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Abstract. Online analysis with mass spectrometers produces
complex data sets, consisting of mass spectra with a large
number of chemical compounds (ions). Statistical dimension
reduction techniques (SDRTs) are able to condense com-
plex data sets into a more compact form while preserv-
ing the information included in the original observations.
The general principle of these techniques is to investigate
the underlying dependencies of the measured variables by
combining variables with similar characteristics into distinct
groups, called factors or components. Currently, positive ma-
trix factorization (PMF) is the most commonly exploited
SDRT across a range of atmospheric studies, in particular for
source apportionment. In this study, we used five different
SDRTs in analysing mass spectral data from complex gas-
and particle-phase measurements during a laboratory exper-
iment investigating the interactions of gasoline car exhaust
and α-pinene. Specifically, we used four factor analysis tech-
niques, namely principal component analysis (PCA), PMF,
exploratory factor analysis (EFA) and non-negative matrix
factorization (NMF), as well as one clustering technique, par-
titioning around medoids (PAM).

All SDRTs were able to resolve four to five factors from
the gas-phase measurements, including an α-pinene pre-
cursor factor, two to three oxidation product factors, and
a background or car exhaust precursor factor. NMF and
PMF provided an additional oxidation product factor, which
was not found by other SDRTs. The results from EFA
and PCA were similar after applying oblique rotations. For
the particle-phase measurements, four factors were discov-
ered with NMF: one primary factor, a mixed-LVOOA factor

and two α-pinene secondary-organic-aerosol-derived (SOA-
derived) factors. PMF was able to separate two factors:
semi-volatile oxygenated organic aerosol (SVOOA) and low-
volatility oxygenated organic aerosol (LVOOA). PAM was
not able to resolve interpretable clusters due to general limi-
tations of clustering methods, as the high degree of fragmen-
tation taking place in the aerosol mass spectrometer (AMS)
causes different compounds formed at different stages in the
experiment to be detected at the same variable. However,
when preliminary analysis is needed, or isomers and mixed
sources are not expected, cluster analysis may be a useful
tool, as the results are simpler and thus easier to interpret. In
the factor analysis techniques, any single ion generally con-
tributes to multiple factors, although EFA and PCA try to
minimize this spread.

Our analysis shows that different SDRTs put emphasis on
different parts of the data, and with only one technique, some
interesting data properties may still stay undiscovered. Thus,
validation of the acquired results, either by comparing be-
tween different SDRTs or applying one technique multiple
times (e.g. by resampling the data or giving different start-
ing values for iterative algorithms), is important, as it may
protect the user from dismissing unexpected results as “un-
physical”.

1 Introduction

Online measurements with mass spectrometers produce
highly complex data comprised of hundreds of detected ions.
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A high-resolution mass spectrometer enables identification
of the elemental composition of these ions, revealing chem-
ical composition information about the sample. However,
even with the highest resolution, mass spectrometers are not
able to resolve isomers. Instead the large number of iden-
tified ions can make data interpretation challenging due to
the sheer number of variables. Different statistical dimension
reduction techniques (SDRTs) were developed to compress
the information from complex composition data into a small
number of factors, which can be further interpreted by their
physical or chemical properties. In other words, these meth-
ods are used to understand the underlying relationships of the
measured variables (i.e. detected ions). Principal component
analysis (PCA), which was introduced already at the begin-
ning of the 20th century by Karl Pearson, is probably the
first SDRT, even if the modern formulation of PCA was in-
troduced decades later (Pearson, 1901; Hotelling, 1933). In
atmospheric studies, the most exploited method, especially
in the analysis of long time series of aerosol mass spectrom-
eter (AMS) data, is positive matrix factorization (PMF), de-
veloped in the mid-1990s (Paatero and Tapper, 1994). Other
SDRTs that are widely applied in different fields of sci-
ence for the analysis of multivariate data include PCA and
exploratory factor analysis (EFA), which are popular es-
pecially in medical and psychological studies (Raskin and
Terry, 1988; Fabrigar et al., 1999). In atmospheric studies,
the latter methods have not gained widespread popularity,
but a few examples still exist. Customized PCA was applied
to organic aerosol data collected from Pittsburgh in 2002
(Zhang et al., 2005), and a more traditional version of PCA
was used to analyse chemical-ionization-reaction time-of-
flight mass spectrometer (CIR-ToF-MS) and compact time-
of-flight aerosol mass spectrometer (cToF-AMS) data ac-
quired in smog chamber studies during several measurement
campaigns (Wyche et al., 2015). Additionally, EFA and PCA
have been applied in several source apportionment studied
in the environmental science fields (Pekey et al., 2005; So-
fowote et al., 2008), and a recent study on plant volatile or-
ganic compound (VOC) emissions applied EFA to separate
effects of herbivory-induced stress from the natural diurnal
cycle of the plants (Kari et al., 2019a). Very much like PMF,
non-negative matrix factorization (NMF) is one of the most
used methods in the analysis of DNA microarrays and meta-
genes in computational biology (Brunet et al., 2004; Devara-
jan, 2008), but NMF has also been applied in atmospheric
studies (Chen et al., 2013; Malley et al., 2014).

