m.s.l.) altitude due to accurate knowledge of trans-
mitter and receiver positions (and the assumption of local
spherical symmetry), referred to a reference coordinate sys-
tem and the Earth’s geoid (see Table 1). The vertical inte-
gration of density also provides pressure as a function of
altitude. Geopotential height can be computed without the
need for information on surface pressure or any other infor-
mation except gravity potential. Further details on vertical
coordinates and the geolocation of RO are given in Scherllin-
Pirscher et al. (2017).

2.3 Center-specific RO processing steps and
comparison

Table 1 provides an overview of current state-of-the-art re-
trieval versions and the processing steps implemented at each
center as well as information on data description and avail-
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Table 1. Overview of processing steps for RO dry and moist air retrieval at DMI, GFZ, JPL, UCAR, and WEGC.

Processing step Center Implementations of each center

URL DMI http://www.romsaf.org (last access: 14 May 2020)
GFZ http://www.gfz-potsdam.de/en/section/space-geodetic-techniques/topics/gnss-radio-occultation/

(last access: 14 May 2020)
JPL https://genesis.jpl.nasa.gov/genesis/ (last access: 14 May 2020)
UCAR http://cdaac-www.cosmic.ucar.edu (last access: 14 May 2020)
WEGC http://www.wegcenter.at (last access: 14 May 2020)

Processing version; DMI GPAC-2.3.0/ROPP software; orbit as well as excess phase and amplitude data from UCAR
POD orbit GFZ Version POCS ATM version 006; GPS and LEO POD: EPOS-OC, RSO orbit products
data version (König et al., 2006); excess phase: CHAMP, single differencing,
and phase reference link smoothing; GRACE: zero differencing

JPL Version 2.7 processing (single differencing, cubic phase smoothing); POD: GPS orbits from
JPL FLINN products; LEOs with reduced dynamic strategy
using GIPSY software (Bertiger et al., 1994)

UCAR CDAAC version 4.6; GPS final-orbit products from CODE (for CHAMP, METOP) and
IGS (for COSMIC), LEO reduced-dynamic orbits using Bernese v5.2

WEGC OPSv5.6; UCAR/CDAAC orbit, phase, and amplitude data (Angerer et al., 2017; Table 1)

Calculation of DMI Canonical transform (CT2) inversion < 20 km (Gorbunov and Lauritsen, 2004), transition to
bending angle geometric optics (GO) inversion at 20–25 km, GO > 25 km
(BA) GFZ Full spectrum inversion (FSI) < 15 km (Jensen et al., 2003), smooth transition between

11 and 15 km to GO, GO > 15 km
JPL Canonical transform (CT) after Gorbunov (2002) applied to L1 at impact height < 30 km;

GO for L1 > 30 km and L2 at all heights
UCAR Phase matching < 20 km (Jensen et al., 2004), GO > 20 km
WEGC CT2 inversion (Gorbunov and Lauritsen, 2004) with a Gaussian transition of 4.5 km width

and variable center height between 7 and 13 km, GO above

Ionospheric All Linear combination of L1 and L2 BA (Vorob’ev and Krasil’nikova, 1994)
correction DMI Linear combination, ionospheric correction extrapolated with constant L1–L2 BA below

dynamic L2 height – transition over 2 km
GFZ Linear combination, ionospheric correction extrapolated with constant L1–L2

BA below 12 km
JPL Linear combination, ionospheric corr. term extrapolation < 10 km when L2 1 s SNR < 30 V/V
UCAR Above 20 km: correction of L1 BA by L1–L2 BA smoothed with window determined

individually for each occultation to minimize combined noise (Sokolovskiy et al., 2009);
below 20 km: L1 BA corrected by a three-parameter function fitted to observational
L1–L2 BA at 20–80 km (Zeng et al., 2016)

WEGC Linear combination, ionospheric correction term extrapolated with linear L1–L2 BA < 15 km

Initialization DMI Optimization with dynamic estimation of observation errors (Gorbunov, 2002) and background
of BA errors fixed at 50 %, background based on BAROCLIM (best

global fit to data between 40 and 60 km, scaled using two-parameter
regression) (Scherllin-Pirscher et al., 2015)

GFZ Optimization after Sokolovskiy and Hunt (1996) with MSISE-90 (> 40 km), observation error
variance estimated as 25 % of mean observation–background
deviation between 60 and 70 km

JPL Exponential function fit at 50–60 km and extrapolation > 60 km impact height
UCAR Static optimization (independent of the observational noise), two-parameter fitting of NCAR BA

climatology (Randel et al., 2002) to observational BA in 35–60 km interval, transition to fitted
BA climatology in the same interval, transition to unfitted BA climatology in the 55–65 km interval

WEGC Optimization > 30 km with ECMWF short-range forecasts (24 or 30 h) and above with MSISE-90
to 120 km, dynamic estimation of observation errors and inverse covariance weighting
(Schwärz et al., 2016; Appendix A.4)
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Table 1. Continued.

Processing step Center Implementations of each center

Refractivity retrieval All Abel inversion (Fjeldbo et al., 1971) of optimized bending angle profile
DMI Abel inversion below 150 km
GFZ Abel Inversion below 150 km
JPL Abel Inversion below 120 km
UCAR Abel inversion below 150 km
WEGC Abel inversion below 120 km

Dry air retrieval All Refractivity (N ) is directly proportional to air density (ideal gas equation)
DMI Pressure integration, hydrostatic integral initialization at 150 km, upper boundary condition

from refractivity gradient, geopotential height relative to EGM-96 geoid
GFZ Hydrostatic integral initialization at 100 km with MSISE-90 pressure,

geopotential height relative to EGM-96
JPL Hydrostatic integral initialization at 40 km using ECMWF analysis,

geopotential height relative to JGM-3
UCAR Hydrostatic integral initialization at 150 km with zero boundary condition
WEGC Hydrostatic integral initialization at 120 km with MSISE-90 pressure,

geopotential height relative to EGM-96
All Dry temperature (Td) is obtained using the Smith–Weintraub formula for dry air

