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Abstract. The unconditioned data retrieved from accumulat-
ing automated weighing precipitation gauges are inherently
noisy due to the sensitivity of the instruments to mechan-
ical and electrical interference. This noise, combined with
diurnal oscillations and signal drift from evaporation of the
bucket contents, can make accurate precipitation estimates
challenging. Relative to rainfall, errors in the measurement
of solid precipitation are exacerbated because the lower ac-
cumulation rates are more impacted by measurement noise.
Precipitation gauge measurement post-processing techniques
are used by Environment and Climate Change Canada in re-
search and operational monitoring to filter cumulative pre-
cipitation time series derived from high-frequency, bucket-
weight measurements. Four techniques are described and
tested here: (1) the operational 15 min filter (O15), (2) the
neutral aggregating filter (NAF), (3) the supervised neutral
aggregating filter (NAF-S), and (4) the segmented neutral ag-
gregating filter (NAF-SEG). Inherent biases and errors in the
first two post-processing techniques have revealed the need
for a robust automated method to derive an accurate noise-
free precipitation time series from the raw bucket-weight
measurements. The method must be capable of removing
random noise, diurnal oscillations, and evaporative (nega-
tive) drift from the raw data. This evaluation primarily fo-
cuses on cold-season (October to April) accumulating au-
tomated weighing precipitation gauge data at 1 min reso-
lution from two sources: a control (pre-processed time se-
ries) with added synthetic noise and drift and raw (minimally
processed) data from several WMO Solid Precipitation In-
tercomparison Experiment (SPICE) sites. Evaluation against
the control with synthetic noise shows the effectiveness of the
NAF-SEG technique, recovering 99 %, 100 %, and 102 % of

the control total precipitation for low-, medium-, and high-
noise scenarios respectively for the cold-season (October–
April) and 97 % of the control total precipitation for all noise
scenarios in the warm season (May–September). Among the
filters, the fully automated NAF-SEG produced the highest
correlation coefficients and lowest root-mean-square error
(RMSE) for all synthetic noise levels, with comparable per-
formance to the supervised and manually intensive NAF-S
method. Compared to the O15 method in cold-season test-
ing, NAF-SEG shows a lower bias in 37 of 44 real-world test
cases, a similar bias in 5 cases, and a higher bias in 2 cases. In
warm-season testing, the NAF-SEG bias was lower or similar
in 7 of 11 cases. The results indicate that the NAF-SEG post-
processing technique provides substantial improvement over
current automated techniques, reducing both uncertainty and
bias in accumulating-gauge measurements of precipitation,
with a 24 h latency. Because it cannot be implemented in real
time, we recommend that NAF-SEG be used in combination
with a simple real-time filter, such as the O15 or similar filter.

1 Introduction

Accurate precipitation measurements are crucial for a variety
of applications, including water resource forecasting, future
water availability, and hydrological and climate analysis and
modelling (Barnett et al., 2005; Bartlett et al., 2006; Wolff et
al., 2015). Canada’s Changing Climate Report led by Envi-
ronment and Climate Change Canada (Bush and Lemmen,
2019) highlights the importance of accurate precipitation
measurements as fundamental climate quantities that play an
important role in human and natural systems. Although the
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systematic bias due to the impact of wind on solid precip-
itation measurements is well documented (Goodison, 1978;
Sevruk et al., 1991, 2009; Goodison et al., 1998; Yang et al.,
2005; Smith, 2009; Wolff et al., 2015; Kochendorfer et al.,
2017a), errors related to the automatic recording of precipita-
tion measurements have only relatively recently been identi-
fied as automated weighing gauges become more commonly
used (Sevruk and Chvíla, 2005). The cumulative precipita-
tion data output from automated weighing gauges is subject
to noise, diurnal temperature oscillations, and negative drift
from evaporation, which can often mean that the precipita-
tion signal over short sampling periods is influenced or hard
to detect (Rasmussen et al., 2012). The nature of the noise
and drift often varies substantially from site to site and be-
tween gauge configurations. High-frequency noise can ex-
ceed ± 1 mm, and evaporation from the bucket can be in ex-
cess of several millimetres between precipitation events. It is
therefore necessary to filter the raw data to separate real pre-
cipitation events from signal noise and identify and remove
periods with evaporation (keeping in mind that evaporation
reduces the precipitation amount derived from the differen-
tial in bucket weight). Improper filtering can lead to the accu-
mulation of errors and result in significant inaccuracies in to-
tal seasonal precipitation. Duchon (2008) suggests that errors
due to the diurnal oscillation in Geonor T-200B gauges could
be 1 %–10 % of the precipitation total. Three post-processing
challenges in the derivation of “clean” precipitation time se-
ries are the focus of this study: mechanical and electrical in-
terference, diurnal oscillations, and evaporation of the bucket
contents.

This study incorporates two commonly used accumulat-
ing automated weighing precipitation gauges (henceforth re-
ferred to as automated weighing gauges): the Geonor T-200B
and OTT Pluvio2. The Geonor T-200B implements up to
three vibrating wire transducers, which provide a frequency
output that varies as a function of the fluid weight in the
gauge bucket. The cumulative precipitation amount (bucket
weight) is calculated from the frequency of each wire via
calibration coefficients, with no onboard filtering (Geonor,
2019). The OTT Pluvio2 automated weighing gauge uses a
high-precision load cell to weigh the bucket contents and pro-
vides several outputs, including intensity and precipitation
accumulation (Nemeth, 2008; Nitu et al., 2018). The OTT
Pluvio2 output has been pre-processed using an onboard pro-
prietary algorithm which adjusts the high-frequency load cell
measurements for temperature and vibration to derive a more
accurate bucket weight. Further onboard processing removes
the impact of unrealistic bucket-weight changes and evapo-
ration from the output; however, this onboard algorithm was
bypassed in this analysis to obtain the data in their rawest
form.

A number of post-processing techniques have been devel-
oped to derive a noise-free precipitation time series from
high-frequency automated weighing-gauge bucket-weight
measurements. Some examples are described here.

The rolling maximum filter was used by Harder and
Pomeroy (2013) to remove the “jitter” from the accumulated
precipitation data sets by retaining a cumulative precipitation
observation if it is greater than the previous maximum cumu-
lative precipitation. The previous maximum is assumed to be
the cumulative precipitation in all other cases. This filter re-
portedly works well in preserving the cumulative change in
precipitation, but it may not always catch the precise start of
precipitation events and will not always perform optimally in
the presence of negative gauge drift (i.e. evaporation).

