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Abstract. The increasing availability of sensors imag-
ing cloud and precipitation particles, like the Multi-Angle
Snowflake Camera (MASC), has resulted in datasets com-
prising millions of images of falling snowflakes. Automated
classification is required for effective analysis of such large
datasets. While supervised classification methods have been
developed for this purpose in recent years, their ability to
generalize is limited by the representativeness of their la-
beled training datasets, which are affected by the subjective
judgment of the expert and require significant manual ef-
fort to derive. An alternative is unsupervised classification,
which seeks to divide a dataset into distinct classes without
expert-provided labels. In this paper, we introduce an un-
supervised classification scheme based on a generative ad-
versarial network (GAN) that learns to extract the key fea-
tures from the snowflake images. Each image is then as-
sociated with a distribution of points in the feature space,
and these distributions are used as the basis of K-medoids
classification and hierarchical clustering. We found that the
classification scheme is able to separate the dataset into dis-
tinct classes, each characterized by a particular size, shape
and texture of the snowflake image, providing signatures of
the microphysical properties of the snowflakes. This finding
is supported by a comparison of the results to an existing
supervised scheme. Although training the GAN is compu-
tationally intensive, the classification process proceeds di-
rectly from images to classes with minimal human interven-
tion and therefore can be repeated for other MASC datasets
with minor manual effort. As the algorithm is not specific to
snowflakes, we also expect this approach to be relevant to
other applications.

1 Introduction

The microphysical properties of atmospheric ice and snow
have significant implications for several topics in atmo-
spheric science. In numerical weather prediction (NWP) and
climate models, the representation of ice processes has a con-
siderable influence on the forecast (Molthan and Colle, 2012;
Morrison et al., 2015; Gultepe et al., 2017; Elsaesser et al.,
2017), affecting the distribution of predicted precipitation,
latent heat and radiative effects. More generally, precipita-
tion and clouds are recognized as being among the largest
uncertainties in climate predictions (e.g., Flato et al., 2013).
In another context, microphysical assumptions also play an
important role in the remote sensing of ice and snow be-
cause the remotely obtained signal only conveys partial in-
formation about the properties of the icy hydrometeors, and
retrieval algorithms need to be constrained by prior knowl-
edge about the microphysics (e.g., Delanoë and Hogan, 2010;
Wood et al., 2014; Mace and Benson, 2017; Leinonen et al.,
2018).

Given the importance of microphysics, the observational
geoscience community has made considerable efforts to de-
velop instruments that characterize the microphysical prop-
erties of falling snowflakes in situ. Measuring the proper-
ties of individual falling snowflakes is fairly challenging,
as some important properties such as the snowflake mass
are not readily observable using visual techniques due to
the variation of the internal structure of snowflakes. More-
over, the widespread optical disdrometers, such as the Par-
sivel (Löffler-Mang and Joss, 2000) and the 2D Video Dis-
drometer (2DVD; Schönhuber et al., 2007), can only dis-
cern a silhouette of the falling particle, unable to provide
information about the surface texture. To address this issue,
snowflake-imaging instruments have been actively developed
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in recent years. Among these is the Multi-Angle Snowflake
Camera (MASC; Garrett et al., 2012), which employs three
cameras positioned at different angles to captures images of
snowflakes illuminated by a flash as they fall through its
measurement volume. Other similar instruments include the
Snowflake Video Imager (SVI; Newman et al., 2009, also
known as Particle Video Imager or Particle Imaging Package)
and the Dual Ice Crystal Imager (D-ICI; Kuhn and Vázquez-
Martín, 2020).

The datasets collected so far by various groups (e.g., Gaus-
tad et al., 2015; Notaroš et al., 2016; Praz et al., 2017; Gen-
thon et al., 2018) show that the detailed images obtained by
the MASC provide a signature of the processes that led to
the formation of each snowflake. The MASC can discern
processes such as various modes of deposition growth like
columns, plates and dendrites, as well as aggregation, riming
and melting (for an overview of these, see, e.g., Lamb and
Verlinde, 2011). As these processes depend on the environ-
mental conditions in which the snowflake grew, the MASC
can provide information about the relative occurrence of
these conditions in a specific snowfall event and, over longer
timescales, the local climate.

While trained human observers can determine the pres-
ence of various snow growth processes from MASC images,
the large datasets collected by the MASC require computer
analysis in order to derive statistically meaningful quantities
of data. The computer processing of the image data is not
straightforward because much of the information is provided
by shape and the surface texture of the snowflake. Feind
(2006) and Lindqvist et al. (2012), among others, previously
developed algorithms to classify ice crystals based on im-
ages from airborne probes. To enable large-scale analysis of
microphysics from MASC data, Praz et al. (2017, hereafter
P17) introduced a machine-learning-based classification al-
gorithm that uses features extracted from the images with
image-processing software, providing information about the
size, shape and surface patterns of each snowflake. This al-
gorithm can classify the snowflakes and also estimate the de-
gree of riming and the state of melting, enabling microphys-
ical information to be extracted on long timescales.

The development of convolutional neural networks
(CNNs) has recently greatly improved the image-recognition
skill of computers. Deep CNNs, which consist of a large
number of successive convolution layers and nonlinearities,
have proved to be able to classify images based on the im-
age data alone, without manual feature extraction. Instead,
the CNN adaptively learns the important features of images
that it is trained with. Such advances could be reasonably ex-
pected to lend themselves well to MASC data analysis, and
indeed Hicks and Notaroš (2019) recently described a CNN-
based classification scheme for MASC images that achieved
a performance comparable to the P17 algorithm.