(Smith and Weintraub, 1953) and the equation of state (ideal gas)

Moist air retrieval DMI 1D-Var using ERA-Interim as background and refractivity observations as input
GFZ Not included, but relevant data products can be provided on demand
JPL Direct method using temperature and specific humidity from ECMWF analysis when T > 250 K

(Kursinski et al., 1996)
UCAR 1D-Var using ERA-Interim as background and refractivity observations (Wee, 2005)
WEGC Above 16 km: calculation of physical temperature T and pressure p using a first-order

approximation for the ratio between p and dry pressure pd.
Below 14 km: with half-sine transition between 16 and 14 km, simplified 1D-Var.
– retrieval of T and p using ECMWF short-range forecast specific humidity qB
– retrieval of q and p using ECMWF short-range forecast temperature TB
– statistical optimization of T and q with TB and qB, background standard errors from ROPPv6.0
(Culverwell and Healy, 2011), RO observational standard error (Scherllin-Pirscher et al., 2011a)

Quality control (QC) DMI Provider QC (reject if phase data are flagged);
QC of L2 quality from impact parameters (reject if noise is too large);
QC of BA using ERA-Interim forecasts (reject if > 90 % in 10–40 km);
QC of regression parameters (reject if too far from 1.0);
QC of optimized BA using background (reject if > 5 µrad above 60 km);
QC of background weight in optimization (reject if > 10% below 40 km);
QC of refractivity using ERA-Interim forecasts (reject if > 10 % in 10–35 km);
QC of dry temperature using ERA-Interim forecasts (reject if > 20 K in 30–40 km);
QC of 1D-Var cost function (reject if too large) and convergence (reject if too many iterations)

GFZ Minimum duration of occultation event: 20 s
Quotient L1/L2 excess phase forward differences between 0.97 and 1.03 for at least 650 connected
data samples; QC of refractivity N using MSISE-90: reject if 1N > 22.5 % between 8 and 31 km

JPL Refractivity difference with ECMWF < 10 % between 0 and 40 km and temperature difference with
ECMWF < 10 K below 40 km

UCAR Multiple QC checks including the following.
– Comparison of retrieved N and N from NCAR climatology (Randel et al., 2002);
– Comparison of maximum relative BA difference between RO and NCAR climatology;
– BA error check of local spectral width;
– SNR too low;
– Check of L2 data quality by comparison of maximum L1–L2 Doppler;
– Checks of mean and standard deviation of difference in retrieved and climatological BA
between 60 and 80 km
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Table 1. Continued.

Processing step Center Implementations of each center

WEGC Raw QC check: straight line tangent point altitude (SLTA) range at least between 65 and 20 km;
GO only QC of BA:
– cut off < 15 km impact height if gradient is too large;
– reject if BA < 0 rad below 50 km;
– reject if bias relative to MSIS-90 > 10−5 rad;
– reject if standard deviation relative to MSIS-90 > 5× 10−5 rad
WO only QC: cut off data at bottom of measurement if
– amplitude of CA signal is lower than 10 % of max amplitude;
– smoothed GO BA (over 3 km) exceeds 0.05 rad;
– smoothed impact parameter (over 3 km) < 0 m;
– SLTA <−250 km
QC of BA, N , T using ECMWF analyses: reject if
1BA > 20 %, 1N > 10 % in 5–35 km, or 1T > 20 K in 8–25 km (Angerer et al., 2017)

Reference frame DMI Earth figure: WGS-84 ellipsoid; vertical coordinate: mean sea level (m.s.l.) altitude;
vertical conversion of ellipsoidal height to m.s.l. altitude (at SLTA = 0 TP location) via EGM-96 geoid
coordinate smoothed to 1◦× 1◦ resolution

GFZ Earth figure: WGS-84 ellipsoid, EGM-96 geoid used for altitude above m.s.l. calculation
JPL Earth figure: IERS Standards 1989 ellipsoid; vertical coordinate: m.s.l. altitude computed

using the JGM3/OSU91A geoid truncation at spherical harmonic degree 36
UCAR Earth figure: WGS-84 ellipsoid; the occultation point is determined using BA for CIRA+Q climatology

(Kirchengast et al., 1999) and 500 m observed excess phase; the center of the reference frame is in the
local center of curvature of the reference ellipsoid at the occultation point (Syndergaard, 1998)
in the direction of the occultation plane; JGM2 geoid undulation is used to calculate m.s.l. altitude

WEGC Earth figure: WGS-84 ellipsoid; vertical coordinate: m.s.l. altitude; conversion of ellipsoidal height to
m.s.l. altitude (at SLTA = 0 TP location) via EGM96 smoothed to 2◦× 2◦ resolution

All Bending angle is given as a function of impact altitude, i.e., impact parameter minus radius of curvature
minus the undulation of the geoid; the impact parameter is defined as the perpendicular distance
between the local center of curvature and the ray path from the GPS satellite

Reference and/ DMI ROM SAF ATBD documents: http://www.romsaf.org/product_archive.php (last access: 14 May 2020)
or publication GFZ ftp://isdcftp.gfz-potsdam.de/ (last access: 14 May 2020)

JPL Hajj et al. (2002)
UCAR CDAAC website documentation area:

http://cdaac-www.cosmic.ucar.edu/cdaac/doc/overview.html (last access: 14 May 2020)
WEGC https://doi.org/10.25364/WEGC/OPS5.6:2019.1; Schwärz et al. (2016), Angerer et al. (2017)

ability (Steiner et al., 2013; Table 1 updated for current pro-
cessing versions and extended for moist air processing steps).
Three of the RO centers (GFZ, JPL, UCAR) have the full pro-
cessing chain implemented, going from the raw data level to
atmospheric variables. Two centers (DMI and WEGC) start
their processing at the phase data level in this study by using
phase data and orbit data from UCAR/CDAAC (COSMIC
Data Analysis and Archive Center). Thus, as some centers
start with the same phase and orbit data (from UCAR), the
products from raw data to atmospheric parameters are not
strictly independent for these centers.