The World Meteorological Organization (WMO) Solid
Precipitation Intercomparison Experiment (SPICE, 2013–
2015) developed a uniform post-processing method for defin-
ing and quantifying precipitation events (Nitu et al., 2018).
The process includes calculating a 30 min bucket-weight dif-
ferential using thresholds and filters, effectively producing
what was termed the Site Event Dataset (SEDS). For an event
to be identified, the net precipitation duration needed to be
sufficiently long (as measured by a precipitation detector or
disdrometer), and the total accumulation (as measured by the
reference automated weighing gauge) needed to be equal to
or greater than a defined threshold (set at 0.25 mm when a
reliable precipitation detector was available). This process
was effective at creating a high-confidence data set for de-
veloping and testing transfer functions (Kochendorfer et al.,
2017b) but, because of the rigorous filtering of shorter and
smaller events, was not an effective means of filtering a time
series.

The US Climate Reference Network (USCRN) uses the
redundancy of the Geonor T-200B three vibrating-wire load
sensors in the determination of precipitation events (Leeper
et al., 2015). Initially, a pairwise calculation was used which
relies on pairwise agreement of bucket-weight changes us-
ing the wire redundancy as a check on the measurement.
This was determined to be sensitive to gauge evaporation
and noise, leading to the development of a weighted aver-
age calculation using the change in bucket weight between
successive sub-hourly periods for each transducer output. A
weighted mean is then used to average the bucket weights,
with greater weight given to less noisy measurements.

The Meteorological Service of Canada currently imple-
ments a real-time threshold filter in their data loggers to au-
tomatically determine the occurrence of precipitation events.
The filter is based on the 15 min differential in the Geonor T-
200B bucket weight (Mekis et al., 2018). Although this filter
is unnamed, we call it the operational 15 min filter (O15) au-
tomated processing technique. This technique is included in
this analysis and is described below in more detail. The filter
tends to fail when the noise threshold is exceeded, resulting
in false precipitation reports, and when evaporation exceeds
the acceptable limits.

Limitations in the O15 technique led to the development
of the neutral aggregating filter (NAF), previously known
as “Brute Force” (Pan et al., 2016). The NAF, described in
greater detail by Smith et al. (2019), iteratively adds all nega-
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tive and small positive changes to proximate positive changes
until all changes exceed a user-specified threshold. Because
the technique preserves the total change in bucket weight
over the time series, it cannot account for the negative drift
that results from evaporation. To overcome this deficiency,
the supervised neutral aggregating filter (NAF-S) was cre-
ated to allow user intervention and minimize evaporation er-
rors through interactive manual adjustment. Both NAF and
NAF-S are explained in greater detail in the next section.

To overcome the limitations of the O15, NAF, and NAF-S
techniques, we evaluated a moving-window modification of
the NAF, implementing the NAF on 24 h overlapping win-
dows, which we will call the segmented neutral aggregat-
ing filter (NAF-SEG). The objective was to obtain a robust
post-processing technique that is completely automated; eas-
ily implemented; and successfully eliminates varying levels
of noise, diurnal oscillations, and evaporation without signifi-
cantly impacting the timing and amount of precipitation. This
study introduces the NAF-SEG technique and examines its
performance compared to the O15, NAF, and NAF-S meth-
ods.

2 Processing techniques under test

2.1 MSC operational 15 min

The O15 filtering technique is used operationally by the Me-
teorological Service of Canada (MSC) for Geonor T-200B
measurements at the reference climate stations (RCSs). The
O15 is implemented in real time at the measurement site data
logger. The algorithm is intended to filter out noise and elim-
inate evaporation while minimizing the reports of false pre-
cipitation. For each 15 min period, a mean bucket weight is
computed over the last 5 min (minutes 11 to 15) of the pe-
riod. The mean bucket weight from the initial period is used
to establish the baseline. For each successive 15 min period,
the difference between the current mean bucket weight and
the baseline is calculated. If the bucket-weight difference is
greater than or equal to 0.2 mm, the difference is attributed
to precipitation and added to the cumulative precipitation to-
tal, and the baseline is reset upwards to the current mean. If
the difference is less than or equal to −1.0 mm, the differ-
ence is attributed to evaporation and the baseline is adjusted
downward to match the current mean. This process is per-
formed separately on each of the three installed transducers
in the RCS gauge, although ultimately only one is used to
determine reported precipitation.

The O15 technique is used operationally in real time and
so must be simpler than other post-processing techniques.
As a result, it has the potential to be problematic, includ-
ing a sensitivity to the positive and negative thresholds used
to identify precipitation and evaporation events. The 0.2 mm
positive accumulating (noise) threshold can cause an overes-
timation of precipitation if the data are inherently noisy or

have a high diurnal oscillation. Additionally, if the negative
drift from evaporation lies just above the−1.0 mm threshold,
the baseline will not be adjusted before the next precipitation
event, resulting in an underestimation of the next event by up
to 1.2 mm (evaporation threshold plus the noise threshold).

2.2 Neutral aggregating filter

The NAF method, developed by Environment and Climate
Change Canada’s Climate Research Division, is an auto-
mated method that removes noise from cumulative precipita-
tion time series (Pan et al., 2016; Smith et al., 2019). The pro-
cessing is done iteratively, beginning with the minimum non-
zero interval precipitation value. All non-zero changes in in-
terval precipitation, with values below a user-defined thresh-
old, are transferred to neighbouring periods with positive or
larger changes. The results from the algorithm are “neutral”,
as the filter balances the positive and negative noise until all
changes below the user-defined threshold are eliminated.

The technique removes random noise and accounts for di-
urnal oscillations in the bucket-weight signal, but, because
the total precipitation is forced to equal the total bucket-
weight increase at the end of the time series, it cannot ac-
count for negative drift. This means that it will not perform
well if the time series has significant periods with evapora-
tive losses from the automated weighing precipitation gauge
bucket. The significance of the error could exceed 10 % de-
pending on the effectiveness of the servicing measures to re-
duce evaporation from the bucket contents. NAF serves as
the framework for both the NAF-S and NAF-SEG techniques
described below.

In this study, the NAF, NAF-S (2.3) and NAF-SEG (2.4)
methods all use a minimum threshold P∗ of 0.001 mm. P∗
was somewhat arbitrarily set at 0.001 mm based on the min-
imum resolution of the gauge data. Testing (not shown here)
suggests that the method is not overly sensitive to P * and that
a 5-fold increase in the magnitude of P∗ had minimal impact
on the performance in either the cold or the warm season.

2.3 Supervised neutral aggregating filter

The NAF-S method is used to manually adjust the cumu-
lative time series for evaporation and other spurious data,
effectively reducing the NAF estimation error. The NAF-S
method uses the NAF output as a first guess and then allows
for manual, interactive adjustment of the baseline to account
for evaporation events and other data artifacts impacting the
time series. The NAF-S creates an interactive plot, showing
both raw (quality controlled) and NAF output data, which
highlights periods with drift caused by evaporation. The user
is then given the capability to identify and manually exclude
each period with evaporation, using the cumulative precipi-
tation value before each evaporation event as a new baseline.
NAF-S successfully minimizes the impact of evaporation but
requires user intervention (i.e. it cannot be automated) along
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with user subjectivity to identify the endpoints of evaporative
and other spurious events (Smith et al., 2019).