Supervised learning methods, such as those adopted by
the abovementioned studies, depend on the availability of an
expert-derived training dataset to train them. Obtaining such

datasets is labor intensive, especially for CNNs that benefit
from large amounts of training data. Moreover, developing
the training datasets is somewhat subjective as it depends on
the judgment of the expert to determine the “correct” classi-
fication for each image. The alternative is unsupervised clas-
sification, which tries to organize the training data without
human intervention. Unsupervised classification methods are
able to operate on entire datasets without training labels, and
can be less subjective than supervised classification, but are
also more complex and difficult to implement as the role of
the computer-based learning system in the process is much
larger. Furthermore, unsupervised classification of images re-
quires the extraction of those features of the images that are
essential to classification, and ideally those features should
themselves be determined in an unsupervised manner.

Unsupervised learning from image data has recently bene-
fited from the introduction of generative adversarial networks
(GANs; Goodfellow et al., 2014). GANs consist of two neu-
ral networks (usually deep CNNs), the discriminator and the
generator. These are trained adversarially: the discriminator
is trained to distinguish samples that belong to the training
dataset from those that do not, while the generator is trained
to produce samples that the discriminator considers to be part
of the training data. Consequently, the generator learns to
create artificial samples that strongly resemble those found
in the dataset. GANs have been recently demonstrated to be
able to create realistic examples of, for example, human faces
(Karras et al., 2019) and landscapes (Park et al., 2019), and
have been demonstrated to be applicable to atmospheric sci-
ence data analysis (Leinonen et al., 2019).

The GAN generator is a deterministic neural network, but
it can produce different outputs because it is fed random
noise as an input. The random noise is sampled from a sim-
ple probability distribution such as the multivariate standard
normal distribution. Thus, the generator learns to map the
simple probability distribution to the highly complex, spa-
tially structured distribution of the image dataset. It is fairly
straightforward to add another output to the discriminator,
which is trained to recover all or part of the noise input of
the generator, as demonstrated by the GAN variant called the
Information-Maximizing GAN (InfoGAN; Chen et al., 2016).
Accordingly, the recovered part of the noise input can be un-
derstood as latent variables that encode certain learned prop-
erties of the images, and thus the generator acts a decoder
from the latent variables to image samples, and the discrimi-
nator as an encoder with the approximately inverse map. The
training process encourages both the generator and the dis-
criminator to map the latent variables to highly recognizable
features of the images, thus capturing their essential proper-
ties. In the original InfoGAN paper, it was shown that Info-
GAN can, in an unsupervised manner, recognize important
modes of variation in its input images. Similar results have
been achieved with a related GAN variant called the bidirec-
tional GAN (Donahue et al., 2017).
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In this article, we describe a GAN trained on a dataset of
MASC images and the use of the GAN-extracted latent vari-
ables for unsupervised classification with the K-medoids al-
gorithm. We show that a more consistent classification can
be achieved by associating each image with a distribution
of points rather than a single point in the latent space. This
combination of a GAN and a more traditional unsupervised
machine learning algorithm can be used to classify snowflake
datasets without human intervention.

The article is organized as follows. Section 2 describes the
snowflake datasets and data processing. Section 3 gives an
overview of the machine learning methodology, and Sect. 4
describes the implementation details used for this work. Sec-
tion 5 discusses the classification results for the snowflake
data and presents a quantitative and qualitative evaluation of
them. Finally, Sect. 6 summarizes the study.

2 Data

The main source of our snowflake image dataset is the de-
ployment of a MASC in Davos, Switzerland, during 2015
and 2016. The MASC was located at 2450 m above mean
sea level, with a long snowy season, and was enclosed by
a Double Fence Intercomparison Reference (DFIR) setup.
The dataset includes a wide variety of snowflakes, includ-
ing single crystals of different morphologies, aggregates,
rimed snowflakes and graupel, as well as partially melted
snowflakes. Additionally, in order to increase the diversity of
the dataset we used data from the Antarctic Precipitation, Re-
mote Sensing from Surface and Space (APRES3) campaign
(Genthon et al., 2018), where a MASC was deployed in Du-
mont D’Urville on the coast of East Antarctica. We concen-
trated on this joint dataset in this study, as we did not find the
results to be very different from a classification trained only
on the Davos dataset.

We first filtered out blowing snow particles from the data
from APRES3, where the MASC was not shielded by a wind
fence, using the results of Schaer et al. (2020). The raw data
were then processed using the processing chain described by
P17, which crops the original MASC images into rectangular
areas containing only the snowflake; rejects unsuitable candi-
dates, such as those intersecting with the edge of the MASC
image; and computes various image quality metrics. The re-
sulting dataset includes approximately 2.1 million grayscale
snowflake images, 1.9 million from Davos and 0.2 million
from APRES3. From these, we selected high-quality images
as follows. We selected snowflakes whose outlines were be-
tween 16 and 256 pixels in diameter; with the MASC resolu-
tion of approximately 35 µm per pixel, this corresponds to a
physical size roughly between 0.5 and 9 mm. The lower limit
was chosen to filter out occasional artifacts and snowflakes
too small to be recognized; the rarely applied upper limit
was used to ensure that each snowflake fits entirely in the
image. We also removed all particles classified as “small par-

ticles” by the P17 algorithm, although not many of these re-
mained after imposing the minimum size. To filter out blurry
snowflakes, we required that the quality index ξ , defined in
Appendix B of P17, be at least 10. The minimum ξ is higher
than in P17 because we wanted to avoid training the GAN to
generate blurry images. Furthermore, to remove snowflakes
that were not bright enough, as well as some artifacts that
passed the ξ test, we required that the brightest pixel of
the image be at least 0.15 on a scale of 0 to 1. The final
dataset used for training comprises 195 006 snowflake im-
ages, 166 981 from Davos and 28 085 from APRES3.