Comparisons between the performance of some of the
SDRTs presented in this paper already exist, but due to the
popularity of PMF, other methods are not applied as widely
in atmospheric studies. As EFA and PCA are rather simi-
lar methods, and they have also existed for many decades,
multiple comparisons between them exist, especially in the
medical and psychological research fields (see e.g. Kim,
2008). The introduction of PMF has also inspired compari-
son studies between PMF and EFA (Huang et al., 1999), and

PMF and PCA were already briefly compared upon publi-
cation of PMF, as the positivity constraints were presented
as an advantage over PCA (Paatero and Tapper, 1994). Al-
though PMF has been shown to be a very powerful tool in
the analysis of environmental AMS data from field studies
(e.g. Ulbrich et al., 2009; Zhang et al., 2011; Hao et al.,
2014, Chakraborty et al., 2015), it has not been applied as
widely in laboratory and smog chamber research (Corbin et
al., 2015; Kortelainen et al., 2015; Tiitta et al., 2016; Koss
et al., 2020). The latest studies have applied PMF also to
chemical-ionization mass spectrometry (CIMS) data (Yan et
al., 2016; Massoli et al., 2018; Koss et al., 2020), which is
able to resolve more oxidized compounds. The special con-
ditions in lab experiments (sharp change at the beginning of
experiments, e.g. switching on UV lights) present an addi-
tional test scenario, as PMF has been mostly used for field
measurement data sets where the main focus is often on the
long-term trends, and real changes in factors are expected
to be more subtle than, for example, the variations in the
noise in the data. In addition, field measurements commonly
yield very large data sets, including thousands of time points,
whereas laboratory experiments may be much shorter. Re-
cently, scientists from atmospheric studies have been moti-
vated to test and adapt other techniques and algorithms to
reduce the dimensionalities of their data, in addition to the
more “traditional” version of PMF introduced in the 1990s.
For example, Rosati et al. (2019) introduced a correlation-
based technique for multivariate curve analysis (similar to
NMF) in their analysis of α-pinene ozonolysis. Cluster anal-
ysis has been applied in a few studies. Wyche et al. (2015)
applied hierarchical cluster analysis (HCA) to investigate the
relationships between terpene and mesocosm systems. In the
study from Äijälä et al. (2017), they combined PMF and k-
means clustering to classify and extract the characteristics of
organic components. In addition, a very recent paper by Koss
et al. (2020) also compared the dimension reduction abilities
of HCA and gamma kinetic parametrization to PMF when
studying mass-spectrometric data sets.

In our study we chose a set of SDRTs with fundamental
differences. For example, PMF usually splits one ion into
several factors, whereas most clustering techniques assign
one ion to one cluster only. If isomers with the same chemical
composition but different functionality are expected, split-
ting ions into several factors might be preferred. On the other
hand, clustering might be more suitable for a more simpli-
fied or preliminary approach (as it is computationally less
demanding) or when the chemical compounds in the data are
already known or if strict division between variables is pre-
ferred. In this study, we validate the usability of the chosen
SDRTs in laboratory studies for two different mass spectrom-
eter devices, PTR-ToF-MS (proton-transfer-reaction time-of-
flight mass spectrometry) and AMS (gas- and particle-phase
composition), and different data sizes due to different mea-
suring periods and time resolutions. Further, we examine the
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performance of the SDRTs when the data include large and
rapid changes in the composition.