2.4 Segmented neutral aggregating filter

The NAF-SEG is a fully automated technique that imple-
ments the NAF to process multi-day precipitation time se-
ries in successive 24 h segments using overlapping moving
windows. The use of 24 h windows automates the identifica-
tion and removal of evaporation, minimizing the negative bi-
ases in total precipitation from evaporation without the need
for user intervention. Additionally, the NAF-SEG method
provides an estimate of evaporative losses on precipitation-
free days for evaluating servicing procedures. The NAF-SEG
technique uses three overlapping moving windows per day,
advanced in increments of 8 h. The algorithm begins by fil-
tering the first 24 h segment using NAF. It then advances 8 h
and filters the next 24 h segment. This filtering process is re-
peated until the end of the data is reached. Each 8 h data seg-
ment thus passes through the NAF three times. The process-
ing steps are listed below and outlined in Fig. 1.

The measurement interval used in this analysis to evalu-
ate NAF, NAF-S, and NAF-SEG is 1 min. This interval is
used here because it was chosen as the preferred interval for
archiving of the SPICE data. NAF has been shown to work
on data of larger intervals (i.e. 30 min in Pan et al., 2016),
and there is no reason why NAF-SEG could not be used with
larger intervals as well, provided that the intervals are con-
siderably shorter than the 24 h window (i.e. 30 min or less).

We will denote the precipitation amount from one mea-
surement interval (i) as P(i), cumulative precipitation as
cumP(i), evaporation from one measurement interval as
E(i), and cumulative evaporation as cumE(i). All units are
in millimetres.

1. The time series is processed in successive 24 h seg-
ments.

2. For each 24 h segment, the change in bucket weight,
which we will call 124 h, is computed as the difference
between the final and initial observations.

3. Based on the value of 124 h, the 24 h segment is as-
signed one of three states: (1) precipitating, (2) evap-
orating, or (3) neither. It is then processed accordingly:

a. If 124 h
≥ P∗, the 24 h segment is flagged and

treated as a precipitation period with no evapora-
tion. The 24 h segment is passed through the NAF,
resulting in values of P(i) that are either zero or
greater than or equal to P∗.

b. If 124 h
≤−P∗, the 24 h segment is flagged and

treated as an evaporation period with no precipita-
tion. The 24 h segment is passed through the NAF
but with the sign of the data reversed, resulting in
values of E(i) that are either zero or less than or
equal to −P∗.

c. If−P∗<124 h <P∗, the 24 h segment is flagged as
free of both precipitation and evaporation, and all
values of P(i) and E(i) are set to zero.

4. The NAF P(i) and E(i) outputs from step (3) as well
as the flags that indicate the presence of precipitation
or evaporation are added to arrays with three columns,
corresponding to the three overlapping windows per day
(i.e. as P(i,j), E(i,j), and flag(i,j ), where j denotes
columns – windows – 1 to 3).

5. Steps (2) to (4) are repeated using moving windows on
successive 24 h segments, beginning 8 h apart, until the
entire time series has been processed.

6. The P(i,j) andE(i,j) arrays from steps (3) to (5), with
three overlapping windows, are processed to create a
single time series for P(i) and E(i), based on the flag.

a. For intervals when the flag from all three overlap-
ping windows indicates the presence of precipita-
tion, E(i) is set to zero and the three P(i,j) values
are averaged to produce P(i); otherwise P(i) is set
to zero.

b. For intervals when the flag from all three overlap-
ping windows indicates the presence of evapora-
tion, P(i) is set to zero and the three E(i,j) val-
ues are averaged across columns to produce E(i);
otherwise E(i) is set to zero.

c. For intervals which do not precipitate (6a) or evap-
orate (6b), i.e. when the flag from all three overlap-
ping windows indicates the absence of both precip-
itation and evaporation, or when the three flags do
not agree with each other, P(i) and E(i) are set to
zero.

7. The P(i) and E(i) outputs from step (6) are summed to
create the cumP and cumE time series. Lastly, cumP is
passed through the NAF to ensure that all P(i) values
are either zero or greater than or equal to P∗; cumE is
passed through the NAF but with the sign of the data
reversed to ensure that all E(i) values are either zero
or less than or equal to −P∗. The evaporation estimate
is taken as the absolute value of the cumulative total of
cumE.

Two additional steps not shown in Fig. 1 are required. First,
additional 24 h segments need to be added to the start and end
of the time series to ensure that all core intervals are covered
by three overlapping windows. Since these time series begin
at 0 mm at the start of the season, the 24 h segment added
to the start of each time series is set to all zero values. The
24 h segment added to the end of the time series is set to
the maximum of the cumulative time series. This step is only
necessary if the user requires processed data from the first
and last 24 h period in the time series and does not impact
the precipitation amounts.
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Figure 1. NAF-SEG data flowchart.
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A second step is required to ensure that the precipitation
during data gaps is not omitted from the accumulated total.
Note that when gaps occur in an automated weighing-gauge
time series, the total accumulation across the gap is preserved
but the event timing is lost. In the NAF-SEG implementation,
precipitation occurring over data gaps is preserved if all three
windows capture the jump in the bucket weight over the gap.
But this will not always be the case. We resolved the problem
as follows. First, we identified data gaps that overlapped the
start or end of each 24 h segment, computed the difference
in bucket weight across the gap, and flagged windows when
the difference was greater than or equal to P∗. For those seg-
ments only, we added a processing step between steps (5) and
(6) as follows. If any of the three overlapping windows cap-
tured the jump in the bucket weight across the gap, the win-
dow or windows in P(i,j) that did not capture the jump were
excluded from the averaging, and all three windows were
flagged to indicate the presence of precipitation. If none of
the windows captured the jump in bucket weight across the
gap, the difference across the gap was assigned to the final
interval of the gap in P(i,j) for all three windows, with all
windows flagged to indicate the presence of precipitation.

3 Filter evaluation

Two data sources, both with 1 min resolution, were used to
evaluate the O15, NAF, NAF-S, and NAF-SEG precipita-
tion filters: a control (pre-processed) precipitation time se-
ries which is free of noise and drift and raw (minimally fil-
tered) automated weighing-gauge data collected at a number
of international sites, which contain varying levels of noise,
diurnal oscillations, and evaporative drift. The control, pre-
processed time series were used to evaluate all four filters
– by adding synthetic noise, diurnal oscillations, and evap-
orative drift and then evaluating the ability of the filters to
recover the original time series. The raw time series, follow-
ing quality control procedures, were passed through each of
the filters, and the supervised NAF-S output was used as the
standard against which to evaluate the others.