The snowflake images were downsampled by a factor of
2 in order to reduce the computational burden; this could be
done without losing much information because MASC im-
ages are usually at least slightly blurry and therefore the true
resolution of the images is not quite as good as the pixel res-
olution. Each image was then centered into a 128×128 pixel
frame in order to yield constant-sized images, as needed for
training. Many images included fairly dim areas; to make
these more visible, we applied the following transformation
to the brightness:

f (x)=

{
b
a
x, x < a

b+ 1−b
1−a (x− a), x ≥ a,

(1)

with a = 0.1 and b = 0.2 chosen, somewhat subjectively, to
improve the visibility of dark snowflakes without losing too
much contrast. This maps brightness values 0→ 0, a→ b

and 1→ 1 and linearly between these points. The resulting
image dataset has a mean brightness of 0.28 for non-empty
pixels (i.e., those of brightness> 0).

Following standard practice in training convolutional neu-
ral networks, the sample diversity was increased during train-
ing using data augmentation. Before using images for train-
ing, the following random augmentations were performed to
each image:

- rotation by an angle between 0 and 360◦;

- mirroring around the vertical and/or horizontal axes;

- zooming the image by a factor between 0.9 and 1.0;

- adjusting the brightness of the image by −10 % to
+10 %, truncating the brightness of each pixel after-
wards between 0 and 1;

- translation from the original position by−4 to+4 pixels
in the horizontal and vertical directions (the maximum
shift is fairly small to avoid pushing the image out of
bounds).

The training data are available for replication purposes.
The details can be found under Code and data availability
at the end of the article.
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3 Methods

In this section, we provide a brief overview of the existing
techniques we applied in our classification scheme. The spe-
cific implementation details and novel methodology used in
this study can be found in Sect. 4.

3.1 Convolutional neural networks

The development of the theory and best practices for CNNs
has rapidly enhanced the capacity of computers to process
spatially structured data such as images (LeCun et al., 2015).
These networks employ a series of convolution operations
and nonlinearities to extract successively higher-level fea-
tures of images. Each such operation is called a layer of
the network. The most common types of layers are described
briefly below:

Dense layers (also called fully connected layers) map their
input vector x to the output y as an affine transformation
y =Wx+ b, where the matrix W and vector b consist
of trainable parameters.

Convolution layers map the channels of their input to their
output as a sum of convolution operations. The convo-
lution kernels are trainable parameters that are learned
by the network.

Activation layers apply a nonlinear function to their input.
This, in combination with the mixing operation im-
plemented by the convolution and/or dense layers, al-
lows the network to learn highly nonlinear maps when
enough layers are used. The most common activation
function in CNNs is the rectified linear unit (ReLU; Nair
and Hinton, 2010), which is defined as

a(x)=

{
0, x < 0
x, x ≥ 0. (2)

In this work, we used a variant called Leaky ReLU:

a(x)=

{
αx, x < 0
x, x ≥ 0, (3)

where the hyperparameter α is a small positive number
that is used to permit a small but nonzero gradient at
x < 0.

Pooling layers reduce the spatial dimensions of their input
by dividing it into M ×N (typically 2× 2) rectangular
regions arranged in a grid and then applying a pooling
operation such that each rectangle is mapped to a single
value in the output image. Usually, either the average
or the maximum of the rectangle is used as the pooled
value. Pooling operations can sometimes be replaced by
strided convolutions, which skip some points (e.g., ev-
ery other point) of the input to reduce the spatial dimen-
sionality of the output.

Normalization layers seek to normalize their input data,
usually trying to constrain the input to optimal mean
and variance (which are typically either fixed to 0 and
1, respectively, or optimized as parameters of the net-
work). This seeks to keep the variables in the active (i.e.,
nonzero gradient) ranges of the activation functions and
to reduce the dependence between the parameters of
the network. Common normalization strategies include
batch normalization (Ioffe and Szegedy, 2015) and in-
stance normalization (Ulyanov et al., 2017a). More re-
cently, Huang and Belongie (2017) introduced adaptive
instance normalization (AdaIN), which allows the net-
work to be adapted to different styles through external
weighting of layers.

In practice, layers are often organized in blocks, predefined
series of operations implemented using the abovementioned
types of layers. Recently, residual network (or “ResNet”)
blocks – which add their input to their output, allowing the
nonlinear part to operate only on the residual – have been
popular after it was found that they improve accuracy over
similar-sized non-residual networks in classification tasks
(He et al., 2016).

Neural networks are trained by minimizing a loss function
through gradient descent, where gradients are evaluated us-
ing the backpropagation algorithm (Rojas, 1996). For a more
comprehensive and technical introduction to CNNs, we refer
the reader to, for example, Goodfellow et al. (2016).

3.2 Generative adversarial networks

A GAN is a system of two neural networks, usually CNNs,
that are trained adversarially, i.e., competing against each
other. One network, the discriminator D, is a binary classi-
fier that is optimized to distinguish inputs that belong to the
training dataset (“real”) from those that do not (“fake”). The
other network, the generator G, is simultaneously trained to
produce artificial outputs that the discriminator considers to
be real. Thus, the generator learns to produce examples that
look real to the discriminator and hence resemble the exam-
ples found in the training dataset. A sufficiently large dataset
is needed such that neither the discriminator nor the gener-
ator can simply memorize the set of input images but must
instead learn the structure of the inputs. The input to the gen-
erator, the noise z, is sampled from a simple probability dis-
tribution; we use a multivariate standard normal distribution
in this work.