The main differences between the centers’ processing
steps include the initialization of the Abel integral that trans-
forms bending angles to refractivity, moist air retrieval, and
quality control. For the bending angle vertical profiles, JPL
performs an extrapolation of the bending angle to higher al-
titudes, while the other centers apply statistical optimization
methods that combine the bending angle measurements with

a background bending angle. Each center uses different back-
ground information: atmosphere model climatologies (GFZ,
UCAR), observation-based climatologies (DMI), or short-
range forecasts (WEGC). Handling of observational and
background errors affects the amount of information from
observations and from the background included in the re-
trieved optimized bending angle. Observational error is typ-
ically smaller in data from RO systems with improved per-
formance, i.e., lower thermal noise or higher-gain antennas
enabling a higher signal-to-noise ratio up to higher altitudes.
In the different moist air retrieval implementations, a priori
information is also included, stemming either from atmo-
spheric analyses or forecasts (JPL, WEGC), model forecasts
produced with reanalysis (DMI), or reanalyses (UCAR).

Figure 1 shows the number of profiles per month deliv-
ered by each center for each RO mission. Also indicated is
the number of profiles in the common subsets, which we
used in the profile-to-profile intercomparison for quantify-
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Figure 1. Number of RO profiles per month delivered by each processing center, DMI (yellow), GFZ (blue), JPL (red), UCAR (black),
and WEGC (green), and the maximum subset of profiles (gray), shown for the respective time periods of the four missions CHAMP, F3C,
GRACE, and Metop.

ing structural uncertainty. For CHAMP, GFZ delivered the
largest number of data, followed by UCAR, DMI, WEGC,
and JPL. There is a data gap in July 2006 when CHAMP had
very few measurements. The common subset of profiles for
CHAMP summed up on average to about 1500 profiles per
month.

For F3C, DMI, UCAR, and WEGC delivered nearly the
same number of data, and only JPL provided a smaller
amount. GFZ did not process F3C data. The number of F3C
measurements was highest from 2007 to 2010, with more
than 70 000 profiles per month, and decreased over time
as the satellites successively ceased achieving full function.
The mission design life was 2 years. Only two of the six
F3C satellites still produced data in 2018. For this study,
UCAR provided a reprocessed F3C data set until April 2014.
The common subset of F3C data ranged from 20 000 up to
50 000 profiles per month over time.

Data for GRACE were provided by three centers, DMI,
GFZ, WEGC, delivering nearly the same number of profiles
with a common subset of about 3000 profiles per month.
Metop data were provided by DMI, UCAR, and WEGC,
with a common subset of about 15 000 profiles increasing
to 25 000 per month when the second Metop satellite started
measuring.

The number of common profiles is noticeably smaller than
the number of profiles delivered by any of the centers, which
is mainly due to the different quality control handling. This
means that each center does not deliver the same set of pro-
files.

3 Study setup and analysis method

We investigated the structural uncertainty of the following
RO variables: bending angle (α), optimized bending angle
(αopt), refractivity (N ), dry pressure (pdry), dry temperature
(Tdry), dry geopotential height (Zdry), pressure (p), temper-
ature (T ), and specific humidity (q). The atmospheric pro-
files were provided on a 100 m m.s.l. altitude grid except
bending angle, which was given on impact altitude, and
geopotential height, which was related to dry pressure levels,
i.e., “dry pressure altitude” defined as zp (m) = (7000 m)·
ln(1013.25 hPa / pdry; hPa).

Table 2 summarizes the data delivered for this study by
each center and gives information on satellite missions, time
periods, and atmospheric variables. Not all of the centers pro-
vided data for each satellite and each variable. UCAR did not
provide optimized bending angle profiles. GFZ did not pro-
vide moist air variables. This was adequately considered in
the computations.

The study was based on the intercomparison of collocated
profiles between the centers for each satellite mission and
atmospheric variable. The profiles were collocated based on
a unique event identifier (ID) including information on re-
ceiver ID, GPS satellite ID, date, and time of the observa-
tion. The common subset of data was analyzed further. This
means that only the common time periods can be intercom-
pared for which each center provided data continuously. The
investigated periods are September 2001–September 2008
for CHAMP (five centers), March 2007–December 2016 for
GRACE (three centers), August 2006–April 2014 for F3C
(four centers), and March 2008–December 2015 for Metop
(three centers).
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Table 2. Overview of RO data delivered by the different processing centers and the common time periods used in this study: processing
center, satellite mission, time period, and variables.

Center Satellites Period Variables

All centers’ CHAMP 09/2001–09/2008
common periods COSMIC 08/2006–04/2014
(used in this study) GRACE 03/2007–12/2016

METOP 03/2008–12/2015

DMI CHAMP 09/2001–09/2008 All variables∗

COSMIC 05/2006–12/2016 All variables
GRACE 03/2007–12/2016 All variables
METOP 02/2008–12/2016 All variables

GFZ CHAMP 05/2001–09/2008 All except: p, T , q
GRACE 02/2006–11/2017 All except: p, T , q

JPL CHAMP 04/2001–09/2008 All variables
COSMIC 05/2006–12/2016 All variables

UCAR CHAMP 05/2001–09/2008 All except: αopt
COSMIC 05/2006–04/2014 All except: αopt
METOP 02/2008–12/2015 All except: αopt

WEGC CHAMP 05/2001–09/2008 All variables
COSMIC 08/2006–12/2018 All variables
GRACE 03/2007–11/2017 All variables
METOP 02/2008–12/2018 All variables

∗ All variables include α, αopt, N , pdry, Tdry, Zdry, p, T , and q.