Both data sources, raw data with real-world noise and con-
trol data with synthetic noise added, have advantages and
disadvantages in assessing filter performance (Peters et al.,
2014). Clean data with added noise provide a known “true”
control but add the risk that the added noise and drift may not
adequately capture the characteristics of real-world measure-
ments. Raw measurements preserve observed noise patterns
and capture the variability in noise behaviour across sites and
instruments but do not provide a control time series for filter
evaluation. By using both complementary data sources, we
exploit their respective strengths and thus better assess the
relative effectiveness of each filter.

3.1 Testing with pre-processed (control) precipitation
data

The pre-processed 1 min cumulative time series was origi-
nally derived from an Alter-shielded Geonor T-200B precip-
itation gauge at Caribou Creek, Canada, from October 2013
to September 2014. It was broken into two seasons to better
assess filter performance differences between the cold sea-
son (October–April) and the warm season (May–September).
The raw gauge outputs were filtered using NAF-S, result-
ing in a cold-season precipitation total of 259 mm and a
warm-season precipitation total of 282 mm. Historically, this
particular gauge has performed well with minimal noise
(<±0.25 mm) and evaporation issues; the time series was
very clean even prior to filtering, and therefore the filtered
output provides a suitable control.

To evaluate the four filters, we added synthetic noise and
drift to the filtered (noise-free) control and then tested each
filter’s ability to recover the original signal. The perturbations
included synthetic evaporation, diurnal oscillations, and ran-
dom noise, computed as follows.

1. Negative evaporative drift was added that totaled 25.9
and 28.2 mm in the cold and warm seasons respectively,
or 10 % of the precipitation totals. The synthetic evap-
oration was partitioned among the 1 min intervals, as-
suming that interval evaporation was proportional to the
vapour pressure deficit (VPD). The fraction of evapora-
tion for each interval was calculated by dividing the in-
terval VPD by the VPD sum over the entire time series.
Those fractions were then multiplied by the total (25.9
or 28.2 mm), and the resulting cumulative sum was sub-
tracted from the control cumulative precipitation.

2. Temperature-dependent diurnal oscillations δT(i) were
computed from observed air temperature at gauge
height and added to the cumulative precipitation con-
trol. The diurnal oscillations were calculated as follows:

δT(i)= fTs× (T (i)−mean(T ))/(0.5× range(T ), (1)

where fTs is a coefficient that varies for the different
noise scenarios (Table 1). The temperature-oscillation
time series δT was then subtracted from the cumulative
time series from step (1).

3. Normally distributed random noise was generated for
each 1 min interval, with a mean of zero and a speci-
fied standard deviation (Table 1). Because the synthetic
noise time series is generated randomly, it does not nec-
essarily sum to zero. To avoid adding bias, we forced
the sum to zero by subtracting the mean. The result was
then added to the cumulative time series from step (2).

The artificially noisy time series from step (3) were adjusted
to a value of zero at the start and then filtered using the
O15, NAF, NAF-S, and NAF-SEG techniques. The nature
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Table 1. Diurnal and random noise parameters in the simulated pre-
cipitation time series.

Noise level High Medium Low

Diurnal coefficient 2 1.5 1
(fTs) (mm)
Random noise 0.1 0.01 0.001
(SD) (mm)

and magnitude of the various noise levels can be visualized
in Fig. 3.

3.2 Testing with raw precipitation data

Automated weighing-gauge data were collected between
2013 and 2017 at seven WMO SPICE (Nitu et al., 2018)
sites, including Bratt’s Lake (XBK; Canada), Caribou Creek
(CCR; Canada), the Centre for Atmospheric Research Ex-
periments (CAR; Canada), Formigal (FMG; Spain), Hauke-
liseter (HKL; Norway), Sodankylä (SOD; Finland), and
Weissfluhjoch (WFJ; Switzerland). These sites provided
high-quality precipitation observations (with a focus on cold-
season measurements) from several automated weighing-
gauge (Geonor T-200B and OTT Pluvio2) configurations at
a temporal resolution of 1 min. In addition, the sites utilized
a number of wind-shield configurations, including the WMO
Double Fence Automated Reference (DFAR) and the single
Alter shield as well as unshielded configurations. The com-
bination of different climate regimes, gauge types, and wind-
shield configurations provides the opportunity to test pro-
cessing algorithms on contrasting noise patterns. Although
the SPICE intercomparison period (2013–2015) officially
ended in 2015, many of these high-quality precipitation ob-
servations were continued beyond 2015 and made available
by the site hosts for this evaluation.

In total, 44 cold-season time series (from October to April
over 2013–2017) and 11 warm-season time series (May to
September over 2015–2017) were used in testing. The raw
1 min data (raw frequency output converted to bucket weight
from the Geonor T-200B and real-time bucket-weight out-
put from the OTT Pluvio2) were first run through an auto-
mated quality control process to remove out-of-range out-
liers and data jumps, which included the removal of data
jumps and/or drops related to gauge servicing (bucket empty-
ing and/or charging), consistent with the quality control pro-
cess used for the WMO SPICE analysis (Nitu et al., 2018).
Anything missed or flagged by the automated quality con-
trol process was examined and, as necessary, cleaned man-
ually. The 1 min precipitation bucket-weight data were then
smoothed using a Gaussian filter with a 4 min running win-
dow. This filter smoothed large spikes in the time series that
may have resulted from mechanical or electrical noise. Since
all of the Geonor T-200B gauges used in this analysis were
equipped with three vibrating wire transducers, the bucket

weights from each wire were averaged following the quality
control process to derive a single time series. This has been
shown to further reduce random noise (Duchon, 2008). Fi-
nally, the time series were zeroed at the start of the season,
and the cumulative time series was filtered using the O15,
NAF, NAF-S, and NAF-SEG techniques.

Unlike the first data sources, the raw (minimally filtered)
observations do not provide a control. To overcome this lim-
itation, we used the NAF-S output as the reference standard
for the other three methods. This adds a potential bias be-
cause of NAF-S-user subjectivity, but we believe the bias
to be small. Previous tests have shown NAF-S to achieve
favourable results (Smith et al., 2019).

3.3 Analysis methods

For analysis, the 1 min filtered data were aggregated into
30 min accumulation intervals. Three statistical tests were
chosen to analyze the performance of the post-processing
techniques: total bias (for each seasonal time series), root-
mean-square error (RMSE; or, more appropriately, root-
mean-square deviation – RMSD – for the tests with unfiltered
data), and Pearson’s correlation coefficient (r). The total bias
is a valuable metric that demonstrates the post-processing
technique’s overall ability to generate an accurate total. The
RMSE (or RMSD) quantifies the variability in the filter out-
puts relative to the control or reference standard. Finally,
Pearson’s correlation coefficient determines the strength of
the linear relationships between the filter outputs and the con-
trol or reference. RMSE (or RMSD) and r are based on the
interval precipitation amounts and include the intervals with
zero precipitation.