The initially proposed GAN loss (Goodfellow et al., 2014)
treats D as a probabilistic binary classifier where the out-
put D(x) ∈ [0,1], representing the estimated probability of
x being a fake rather than a real sample. Using binary cross-
entropy, the GAN losses can then be written as

LD (x,z;θD) = log(D(x))− log(1−D(G(z))) , (4)
LG (z;θG) = log(1−D(G(z))) , (5)
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where LD is the discriminator loss and LG the generator loss,
and θD and θG are the corresponding trainable weights. The
optimization goals are

min
θD

Ex,z [LD(x,z;θD)] , (6)

min
θG

Ez [LG(z;θG)] . (7)

As the goals are mutually contradictory, the training proceeds
by alternating between training D with fixed θG and training
G with fixed θD.

More recently there have been developments that seek
to provide a more stable loss for GANs. The Wasserstein
GAN (WGAN; Arjovsky et al., 2017) is motivated by the
Wasserstein distance between probability distributions, and
its losses can be written simply as

LD(x,z;θD) =D(x)−D(G(z)), (8)
LG(z;θG) =D(G(z)). (9)

Thus with WGAN, the discriminator is trained to make its
output as small as possible for real inputs and as large as pos-
sible for generated inputs. A slight variant called the “hinge
loss” was employed to regularize the discriminator by Don-
ahue and Simonyan (2019) for very high image quality in the
context of unsupervised feature learning:

LD(x,z;θD) = h(−D(x))+h(D(G(z))), (10)
h(t) =max(0,1− t). (11)

WGANs can be constrained by combining them with gra-
dient penalty, which regulates the gradients of the discrimi-
nator outputs, with respect to the inputs, by penalizing them
for deviating from unit length (Gulrajani et al., 2017). This
yields an additional term for the discriminator loss as

LGP(x,z;θD)=
(
||∇x̂D(x̂)||2− 1

)2
. (12)

The samples x̂ are randomly weighted averages between real
and generated samples:

x̂ = εx+ (1− ε)G(z), (13)

where ε is a random number sampled from the uniform dis-
tribution between 0 and 1.

3.3 Latent-variable extraction with GANs

The generator mapping from the simple probability distribu-
tion of z to the complex distribution of x is not invertible in
the basic GAN formulation. However, mapping x to z (or a
subset of z, which we denote as zl) is of great interest to un-
supervised learning as it allows the essential features of the
training images to be encoded into much simpler vectors in
the latent distribution. Consequently, several GAN variants
have been proposed that incorporate an approximate inverse
mapping from x to zl using various approaches (e.g., Chen
et al., 2016; Donahue et al., 2017; Ulyanov et al., 2017b).

3.4 Classification: K-medoids

K-medoids (Jain et al., 1999), similar to the more commonly
used K-means (Kaufman and Rousseeuw, 1990), is an un-
supervised classification method that seeks to associate each
point yi in a dataset with one of K center points. Thus, data
points that are close to each other tend to be associated with
the same center point, and thus they can be considered to be
members of the same class.

The K-medoids and K-means algorithms both select the
center points cj , j = 1. . .K , to minimize the cost

L=
1
N

N∑
i=1

d(yi,cn,i), (14)

cn,i = argmin
cj

d(yi,cj ), (15)

where d is a distance metric between two points and cn,i de-
notes the center point that is nearest to data point yi . In other
words, the center points are chosen such that the average dis-
tance of each point yi to cn,i is minimized.

The standard K-means algorithm uses the squared Eu-
clidean distance (SED) metric

dK-means(y1,y2)= |y1− y2|
2. (16)

It is called K-means because it can be seen as a generaliza-
tion of theK = 1 case where the unique optimal center point
is simply the mean of the data points. In contrast to that spe-
cial case, with K ≥ 2 the solution is less straightforward and
must be found iteratively.

The K-medoids algorithm can be understood as a variant
ofK-means. Unlike withK-means, where a center point can
be an arbitrary point in space, the K-medoids algorithm se-
lects K data points to act as centers (“medoids”). The ad-
vantage of this is that an arbitrary distance metric d between
points can then be used. The partitioning-around-medoids al-
gorithm (PAM; Kaufman and Rousseeuw, 1990) starts with
randomly selected medoids and finds the optimum by iterat-
ing the following steps:

1. For each medoid cj ,

a. compute Lij as the values that L would have if yi
were used as cj instead;

b. if the cost improves, i.e., miniLij < L, set cj :=
yi,opt, where iopt = argminiLij .

2. If L decreased in step (1), repeat it. Otherwise, termi-
nate.

This iteration, like that ofK-means, is not guaranteed to find
the globally optimal solution; restarting the algorithm multi-
ple times and selecting the best solution (smallest L) is often
helpful. Furthermore, the number of center points must be set
manually; it is not inferred by the algorithm.
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4 Implementation

4.1 GAN architecture and training

Following Donahue and Simonyan (2019), we implemented
the GAN using the hinge loss (Eq. 10) and gradient penalty
(Eq. 12) for the discriminator and the WGAN loss (Eq. 7)
for the generator. We also added a second output DE to the
discriminator to extract the latent variables received by the
generator. To enforce the recovery of the latent variables, we
added a mean-square-error (MSE) loss between the original
and recovered latent variables to both D and G, similar to
InfoGAN:

LMSE(x,z;θD,θG)= |DE(G(z))− zl|
2, (17)

where zl is the subset of z that the discriminator attempts to
recover. The complete GAN losses are then

LD(x,z;θD) = h(−D(x))+h(D(G(z)))

+ γLGP(x,z;θD)

+βLMSE(x,z;θD,θG), (18)
LG(x,z;θG)=D(G(z))+βLMSE(x,z;θD,θG), (19)

where γ is the weight of the gradient penalty and β is the
weight of the MSE loss. We used γ = 10 following Gulrajani
et al. (2017) and β = 1 as we found that this simple choice
led to good convergence of both the GAN image generation
and the latent-variable recovery.

