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Abstract. The TGS 2600 was the first low-cost solid-state
sensor that shows a response to ambient levels of CH4 (e.g.,
range ≈ 1.8–2.7 µmolmol−1). Here we present an empiri-
cal function to correct the TGS 2600 signal for temperature
and (absolute) humidity effects and address the long-term
reliability of two identical sensors deployed from 2012 to
2018. We assess the performance of the sensors at 30 min
resolution and aggregated to weekly medians. Over the en-
tire period the agreement between TGS-derived and refer-
ence CH4 mole fractions measured by a high-precision Los
Gatos Research instrument was R2

= 0.42, with better re-
sults during summer (R2

= 0.65 in summer 2012). Using
absolute instead of relative humidity for the correction of
the TGS 2600 sensor signals reduced the typical deviation
from the reference to less than±0.1 µmolmol−1 over the full
range of temperatures from −41 to 27 ◦C. At weekly res-
olution the two sensors showed a downward drift of signal
voltages indicating that after 10–13 years a TGS 2600 may
have reached its end of life. While the true trend in CH4 mole
fractions measured by the high-quality reference instrument
was 10.1 nmolmol−1 yr−1 (2012–2018), part of the down-
ward trend in sensor signal (ca. 40 %–60 %) may be due to
the increase in CH4 mole fraction because the sensor volt-
age decreases with increasing CH4 mole fraction. Weekly
median diel cycles tend to agree surprisingly well between
the TGS 2600 and reference measurements during the snow-
free season, but in winter the agreement is lower. We suggest
developing separate functions for deducing CH4 mole frac-

tions from TGS 2600 measurements under cold and warm
conditions. We conclude that the TGS 2600 sensor can pro-
vide data of research-grade quality if it is adequately cal-
ibrated and placed in a suitable environment where cross-
sensitivities to gases other than CH4 are of no concern.

1 Introduction

Low-cost trace gas sensors open new deployment opportu-
nities for environmental observations. Still, their long-term
performance in real-world applications is largely unknown,
and thus, scientific research with such low-cost sensors is
challenged with a high risk of failure and questionable data
quality. Hence low-cost sensors are only considered as a
complementary source of information on air quality (e.g.,
Lewis et al., 2018; Castell et al., 2017). Here we report on
a 7-year (2012–2018) deployment of two low-cost Figaro
TGS 2600 methane (CH4) sensors during summer and win-
ter conditions in the relatively harsh low-Arctic climate of
northern Alaska to explore the long-term stability and relia-
bility of CH4 mole fraction estimates. The sensors were pre-
viously deployed over Toolik Lake during the ice-free season
in 2011 (Eugster and Kling, 2012), where similar values be-
tween TGS-derived and reference CH4 mole fractions were
only found if measurements were integrated over at least 6 h
or if they were aggregated to mean diel cycles over the sea-
son. Other studies have deployed the same sensor type in
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complex rural and urban environments along the Colorado
Front Range (Collier-Oxandale et al., 2018), in an oil and gas
production region (Greeley, Colorado; Casey et al., 2019),
and in urban south Los Angeles (Shamasunder et al., 2018).
An application on an unmanned aerial vehicle, however, did
not successfully detect CH4 hotspots (Falabella et al., 2018).
These are all pioneering studies but are mostly restricted to a
few days to months of measurements. Thus, our study is the
first long-term comparison of high-precision measurements
to those from CH4 sensitive, low-cost sensors under chal-
lenging climatic conditions.

Typically, new sensors are first calibrated under controlled
conditions in a laboratory environment. Extensive calibra-
tion tests with a similar low-cost sensor (Figaro TGS2611-
E00) from the same manufacturer as our TGS 2600 have
been carried out by van den Bossche et al. (2017). De-
spite the care taken in their calibration effort, the residual
CH4 mole fraction after calibration was still on the order
of ±1.7 µmolmol−1, which is acceptable for chamber flux
measurements, for example, over water (as done by, e.g.,
Duc et al., 2019) but not sufficient to measure ambient at-
mospheric mole fractions, which are of the same order of
magnitude as the calibration uncertainty. The issue of impor-
tant differences between laboratory assessments of low-cost
sensors and their real-world performance is well known and
typically relates to different data correction and calibration
approaches in real-world rather than laboratory applications
(Lewis et al., 2018). Hence we decided to use outdoor mea-
surements obtained over a wide range of temperatures and
relative humidity – the major cross-sensitivities experienced
by such sensors – and derive a calibration function via pa-
rameter extraction using this dataset. Our goals were thus to
(1) establish a statistical calibration function from field mea-
sured conditions that can also be used in different contexts to
linearize the TGS 2600 sensor signal (which then can still be
fine-tuned with a two-point calibration in a specific applica-
tion); (2) assess the reliability of the TGS 2600 low-cost sen-
sor under winter and summer conditions in the Arctic over
7 years of continuous deployment; and (3) explore poten-
tial improvements for sensor data processing, which includes
(3a) wind effects that are neglected in laboratory environ-
ments and (3b) artificial neural networks (ANNs) to find out
whether results can be improved over standard statistical re-
gression methods for calibration of the sensor.