We first calculated the differences (1Xi) of each center (c)
to the all-center mean (i.e., mean of all centers) (Xall

i ) over
time based on individual profiles of atmospheric parameters
(Xi), with i denoting the index of matched profiles and ncenter
denoting the number of centers, using Eqs. (1) and (2):

Xall
i =

1
ncenter

∑ncenter

c=1
Xi (c) , (1)

1Xi =Xi −X
all
i . (2)

The profiles (Xi ,1Xi , Xall
i ) were then binned into 10◦ zonal

bands and averaged to monthly medians (X, 1X, Xall). By
using difference time series we remove the climate variabil-
ity that is common in the data sets. Anomaly difference time
series were then computed by subtracting the mean annual
cycle for the respective time period (see Table 2) to reduce
the natural variability in the differences. Percentage anomaly
difference time series were computed for variables that de-
crease exponentially with altitude.

The spread of the anomaly difference trends and the spread
of the center trends were used for estimating the structural
uncertainty (Wigley, 2006) of RO records. For each atmo-
spheric variable and satellite mission, we computed the lin-
ear trend over the respective time period for the all-center
mean and for each center. The standard deviation of the cen-
ter trends was finally used as a measure of the spread.

We performed the calculations for each atmospheric pa-
rameter (X) for each satellite mission (s) of each center (c)
given at monthly resolution (t) for latitude bands (φ) and al-
titude levels (z), i.e., nine parameters, four satellite missions,
and five centers, for 18 latitude bands and up to 600 altitude
levels as well as for six large latitude bands and up to eight
altitude layers (after Steiner et al., 2013; Mochart, 2018).

The mean difference of each center to the all-center mean
was computed by averaging over the satellite-dependent pe-
riod, with ntime as the number of time steps (months), using
Eq. (3):

1X
(
ci ,φj ,zk, sm

)
=

1
ntime

∑ntime
l=1

[
1X

(
ci ,φj ,zk, tl, sm

)]
. (3)

Results from these computations are discussed in Sect. 4.1.
The annual cycle for the differences to the all-center mean

was computed using Eq. (4). The number of years over which
the annual cycle was calculated is denoted nyr, the index l′

takes the values 1 to 12, and τl′ denotes one of the 12 months
of a year:

1XAnnCycle
(
ci,φj ,zk,τl′ , sm

)
=

1
nyr

∑nyr

l′′=1

1X
(
ci,φj ,zk, tl′+12·(l′′−1), sm

)
. (4)

Subtracting the annual cycle provided the de-seasonalized
anomaly differences for each center c and satellite mission
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s, obtained according to Eq. (5):

1XDeseasAnomDiff
(
ci ,φj ,zk, tl, sm

)
=1X

(
ci ,φj ,zk, tl, sm

)
−1XAnnCycle

(
ci,φj ,zk, τ1+(l−1)mod 12, sm

)
. (5)

Fractional (percentage) de-seasonalized anomaly differences
were computed analogously.

Linear trends were then computed with standard linear re-
gression for the de-seasonalized anomaly difference time se-
ries and, analogously, for the de-seasonalized time series of
each center. Results from these computations are discussed
in Sect. 4.2 and 4.3. For better comparison, the trends are
stated per 10 years. However, we do not discuss climato-
logical trends here as the time periods are different for each
RO mission. We are interested in the structural uncertainty
of trends represented by the standard deviation of the ncenter
individual center trends. This measure gives us an indication
of the stability of the multi-satellite RO records.

We performed the computations for 10◦ zonal medians,
averaging the collocated individual RO profiles on the given
vertical grid on a monthly median basis. We then averaged
to larger latitudinal domains and altitude layers, in which
RO data show similar behavior and similar structural un-
certainty. We defined six latitude bands: the tropics (TRO;
20◦ N–20◦ S), northern and southern midlatitudes (NML and
SML; 20–60◦ N and 20–60◦ S), northern and southern high
latitudes (NHL and SHL; 60–90◦ N and 60–90◦ S), and a
global band (GLOB; 90◦ N–90◦ S). We defined (up to) eight
altitude layers. The uppermost altitude levels are 60 km for
bending angle, 50 km for refractivity, and 40 km for the other
variables except humidity (15 km). The inspected vertical
layers include 8–18, 18–25, 25–30, 30–35, 35–40, 40–50,
and 50–60 km. Structural uncertainty in trends is finally pre-
sented at the full 100 m altitude grid.

4 Results and discussion

4.1 Comparison of differences in multi-satellite RO
profiles for one exemplary month and for the total
mean

As a first overview, we present comparison results for one
exemplary month, July 2008, for selected atmospheric RO
variables in order to introduce several characteristic features.
Figure 2 shows the global mean difference of profiles from
each center with respect to the all-center mean for the mis-
sions CHAMP, F3C, GRACE, and Metop. Differences for the
variables bending angle, optimized bending angle, refractiv-
ity, dry temperature, and physical temperature are presented.
Note that deviations of one center are counterbalanced by
other centers due to referencing to the all-center mean.

The mean difference profiles for non-optimized bending
angle and bending angle are smaller at upper altitudes for
F3C, GRACE, and Metop compared to CHAMP due to en-
hanced receiver quality and smoother due to the larger num-

ber of data available. For CHAMP, the bending angle be-
comes noisy near 35–40 and above 40–50 km for the other
RO missions. The optimization of the bending angle reduces
the noise and stabilizes the retrieval at high altitudes above
50 km. The noise reduction is visible in the optimized bend-
ing angle differences, specifically for F3C, GRACE, and
Metop. The bending angle differences are < 0.1 % from a 10–
40 to 50 km impact altitude, depending on the mission.

In the RO retrieval chain of further derived parameters,
such as refractivity, pressure, or dry temperature, the impact
of background information propagates further downward in
altitude for each retrieved parameter. Refractivity, which is
proportional to atmospheric density, shows differences of
< 0.05 % at 10–30 km for all satellites in July 2008. Dry tem-
perature differences are small from 8–25 to 30 km depending
on the mission. Physical temperatures, usually derived with a
priori information, show similar differences, with JPL show-
ing larger deviations due to cutoff artifacts below 15 km (see
below).