The discriminator (Fig. 1a) is a series of six ResNet-
type blocks of layers, each consisting of two activation–
convolution blocks. Those blocks transform the image to
512 feature maps of 4× 4 size. The convolutional blocks are
followed by a pooling layer and two fully connected lay-
ers. From these, the discriminator output D and the latent-
encoder outputDE are derived. Spectral normalization (Miy-
ato et al., 2018) is used in all layers of the discriminator. The
batch-statistics technique suggested by Karras et al. (2019)
is also used to encourage variety and inhibit mode collapse,
a failure where the generator always generates the same (or
one of a few) outputs.

The generator (Fig. 1b) derives from the StyleGAN con-
cept of Karras et al. (2019). The input to the generator, z, is
made up of two components: the vector of latent variables zl
that is recovered by the discriminator and an additive noise
component za that is not recovered. The generator begins the
processing chain by transforming the latent vector zl into ini-
tial feature maps of 4×4 size. This is then processed through
five blocks of layers, each of which contains the following
operations:

– Upsampling layers increase the pixel size of the feature
maps by a factor of 2 each. After the total of five up-
sampling operations the size is increased by a factor of
25
= 32, thus transforming the initial 4×4 feature maps

to 128× 128 size.

– Convolution and activation layers transform the input
into successively lower levels of representation; collec-
tively these perform the transformation from the feature
representation to the pixel representation.

– AdaIN layers reweight the features such that, at each
level of processing, the appropriate features for the
given snowflake type are selected; this is referred to as
“styling”. After the styling, the additive noise za is ap-
plied. The objective of this is to capture the essential
features of the snowflake in the style vector, while the
less significant variation between individual snowflakes
of the same type is represented in the noise. However,
contrary to Karras et al. (2019), we found the additive
noise to have an insignificant effect on the final gener-
ated images. Also deviating from Karras et al. (2019),
the styling blocks are residual, adding the result to the
input at the end of processing, as we found that this im-
proved convergence.

We trained the GAN by alternating between training the
discriminator with a single batch of data with the genera-
tor weights held constant and training the generator with a
single batch with constant discriminator weights. We used a
batch size of 64 for both networks. The training was mon-
itored manually and terminated when neither the losses nor
the image quality was any longer changing appreciably. The
transformations and augmentations described in Sect. 2 were
applied to each batch before processing. We used the Adam
optimizer (Kingma and Ba, 2015) with the learning rate set to
10−4 for both the discriminator and the generator. We trained
the network with Nvidia Tesla P100 and K40 graphics pro-
cessing units (GPUs); the final training used to derive the re-
sults presented in this article took approximately 72 h on the
K40, while training on the P100 was roughly twice as fast.

4.2 Clustering

In principle, we could have used K-means classification to
derive classes directly from the extracted latent variables zl.
However, we found that the latent variables code for some
properties of the images that one should not actually use for
classification: for example, some of the variation in zl corre-
sponds to the orientation of the particle, while a given particle
should belong to the same class regardless of the orientation
at which it is seen. Therefore, the variation in zl correspond-
ing to these properties should be excluded from the classifi-
cation.

We found that the unsupervised classification can be made
more robust and approximately invariant to unwanted im-
age properties by producing random variations of each im-
age and then associating each image with a distribution of
points rather than a single point in the latent space. Specifi-
cally, in our classification scheme the random augmentations
described in Sect. 2 (none of which should affect the classi-
fication) are applied to each image 100 times, extracting the
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Figure 1. Outlines of the architectures of the (a) discriminator and (b) generator networks. The numbers on the blocks denote the size and
number of feature maps; for example, 16×16×256 indicates 256 feature maps of 16×16 pixels each. The number of features for each layer
was determined by adapting network architectures used in earlier GAN studies and then tuning the sizes to achieve a reasonable compromise
between performance and computational cost.

latent variables zl for each variation. From these samples, the
mean µi and covariance 6i of the latent variables for each
image i are computed. Now, an approximately augmentation-
invariant distance can be defined between two snowflake im-
ages using a metric for the distance between two probability
distributions. For this, the Bhattacharyya distance between
two multivariate normal distributions (Fukunaga, 1990) is
adopted:

dB(xi,xj ) =
1
8
(µi −µj )

T6−1(µi −µj )

+
1
2

ln

(
det6√

det6idet6j

)
, (20)

6 =
6i +6j

2
. (21)

While the distribution of latent-space points for each parti-
cle is not guaranteed to be normal, we adopted this distance
metric because it is reasonably fast to compute and symmet-
ric with respect to a swap of i and j . It is also a generalization
of the SED (Eq. 16) in the following sense: if 6i =6j = aI
for any a > 0, dB is linearly proportional to the SED between
the means, |µi −µj |2.