2 Material and methods

2.1 Study site

Field measurements were carried out at the Toolik wet sedge
site (TWE; 68◦37′27.62′′ N, 149◦36′08.10′′W; 728.14 m ele-
vation, WGS 84 datum) where seasonal eddy covariance flux
measurements were carried out during the summer seasons
of 2010–2015 and partially during winters starting in 2014

Figure 1. Two TGS 2600 trace gas sensors and the LinPicco A05
temperature and relative humidity sensor (a) inside the weather pro-
tection and (b) the mounting position of the TGS weather protection
and reference CH4 gas inlets at the Toolik wet sedge eddy covari-
ance flux site.

until 15 June 2016, with the continuation as a meteorolog-
ical station until present. The site is a wetland that is a lo-
cal source of CH4 with a flux rate that is roughly 1 order
of magnitude stronger than adjacent Toolik Lake, where the
Eugster and Kling (2012) study was performed. The site is
a wet graminoid tundra dominated by sedge species, namely
cotton grass (Eriophorum angustifolium) and Carex aquatilis
(Walker and Everett, 1991).

2.2 Instrumentation and measurements

Two Figaro TGS 2600 sensors (Figaro, 2005a, b) that were
already deployed over Toolik Lake (TOL) during the ice-free
season in 2011 (Eugster and Kling, 2012) were installed at
the TWE site in late June 2012 (Fig. 1). Sensor 1 is the pri-
mary sensor used in this study, whereas sensor 2 was only
used as a replicate to simplify assessing potential problems
with sensor 1. Because no such problems occurred, we will
focus only on the results obtained with sensor 1 except in
Sect. 3.2, where we used both sensors to assess their perfor-
mance at weekly time resolution. The TGS 2600 is a high-
sensitivity solid-state sensor for the detection of air con-
taminants (Figaro, 2005a). It is sensitive to methane at low
mole fractions but also to hydrogen, carbon monoxide, isobu-
tane, and ethanol. It is the only low-cost solid-state sensor
that we are aware of for which the manufacturer indicates a
sensitivity to methane even under ambient (≈ 2 µmolmol−1)
methane mole fractions, whereas most other sensors are only
sensitive at mole fractions that exceed ambient levels by at
least 1 or 2 orders of magnitude. This high sensitivity to low-
methane mole fractions comes at the expense that no specific
molecular filter prevents the other components from reach-
ing the sensor surface. Thus, our considerations made here
assume that deployment is made in an area like the Arctic,
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where levels of carbon monoxide, isobutane, ethanol, and
hydrogen are rather constant and do not vary as strongly as
methane so that the sensor signal can be interpreted as a first
approximation of a methane mole fraction signal. For addi-
tional details on the TGS 2600 sensor the reader is referred
to Eugster and Kling (2012).

The TWE site receives line power from the Toolik Field
Station (TFS) power generator. During the snow- and ice-
free summer season (typically late June to mid-August) mea-
surements are almost interruption-free, but during the cold
season (typically September to late May) longer power in-
terruptions limit the winter data coverage. Nevertheless, this
is the first study that provides low-cost sensor methane mole
fraction measurements over a temperature range from Arctic
winter temperatures of −41 ◦C to a relatively balmy 27 ◦C
during short periods of the Arctic summer. Reference CH4
dry mole fractions were measured by a Fast Methane Ana-
lyzer (FMA, Los Gatos Research, Inc., San Jose, CA, USA;
years 2012–2016), which was replaced by a Fast Greenhouse
Gas Analyzer (FGGA, Los Gatos Research, Inc., San Jose,
CA, USA; since 2016) for combined CH4, CO2, and H2O
dry mole fraction measurements. Until 18 June 2016 the CH4
mole fractions were calculated as 1 min averages from the
raw eddy covariance flux data files. We report all gas mole
fractions in micromoles per mole or nanomoles per mole.
The FMA and FGGA sampling rate was set to 20 Hz, and
the flow rate of sample air was ca. 20 Lmin−1. After the ter-
mination of eddy covariance flux measurements, the FGGA
measurements were continued with the instrument’s inter-
nal pump (flow rate ca. 0.65 Lmin−1) with 1 Hz raw data
sampling. In addition to digital recording, the CH4 signal
was converted to an analog voltage that was recorded on a
CR23X data logger (Campbell Scientific Inc., CSI, Logan,
UT, USA). The same data logger also recorded air temper-
ature, relative humidity (HMP45AC, CSI), wind speed, and
wind direction (034B Windset, MetOne, Grants Pass, OR,
USA) as well as ancillary meteorological and soil variables
not used in this study. The factory-calibrated HMP45AC sen-
sor head was exchanged for a newly calibrated one ca. ev-
ery 3 years to minimize long-term drift effects in temperature
and relative humidity measurements (James Laundre, per-
sonal communication, 2020). Sensors were measured every
5 s, and 1 min averages were stored on the logger. These data
were then screened for outliers and instrumental errors and
failures, and 30 min averages were calculated for the present
analysis.

Both FMA and the later FGGA analyzers were used for
eddy covariance applications, and thus the instruments were
not calibrated as frequently as is done in applications for the
Global Atmosphere Watch network (WMO, 2001). Both sen-
sors were more accurate than the available calibration CH4
gases at TFS. In 2015 it was possible for the first time to use
an NOAA (National Oceanographic and Atmospheric Ad-
ministration, Boulder, CO, USA) reference gas cylinder (no.
CB09837) to fine-tune the FGGA. This was typically done

in the early summer season, when field personnel arrived at
TFS (late May).

Because the TGS 2600 sensors only show a weak response
to CH4 but are highly sensitive to temperature and humid-
ity, a LinPicco A05 Basic sensor (IST Innovative Sensor
Technology, Wattwil, Switzerland) was added next to the
TGS 2600 (see Fig. 1). The A05 is a capacitive humidity
module that also has a Pt1000 platinum 1 k� thermistor on
board to measure ambient temperature. The relative humid-
ity output by the A05 is a linearized voltage in the range of
0–5 V, and the Pt1000 thermistor was measured in three-wire
half-bridge mode using an excitation voltage of 4.897 V.