2 Experimental data

The data sets investigated in this study were gathered dur-
ing experiments conducted as part of the TRACA campaign
at the University of Eastern Finland. A detailed description
of the experimental set-up and reaction conditions can be
found in Kari et al. (2019b). Briefly, the measurement set-
up consisted of a modern gasoline car (VW Golf, 1.2 TSI,
EUR 6 classification) which was driven at a constant load
of 80 km h−1 after a warm-up period with its front tiers in
a dynamometer. The exhaust was diluted using a two-stage
dilution system and fed into a 29 m3 collapsible environmen-
tal PTFE ILMARI chamber (Leskinen et al., 2015). For the
experiment investigated in this study, α-pinene (∼ 1 µL, cor-
responding to 5 ppbv) was injected into the chamber to re-
semble biogenic VOCs in a typical suburban area in Fin-
land. Atmospherically relevant conditions were simulated
by adding O3 to convert extra NO from vehicle emissions
to NO2 and adding more NO2 to the chamber if needed.
With these additions, atmospherically relevant VOC-to-NOx
(∼ 7.4 ppbC ppb−1) and NO2-to-NO ratios were achieved to
resemble the typical observed level in suburban areas (Na-
tional Research Council, 1991). Chamber temperature was
held constant at ∼ 20 ◦C, and relative humidity was adjusted
to∼ 50 % before the start of the experiment. Blacklight (UV-
A) lamps with a light spectrum centred at 340 nm were used
to form OH radicals from the photolysis of H2O2. The start
of photo-oxidation by turning on the lamps is defined as ex-
periment time 0 in the following. Vertical dashed lines in the
figures indicate α-pinene injection and the start of photo-
oxidation. A short summary of the experimental conditions
and the behaviour of the injected α-pinene as a time series is
shown in the Supplement (Sect. S1)

VOCs in the gas phase were monitored with a proton-
transfer-reaction time-of-flight mass spectrometer (PTR-
TOF-MS 8000, IONICON Analytik, Austria, hereafter re-
ferred to as PTR-MS). Typical concentrations for a few ex-
ample VOCs midway through the experiment were 2 µm m−3

for toluene, 0.2 µm m−3 for TMB (trimethylbenzene) and
1.7 µm m−3 for C4H4O3. The detailed set-up, calibration pro-
cedure and data analysis of the used high-resolution PTR-
MS have been explicitly presented in Kari et al. (2019b).
In the campaign, the high mass resolution of the instrument
(>5000) enabled the determination of the elemental com-
positions of measured VOCs. The instrumental setting in-
tended to minimize the fragmentation of some compounds so
that the quantitation of the VOCs was possible. The chem-
ical composition of the particle phase of the formed SOA
was monitored with a soot particle aerosol mass spectrom-
eter (SP-AMS; Aerodyne Research Inc., USA, hereafter re-
ferred to only as AMS; Onasch et al., 2012). In brief, the

SP-AMS was operated at 5 min saving cycles, alternatively
switching between the electron ionization (EI) mode and SP
mode. In EI mode, the V-mode mass spectra were processed
to determine the aerosol mass concentration and size distri-
bution. The mass resolution in the mode reaches∼ 2000. The
SP-mode mass spectra were used to obtain the black carbon
concentration. As the used chamber was a collapsible bag,
the volume of the chamber decreased over time due to the
air taken by the instruments. For the experiment investigated
in this study, both gas- and particle-phase data were analysed
with all SDRTs (Sect. 4.1 and 4.2). However, due to the small
data size for the particle phase, not all SDRTs were applica-
ble.