Next, we give an overview of mean differences with re-
spect to the all-center mean, averaged over the full time
period of a mission, which we exemplarily show for the
F3C mission. Figure 3 presents averaged anomaly differ-
ences for bending angle, refractivity, dry temperature, tem-
perature, and specific humidity for 10◦ zonal means at a
100 m vertical grid. The mean differences for bending an-
gle are found to be very small (0.1 %–0.2 %) at all lati-
tudes, except at high latitudes where differences are larger
for JPL and UCAR bending angles. Different choices for the
bending angle initialization by the centers are reflected in
larger refractivity differences above about 40 km, while be-
low the mean differences are very small (< 0.1 %). For subse-
quent derived variables, the differences become larger above
30 km as seen for dry temperature. There, some latitude-
dependent features appear that might stem from high-altitude
initialization in the retrieval, specifically at high latitudes.
At 5–30 km, mean differences for dry temperature are found
to be < 0.2 K for all latitude bands. Physical temperature
shows similar differences of < 0.2 K at 2–30 km of altitude.
JPL provides physical temperature products only down to
a certain altitude. RO temperature is cut off when it rises
above 240 K in their moist air retrieval, for which back-
ground temperature information from ECMWF (European
Centre for Medium-Range Weather Forecasts) analyses is
used to derive specific humidity. DMI and UCAR use a one-
dimensional variational (1D-Var) method to derive tempera-
ture with ERA-Interim (ECMWF Reanalysis-Interim) prod-
ucts as background. WEGC applies a simplified 1D-Var re-
trieval method using ECMWF forecasts as background be-
low about 16 km of altitude. Above this altitude, WEGC dry
and physical temperatures are the same. However, in Fig. 3,
differences are shown with respect to the all-center mean,
and the latter is different for dry and physical temperature.
For specific humidity we find mean differences of each cen-
ter to the all-center mean of < 15 %. JPL provides specific hu-
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Figure 2. Global mean difference of atmospheric profiles from each center to the all-center mean for one exemplary month (July 2008) based
on 10◦ zonal medians and shown for the satellite missions CHAMP, F3C, GRACE, and Metop (left to right) for bending angle, optimized
bending angle, refractivity, dry temperature, and temperature (top to bottom). The number of data points is shown in the left sub-panels.

midity data up to 10 km of altitude only in synergy with the
temperature cutoff, and the number of data decreases above
8 km. The larger differences at this altitude are artifacts and
can be removed with a more rigid cutoff. Only a few centers
delivered humidity and the data have different height avail-
ability, which hampers a rigorous statistical intercomparison
of humidity in this study. We thus do not show further com-
parisons here.

Comparison of mean differences with data from the other
satellite missions CHAMP, GRACE, and Metop shows good
consistency over the same regions; however, differences
are found to be smaller at higher altitudes, specifically for
Metop. Commonalities and differences are further investi-
gated in the full difference time series and revealed in the
structural uncertainty estimates.

https://doi.org/10.5194/amt-13-2547-2020 Atmos. Meas. Tech., 13, 2547–2575, 2020



2558 A. K. Steiner et al.: Consistency of multi-mission GPS radio occultation records

Figure 3. Mean difference of each center, DMI, JPL, UCAR, and WEGC (top to bottom), to the all-center mean for F3C data averaged over
August 2006–April 2014 based on 10◦ zonal medians and shown for bending angle, refractivity, dry temperature, temperature, and specific
humidity (left to right).

4.2 Comparison of anomaly difference time series

Here, we investigate anomaly difference time series (see
Eq. 5) for each satellite mission (CHAMP, F3C, GRACE,
Metop) over the respective time periods as presented in
Figs. 4 to 7. We show monthly median differences to the
all-center mean for two selected variables, bending angle
and dry temperature. Bending angle is at the beginning of
the processing chain (after phase data processing), while dry
temperature is one of the final RO products commonly used
in climate studies. We present results for the global mean
(GLO) and for selected zonal means, the tropics (TRO), and
high latitudes (SHL, NHL). We do not show results for the
midlatitude bands (NML, SML) as the results are similar to
those in the tropics. We investigate consistencies and devia-
tions in the anomaly difference time series of individual cen-
ters from the all-center mean.

For all satellite missions we find that bending angle dif-
ferences are overall very small and consistent below 30 km
at all latitudes. However, there are some differences that
we discuss in the following. For CHAMP, the spread of
mean anomaly difference trends in bending angle (Fig. 4a) is
larger than for the other missions. For the zonal means, it is

about ±0.05% per decade below 25 km, increasing to about
±0.1% per decade above. At SHL, a larger difference trend
is seen for GFZ at 25–30 km. Larger variability in bending
angle is found for JPL over the investigated period. The dif-
ference time series in CHAMP bending angle show similar
behavior at high latitudes and in the tropics. The global mean
difference trends (90◦ S–90◦ N) for CHAMP are±0.04% per
decade at 8–18 km and ±0.02% per decade above.

For F3C, the spread of mean anomaly difference trends
(Fig. 5a) is found to be larger at high latitudes than in the
tropics. The largest difference trends are found at SHL, with
a spread of−0.17 % to 0.1 % per decade in all altitude layers.
This is due to a small shift in UCAR bending angle in 2013,
which is currently under investigation. In the tropics, the dif-
ferences are small. In the global mean, the spread in differ-
ence trends is±0.02% per decade at 18–25 km and±0.01%
per decade at 25–30 km, which is smaller than for CHAMP.