4 Results

4.1 Filter evaluation using pre-processed (control) data

The performance of the four filters was evaluated by adding
synthetic noise and drift to clean (control) cold-season and
warm-season time series and then assessing each filter’s skill
in recovering the control. The cold-season results are shown
in Fig. 2, and an in-depth look at the first simulated cold-
season evaporation event is shown in Fig. 3 for each of the
three noise scenarios. The warm-season results (not shown)
are very similar to the cold-season results in Figs. 2 and 3.
Tables 2 to 4 show the associated 30 min total seasonal bi-
ases, correlation coefficients, and RMSE for all four filters
as well as the NAF-SEG evaporation estimates, broken down
by season.

Based on their success in eliminating the added synthetic
noise and drift and recovering the original control time series,
NAF-S and NAF-SEG outperformed NAF and O15. O15 per-
formed well at low noise but was sensitive to higher noise
levels, with biases in total precipitation of +1 % (+8 %),
+13 % (+21 %), and +33 % (+46 %) for the cold-season
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Table 2. Total seasonal bias in millimetres and percentage of total for NAF, NAF-S, O15, and NAF-SEG post-processing techniques at
different simulated noise levels for the cold (C) and warm (W) seasons.

Noise NAF NAF NAF-S NAF-S O15 O15 NAF-SEG NAF-SEG
level (mm) (%) (mm) (%) (mm) (%) (mm) (%)

Low C −26.1 −10.1 % −6.4 −2.5 % 1.5 +0.6% −2.8 −1.1 %
Low W −27.7 −9.8% −3.3 −1.2 % 22.8 +8.1% −8.2 −2.9 %

Medium C −26.2 −10.1 % −3.4 −1.3 % 33.5 +12.9% 1.0 +0.4%
Medium W −27.6 −9.8 % 1.9 +0.7% 58.3 +20.7% −7.4 −2.6 %

High C −26.3 −10.2% −2.7 −1.0% 86.0 +33.2% 5.0 +1.9%
High W −27.7 −9.8% 2.1 +0.7% 130.0 +46.1% −9.2 −3.3%

Table 3. Correlation coefficient (r) and RMSE for NAF-SEG, NAF-S, NAF, and O15 post-processing techniques at different simulated noise
levels for the cold (C) and warm (W) seasons.

Noise r r r r RMSE RMSE RMSE RMSE
level NAF NAF-S O15 NAF-SEG NAF NAF-S O15 NAF-SEG

(mm) (mm) (mm) (mm)

Low C 0.97 0.99 0.94 0.99 0.029 0.020 0.044 0.019
Low W 0.98 1.00 0.98 1.00 0.045 0.020 0.054 0.021

Medium C 0.97 0.98 0.92 0.98 0.032 0.025 0.053 0.024
Medium W 0.98 0.99 0.97 0.99 0.049 0.027 0.061 0.027

High C 0.95 0.96 0.87 0.96 0.041 0.038 0.069 0.037
High W 0.97 0.99 0.95 0.99 0.057 0.041 0.084 0.041

(warm-season) low-, medium-, and high-noise scenarios re-
spectively. NAF was insensitive to noise but failed to recover
the added evaporative losses (10 % of the precipitation total)
at all noise levels. NAF-S and NAF-SEG performed well at
all three noise levels, recovering the control precipitation to
within 3 % of the total (regardless of season) and generating
the highest correlation coefficients and lowest RMSE. NAF-
SEG also produced an estimate of evaporation; its skill in
detecting evaporative losses varied by both season and noise
level. In the cold season, NAF-SEG overestimated the syn-
thetic evaporation by 16 % at high noise and underestimated
the synthetic evaporation by 19 % at low noise. In the warm
season, NAF-SEG underestimated the synthetic evaporation
by 10 % at high noise and 26 % at low noise. Given the in-
herent difficulty of deconvolving the evaporation and precip-
itation signals, and the high degree of temporal detail in the
added evaporation time series, the ability of the NAF-SEG to
detect and eliminate evaporative drift was encouraging. In-
deed, the fully automated NAF-SEG was able to match the
skill of the manually supervised NAF-S.

4.2 Filter evaluation using unprocessed data

This intercomparison examines the relative performance of
the O15, NAF, and NAF-SEG on raw (minimally processed)
weighing-gauge time series, using the NAF-S output as
the reference standard. Individual results from the 44 cold-

Table 4. NAF-SEG evaporation estimates for different simulated
noise levels, with actual evaporation constant at 25.9 mm in the
cold-season (C) and 28.2 mm in the warm-season (W) control.

Noise level Recovered % of
evaporation actual

(mm)

Low C 21.0 81 %
Low W 20.8 74 %

Medium C 25.1 97 %
Medium W 22.7 81 %

High C 30.1 116 %
High W 25.5 90 %

season and 11 warm-season test time series are shown in Ta-
bles A1 and A2 respectively. Overall, the NAF-SEG tech-
nique gave the lowest mean bias, highest mean correlation
coefficient r , and lowest mean RMSD value (Table 5) in both
seasons. In cold-season testing, the absolute bias from NAF-
SEG was lower than the O15 bias in 37 of 44 cases (84 %),
similar in 5 cases (11 %), and higher in 2 cases (5 %). In
warm-season testing, NAF-SEG showed a lower or similar
absolute bias in 7 of the 11 cases (64 %). NAF-SEG also
produced the lowest variability in r , RMSD, and the sea-
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Figure 2. Time series of simulated cold-season precipitation gauge
bucket weight with synthetic evaporation and varying levels of syn-
thetic noise and diurnal oscillations (a high noise; b medium noise;
c low noise).

sonal total (Fig. 4; showing cold-season only), suggesting the
greatest consistency in processing performance across sites,
configurations, and years.

The relative performance of NAF-SEG, NAF, and O15
varied across the 55 test time series, related to the nature and
magnitude of the noise and negative drift due to evaporation
from the bucket (Tables A1 and A2). Figure 5 shows four
cold-season examples, comparing raw and processed time
series. The y axis is scaled to the precipitation total to pro-
vide perspective on the relative errors in the processing tech-
niques. The inset graphs in Fig. 5, which zoom in on partic-
ular events, highlight the magnitude of noise and drift in the
raw data and show how the filters respond.