2.3 Calculations

Before analyses the data were processed in the following
way: (1) outliers were removed (2) relative humidities greater
than 105 % (accuracy of capacitive humidity sensors) were
deleted, and (3) reference CH4 mole fractions obtained from
the FGGA (since 2016) were filtered based on hard bound-
aries of housekeeping variables available for quality control.
For the latter we used the following hard boundaries for fil-
tering: (a) sample cell pressure had to be in the range of
130–143 Torr and (b) the instrument-specific ringdown time
of the laser for CH4 measurements had to be in the range of
13–17 ms. The accepted reference CH4 mole fractions were
thus all measured in the narrow range of cell pressures be-
tween 139.7 and 140.3 Torr and laser ringdown times be-
tween 14.02 and 14.94 ms, which indicates best performance
of the analyzer. Before 2016 (FMA instrument) these house-
keeping variables were not recorded.

The basic principle of operation of the TGS 2600 sensor
was described in detail by Eugster and Kling (2012). The
methane sensing mechanisms of different active materials
used in solid-state sensors were described by Aghagoli and
Ardyanian (2018). The TGS 2600 uses an SnO2 microcrys-
tal surface (Figaro, 2005b). Whereas the manufacturer de-
fines the sensor signal as Rs/R0, the ratio of the electrical
resistance Rs of the heated sensor material surface normal-
ized over its resistance R0 in the air under absence of CH4,
Hu et al. (2016) define the sensor signal as the ratio between
Rs and Rg, the resistance of the surface in the pure gas of
interest (here CH4). In all cases, considerations of techni-
cal sensor information are made for high mole fractions of
CH4 (e.g., 200 µmolmol−1) for an SnO2 surface according
to Hu et al. (2016), not for ambient mole fractions in the typ-
ical range of 1.7–4 µmolmol−1 (or less). Hence, some adap-
tations are always necessary because present-day sensors are
not yet designed for such low mole fractions. In order to sim-
plify calculations compared to what we presented in Eugster
and Kling (2012) – which closely followed the technical in-
formation provided by the manufacturer (Figaro, 2005a, b) –
we define the sensor signal as Sc = Rs/R0 but with R0 arbi-
trarily set to the resistance observed when the sensor delivers
V0 = 0.8 V output at Vc = 5.0 V supply voltage. The high-
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est voltages measured at TWE were 0.7501 and 0.7683 V
from sensors 1 and 2, respectively (which theoretically cor-
responds to the lowest CH4 mole fractions). With these as-
sumptions the sensor signal Sc can easily be approximated as
a function of the inverse of the measured TGS signal voltage
Vs,

Sc =
Rs

R0
≈ 0.952381 ·

1
Vs
− 0.1904762 . (1)

The full derivation is

Rs

R0
=

Vc·RL
Vs
−RL

Vc·RL
V0
−RL

=

Vc·RL−Vs·RL
Vs

Vc·RL−Vs·RL
V0

=

=
V0 (Vc−Vs)RL

Vs (Vc−V0)RL
=
V0 (Vc−Vs)

Vs (Vc−V0)
=

=
V0

Vc−V0

(
Vc

Vs
− 1

)
=

1
Vs
·
Vc ·V0

Vc−V0
−

V0

Vc−V0
.

Here RL is the load resistor over which Vs is measured (see
Figaro, 2005a, or Eugster and Kling, 2012, for more details)
but which can be eliminated in this algebraic simplification.

To compute absolute humidity, we used the Magnus equa-
tion to estimate saturation vapor pressure esat (in hPa) at am-
bient temperature Ta (in ◦C),

esat = 6.107× 10a·Ta/(b+Ta) ,

with coefficients a = 7.5 and b = 235.0 for Ta ≥ 0 ◦C and
a = 9.5 and b = 265.5 for Ta < 0 ◦C.

Actual vapor pressure e (hPa) was then determined as

e = esat ·
RH

100%
,

with relative humidity RH in percent and converted to abso-
lute humidity ρv (kgm−3) with

ρv =
e

Ta+ 273.15
·
p

p− e
·

100
Rv
≈ 0.217 ·

e

Ta+ 273.15
,

with p being atmospheric pressure (hPa) and Rv the gas con-
stant for water vapor (461.53 Jkg−1 K−1).

2.4 Statistical analyses

Statistical analyses were performed with R version 3.5.2 (R
Core Team, 2018). Trend analyses were performed for both
trend in CH4 mole fraction and drift of TGS 2600 measure-
ments using the Mann–Kendall trend test implemented in the
rkt package that is based on Marchetto et al. (2013). The an-
nual linear trend (or drift) was calculated using the robust
Theil–Sen estimator (Akritas et al., 1995) using weekly me-
dian values, and the significance of the trend (or drift) was
assessed using Kendall’s τ parameter. All trend and drift es-
timates were significant at p < 0.05. The highest two-sided
p value of the presented results was p = 0.000054, and thus

Figure 2. Difference between TGS 2600 and reference CH4 mea-
surements (30 min averages) as a function of air temperature when
using the Eugster and Kling (2012) conversion. Agreement was
good when ambient temperature was above freezing. The horizontal
color bar shows the±0.1 µmolmol−1 range around a perfect agree-
ment. The green band shows the interquartile range of bin-averaged
differences (TGS 2600 sensor 1), and dashed lines show the extent
of the 95 % confidence intervals. Gray bars at the bottom show the
number of 30 min averages in each bin. The scale bar (1000 h) on
the right specifies their size.

no detailed information on p values is given when statistical
significance of trends or drift is mentioned in the following.