GRACE shows highly consistent anomaly differences
(Fig. 6a) and similar behavior at all latitudes. An interest-
ing feature in GFZ bending angle is an oscillating variability
over time for GRACE data. However, the spread in differ-
ence trends is very small at ±0.01% in all altitude layers.
Globally it is zero. Also, for Metop we find high consistency
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Figure 4. CHAMP bending angle (a) and dry temperature (b) de-seasonalized anomaly difference time series based on 10◦ zonal medians
of each center to the all-center mean for latitude bands 90 to 60◦ S, 20◦ S to 20◦ N, 60 to 90◦ N, and globally 90◦ S to 90◦ N (left to right)
for altitude layers 8–18, 18–25, and 25–30 km (bottom to top). Time series from DMI (orange), GFZ (blue), JPL (red), UCAR (black), and
WEGC (green) are shown.

in anomaly differences (Fig. 7a), with a spread in difference
trends of ±0.02% per decade for bending angle except in
the tropical band. There, differences are slightly larger at
±0.05% per decade at 18–25 km.

For refractivity, we find high consistency in the difference
trends (not shown here for the time series but shown later
in Sect. 4.3). The spread of the difference trends is about

±0.01% to ±0.02% per decade at all latitudes at 8–30 km
for F3C, GRACE, and Metop and near zero globally. For
CHAMP, it is within ±0.02% to ±0.03% per decade, and
larger differences only occur for GFZ time series at high lat-
itudes.

For dry temperature, the difference time series show some
common features for all satellites. We find that the spread in
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Figure 5. F3C bending angle (a) and dry temperature (b) de-seasonalized anomaly difference time series based on 10◦ zonal medians of
each center to the all-center mean for latitude bands 90 to 60◦ S, 20◦ S to 20◦ N, 60 to 90◦ N, and globally 90◦ S to 90◦ N (left to right) for
altitude layers 8–18, 18–25, and 25–30 km (bottom to top). Time series from DMI (orange), JPL (red), UCAR (black), and WEGC (green)
are shown.

anomaly difference trends for dry temperature is smallest in
the troposphere layer (8–18 km), larger in the lower strato-
sphere layer (18–25 km), and further increases above. The
spread in difference trends is found to be largest for CHAMP
(Fig. 4b), followed by F3C (Fig. 5b), GRACE (Fig. 6b), and
Metop (Fig. 7b).

The global mean difference trends for CHAMP range from
about±0.06 K per decade at 8–18 km to±0.15 K per decade
at 18–25 km and to about ±0.4 K per decade at 25–30 km.
For F3C, the global spread is only ±0.02 K per decade at
8–25 km to ±0.08 K per decade at 25–30 km. For GRACE,
it is even smaller at ±0.01 K per decade at lower altitudes,
increasing to ±0.06 K per decade at 25–30 km. For Metop,
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Figure 6. GRACE bending angle (a) and dry temperature (b) de-seasonalized anomaly difference time series based on 10◦ zonal medians of
each center to the all-center mean for latitude bands 90 to 60◦ S, 20◦ S to 20◦ N, 60 to 90◦ N, and globally 90◦ S to 90◦ N (left to right) for
altitude layers 8–18, 18–25, and 25–30 km (bottom to top). Time series from DMI (orange), GFZ (blue), and WEGC (green) are shown.

it is near zero in the troposphere, ±0.02 K per decade in the
lower stratosphere, and −0.07 to +0.02 K per decade above.

For CHAMP dry temperature, some larger differences oc-
cur in the tropics. There, the JPL time series show a slight
shift, which is most prominent at upper altitude levels. Some
deviations occur in the UCAR time series for some win-
ter months at NHL. These peaks are only visible for a few
months when sudden stratospheric warmings occurred. The

peaks can be explained by high-altitude initialization with the
NCAR climatology, which does not capture the extraordinary
large temperature changes at high latitudes during sudden
stratospheric warmings. For GRACE, a peak in WEGC data
is seen at the beginning of the time series at upper height lev-
els. However, in the global average, the anomaly differences
are found to be very small despite some larger deviations
in some NHL winter months. Also, the results for physical
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Figure 7. Metop bending angle (a) and dry temperature (b) de-seasonalized anomaly difference time series based on 10◦ zonal medians of
each center to the all-center mean for latitude bands 90 to 60◦ S, 20◦ S to 20◦ N, 60 to 90◦ N, and globally 90◦ S to 90◦ N (left to right) for
altitude layers 8–18, 18–25, and 25–30 km (bottom to top). Time series from DMI (orange), UCAR (black), and WEGC (green) are shown.

temperature are in very good agreement. They are consistent
with dry temperature, and UCAR data peaks are reduced to
about 50 %.

Comparing results of the four RO missions, we find the
highest consistency for GRACE and Metop between the cen-
ters. CHAMP and F3C show slightly larger differences above
25 km (CHAMP) and at high latitudes (F3C). Apart from
small features, the results are very consistent at 8–30 km.

One potential reason for the higher consistency of GRACE
and Metop records is considered to be technological ad-
vances on the newer satellite generations. Partly, it might also
be due to the fact that only three centers delivered data for
these missions, while five centers provided data for CHAMP
and four centers provided data for F3C.
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4.3 Structural uncertainty for RO multi-satellite
records

Finally, we analyzed the consistency of trends for multi-
satellite records from five different processing centers. We
calculated trends for all variables based on the anomaly time
series of the individual centers. We also computed the all-
center mean trend. The spread of the center trends, i.e., the
standard deviation of the individual center trends, is taken as
a measure for the structural uncertainty of the RO records.
We stress at this point that we do not investigate or inter-
pret climatological trends because this is not the focus of this
study. Here, we are interested in the structural uncertainty of
the RO records.

We present trends and standard deviations for each RO
mission separately: for CHAMP (Fig. 8), F3C (Fig. 9),
GRACE (Fig. 10), and Metop (Fig. 11) for bending angle,
refractivity, dry pressure, dry geopotential height, dry tem-
perature, and temperature. We show the results for five lati-
tude zones and for the global mean at the vertically resolved
grid for bending angle up to 60 km of altitude, for refractivity
up to 50 km, and for the other variables up to 40 km. At lower
altitudes, we cut at 8 km for dry parameters and at 2 km for
temperature.