Additionally, we adopted a simple hierarchical clustering
algorithm to iteratively reduce the number of classes de-
rived from theK-medoids algorithm by forming a binary tree
structure. This algorithm proceeds bottom-up as follows:

1. Start with K separate branches, each containing one of
the medoids.

2. On each iteration,

(a) find the pair of branches (j,k)with the shortest dis-
tance d(j,k) between the two branches;

(b) record j and k, and then merge branch k into branch
j .

The iteration can be continued until all branches have been
merged into a single tree structure. The distance between two
branches, d(j,k), can be defined in multiple ways, but we
found that the best results were obtained by defining it as
the average of all possible dB between medoids belonging to
branch j and those belonging to branch k.

After classification, the medoids are reordered manually
such that the tree structure resulting from the hierarchical
clustering can be visualized clearly. This change is purely
cosmetic and does not affect any metrics.
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Figure 2. Samples of real and generated images. Top row: real images from the dataset. Middle row: images generated by extracting the
latent variables from the corresponding top-row image and then generating an image with the GAN generator from that image; the SSIM
between the real and generated images is also shown. Bottom row: samples of snowflake images generated from random latent codes.

5 Results and discussion

5.1 Image generation from latent variables

Figure 2 shows samples of real and generated images. The
middle row of Fig. 2 displays a reconstruction of the real
snowflake shown on the top row. The reconstructed image
is obtained by extracting the latent variables from the orig-
inal image with DE and then generating an image from the
latent variables using G. The reconstruction is not perfect
– nor can that be expected given that DE compresses each
128× 128 pixel image to only eight real numbers – but the
reconstructed images are quite similar to the corresponding
originals, showing that the latent codes encapsulate informa-
tion about the essential features of the image such as size,
shape, contrast, orientation and texture. The bottom row of
Fig. 2 shows snowflakes generated using randomly selected
latent variables. These images also look qualitatively plausi-
ble, demonstrating that the generator is not dependent on the
latent variables being extracted from a real image.

The generator does not replicate all features found in the
original snowflake. For instance, fine details of the large ag-
gregate in the rightmost column of Fig. 2 are not reproduced
in the reconstructed image. This is consistent with the rel-
atively low structural similarity index (SSIM; Wang et al.,
2004) of 0.749 between these two images. The average struc-
tural similarity index between real and generated images in
the dataset is 0.928. However, in contrast to most applica-
tions of GANs, in this study the image generation is merely
a byproduct of the classification scheme. The primary goal is
to train the discriminator to extract latent variables that can
be used for classification.

The changes to the generated image caused by varying the
latent variables are shown in Fig. 3. Two latent variables are

varied while the rest are held constant. This gives an example
of how the GAN maps the latent variables to the data distri-
bution. The generated images look plausible at each combi-
nation of the two latent variables, while the image changes
smoothly between two different shapes of aggregate (top left
and right corners), a large rimed column-like snowflake (bot-
tom left corner) and a small irregular snowflake (bottom right
corner). This ability of the GAN to learn an encoding be-
tween the latent variables and the essential image properties
is the basis of the classification.

5.2 Classification

5.2.1 The number of classes

A common problem with unsupervised classification is se-
lecting the number of classes. Using the latent variables ex-
tracted by the GAN, we ran the K-medoids classification, as
described in Sect. 4.2, for values of K between 1 and 20 and
recorded the change in the cost function L (Eq. 15). Since
the computational complexity of the K-medoids algorithm
scales as O(N2), and therefore it would be very expensive
to run it for the entire dataset, we subsampled 2048 random
images from the dataset (the same subset was used for each
K , but similar classification results were obtained with dif-
ferent subsets). The best solution for each K was found by
running the algorithm until convergence and then restarting it
repeatedly until eight restarts were performed without L de-
creasing. The solution with the smallest L was selected, and
the others discarded.

The loss, as a function ofK , is shown as the blue solid line
of Fig. 4. With clustered data, such analysis often reveals the
appropriate number of medoids, as L decreases sharply until
the number of medoids reaches the number of clusters and
much more slowly afterwards. In Fig. 4, no such threshold

Atmos. Meas. Tech., 13, 2949–2964, 2020 https://doi.org/10.5194/amt-13-2949-2020



J. Leinonen and A. Berne: GAN snowflake classification 2957

Figure 3. An example of the effect of varying the latent variables. Two latent variables of the GAN are varied from −2 to +2 standard
deviations (σ ), while the others are held constant.

is apparent. Instead, the loss decreases gradually and mono-
tonically as K increases, with diminishing returns at higher
K .

Given that examining L as a function of K does not sug-
gest any obvious choice for the number of medoids, we
needed to select it subjectively. However, we could start with
a relatively large K and iteratively simplify the classification
using hierarchical clustering, merging nearby classes. The or-
ange dashed line and the green dotted line of Fig. 4 show

the results of this procedure on the cost function (starting
from K = 16 and K = 6, respectively). For the purpose of
calculating the cost, a new medoid was determined for each
merged class such that it minimizes the sum of distances dB
from the medoid to the members of the newly merged class.
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Figure 4. The behavior of theK-medoids loss L as a function of the
number of medoidsK . Blue solid line: the results of theK-medoids
algorithm for eachK . Orange dashed line: the result of starting with
theK = 16 result and applying hierarchical clustering (as described
in Sect. 4.2). Green dotted line: as above but starting with K = 6.