In contrast to the PTR-MS data used in Kari et al. (2019b),
we did not apply baseline correction to the data. Overes-
timation of the baseline correction may cause some of the
ions with low signal intensity to have negative “concentra-
tion”, which is not physically interpretable. Also, negative
data values cause problems for some SDRTs, as, for exam-
ple, PMF and NMF need a positive input data matrix. In ad-
dition, SDRTs should be able to separate background ions
into their own factor, meaning that it is not mandatory to re-
move them before applying SDRTs. This approach will cause
some bias to the absolute concentrations of the ions and re-
sulting factors, but as we are more interested in the general
division of the ions to different factors, and their behaviour
as a time series when comparing the SDRTs, it does not sig-
nificantly affect our interpretation of the results. All recom-
mended corrections (including baseline subtraction; Ulbrich
et al., 2009) were applied to the AMS data. As the processed
AMS data are always the difference between the measured
signal with and without particles, negative values are possi-
ble if the particle-free background was elevated. In the in-
vestigated data set, only a few data points exhibited slightly
negative values. Thus, it was possible to set these data points
to a very small positive value (1×10−9) to enable the analy-
sis with SDRT methods without a significant positive bias in
the data. In addition, as the main focus of our study was to
compare the performance of the different SDRTs with differ-
ent types of mass spectra, instead of detailed analysis of the
chamber experiment, we have also included the pre-mixing
period during the α-pinene (i.e. t<0) injection into our anal-
ysis.

3 Dimension reduction techniques

3.1 Factorization techniques

3.1.1 Principal component analysis (PCA)

PCA is a statistical procedure where the variables are trans-
formed into a new coordinate system. The first principal
component accounts for the most variance of the observed
data, and each succeeding component then has the largest
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possible variance, with the limitation that the component
must preserve orthogonality to the preceding component. In
other words, PCA seeks correlated variables and attempts to
combine them into a set of uncorrelated variables, i.e. prin-
cipal components, which include as much of the informa-
tion that was present in the original observations as possi-
ble (Wold et al., 1987; Morrison, 2005; Rencher and Chris-
tensen, 2012; Tabachnick and Fidell, 2014). The principal
components are often described by a group of linear equa-
tions, where, for example, the first principal component c1
(table of the used mathematical symbols and notations is pre-
sented in the Appendix) can be presented as

c1 = a11y1+ a12y2+ . . .+ a1mym, (1)

a1j (j = 1, . . . , m) are normalized characteristic vector ele-
ments assigned to the specific characteristic root of the cor-
relation matrix S, and yi (i = 1, . . . , m) are the centred vari-
ables (Morrison, 2005; Rencher and Christensen, 2012). As
the responses in the first principal component have the largest
sample variance, s2

y1
, for all normalized coefficient vectors,

the following applies:

s2
y1
=

∑m

i=1
.
∑m

j=1
a1ja1j sij = a

T
1 Sa1, (2)

where aT
1a1 = 1 (Morrison, 2005). The number of principal

components is equal to the number of variables (m) in the
data minus 1, and p components are selected to interpret the
data. It should be noted, however, that Eq. (1) describes the
theory behind the PCA model, not the actual calculation pro-
cess, which is described below. Thus, for example, the cen-
tring of variables is not required. To find the principal com-
ponents, either eigenvalue decomposition (EVD) or singular-
value decomposition (SVD) can be used. Mathematical for-
mulation of EVD and SVD can be found from Golub and
Van Loan (1996). EVD is applied to the correlation or co-
variance matrix S, whereas SVD can be applied also to the
observed data matrix directly. Often, due to this difference,
SVD is considered to be its own method instead of being de-
scribed as a variation of PCA. Here, however, it is referred
to as SVD-PCA. In our study we applied EVD-PCA to the
correlation matrix (calculated from unscaled data matrix),
and SVD-PCA was applied to the data matrix without and
with the scaling (centred and scaled by their standard devia-
tions). In addition, the acquired eigenvectors and vectors cor-
responding to the singular values were scaled by the square
root of the eigenvalues or singular values to produce load-
ing values (i.e. contribution of a variable to a component)
more similar to those obtained in exploratory factor analy-
sis (EFA). The PCA analysis was performed in R statistical
software with the addition of the “psych” package (Revelle,
2018; R Core Team, 2019).