Figure 5a shows a time series for Caribou Creek (CCR),
Canada, where the raw data exhibit very little noise or evap-
oration. For that reason, all processing techniques are within
a few percent of the NAF-S reference, and it is difficult to

Figure 3. Time series of simulated cold-season precipitation gauge
bucket weight (zoomed into the first evaporation event) with syn-
thetic evaporation and varying levels of synthetic noise and diurnal
oscillations (a high noise; b medium noise; c low noise).

see the differences during much of the time series. Figure 5b,
from Haukeliseter (HKL), Norway, exhibits higher noise, re-
sulting in an O15 precipitation overestimate of +9 % due to
false precipitation detection. A moderate amount of evapo-
ration is seen in the growing difference between NAF and
NAF-S, with NAF-SEG nearly replicating NAF-S. Figure 5c
and d, from Bratt’s Lake (XBK), Canada, show cases with
high evaporation (Fig. 5c) and high noise (Fig. 5d). In Fig. 5c,
evaporation causes a low bias in NAF, which recovers only
87 % of the NAF-S precipitation total; O15 shows two com-
pensating errors – an underestimation in precipitation due to
evaporation and an increase in false precipitation detections
due to noise, resulting in a recovery of 94 % of total precip-
itation relative to NAF-S, and NAF-SEG closely replicates
NAF-S, with slight deviations in November and December.
Figure 5d shows the impact of high noise with little evapora-
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Table 5. Mean correlation coefficients (r) and RMSD along with standard deviations (SDs) for all observed real-world precipitation time
series using NAF-S as the reference (warm-season, May–September, in parenthesis).

Post-processing technique Mean r SD r Mean RMSD (mm) SD RMSD (mm)

NAF-SEG 0.991 (0.999) 0.006 (0.001) 0.017 (0.020) 0.006 (0.008)
NAF 0.983 (0.998) 0.040 (0.003) 0.020 (0.027) 0.025 (0.013)
O15 0.952 (0.987) 0.032 (0.010) 0.041 (0.068) 0.024 (0.015)

Figure 4. Box-and-whisker plots of (a) Pearson’s r , (b) RMSD, and (c) bias in cold-season total precipitation relative to the reference for
each of the evaluated filtering techniques (NAF-SEG, NAF, and O15) as compared to the reference technique (NAF-S) for the 44 unprocessed
time series.

tion; O15 overestimates precipitation by 4 %, whereas NAF-
SEG is consistent with NAF-S throughout the time series.

5 Discussion

This study evaluated four filters for processing the outputs
of accumulating automated weighing precipitation gauges:
three that were fully automated (O15, NAF, and NAF-SEG)
and one that required manual supervision (NAF-S). Over-
all, NAF-S and NAF-SEG outperformed O15 and NAF; both
NAF-S and NAF-SEG showed similar skill in compensat-
ing for evaporative losses and eliminating false detections
caused by random noise and diurnal oscillations. O15 per-
formed well in low-noise cases with minimal evaporation but
generated false precipitation detections when the data were
noisy and often underestimated evaporative losses. NAF per-
formed well in cases with minimal evaporation regardless
of the noise level but did not correct for evaporative losses.
NAF-SEG performed consistently well and provided a fully
automated alternative that matched the skill of the manual
NAF-S method. Moreover, NAF-SEG added a direct esti-
mate of evaporation, without the user intervention required
by NAF-S or the 1 mm threshold required by O15. Simi-
lar evaporation estimates are not directly available from the
other techniques.

Although NAF-SEG did not perfectly recover the syn-
thetic evaporation that was added to the control time series
(the recovery rates were 81 % to 116 % depending on the

noise level), it performed as well as the manually super-
vised NAF-S technique. Both NAF-S and NAF-SEG failed
to disentangle precipitation and evaporation when they oc-
curred on the same day. The challenge to do so may be in-
surmountable. The imperfect recovery of synthetic evapora-
tion, coupled with the sensitivity of the recovered evapora-
tion to noise, highlights the need to implement measurement
protocols that minimize evaporative losses. We recommend
the use of NAF-SEG as a screening technique to identify
gauges and locations that have significant evaporative losses
and then to implement adequate measures to minimize those
losses, such as modifications to the oil and antifreeze mixture
used to prevent freezing and evaporation.

Overestimation of precipitation by the O15 method oc-
curs when the noise exceeds the filter’s prescribed thresh-
old of 0.2 mm. This value for the threshold has been set
based on experience as a necessary and calculated balance
between eliminating real precipitation events and detecting
false events. When the noise level is low, as in the low-noise
scenario of the control data, the O15 technique works suc-
cessfully. However, noise patterns vary substantially from
site to site and among gauges, as illustrated by Nitu et
al. (2018), and often exceed the filtering capabilities of O15.
It should also be noted that the unprocessed data in our tests
were pre-filtered using a Gaussian filter with a 4 min window,
which was integrated into the SPICE quality control process
prior to testing the algorithms. This likely resulted in the O15
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Figure 5. Time series of observed cold-season precipitation gauge bucket-weight processing (NAF, NAF-S, O15, and NAF-SEG) along
with the NAF-SEG evaporation estimate for (a) Caribou Creek R2G 2013–2014, (b) Haukeliseter R3AG 2016–2017, (c) Bratt’s Lake R2P
2015–2016, and (d) Bratt’s Lake R3UG 2013–2014. Insets show a zoomed example with consistent vertical scaling to illustrate the issues
and filter performance relative to each time series.

performing better than it would have in the operational set-
ting, but this was not confirmed.

The NAF technique is fundamentally effective at filter-
ing noise and diurnal oscillations but underestimates pre-
cipitation when evaporative losses occur because the algo-
rithm forces the precipitation total to match the final raw
bucket weight in the time series, with evaporation assumed
to be zero. The NAF-SEG technique, which implements NAF
over 24 h windows, maintains all the strengths of NAF with
the added functionality of automating the detection and re-
moval of bucket evaporation. Neither NAF-S nor NAF-SEG
removes evaporation perfectly, particularly when it occurs
in combination with precipitation, but both represent a ma-
jor step forward compared to other processing methods. We
attribute the effectiveness of NAF-SEG to two characteris-
tics of precipitation events: first that evaporation is relatively
small during periods with precipitation and second that both
precipitation and evaporation are persistent over timescales
of days. In the development of NAF-SEG, a 24 h moving
window was chosen to minimize the impact of temperature-
related diurnal oscillations, but fortuitously the 24 h window
also served to separate days with precipitation and little evap-
oration from days with evaporation and little or no precipita-
tion. The performance of NAF-SEG may decline when signal
noise is due to non-cyclical temperature fluctuations, such as
those that occur during strong synoptic events. Although this

possibility was not assessed, it is one that users should be
aware of.