For assessing the quality of the proposed calculation of
CH4 mole fractions from TGS 2600 sensors we inspected
weekly aggregated data using four key indicators:

Bias. This is the mean of the difference of each 30 min
averaged pair of CH4 mole fractions in micromoles per mole,
CH4,TGS – CH4,ref.

Stability. This is the bias expressed as a percent devi-
ation from the reference CH4 mole fraction, (CH4,TGS−

CH4,ref)/CH4,ref · 100%.
Variability. This is the mean relative deviation of the 95 %

confidence interval (CI) observed with the TGS 2600 sensor
from the corresponding 95 % CI of the CH4 reference mea-
surements (in percent), (CI95 %,TGS/CI95 %,ref− 1) · 100%.

Correlation of median diel cycles. Pearson’s product-
moment correlation coefficient between hourly aggregated
median diel cycles of CH4 measured by the TGS 2600 and
reference instruments.

In addition to conventional linear model fits (least
square method) we used an ANN approach. This was
performed in Python 3.7.1 using MLPRegressor from
sklearn.neural_network version 0.20.2 (Pedregosa et al.,
2011). We used a network with four hidden layers of sizes
500, 100, 50, and 5, respectively, and an adaptive learning
rate. Learning was done with the data obtained during the
calibration period 2014–2016, whereas the remaining years
2012–2013 and 2017–2018 were used for validation.
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Figure 3. Difference between TGS 2600 and reference CH4 mea-
surements (30 min averages) as a function of (a) relative humidity
(in %) and (b) absolute humidity (in kgm−3). The horizontal color
bar shows the ±0.1 µmolmol−1 range around a perfect agreement.
The green band shows the interquartile range of bin-averaged differ-
ences (TGS 2600 sensor 1), and dashed lines show the extent of the
95 % confidence intervals. Gray bars at the bottom show the number
of 30 min averages in each bin. The scale bar (1000 h) on the right
specifies their size.

3 Results and discussion

CH4 mole fractions estimated from TGS 2600 measurements
during the cold seasons differed strongly from the reference
measurements when the Eugster and Kling (2012) approach
was used (not shown); that approach translated the informa-
tion from the technical specifications of the TGS 2600 sen-
sor (Figaro, 2005a, b) to outdoor applications. The agree-
ment with the CH4 reference measurements was within
±0.1 µmolmol−1 with temperatures above freezing (Fig. 2)
but not so during cold conditions (Ta < 0 ◦C). The differ-
ences between TGS estimates and CH4 reference measure-
ments were largest with the Eugster and Kling (2012) ap-
proach when relative humidity was between 50 % and 90 %
(Fig. 3a). When converting relative humidity to absolute hu-
midity, the results became satisfactory for absolute humidity
values greater than 0.004 kgm−3 (Fig. 3b). Using absolute
humidity in place of relative humidity for the correction of
the TGS 2600 was already attempted by Collier-Oxandale
et al. (2018); this contrasts with the manufacturer’s sug-
gestion (Figaro, 2005a). Because absolute humidity above
0.004 kgm−3 is only possible at temperatures above 0 ◦C it
appears quite obvious that temperature and humidity correc-
tions of solid-state sensors most likely do not relate to rela-

tive humidity but to either actual vapor pressure (in hPa) or
absolute humidity (in kgm−3). In all tested models absolute
humidity performed marginally better than vapor pressure or
mixing ratio (measured by R2; not shown); hence we sug-
gest the following model and parameterization to estimate
CH4 mole fractions in micromoles per mole from TGS 2600
signal voltage measurements:

CH4 =1.425+ 0.12Sc+ 0.375/Sc− 0.0065Ta+

+ 53.3ρv+ 0.0022Sc · Ta− 0.0017Ta/Sc+

+ 4.9Sc · ρv− 67.4ρv/Sc− 0.39Sc · Ta · ρv

+ 1.15Ta · ρv/Sc , (2)

with Sc being the dimensionless sensor signal (see Eq. 1),
Ta the ambient air temperature in ◦C, and ρv the absolute hu-
midity in kilograms per cubic meter. The parameter estimates
were derived from the entire 2012–2018 dataset for TGS sen-
sor 1 (Table 1, “entire period”). For other sensors the result
from Eq. (2) can be considered as a linearized signal that can
be fine-tuned with a sensor-specific two-point calibration as
suggested in Sect. 3.4 of Eugster and Kling (2012).

The linear model in Eq. (2) was derived from a suite
of candidate models including interactions among predic-
tors and quadratic terms of each variable, and then step-
wise elimination using the stepAIC function in the MASS
package of R was employed to find the model with the low-
est AIC (Akaike’s information criterion). Unless explicitly
mentioned, we analyzed CH4 mole fractions computed with
Eq. (2) using the parameters obtained from all data measured
by TGS 2600 sensor 1. Only in the direct comparison with
the ANN (Sect. 3.1) did we determine an additional param-
eter set using the same calibration period as the ANN used
(Sect. 2.4), making a direct comparison of performance in
validation possible.