The acquired principal components can be rotated to en-
hance the interpretability of the components. Rotations can
be performed in orthogonal or oblique manner, where the or-
thogonal methods preserve the orthogonality of the compo-

nents but oblique methods allow some correlation. However,
rotation of the principal components does not produce an-
other set of principal components but merely components.
By original definition (Hotelling, 1933), only presenting an
unrotated solution is considered to be principal component
analysis, but later formulations allow also orthogonal rota-
tions (Wold et al., 1987). Though there are no computational
restrictions for applying oblique rotation on components, the
restriction is only definitional, as the original principal com-
ponents were presented as orthogonal transformation. In any
case, rotated solutions do not fulfil the assumption of prin-
cipal ordering of components. In this study, orthogonal vari-
max rotation, which maximizes the squared correlations be-
tween the variables, and oblique oblimin rotation were used
to increase large loading values and suppress the small ones
to simplify the interpretation (Kaiser, 1958; Harman, 1976).

Multiple ways exist to calculate the PCA component
scores (i.e. component time series). In general, the compo-
nents scores are calculated as

F = XB, (3)

where X includes the analysed variables (often centred and
scaled by their standard deviations), and B is the component
coefficient weight matrix (Comrey, 1973). One simple way to
calculate the component scores is to use the component load-
ing values directly as weights. This approach is often referred
to as a sum-score method. Depending on the application, the
loadings can be used as they are, they can be dichotomized
(1 for loaded and 0 for not loaded), or they can be used as
they are, but suppressing the low values by some threshold
limit. We applied the last method here, as the dichotomized
loadings (i.e. one ion stems only from one source or source
process) seldom describe true physical conditions in nature.
In a case when the data items are in the same unit, the data
may be used without standardization (Comrey, 1973). As this
is the case in all of our respective data sets (concentration
units for PTR-MS data are in ppb and µg m−3 for AMS), the
scores are calculated without standardizing the data matrix to
achieve more interpretable component time series. This ap-
plies for both EVD-PCA and SVD-PCA component scores.
Very small loading values (absolute value less than 0.3) are
suppressed to zero to enhance the separation of ions between
the components. The limit of 0.3 was selected, as this is often
given as a reference value for insignificant loadings (see e.g.
Field, 2013; Izquierdo et al., 2014). The components from
PCA in the results sections are labelled as CO.

3.1.2 Exploratory factor analysis (EFA)

Similar to the EVD-PCA, which takes advantage of the cor-
relations between the original variables, EFA generates the
factors, trying to explain the correlation between the mea-
sured variables (Rencher and Christensen, 2012). For a data
matrix X with m variables (ions) and n observations (time
points), the EFA model expresses each variable yi (i = 1, 2,
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. . . , m) as a linear combination of latent factors f j (j = 1,
2, . . . , p), where p is the selected number of factors. So, for
example, for the variable y1 the EFA model can be presented
as

y1− y1 = λ11f 1+λ12f 2+ . . .+λ1pf p + ε1, (4)

where the residual term ε1 accounts for the unique variance,
m is the number of factors, y1 is the mean of the variable
y1, and λij is the elements from the loading matrix λ and
serves as weights to show how each factor f j contributes for
each variable yi (Morrison, 2005; Rencher and Christensen,
2012). As for the PCA explained in the previous section,
Eq. (4) here describes the form of an EFA model based on
literature, not the direct calculation in the algorithm. Thus,
no scaling (what, for example, the subtraction of the mean
y1 from y1 in Eq. 4 essentially is) is applied here.

Different methods exist to calculate the factorization in
EFA. In this study, principal axis factoring (hereafter pa-
EFA) and maximum likelihood factor analysis (hereafter ml-
EFA) were selected due to their suitability for our data (ex-
plained in more detail in Sect. 3.3). In pa-EFA, the function
F1 that can be minimized can be presented as

F1 =
∑

i

∑
j

(
Sij −Rij

)2
, (5)

where Sij is an element of the observed correlation matrix
S and Rij is the element of the implied correlation matrix
R. Maximum likelihood factor analysis, on the other hand,
minimizes the function F2:

F2 =
∑

i

∑
j

(
Sij −Rij

)2
u2
i u

2
j

, (6)

where the variances ui and uj for the variables i and j are
considered. In other words, ml-EFA assigns less weight to
the weaker correlations between the variables (de Winter and
Dodou, 2012; Rencher and Christensen, 2012; Tabachnick
and Fidell, 2014). In contrast to PCA, rotations are a rec-
ommended practice before interpreting the results in EFA,
and the unrotated factor matrices are rarely useful (Osborne,
2014). Oblique oblimin rotation was used to rotate the EFA
factors. Orthogonal varimax rotation was also tested, but as
the orthogonality assumption for the factors is rather strin-
gent for this type of chemical data, and it produced uninter-
pretable factors, those results are omitted. EFA was run in R
statistical software with an addition of the “psych” package
(Revelle, 2018; R Core Team, 2019), and the factor scores
were calculated as described above for PCA. The factors
from EFA in the results are labelled as FE.

3.1.3 Positive matrix factorization (PMF)

PMF is a bilinear model and can be presented as

X=GF+E, (7)

where the original data matrix X is approximated with matri-
ces G and F, and E is the residual matrix, i.e. the difference
between observations in X and the approximation GF. After
the factorization rank is defined by the user, Eq. (7) is solved
iteratively in the least-squares sense. The values of G and F
are constrained to be positive, and the object function Q is
minimized (Paatero, 1997):

Q=
∑m

i=1

∑n

j=1

(
Eij
µij

)2

. (8)

The term µij in Eq. (8) includes the measurement uncertain-
ties for the observation matrix X at time point i for ion j .
Originally, µ was calculated as the standard deviations of X,
but other error types have also been used (Paatero and Tap-
per, 1994; Paatero, 1997; Yan et al., 2016). As is apparent
from Eq. (8), the measurement errors (µij ) act as weighting
values for the data matrix. Thus, the chosen error scheme can
have a significant impact on the behaviour of Q.

To test this, different error schemes were investigated. The
standard deviation values alone were not used as an error, as
the data include fast concentration changes due to the sud-
den ignition of photo-oxidation, which causes the standard
deviations to be systematically too large. But as a reference,
the standard error of the mean (the standard deviations of the
ion traces divided by the square root of the number of ob-
servations, i.e. length of the ion time series) was used as an
error for both PTR-MS and AMS data. It considers that mea-
surements with fewer observations contain more uncertainty.
These error values are constant for each ion throughout the
time series and do not change with signal intensity. This type
of error is labelled here as static error. In addition, a mini-
mum error estimate was applied, as suggested by Ulbrich et
al. (2009). Determination of the minimum error for PTR-MS
is presented in the Sect. S2.1 and for AMS in Sect. S2.2.

Additionally, an error following the changes in the ion
concentration was constructed for PTR-MS data by applying
a local polynomial regression to smooth the ion time series
(R-function loess; Cleveland et al., 1992). From the regres-
sion fit the residuals were calculated and the running standard
deviation from the residuals was used as an error. Again, the
minimum error was applied here. This error is referred to
hereafter as signal following error. For AMS, we also ap-
plied a standard error that is frequently used by the AMS
community. The standard AMS error consists of the mini-
mum error-related duty cycle of the instrument and count-
ing statistics following the Poisson distribution (Allan et al.,
2003; Ulbrich et al., 2009). Shortly, the standard AMS error
for signal I can be formulated as

Ierr = α

√
IO+ IC

ts
, (9)

where α is an empirically determined constant
(here α = 1.2, generated by the AMS analysis soft-
ware PIKA; http://cires1.colorado.edu/jimenez-group/
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ToFAMSResources/ToFSoftware/index.html, last access:
9 September 2019), IO and IC are the raw signal of the ion
of particle beam (ions per second) for the chopper at the
open and closed position, respectively, and ts is the sampling
time at a particular m/z channel (s).