As mentioned in the introduction to NAF-SEG, a sen-
sitivity analysis was performed for a range of P∗ values
from 0.0001 to 0.5 mm using the pre-processed high-noise
time series for both warm and cold seasons. The analysis
showed negligible sensitivity as P∗ ranged from 0.0001 to
0.05 and higher sensitivity as P∗ further increased to 0.5 mm
for both seasons. Given the relative insensitivity of NAF-
SEG to P∗< 0.5 mm, the use of 0.001 mm seems to be an
appropriate baseline value for both seasons; users may want
to further experiment with the parameter as their own data
require.

NAF-SEG provides an attractive alternative to NAF when
negative evaporative drift is present in the raw data, but it is
not designed to handle all contingencies. For instance, un-
explained positive then negative excursions in bucket weight
are sometimes observed. If the positive and negative excur-
sions are separated by more than 24 h (the size of the win-
dow), the NAF-SEG will errantly attribute the positive ex-
cursion to precipitation and the negative excursion to evapo-
ration.

The results of the testing on unprocessed time series from
different sites, seasons, and gauge configurations showed that
NAF-SEG generally outperformed O15 in both cold- and
warm-season test cases. Of the 44 cold-season test cases,
O15 outperformed NAF-SEG in only two cases: the DFAR
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and unshielded Pluvio2 gauges at WFJ (2016–2017). How-
ever, these gauges may not have been serviced adequately;
note the extreme evaporation rates as evidenced in the high
biases between NAF and NAF-S in Table A1. This dimin-
ishes their usefulness for this evaluation; they were among
the most challenging to process, with the greatest uncertainty
in the supervised NAF-S output that served as the reference
standard.

Filter evaluation was more limited in the warm season
because the raw site data were obtained from the SPICE
project, which focused on the measurement of solid precipi-
tation. Still, we were able to assemble 11 warm-season cases.
The warm-season data were expected to differ from the cold-
season data in two respects: higher evaporative losses and
different noise characteristics. Each of the filters generated a
higher RMSD in the warm season than the cold season; the
greatest increase was found for O15, consistent with the pre-
processed control experiments. In general, NAF-SEG outper-
formed both NAF and O15 in the warm season. NAF-SEG
outperformed O15 in all warm season cases for r and RMSD
and resulted in a lower or similar seasonal bias in 7 of the
11 cases. The NAF-SEG totals consistently underestimated
warm-season precipitation, but the biases were small, aver-
aging 1.7 % compared with 1.0 % for the cold season. Re-
gardless of the sample size, the performance metrics all show
that NAF-SEG outperformed both NAF and O15 in the warm
season as well as the cold season.

The evaluation of filter performance based on raw site data
begs the following question: how reliable are the NAF-S out-
puts as reference standards, given that they rely on the opera-
tor’s subjective judgement during the interactive elimination
of negative drift and other spurious bucket-weight changes?
We acknowledge that operator bias is possible but are confi-
dent that its impact in this study is minimal. A single, skilled
operator processed all of the data and made every attempt to
apply the NAF-S method consistently. Adding further con-
fidence to the NAF-S outputs are the tests with control data,
which independently demonstrated the efficacy of the NAF-S
to eliminate noise and evaporative drift.

One suggestion to improve the quality of data from accu-
mulating precipitation gauges is to add disdrometers, which
detect the current weather conditions, to the site measure-
ments and then incorporate their outputs into the quality
control and filtering process. These augmented observations
could be used to refine the noise filtering by automating the
high-temporal-resolution (e.g. 1 min) detection of light pre-
cipitation events and assist in removing false precipitation
detections. These ancillary data were used in this way during
SPICE (Nitu et al., 2018) and should be further explored for
enhancing operational filtering.

6 Conclusions

This study reports the development and implementation of
a robust, fully automated technique for post-processing data
from automated weighing precipitation gauges. The NAF-
SEG technique is designed to eliminate varying levels of
random noise and diurnal oscillations as well as correcting
for negative drift from bucket evaporation. An intercompari-
son of four filtering techniques shows that the O15, although
simple and deployable in real time, fails when noise levels
exceed the filter’s threshold and may undercompensate for
bucket evaporation. NAF, although highly effective in elimi-
nating noise, does not correct for evaporative losses. NAF-
S, which adds manual supervision to NAF, is effective in
removing noise, eliminating spurious data, and correcting
for negative drift from evaporation. However, it is labour-
intensive and best suited to complete seasonal time series.

Our results show that NAF-SEG is equally as effective as
NAF-S in eliminating noise and evaporative drift from au-
tomated weighing-gauge precipitation measurements. When
tested against a control data set with added synthetic noise
and evaporation, NAF-SEG was able to recover the original
control to within ±3 % of the total, with a lower RMSE than
the other techniques. When evaluated on 55 raw time series
from various sites, years, and gauge configurations, NAF-
SEG outperformed O15 and NAF and gave the highest mean
correlation coefficient and lowest mean RMSD.

One limitation of NAF-SEG is that it requires 24 h data
segments; consequently, it cannot be deployed for real-time
processing of automated weighing-gauge precipitation mea-
surements. Until other alternatives are found, we recommend
the use of a simple threshold filter like O15 for real-time ap-
plications, but with the archiving of the raw 1 min time series
for subsequent enhanced quality control, reprocessing using
NAF-SEG, and the archiving of the NAF-SEG outputs. This,
in combination with routine site servicing to minimize evap-
oration and other sources of noise, can result in improved
operational precipitation data.
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Appendix A: Raw time series used in precipitation filter
evaluation, with evaporation estimates and total
precipitation bias

Table A1. Cold-season total precipitation (unfiltered, NAF-S, and NAF-SEG filtered), filter biases (NAF, O15, and NAF-SEG), and derived
bucket evaporation (NAF-SEG) from 44 WMO SPICE precipitation time series. Biases (mm) are calculated using NAF-S as the reference
filtering technique. Filtered time series that do not show an improvement with the NAF-SEG method when compared to O15 are indicated
by an asterisk (∗).