If ambient temperature influences the signal of the
TGS 2600 in such a way as expected from the technical doc-
umentation (Figaro, 2005a, b), then wind speed could be a
third factor influencing the conversion from TGS 2600 sen-
sor voltages to CH4 mole fractions. To investigate this addi-
tional factor, we produced a heat loss model, assuming that
the sensor correction is related to the cooling of the heated
surface of the solid-state sensor, which has a nominal surface
temperature Ts of 400 ◦C (Falabella et al., 2018). This is the
typical operation temperature of SnO2–Ni2O3 sensors (Hu
et al., 2016). Our candidate model for heat loss (HL in W)
was

HL∼ ξ · u2
· (Ts− Ta) · (ρd ·Cd+ ρv ·Cv) , (3)

with u being mean horizontal wind speed (ms−1), Ts and
Ta the sensor surface and ambient air temperature (K), re-
spectively, ρd the density of dry air (kgm−3), ρv the abso-
lute humidity (kgm−3), and Cd and Cv the heat capacity of
dry air and water vapor, respectively (Jkg−1 K−1). The scal-
ing coefficient ξ is a best-fit model parameter (units: s m).
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Table 1. Goodness of fit of TGS 2600 (sensor 1)-derived CH4 mole fractions (30 min averages) obtained from a linear model using air
temperature and absolute humidity (Eq. 2), a heat loss model (Eq. 3), and an artificial neural network (ANN). For the goodness of fit the
coefficient of determination (R2) and the root mean square error (RMSE) of the residuals are reported for the overall model and separately
for warm and cold conditions. The parametrization of the linear model given in Eq. (2) used the entire 2012–2018 period. For a more
rigorous model test, all three approaches were calibrated with the data measured in years 2014–2016, and the remaining data (2012–2013
and 2017–2018) were used for validation.

Linear model Heat loss model Artificial neural network

Entire period Calibration Validation Calibration Validation Calibration Validation

Overall

R2 0.424 0.447 0.207 0.166 0.284 0.311 0.282
RMSE (µmolmol−1) 0.030 0.026 0.041 0.032 0.046 0.030 0.043

Warm conditions (Ta ≥ 0 ◦C)

R2 0.476 0.518 0.288 0.180 0.181 0.278 0.265
RMSE (µmolmol−1) 0.027 0.026 0.032 0.034 0.039 0.032 0.036

Cold conditions (Ta < 0 ◦C)

R2 0.322 0.345 0.034 0.157 0.055 0.314 0.092
RMSE (µmolmol−1) 0.033 0.027 0.052 0.031 0.055 0.028 0.053

The assumption made here was that the wind speed governs
the eddy diffusivity of heat transported along the temperature
gradient between the sensor surface and ambient air, and the
moisture correction is only associated with the fact that water
vapor has a higher heat capacity (1859 Jkg−1 K−1) than dry
air (1005.5 Jkg−1 K−1), and hence the heat capacity of moist
air increases accordingly with ρv.

3.1 Performance of the TGS 2600 sensor at 30 min
resolution

Using Eq. (2) yields satisfying agreement with 30 min aver-
aged data under both typical low-Arctic summer and winter
conditions (Fig. 4) with an overall R2 of 0.424 (Table 1).
When testing the linear model approach (Eq. 2) more rigor-
ously by splitting the available data into a calibration period
(years 2014–2016) and a validation period (years 2012–2013
and 2017–2018), some limitations can be seen, in particu-
lar under cold conditions, where none of the approaches per-
formed very well in the validation period. The ANN had a
more balanced performance between the calibration and vali-
dation periods, although it performed slightly less well under
warm conditions (Ta ≥ 0 ◦C).

A detailed inspection of four representative 7-week time
periods at full 30 min resolution is shown in Figs. 5–8. Typi-
cal summer conditions at the beginning of this study (Fig. 5)
and towards the end of the analyzed period (Fig. 6) indicate
that the short-term agreement (R2

= 0.653; Fig. 5) was bet-
ter when the TGS sensor was still relatively new than when
it was 7 years old (R2

= 0.381; Fig. 6), but the variability
decreased (improved) from −42 % to −9 % with no relevant
difference in bias and stability (0.01 µmolmol−1 and 0.4 %

vs. 0.00 µmolmol−1 and 0.0 %, respectively). In winter the
timing of most events is correctly captured (Fig. 7) with an
R2 of 0.445, but the dynamics are not satisfactorily captured
by the TGS sensor, indicated by a 59 % underestimation of
the 95 % CI during this midwinter period. The transition from
warm to cold season (Fig. 8) shows a mixture of days when
the regular diel cycle, which is typical for the warm sea-
son, is still adequately captured, but the dynamics of periods
with an air temperature below 0 ◦C (see Fig. 4), when CH4
mole fractions tend to be highest as in winter (Fig. 7), are
not adequately captured. Still, with an R2 of 0.512 (Fig. 8)
more than 50 % of the variance observed in the 30 min av-
eraged CH4 reference measurements is captured by the low-
cost TGS 2600 sensor.

Because of the absence of local sources of carbon monox-
ide and other air pollutants to which the TGS 2600 sensor is
also sensitive (besides CH4), we investigated a special case
when smoke and haze from wildfires south of the Books
Range polluted the air in the TFS area on 26 June 2015
and compared the performance of both TGS sensors dur-
ing that day with conditions 3 d before that event and on
the same date in the following 3 years. The net effect
of increased air pollutants was an apparent small decrease
in the CH4 mole fractions calculated via Eq. (2) by ap-
proximately −0.03 µmolmol−1. At the same time the vari-
ability of the residuals increased from typically ±0.014 to
±0.027 µmolmol−1 (24 h averages). Thus, the influence of
the wildfire smoke was of the same order of magnitude as
the difference between TGS-derived CH4 mole fractions and
the reference instrument on most other days of the year (see
Figs. 5–8).
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Figure 4. Overview over annual courses of 30 min averaged air temperature (green) and CH4 mole fractions (blue and red). Pale color bands
show the daily interquartile range (50 % of values between the first and third quartiles) of measurements from all years. Solid lines show
actual measurements. Red lines are the reference CH4 measurements, and blue lines show the CH4 mole fraction derived from TGS 2600
measurements (sensor 1). Actual measurements show 30 min mean values.