5.2.2 Characteristics of classes

Since there did not appear to be clear reasons to prefer any
of the large values of K over the others, we chose K = 16
somewhat arbitrarily as a value that gives good intra-class
similarity of the snowflakes while keeping the classes distin-
guishable from each other. Samples of class members from
the 16-class classification, along with the class hierarchy tree
derived using hierarchical clustering, are shown in Fig. 5.
The class distance matrix, showing the Bhattacharyya dis-
tance between the class medoids, is shown in Fig. 6. Each
class contains snowflakes with similar size, shape and tex-
ture.

The hierarchical clustering groups the classes into three
main branches (classes 1–5, 6–12 and 13–16). The system-
atic difference between these branches is in the size of the
snowflakes, while the variability within each branch reveals
differences in the structure of the snowflakes.

The first branch (classes 1–5) consists mostly of large and
medium-sized aggregates with some large single crystals.
Classes 1, 2 and 5 are composed mainly of moderately rimed
aggregates, with the main differences among these being size
and complexity, both decreasing from class 1 to 2 and further
from 2 to 5. Snowflakes in class 3 are highly complex but less
rimed than those of class 1, while those in class 4 are the most
heavily rimed in the first branch. The distances among these
classes are all relatively short, and they stand out in the top
left corner of Fig. 6.

The second branch (classes 6–12) contains various ice par-
ticles smaller than those in the first branch. Classes 6 and 7
contain mostly heavily rimed snowflakes, including graupel,
while classes 8–10 are made up of small aggregates and ir-
regular snowflakes, with those in classes 8 and 9 being of

similar size and those in class 10 somewhat smaller. The dis-
tances among these classes are very short. Class 11 resem-
bles the classes of the first branch (as evidenced by its short
distance to classes 3 and 5), containing medium-sized aggre-
gates with little or no riming. Finally, class 12 is similar to
class 11 but with slightly smaller snowflakes.

The smallest particles are found in the third branch
(classes 13–16). Classes 13 and 15 contain small rimed crys-
tals and graupel, while class 14 differs from those by being
unrimed or lightly rimed. Class 16 is the most visually dis-
tinct of all classes and is composed mainly of columnar crys-
tals.

Figure 7 shows the memberships in each class. Fewer
snowflakes are classified into the more extreme classes
consisting of either very large or very small snowflakes.
The APRES3 data contain larger proportions of the small-
snowflake classes. There are also more rimed snowflakes
in the APRES3 data, consistent with the observations
of Del Guasta et al. (1993) and Grazioli et al. (2017) that
mixed-phase clouds and riming were frequent in Dumont
D’Urville.

In Fig. 8, we show the same type of classification as Fig. 5,
but performed with only 6 classes in order to see how the
classes combine. While the columnar crystals are again well
separated from other types, there is considerably more vari-
ability within each class. Particularly importantly, various
degrees of riming become more mixed within the classes.
Therefore, if one wants to derive information about the mi-
crophysics, especially riming, it appears to be preferable to
start with a relatively large number of classes and merge them
later either in an automated fashion (e.g., the hierarchical
clustering shown here) or more subjectively (see Sect. 5.2.3
below). Accordingly, we will concentrate on the 16-class
scheme in the rest of this article. The other classifications
can be found in the released data.

5.2.3 Microphysical classification

As mentioned above, it seems preferable to perform the clas-
sification with a fairly large number of classes and then
merge them as needed. While this can be done in an ob-
jective fashion using the hierarchical clustering, the algo-
rithms perform the analysis based only on the image proper-
ties and have no knowledge of the underlying microphysical
processes. Therefore, subjective categorization of the classes
based on expert analysis can also be helpful. Although this
adds a manual component to the classification process, it
greatly reduces the amount of work required compared to
a supervised approach because the expert only needs to in-
terpret a small number (for us, 16) of classes created by the
unsupervised algorithm, rather than having to label a large
number (here, hundreds of thousands) of training samples for
a supervised algorithm.
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Figure 5. Samples from each class using the 16-class classification. Each row corresponds to a class; the first column shows the particle
used as the medoid, while the other columns show random samples. The lines on the left illustrate the tree structure derived with hierarchical
clustering.
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Figure 6. Class distance matrix for the 16-class classification, showing the Bhattacharyya distance between class medoids as a heatmap.

Figure 7. A heatmap showing the percentage of class memberships in each class for the Davos and APRES3 data as well as the entire dataset.

Different applications may require different definitions,
but for characterizing snowfall events we suggest the follow-
ing categories:

1. lightly rimed aggregates: classes 3, 8, 9, 10 and 11;

2. moderately rimed aggregates: classes 1, 2, 5 and 12;

3. large, heavily rimed snowflakes: classes 4, 6 and 7;

4. small, heavily rimed snowflakes: classes 13 and 15;

5. small crystals and their aggregates: class 14;

6. columnar crystals: class 16.

5.2.4 Comparison to supervised classification

In order to compare our results to those of the P17 supervised
classification algorithm, Fig. 9 shows the corresponding P17

classes for each of our 16 classes, normalized such that the
membership counts sum to 100 % for each of our classes.
The P17 categorization is generally consistent with the anal-
ysis of the microphysical properties that we have presented
above, showing that the two different schemes are sensitive
to many of the same features in the images. The classes des-
ignated as aggregates (categories 1 and 2 in Sect. 5.2.3) are
also dominated by aggregates in Fig. 9. The heavily rimed
classes (categories 3 and 4) contain, as expected, more grau-
pel than the other classes, although in all of these except for
class 15 the aggregates are actually the most common type.
This is because aggregates are overrepresented in the dataset
as a whole, and also because the P17 scheme draws a distinc-
tion between heavily rimed aggregates and graupel, which
may be difficult to distinguish in practice. Class 14 is a fairly
generic grouping of different types of small particles and ac-
cordingly contains a wide mix of unrimed hydrometeor types

Atmos. Meas. Tech., 13, 2949–2964, 2020 https://doi.org/10.5194/amt-13-2949-2020



J. Leinonen and A. Berne: GAN snowflake classification 2961

Figure 8. As in Fig. 5 but with K = 6.

also in the P17 classification. Lastly, class 16 consists mostly
of columnar crystals, of which there are very few in the other
classes.