Site–shield–gauge–year Unfiltered NAF-S NAF-SEG Bias NAF Bias O15 Bias NAF-SEG Evaporation
total total total (mm) (mm) (mm) NAF-SEG

(mm) (mm) (mm) estimate
(mm)

CAR–R2P–2016–2017 441.6 468.8 455.2 −27.2 −15.0 −13.6 9.6
CAR–R3AG–2016–2017 400.4 407.0 406.0 −6.6 −5.7 −1.0 4.7
CAR–R3AP–2016–2017 365.1 394.0 380.2 −28.9 −17.7 −13.8 12.0
CAR–R3UP–2016–2017 313.5 345.8 330.1 −32.3 −19.1 −15.7 11.6
CCR–ABG–2013–2014 256.5 259.0 258.0 −2.5 −2.2 −1.0 2.1
CCR–ABG–2014–2015 168.6 172.7 171.7 −4.1 −3.7 −0.9 3.5
CCR–ABG–2015–2016 171.5 174.3 174.8 −2.8 −1.1 0.4 3.8
CCR–ABP–2014–2015 166.1 174.8 172.7 −8.8 −5.4 −2.2 6.2
CCR–ABP–2015–2016 171.1 177.1 177.0 −6.0 −2.1 −0.1 5.9
CCR–R2G–2014–2015 105.7 106.3 108.1 −0.6 8.1 1.8 3.4
CCR–R2G–2015–2016 186.5 189.3 188.3 −2.8 −2.0 −1.1 2.3
CCR–R2G–2013–2014∗ 275.5 279.6 276.5 −4.0 0.4 −3.1 3.0
CCR–R3AG–2013–2014 222.9 224.1 224.6 −1.2 −1.0 0.4 2.5
CCR–R3AG–2014–2015∗ 85.8 86.8 88.1 −1.1 −0.4 1.3 2.6
CCR–R3UG–2013–2014 183.4 185.2 184.4 −1.9 −1.3 −0.8 2.5
CCR–R3UG–2014–2015∗ 72.3 73.9 75.6 −1.6 −0.7 1.7 3.0
FMG–R2P–2015–2016 1036.7 1053.8 1042.1 −17.1 −13.0 −11.7 3.4
FMG–R3AP–2015–2016∗ 828.1 849.1 832.6 −21.0 −15.6 −16.5 2.6
HKL–R2G–2016–2017∗ 748.5 755.0 754.0 −6.5 −0.5 −1.0 5.1
HKL–R3AG–2016–2017 423.9 437.5 438.0 −13.6 39.4 0.5 11.1
HKL–R3AP–2016–2017 385.4 403.0 399.5 −17.6 −3.7 −3.5 10.3
HKL–R3UG–2016–2017 320.5 328.3 329.2 −7.8 −2.2 0.9 7.8
SOD–R2P–2016–2017 215.0 238.4 234.7 −23.4 −7.4 −3.7 15.7
SOD–R3AP–2016–2017 187.7 212.9 207.8 −25.2 −8.9 −5.1 16.7
SOD–R3UP–2016–2017 180.9 194.1 192.0 −13.2 −4.1 −2.2 9.4
WFJ–R2P–2016–2017∗ 595.4 715.1 706.6 −119.7 −1.5 −8.5 102.4
WFJ–R3AP–2016–2017 375.4 605.7 598.0 −230.3 13.2 −7.7 208.6
WFJ–R3UP–2016–2017∗ 246.6 434.6 423.6 −188.0 0.4 −11.0 167.0
XBK–AP–2013–2014 83.8 91.9 90.7 −8.1 −4.2 −1.2 4.9
XBK–AP–2014–2015 49.5 59.5 58.1 −10.0 −6.6 −1.4 7.1
XBK–AP–2015–2016 61.1 74.9 71.8 −13.7 −9.4 −3.1 8.2
XBK–DAG–2013–2014 131.4 136.0 134.2 −4.6 −3.9 −1.8 3.3
XBK–DAG–2014–2015 104.3 111.0 108.5 −6.7 −3.4 −2.4 5.6
XBK–DAG–2015–2016 90.2 97.1 95.5 −7.0 −5.5 −1.6 5.2
XBK–R2G–2013–2014 167.2 170.2 170.4 −3.0 −2.8 0.2 2.3
XBK–R2G–2015–2016 71.1 75.5 75.7 −4.4 −4.1 0.3 3.8
XBK–R2P–2014–2015 110.3 119.2 114.9 −8.8 −7.6 −4.2 3.7
XBK–R2P–2015–2016 80.4 92.6 91.2 −12.2 −5.6 −1.3 9.4
XBK–R3AG–2013–2014 97.7 100.7 101.4 −3.0 −2.9 0.7 3.7
XBK–R3AG–2014–2015 73.0 78.3 76.9 −5.3 −2.8 −1.4 4.7
XBK–R3AG–2015–2016 72.7 78.2 77.8 −5.5 −5.0 −0.4 5.2
XBK–R3UG–2013–2014 83.1 89.6 90.2 −6.5 3.8 0.6 7.3
XBK–R3UG–2014–2015 56.4 63.8 62.3 −7.5 −3.0 −1.6 7.2
XBK–R3UG–2015–2016 69.5 76.2 75.2 −6.7 −4.2 −1.0 5.7
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Table A2. Warm-season total precipitation (unfiltered, NAF-S, and NAF-SEG filtered), filter biases (NAF, O15, and NAF-SEG), and derived
bucket evaporation (NAF-SEG) from 11 WMO SPICE precipitation time series. Biases (mm) are calculated using NAF-S as the reference
filtering technique. Filtered time series that do not show an improvement with the NAF-SEG method when compared to O15 are indicated
by an asterisk (∗).

Site–shield–gauge–year Unfiltered NAF-S NAF-SEG Bias NAF Bias O15 Bias NAF-SEG Evaporation
total total total (mm) (mm) (mm) NAF-SEG

(mm) (mm) (mm) estimate
(mm)

CCR–ABP–2015 344.8 353.5 350.9 −8.7 −4.4 −2.6 5.7
CCR–R2G–2015 349.3 354.0 353.3 −4.7 −3.1 −0.7 3.4
XBK–R2P–2015∗ 222.8 242.0 232.2 −19.2 −4.7 −9.8 5.7
XBK–R2P–2016∗ 261.5 282.6 271.6 −21.1 −6.4 −11.0 7.6
XBK–R3UG–2015∗ 253.5 260.3 258.3 −6.8 −0.9 −2.0 5.3
XBK–R3UG–2016 287.6 293.7 290.4 −6.1 7.0 −3.3 4.9
CAR–R3AG–2016 294.8 307.0 305.1 −12.2 −7.8 −1.9 9.0
CAR–R3AG–2017 386.3 389.6 389.2 −3.3 −3.4 −0.4 3.1
CAR–R3UP–2017 346.7 369.3 361.3 −22.6 −8.1 −8.0 10.1
CAR–R2P–2017∗ 358.1 383.5 372.2 −25.4 −8.9 −11.3 10.6
CAR–R3AP–2017∗ 345.1 368.8 361.2 −23.7 −4.1 −7.6 12.2

Table A3. A description of the different shield and gauge configurations used in Tables A1 and A2.

Code Description

R2 DFAR reference (SPICE)
R3 Alter or unshielded reference (SPICE)
A Single Alter shield
U Unshielded
DA Double Alter shield
B Bush shield
P Pluvio gauge
G Geonor gauge
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Code and data availability. The code for NAF-SEG and the pre-
cipitation time series intercomparison data used in this evalua-
tion are available at https://doi.org/10.20383/101.0243 (Ross et al.,
2020).
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