3.2 Performance of weekly aggregated data

The TGS 2600 is not expected to provide short-term accu-
racy comparable to high-quality instrumentation (see also
Lewis et al., 2018). However, Eugster and Kling (2012) ar-
gued that such measurements may still provide additional in-
sights as compared to the passive samplers described by God-
bout et al. (2006a, b) by integrating over longer time frames.
Thus, here we inspected the performance of weekly aggre-
gated estimates derived from the TGS 2600 in order to in-
spect drift of the two sensors and their performance over the
7-year deployment period. Note that in Eq. (2) we did not
include a drift correction. Figure 9 shows weekly medians
of sensor signals, the agreement with the reference signal,
and the difference between the CH4 mole fractions obtained
from both TGS 2600 sensors mounted at the same position
(Fig. 1). The two TGS 2600 sensors (1 and 2) showed a trend
in their signals of −18.8 and −15.5 mVyr−1, respectively
(Fig. 9a). Thus, with typical signals on the order of 200–
700 mV (Fig. 9a) the lowest (winter) readings may no longer

be measurable after 10–13 years of continuous operation, in-
dicating the end of life of a TGS 2600.

Figure 10 shows the weekly median bias, variability, and
the correlation between the weekly aggregated median diel
cycle of CH4 at hourly resolution between the TGS 1 mea-
surements and the reference. Despite the trend of the sensor
signal shown in Fig. 9a and b, both the bias and variabil-
ity primarily show a seasonal pattern with a slightly nega-
tive bias (around −0.02 µmolmol−1) during peak growing
season and a corresponding positive deviation in midwinter
when temperatures can be well below−30 ◦C (Fig. 10a). The
variability (Fig. 10b) shows the inverse pattern of the bias. If
bias is expressed as the relative bias (i.e., stability), the stabil-
ity vs. variability plot (Fig. 11) shows points lying uniformly
around the line of a −1 : 1 relationship (R2

= 0.67). This in-
dicates that both variability and stability can be improved at
the same time because there is no tradeoff visible in Fig. 11.
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Figure 5. (a) Time series of TGS 1-derived CH4 during a 7-week snow- and ice-free period in the first year of the long-term deployment
(2012), (b) correlation with reference mole fraction, and (c) residuals (TGS 2600 all minus the reference) of 30 min averaged measurements.
Thin solid lines in (a) show the result when all data are used with Eq. (2), reference mole fraction is shown with a red bold line, c/v shows
an alternative fit from splitting the available data into a calibration and a validation part, and the dashed line shows the performance of an
artificial neural network (ANN) fit. This example belongs to the validation period of the TGS 2600 c/v and ANN fits.

3.3 Linear trend and drift estimates

All linear trend estimates were statistically significant (see
Sect. 2.4). However, our measurements started with warm-
season measurements only (2012–2014) that were succes-
sively expanded to include cold-season measurements. Thus,
all interpretation of the trends and drifts presented here
should be considered with caution given the long gaps in data
due to the technical challenges of operating such equipment
under adverse winter conditions. The CH4 mole fraction
trend observed with the high-quality reference measurements
was 10.1 nmolmol−1 yr−1. This is 2.5 times the trend ob-
served from 2005 to 2011 by NOAA (28.6±0.9 nmolmol−1

or 4.09 nmolmol−1 yr−1; Table 2.1 in Hartmann et al., 2014)
but of the same order of magnitude reported by Nisbet et al.
(2014) for 2013 (last year covered by that study) for lati-
tudes north of the Tropic of Cancer. Thus, this trend may be
real, and hence all trends seen in low-cost sensor signals are
not necessarily solely an artifact of such sensors. However,

it remains a challenge to deduce the true trend in CH4 mole
fractions over longer time periods using such a low-cost sen-
sor because of drifting signals. Thus, we inspected the drift
of the TGS 2600-derived mole fraction with respect to the
(true) CH4 trend observed with the high-quality reference
instrument. These drifts appear to be smaller than the true
trend but are still considerable: the bias of TGS-derived CH4
mole fractions drifted by 4–6 nmolmol−1 yr−1 (40 %–60 %
of actual trend), and variability drifted by −0.24 % yr−1.
They provide encouraging results suggesting that with occa-
sional (infrequent) calibration with a high-quality standard,
e.g., using a traveling standard operating during a few good
days with adequate coverage of the near-surface diel cycle
of CH4, TGS 2600 measurements might be suitable for the
monitoring of CH4 mole fractions in other areas as well. As
shown in Fig. 10c the correlation of median diel cycles be-
tween TGS estimates and CH4 reference measurements is
one of the weak points in the current performance of the
TGS 2600 sensors. Furthermore, we observed a significant
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Figure 6. As in Fig. 5 but with measurements from a 7-week snow- and ice-free period in 2017 at a sensor age of 7 years. This example
belongs to the validation period of the TGS 2600 c/v and ANN fits.

negative trend of the correlation coefficient of −0.051 yr−1

(Fig. 10c). However, the key finding is that the typical diel
cycle during the warm season (air temperature> 0 ◦C) disap-
pears during winter conditions (Figs. 4, 7), and thus separate
transfer functions for warm and cold temperatures might be a
solution for future studies (Table 1). Our Eq. (2) is thus inten-
tionally derived from the entire dataset to provide a starting
point for more elaborate fine-tuning in projects where this is
desired.