For CHAMP (Fig. 8), the structural uncertainty of the
trends from different processing centers is found to be small
below 40 km for bending angle, below 30 km for refractivity
and dry pressure, and below 25–28 km for (dry) temperature
at all latitudes. Structural uncertainty increases above 25 km
and at high latitudes, mainly due to increased sensitivity to
the different bending angle initialization approaches imple-
mented at each center, including different high-altitude back-
ground information. Compared to the results of Steiner et
al. (2013) for CHAMP, we find in this study better agreement
between the centers because improved data versions have
been delivered. At high latitudes the uncertainty is smaller
here, which is most probably due to a new data version pro-
vided by GFZ.

For F3C (Fig. 9), the structural uncertainty is much smaller
compared to CHAMP. It is low for bending angle up to
50 km, for refractivity up to 45 km, for dry pressure up to
40 km, and for (dry) temperature up to 30 km. At SHL, the
structural uncertainty becomes larger for dry pressure and
dry temperature above about 25 km of altitude.

For GRACE (Fig. 10), the structural uncertainty is very
small at all altitude levels and at all latitudes, except for SHL.
Larger structural uncertainty is only found at upper altitudes
for bending angle and refractivity and at SHL for all vari-
ables.

For Metop (Fig. 11), the structural uncertainty is found to
be smallest compared to the other missions. High consistency
is found at all latitudes and over all altitudes. A small differ-
ence in the trend near 20 km is visible for WEGC data. This
is due to the handling of Metop data, whereby due to a track-

ing update in 2013 rising occultations are tracked only from
about 20 km upwards.

A summary of the resulting standard deviation numbers
is given in Fig. 12 for all parameters and all satellites. We
set these results into context with the GCOS stability re-
quirements for ECVs, defined by 0.05 K per decade air tem-
perature in the troposphere and stratosphere (GCOS, 2016),
formerly by 0.1 K per decade in the stratosphere (GCOS,
2011). For the other RO variables no dedicated GCOS re-
quirements exist, but they can be estimated from physical
relations between these variables with reasonable scaling.
The corresponding estimates for 0.1 K per decade in tem-
perature are 0.05 % per decade for refractivity (factor 0.5),
0.12 % per decade for bending angle (factor ∼ 2.4), 0.06 %
per decade for pressure, and about 4 m per decade for geopo-
tential height. The relation between geopotential height and
pressure changes is given via an atmospheric scale height
of about 70 m geopotential height change per 1 % pressure
change (see Steiner et al., 2013).

In Fig. 12, we visually relate the standard deviation to the
GCOS stability criteria via color coding, whereby light or-
ange indicates that the criteria are met for temperature with
0.05–0.1 K per decade and the corresponding criteria for the
other RO variables.

For the global average, the standard deviation of bending
angle trends is < 0.06 % per decade for the altitude layers 8–
50 km for all satellite missions and < 0.12 % for latitudinal
averages. For CHAMP it is larger above 30 km. For refrac-
tivity trends, the standard deviation is < 0.03 % per decade
at 8–35 km for all satellites globally. Only for CHAMP is
it again larger above 30 km and for Metop and GRACE at
NHL and SHL (∼ 0.05 %) for some layers. For (dry) pres-
sure trends, the standard deviation is < 0.03 % per decade at
8–30 km globally and < 0.06 % per decade at all latitudes, ex-
cept for CHAMP. Dry geopotential height shows a standard
deviation of < 2–4 m for all satellites below 35 km globally
and below 30 km for tropics and midlatitudes. For CHAMP
it is about 10–20 m per decade at 25–35 km of altitude.

For dry temperature trends, the standard deviation is
< 0.05 K per decade at 8–25 km for all satellites, except for
CHAMP for which it is about 0.1 K at 18–25 km. Even at
25–35 km, the standard deviation for dry temperature is glob-
ally < 0.05–0.11 K per decade for F3C, GRACE, and Metop,
whereas for CHAMP it increases to about 0.5 K per decade
globally. Physical temperature shows similar uncertainty at
lower altitudes; however, above about 30 km it can be larger
than for dry temperature due to different a priori information
in moist air retrievals.

We find that RO multi-satellite data products from differ-
ent centers are highly consistent at 8–25 km for all RO mis-
sions over all latitudes. Figure 12 reveals that F3C, GRACE,
and Metop are usable for climate studies up to higher alti-
tudes of 30–35 km for temperature, geopotential height, and
pressure and 40 km for refractivity. Bending angles are found
to be consistent up to 50 km because they are less sensitive
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Figure 8. CHAMP structural uncertainty indicated as the standard deviation (gray) of the individual center trends per decade based on
10◦ zonal medians for DMI (orange), GFZ (blue), JPL (red), UCAR (black), and WEGC (green); shown for bending angle, refractivity,
dry pressure, dry geopotential height, dry temperature, and temperature (top to bottom). The all-center mean trend profile (bold black line)
and the altitude-layer mean trends (crosses, with horizontal bars showing the uncertainty) are indicated. Profiles are smoothed with a 1 km
running average.

to a priori information and thus useful for climate monitoring
(Ringer and Healy, 2008). These results underline the value
of RO as a climate data record along the GCOS stability re-
quirements for air temperature, and correspondingly for the
other RO variables in the specified regions.

5 Summary and conclusions

The aim of this study was to assess the consistency and long-
term stability of RO observations for use as climate data
records of essential climate variables in a global climate ob-
serving system. We therefore performed a rigorous intercom-
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Figure 9. F3C structural uncertainty indicated as the standard deviation (gray) of the individual center trends per decade based on 10◦

zonal medians for DMI (orange), JPL (red), UCAR (black), and WEGC (green); shown for bending angle, refractivity, dry pressure, dry
geopotential height, dry temperature, and temperature (top to bottom). The all-center mean trend profile (bold black line) and the altitude-
layer mean trends (crosses, with horizontal bars showing the uncertainty) are indicated. Profiles are smoothed with a 1 km running average.

parison study of a full set of RO data products from multiple
satellites provided by different RO processing centers. We
analyzed all available RO data products from dry and moist
air retrievals. The atmospheric variables included bending
angle, optimized bending angle, refractivity, dry pressure,
dry temperature, dry geopotential height, pressure, temper-
ature, and specific humidity. Data products were delivered

by five RO processing centers for the RO missions CHAMP,
Formosat-3/COSMIC, GRACE, and Metop.

