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1 BET Measurements

Table S1: Individual measurements and mean values of sample surface area.
Glassy K-feldspar (m2g−1) Crystalline K-feldspar (m2g−1)
1.430 4.062
1.710 5.195
2.204 5.769
1.781 5.009

2 Fitting Liquid Proportion Curves

The liquid proportion curves were fitted using the assumption that the probability of a droplet
remaining liquid at time t is described by a non-homogeneous Poisson process,

Pliq(t) = exp

[
−
∫ t

t0

J(T (t′))dt′
]
, (1)

where t0 is the time at which the temperature drops below the melting point of ice. To convert Pliq

to a function of T substitute dT = −αdt, since linear cooling ramps were used in this experiment.

Pliq(T ) = exp

[
−
∫ Tm

T

J(T ′)

α
dT ′
]
, (2)

where Tm is the melting temperature of ice. At this point it is necessary to assume a functional
form for J(T ). Here we assume for simplicity that log(J) varies linearly with T . Typically in ice
nucleation experiments the majority of droplets freeze in a narrow temperature region. Defining the
centre of this region as T0 and linearly expanding log(J) around it we obtain

J(T ) = A exp[−ω(T − T0)], (3)

where A is J(T0) and ω is −d log(J(T ))
dT |T0

. This choice is justified by the quality of the resultant fit
in the region of interest.

Substituting equation 3 into equation 2 and integrating we obtain

Pliq(T ) = exp
−A
αω

[e−ω(T−T0) − e−ω(Tm−T0)]. (4)

This function can be fitted to the liquid proportion data using standard techniques, with T0 fixed
at the temperature at which half of the droplets are frozen. Here Scipy’s optimize.curve fit function
was used, the optimized parameters are in Table S2.

3 Error Calculations

Stochastic errors were estimated using the Wilson score confidence interval on each temperature bin
with more than one nucleation event. An example is shown in Figure S1. The errors in the liquid
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Table S2: Fitting parameters for Figure 5A using equation 4.
Sample T0(K) A ω
Crystalline K-Feldspar 0.1 wt% 259.6 0.009 0.915
Crystalline K-Feldspar 0.05 wt% 257.6 0.014 1.020
Crystalline K-Feldspar 0.025 wt% 256.9 0.014 1.046
Crystalline K-Feldspar 0.0125 wt% 256.9 0.006 0.664
Glassy K-Feldspar 1.0 wt% 254.3 0.005 0.391
Glassy K-Feldspar 0.1 wt% 250.8 0.008 0.607
Background 245.6 0.005 0.433

proportion were calculated based on how the minimum and maximum number of of freezing events
would effect the liquid proportion at that temperature bin, assuming the mean number events were
seen in all higher temperature bins. These errors were then combined with the errors in INP area
in the calculation of ns and J using standard propagation techniques.

Figure S1: Data from 0.1%wt crystalline K-feldspar binned in 0.5◦C wide bins. The error bars are
from the Wilson score at a 95% confidence interval.
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4 Background Removal

Each liquid proportion curve P (T ) is the probability that a droplet is still liquid at temperature T .
The measured curve, Pmeas(T ) is the product of the probability that there has been no ice nucleation
event caused by the ice nucleating agent of interest PINP(T ), and the probability that there has been
no background event Pback(T ). Hence the background can be removed by dividing Pmeas(T ) by
Pback(T ). The influence of the background can be seen in Figure S2, where only the 0.1wt% glassy
sample shows a noticeable change, although it is a maximum of 0.2◦C.

Figure S2: The background adjusted liquid proportion curve fits for pure water, crystalline K-
feldspar and glassy K-feldspar. The colours are the same as Figure 5 in the manuscript.
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