3.4 Potential of using artificial neural networks

Casey et al. (2019) found that artificial neural networks
(ANNs) outperformed linear models in mitigating curvature
and linear trends in trace gas measurements when used with
the same set of input variables during a 3-month compari-
son period. To inspect the potential of ANNs at our Arctic
long-term dataset, we added the ANN results to Figs. 5–8.
In summer (Figs. 5, 6) we did not find a substantial differ-
ence between an ANN and the linear approach of Eq. (2) in
terms of root mean square error (RMSE) or R2 between pre-
dicted and measured CH4 mole fractions (Table 1). In win-

ter, with temperatures below freezing, the ANN performed
clearly better in the validation than the linear approach, but
both approaches remained unsatisfactory (R2 < 0.1) despite
the fact that both approaches were similar in the calibration
period (R2

≈ 0.3, Table 1).
During the warm period we found cases where the ANN

was much better in capturing a specific daily feature, as for
example on 11 July 2012 (Fig. 5a), when the daily mini-
mum was nicely captured by the ANN, but the linear model
was much too low. Contrastingly, in 2017 (Fig. 6a) periods
could be found when the daily dynamics were correctly cap-
tured by the ANN but at too low of mixing ratios (e.g., 10–
18 July 2017; Fig. 6a). It should be noted that at this lati-
tude the sun does not set between 24 May and 20 July; thus
nocturnal conditions are clearly different from conditions at
lower latitudes such as the ones investigated by Casey et al.
(2019). Similarly, the transition from warm to cold season
(Fig. 8) was challenging with both the linear model and ANN
approach. We have only used two variables, Ta and humidity,
that according to manufacturer specifications (Figaro, 2005a,
b) influence the TGS 2600 sensor signal. In reality, the same
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Figure 7. As in Fig. 5 but with measurements from a 7-week period in midwinter with temperatures plunging down to −40 ◦C. High CH4
mole fractions coincide with the coldest temperatures (see Fig. 4). This example belongs to the validation period of the TGS 2600 c/v and
ANN fits.

two variables also influence the CH4 production in water-
logged ecosystems and thus contribute to the true CH4 signal
in addition to the cross-sensitivity, which we try to correct
with Eq. (2).

An ANN that can separate the effect of ambient variations
of CH4 mole fractions from the artifact of cross-sensitivity
of the TGS 2600 to Ta and humidity may however outper-
form a linear model approach in future studies if more po-
tentially important driving variables are included than only
those specified by the manufacturer (Figaro, 2005a, b).

3.5 Suggestions for future work

The interquartile ranges and 95 % confidence intervals of
each air temperature (Fig. 12a) or absolute humidity bin
(Fig. 12b) are very similar over a wide range of tempera-
tures and humidity levels but tend to become more variable in
bins with few data (i.e., lowest and highest temperatures and
highest absolute humidities in Fig. 12). Deviations are gen-
erally constrained within±0.1 µmolmol−1 or better but with
higher variability at both temperature ends, where data cover-

age is poor (gray bars at bottom of Fig. 12a) as temperatures
below −30 ◦C were not frequently covered due to technical
problems with the measurement station and summer temper-
atures above 20 ◦C are still rather rare at this low-Arctic lat-
itude (Hobbie and Kling, 2014). A slightly different picture
emerges for low absolute humidity: 56 % of measurements
are at lower humidities than the saturation humidity at 0 ◦C
(0.0049 kgm−3); thus the rather homogenous variances at
low humidity (Fig. 12b) indicate that humidity is not of con-
cern at low temperatures, and future attempts for improve-
ments should rather focus on humidity above 0.01 kgm−3

and temperatures above 20 ◦C that are not normally found in
the Arctic.

Based on physical considerations one might expect that
specific humidity or water vapor mixing ratio instead of abso-
lute humidity could lead to further improvements because ab-
solute humidity still depends on temperature. However, our
tests have not indicated a relevant gain of information or ac-
curacy of prediction, but future work should also try to find
a better physical correction model than the purely empirical
one used here based on manufacturer information.
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Figure 8. As in Fig. 5 but with measurements from a 7-week period during the transition from fall to early winter. This example belongs to
the validation period of the TGS 2600 c/v and ANN fits.

Figure 9. (a) Weekly median sensor signals from both TGS 2600 sensors, (b) CH4 derived with Eq. (2) for TGS sensor 1 and measured by
the Los Gatos Research reference instrument, and (c) absolute difference between the two TGS 2600 sensors. The signals from both sensors
were converted to CH4 using Eq. (2) parameterized with data from TGS sensor 1. Symbol size is proportional to relative data coverage.
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Figure 10. (a) Weekly median bias, (b) median variability, and (c) correlation between weekly median diel cycles of TGS 2600 sensor 1 and
the reference. Symbol size is proportional to relative data coverage.

Figure 11. Variability and stability (relative bias) of weekly median
TGS 2600 sensor 1-derived CH4 mole fractions are inversely related
and plotted along the −1 : 1 line. Symbol size is proportional to
relative data coverage.