As a measure for consistency and stability, we investi-
gated the structural uncertainty of RO multi-satellite records
that arises from different processing schemes. Based on the
common subsets of delivered RO profiles, we computed de-
seasonalized time series and difference time series of indi-
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Figure 10. GRACE structural uncertainty indicated as the standard deviation (gray) of the individual center trends per decade based on
10◦ zonal medians for DMI (orange), GFZ (blue), and WEGC (green); shown for bending angle, refractivity, dry pressure, dry geopotential
height, dry temperature, and temperature (top to bottom). The all-center mean trend profile (bold black line) and the altitude-layer mean
trends (crosses, with horizontal bars showing the uncertainty) are indicated. Profiles are smoothed with a 1 km running average.

vidual centers with respect to the all-center mean, as well as
respective linear trends of the time series. The spread of the
difference time series was investigated as one indication of
structural uncertainty. We finally quantified the structural un-
certainty of trends based on the standard deviation of the in-
dividual center trends. This uncertainty measure gives a rep-

resentation of the stability of the multi-satellite RO records,
enabling assessment against GCOS stability requirements
and of the consistency of products from different processing
centers.

Globally, the standard deviation of bending angle trends
is found to be < 0.06 % per decade in the altitude layers
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Figure 11. Metop structural uncertainty indicated as the standard deviation (gray) of the individual center trends per decade based on 10◦

zonal medians for DMI (orange), UCAR (black), and WEGC (green); shown for bending angle, refractivity, dry pressure, dry geopotential
height, dry temperature, and temperature (top to bottom). The all-center mean trend profile (bold black line) and the altitude-layer mean
trends (crosses, with horizontal bars showing the uncertainty) are indicated. Profiles are smoothed with a 1 km running average.

8–50 km for all satellite missions except for CHAMP (up
to 30 km). For refractivity trends, the standard deviation is
< 0.03 % per decade at 8–35 km in these altitude layers for all
satellites except CHAMP. For (dry) pressure trends, the stan-
dard deviation is < 0.03 % per decade at 8–30 km globally.
Dry geopotential height shows a standard deviation of < 2–
4 m per decade below 35 km for all satellites except CHAMP.

For global dry temperature trends, the standard deviation is
< 0.05 K per decade at 8–25 km and < 0.1 K per decade at
25–35 km for all satellites, except for CHAMP for which it
is about 0.1 K per decade and about 0.5 K per decade, respec-
tively.

Our results show that RO multi-satellite data products
from different centers are highly consistent between 8 and
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Figure 12. Overview of structural uncertainty for different RO missions: CHAMP, F3C, GRACE, and Metop (left to right). Shown is the
standard deviation of individual center trends per decade based on 10◦ zonal medians for RO bending angle, refractivity, dry pressure, dry
geopotential height, dry temperature, and temperature (top to bottom) for all latitude zones and altitude layers in the sub-panels.

25 km for all RO missions over all latitudes. Furthermore,
data products from the newer satellite missions F3C, and
specifically GRACE and Metop, are usable to higher alti-
tudes due to advanced receivers (better onboard clocks) and
lower bending angle noise at higher altitudes. For these mis-
sions, (dry) temperature, dry geopotential height, and (dry)
pressure are found to be consistent up to 30–35 km; refrac-

tivity is found to be consistent up to 40 km and bending angle
up to 50 km.

In conclusion, we find that the RO record can be used for
reliable climate trend assessments globally within 90◦ S to
90◦ N in these altitude regions, meeting the stringent GCOS
stability requirements for air temperature and corresponding
requirements for the other RO variables. Data users should
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be aware of the larger uncertainty of the CHAMP record at
higher altitudes. Also, temperature derived with a moist air
retrieval can have a larger uncertainty above 25 km due to a
priori information. Knowledge of the differences in the qual-
ity of the various satellite data is essential, especially when
data from several missions are combined into a multi-satellite
record. Figure 12 gives an instructive overview of the struc-
tural uncertainties for all RO variables over latitude and alti-
tude.

This intercomparison study helped to further improve the
maturity and quality of the RO records. During the course
of work, we reported small issues and gave feedback to the
processing centers, which was incorporated into the product
development and resulted in improved reprocessed data sets
for this study. We regard the quantification of the structural
uncertainty of multi-satellite RO records from different RO
processing centers as an essential advance towards the es-
tablishment of a global climate benchmark record as a key
component of GCOS.

Efforts at RO centers are ongoing toward further improv-
ing and advancing RO data processing, such as the new
WEGC RO processing system with integrated uncertainty
propagation and traceability to the fundamental time stan-
dard (Li et al., 2015; Kirchengast et al., 2016; Schwarz et al.,
2017, 2018; Gorbunov and Kirchengast, 2018; Innerkofler
et al., 2018). Also, new RO missions with advanced re-
ceivers will provide RO data with better quality. RO re-
ceivers are established on the Chinese FY-3 meteorological
satellite series (Sun et al., 2018), Metop-C has been in or-
bit since November 2018, and the six-satellite FORMOSAT-
7/COSMIC-2 constellation was successfully launched in
June 2019 (Schreiner et al., 2016; Ho et al., 2019a).

New receivers are capable of tracking different GNSS sig-
nals from the US GPS, the Russian GLONASS, the Euro-
pean Galileo system, and the Chinese BeiDou system; they
will provide a larger number of observations. These recently
launched and further planned RO missions will ensure the
continuation of the RO record into the future for long-term
climate monitoring and trend detection.
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