5.2.5 Effectiveness of distribution-based clustering

The MASC instrument captures images of falling snowflakes
using multiple cameras simultaneously. We did not make use
of this capability while training the GAN and instead op-
erated with single images, because there is often only one
sharp image of a given snowflake and requiring multiple
high-quality images of each snowflake would have severely
limited the size of our training dataset. However, we could
use this capability to evaluate the classification scheme be-
cause, ideally, the same snowflake viewed from different an-
gles should result in the same classification.

For each snowflake with multiple angles available, we
computed the Bhattacharyya distance dB between the latent-
space distributions (obtained as described in Sect. 4.2) of
a pair of images of the same snowflake and the mean of
the Bhattacharyya distances to all snowflakes in the dataset.
For comparison, we computed the same values for the SED
(Eq. 16) between the latent codes obtained without augmen-
tation. Between two images from different angles, median dB
was 1.00, while median dB between two different snowflakes
was 18.2 (a ratio of 0.055). The corresponding median val-
ues for the SED were 14.3 for matched pairs and 20.2 for all
snowflakes (ratio of 0.71).

Another way to compare the two distance metrics is
through the distance rank of a pair of images of the same
snowflake, which is defined here as the percentage of all
snowflakes whose distance from the given snowflake is

longer than the distance between the pair. The median dis-
tance rank is 98.5% for dB and 70.3% for SED.

Clearly, using the data augmentation and the distribution
distance metric in the latent space brings images of the same
snowflake much closer to each other. Consequently, we can
expect that this approach significantly increases the reliabil-
ity of unsupervised classification using the latent variables.

6 Summary

MASC instruments have been deployed in diverse loca-
tions around the world over the last decade, resulting in
datasets comprising millions of high-resolution images of
falling snowflakes. Automated analysis is needed to explore
such large quantities of data, and advanced image-processing
techniques are beneficial because the image structure con-
tains a signature of the microphysical processes that led to the
formation of each snowflake. In this work, we have described
an unsupervised approach to this problem where a combi-
nation of a GAN and K-medoids classification is used. The
trained GAN is used to map each image into a vector of latent
variables that capture the essential properties of the image.
TheK-medoids algorithm is then used to classify the images
based on the latent variables, and the number of classes can
be reduced to the desired granularity using hierarchical clus-
tering. The GAN also learns to generate artificial images of
snowflakes, which we could use to verify that the latent vari-
ables map to the properties of snowflakes in a meaningful
way.

The latent variables code also for information about the
images that one generally does not want to use for classi-
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Figure 9. A heatmap showing the correspondence between our 16-class classification and the P17 classes. Each column has been normalized
to sum to 100 %, and the last column shows the class memberships in the entire dataset. The P17 classes are abbreviated as follows: CC
(columnar crystals), PC (planar crystals), AG (aggregates), GR (graupel), and CPC (combinations of plates and columns).

fication, such as the orientation. We mitigated this problem
by associating each image with a distribution of latent-space
points using data augmentation and defining the distance be-
tween images using a distribution distance metric, the Bhat-
tacharyya distance. Using the multiple cameras provided by
the MASC, we verified that this results in improved distance
estimates between images and consequently more accurate
classification.

A qualitative assessment of the classification results con-
firmed that each class designated by the classification scheme
contains snowflakes with microphysical and structural prop-
erties similar to other members of the class. Aggregate
snowflakes, which make up the majority of the dataset, are
divided up into several classes, and the differences between
these classes reflect the size and the degree of riming of
the aggregates. Columnar crystals and small graupel are also
quite well separated from other types of ice particles. The hi-
erarchical clustering results in three main branches that differ
from each other mostly in the size of the snowflakes.

Each of the applied methods is unsupervised and conse-
quently can be used without providing labeled training data.
Hence, the main advantage of the methodology over super-
vised classification is that the process can be repeated for
new datasets with modest manual effort, albeit at a fairly high
computational cost. The unsupervised approach also reduces
the role of human experts on the classification. This can have
both positive and negative effects, as the effect of human bi-
ases is reduced, but simultaneously the potential benefits of
expert domain knowledge, i.e., understanding of ice micro-
physics, are neglected. In practice, we find that our classifica-
tion approach can help distinguish snowflakes by their micro-
physical properties, but subsequent analysis is needed to in-
terpret the contents of each class in a microphysical context.
Thus, the responsibilities of the domain expert are shifted
from creating the training datasets to the less onerous task of
interpreting the classification results. The number of classes
must also be selected manually, and the class boundaries are
somewhat arbitrary as the latent data are not strongly clus-
tered. Therefore, in the future it may be interesting to inves-

tigate more continuous classification schemes rather than the
discrete classification we have described here.

While our approach to unsupervised classification is based
on well-documented machine learning techniques and algo-
rithms, we believe that the combination of methods used here
– particularly the use of data augmentation to improve the ac-
curacy of classification using GAN-derived latent variables –
has not been employed in previous work. We expect that the
same methodology can be adapted to the unsupervised clas-
sification of many other datasets in different domains.

Code and data availability. The code and the data support-
ing this project are available at https://github.com/jleinonen/
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