Another approach was taken by van den Bossche et al.
(2017), who performed an in-depth laboratory calibration
of the very similar but less sensitive Figaro TGS 2611-E00
sensor (the manufacturer only specifies a response above
300 µmolmol−1 CH4; Figaro, 2013) at different tempera-
tures and levels of relative humidity over a CH4 calibration
range starting at ≈ 2 µmolmol−1 ambient mole fraction up
to 10 µmolmol−1 CH4. Despite the effort, the residual mole
fractions remained large (range of ca. −1.5 µmolmol−1 to
+1.1 µmolmol−1) – too large for the application we present
here. Our efforts to calibrate our TGS 2600 sensors in a labo-
ratory climate chamber in a similar way were not satisfactory
(Eugster, unpublished), hence our approach presented here to
determine the sensor behavior from long-term outdoor mea-
surements under real-world conditions. Contrastingly, Kneer

Figure 12. Residuals of 30 min averaged TGS 2600 vs. refer-
ence CH4 measurements as a function of (a) air temperature and
(b) absolute humidity. Colored areas show the interquartile range
(50 % CI), bold lines show the median, and dashed lines show
the bin-averaged 95 % confidence interval. Bin size was 1 ◦C and
0.0002 kgm−3, respectively. Gray bars at the bottom show the num-
ber of 30 min averages in each bin; the scale bar (1000 h) on the
right specifies their size.

et al. (2014) are convinced that “to be of use for advanced ap-
plications metal-oxide gas sensors need to be carefully pre-
pared and characterized in laboratory environments prior to
deployment”. While this is theoretically correct, it remains
difficult to carry out laboratory treatments from−41 to 27 ◦C
as would be required for our Arctic site. The data we present
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indicate that it is most likely absolute humidity (or specific
humidity or mixing ratio), not relative humidity, that should
be used for such calibrations, which in principle should pro-
vide the best quality results if the relevant factors are known
and can be included in the calibration setup. Ideally, manu-
facturers should carry out both laboratory tests and field tri-
als and provide the necessary correction functions together
with sensors. However, due to the expense and time it takes
to carry out long tests, be it in the laboratory or in the field,
the present development goes in the direction of collocation
studies (Piedrahita et al., 2014) en route to certification of
sensors (Nick Martin, NPL, UK, personal communication,
2020), similar to what we have done in the Arctic.

The TGS 2600 sensor’s best performance is in applications
where passive samplers would be another option (see also
Eugster and Kling, 2012). Contrastingly, using the TGS 2600
for short-term measurements (resolution of seconds to min-
utes) has not yet led to satisfactory results (Kirsch, 2012;
Falabella et al., 2018). In our dataset we found that adding
wind speed to the empirical linear model slightly improved
the model fit during the warm season, but because no reliable
continuous winter wind speed measurements were possible
at the TWE site we did not include wind speed in our Eq. (2).
However, this may be a key component for understanding the
variability of TGS 2600 measurements when flying an un-
manned aerial vehicle (UAV) where turbulent conditions may
change within seconds to minutes. To address this additional
factor, we used the heat loss model given in Eq. (3). However,
although this approach is more mechanistic than Eq. (2),
it was much less able to predict CH4 mole fraction from
TGS 2600 measurements than the empirical linear model
and ANN approaches (Table 1). But in order to make further
progress on improving the transfer function from TGS 2600
signals to defensible CH4 mole fractions it will be essential
to increase our understanding of the physical processes that
influence such measurements. This is not an easy task since
there is substantial proprietary knowledge that the manufac-
turer has not revealed. Newer, promising developments are
underway that work with a mixed-potential sensor using tin-
doped indium oxide and platinum electrodes in combination
with yttria-stabilized zirconia electrolytes that show a loga-
rithmic signal range of 0–10 mV for the 1–3 µmolmol−1 CH4
range of interest for ambient air studies (Sekhar et al., 2016).
The basic principle that the active metal oxide is charged with
O2 (or O2−), which then oxidizes CH4, seems to be similar to
the SnO2-based TGS 2600; thus there is a good chance that
our findings for the TGS 2600 are also useful for assessing
the performance of newer solid-state sensors with different
active materials.

4 Conclusions

We present the first long-term deployment of two identical,
low-cost TGS 2600 sensors that show a sensitivity to ambi-

ent levels of CH4 (here: range of 1.824–2.682 µmolmol−1

as measured by a high-quality Los Gatos Research reference
instrument). We suggest a new transfer function to correct
the TGS 2600 signal for cross-sensitivity to ambient temper-
ature and humidity that also yields satisfactory results under
cold climate (Arctic) conditions with temperatures down to
−40 ◦C. This was only possible by using absolute humidity
and not relative humidity for the correction. With this cor-
rection determined over the entire 2012–2018 data period,
the 30 min average CH4 mole fraction could be derived from
TGS 2600 measurements within ±0.1 µmolmol−1. The two
completely different regimes of diel CH4 mole fraction vari-
ations during the cold season (typically with a snow cover
and frozen surface waters) and the warm season (when plants
are active in the low Arctic) suggest that further improve-
ments can be obtained by more specifically developing sepa-
rate transfer functions for cold and warm conditions.

We consider the quality of TGS 2600-derived CH4 esti-
mates adequate if aggregated over reasonable periods (e.g.,
days or one week), but caution should be taken with appli-
cation where short-term response is of key relevance (e.g.,
within seconds to minutes as required for mobile measure-
ments with UAVs). The deterioration of the sensor signal
over time indicates that a TGS 2600 that is operated under
ambient conditions as in our deployment at a low-Arctic site
in northern Alaska (Toolik wet sedge site) has an estimated
lifetime of ca. 10–13 years. Thus, there is potential beyond
preliminary studies if the TGS 2600 sensor is adequately cal-
ibrated and placed in a suitable environment where cross-
sensitivities to gases other than CH4 are of no concern.

Data availability. The data used in this study can be down-
loaded from the Environmental Data Initiative (EDI) portal via
https://doi.org/10.6073/pasta/dddeb05b2806e2f5788fadd6fc590ef1
(Eugster et al., 2020). The statistical fits shown in Figs. 5–8
are made available via the ETH Zurich Research Collection:
https://doi.org/10.3929/ethz-b-000369689 (Eugster and Eugster,
2020).
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