Examples of the used error values for PTR-MS and AMS
data are presented in the Supplement at the end of Sect. S2.1
and S2.2, and the signal-to-noise ratios for different error ma-
trices are reported in Sect. S2.3. In contrast to the suggested
best practice (Paatero and Hopke, 2003), we did not down-
weight any ions in our data sets. This approach was used
in order to give each SDRT an equal starting point for the
analysis, as, for example, for NMF or PCA similar down-
weighting, this is not possible because we do not have any
error estimates to calculate the signal-to-noise ratios in a sim-
ilar manner. However, to avoid misguiding the reader to omit
recommended data pre-processing practice for PMF, we also
tested PMF with downweighting. This, as expected, did not
change our results significantly, but we acknowledge that it
should indeed be applied if aiming for a more detailed chem-
ical interpretation of the PMF factors.

Often, constraining the values to be positive is not enough
to produce a unique PMF solution for Eq. (7). This can be
assessed by applying rotations, as in EFA and PCA. The ro-
tations in PMF are controlled through the fpeak parameter in
which the changes produce new G and F matrices by holding
the Q value approximately constant (Paatero et al., 2002). In
this study, rotations with fpeak= (−1, −0.5, 0, 0.5, 1) were
tested. PMF analyses were conducted in Igor Pro 7 (Wave-
Metrics, Inc., Portland, Oregon) with the PMF Evaluation
Tool (Ulbrich et al., 2009). The acquired results were fur-
ther processed in R statistical software (R Core Team, 2019).
The factors from PMF are labelled as FP in the results.

3.1.4 Non-negative matrix factorization (NMF)

Non-negative matrix factorization was introduced to the
wider public after Lee and Seung presented their applica-
tion of NMF to facial image database in Nature (Lee and
Seung, 1999). The method has since gained popularity, and
it has been used in various scientific fields, e.g. in gene array
analysis (Kim and Tidor, 2003; Brunet et al., 2004). As in
PMF, the NMF solution is constricted to positive values only
to simplify the interpretation of the results, and, in princi-
ple, both of these methods attempt to solve the same bilinear
equation. In contrast to PMF, the algorithms in NMF do not
require an error matrix as an input, and it makes therefore no
assumptions of the measurement error, so we present NMF
here as a separate method from PMF.

In general, the mathematical formulation of NMF is sim-
ilar to the one presented for PMF in Eq. (7) and can be pre-
sented as

X∼WH, (10)

where X is the positive data matrix (n×m) and W and H
are the non-negative matrices from the factorization with
sizes n×k and k×m, respectively (Brunet et al., 2004). The
value of k is equivalent to the selected factorization rank p.
Multiple algorithms to calculate NMF exist (Lee and Seung,
2001). Here, we present results from the method described
by Lee and Seung (2001), and Brunet et al. (2004), as this
created the best fit to the data. The matrices W and H are
randomly initialized and are updated with the formula given
by Brunet et al. (2004):

Hau← Hau

∑
iWiaXiu/(WH)iu∑

kWka

, (11)

and

Wiu← Wiu

∑
uHauXiu/(WH)iu∑

vHav

. (12)

The NMF analysis was run in R statistical software with the
“NMF” package (Gaujoux and Seoighe, 2010; R Core Team,
2019). The factors from NMF are labelled as FN in the re-
sults.

3.1.5 Calculation of the contribution of an ion to a
factor, component or cluster

From all these methods two factorization matrices (time se-
ries and factor contribution) can be produced at the end. In
PMF and NMF, both factorization matrices are calculated si-
multaneously, whereas in EFA, PCA and partitioning around
medoids (PAM) the factor or component time series are cal-
culated after the main algorithm. The factor or component
time series show the behaviour of each factor or component
during the experiment, while the contribution of the different
variables to each factor or component (factor or component
scores or factor profiles) can be interpreted as the chemical
composition of each factor or component. To help the reader
visualize the similarities and differences in the results be-
tween EFA, PCA, PMF and NMF in this paper, we calculated
the “total factor contribution” of each factor or component
to each ion, i.e. how much each factor or component con-
tributes to the signal of a single ion. For PMF and NMF, the
values in the factorization matrices (F and H, respectively)
were extracted for each ion and scaled with the sum over all
factors for each ion. For EFA and PCA, the absolute values
of the loadings were calculated for each ion in each factor or
component and then scaled by the sum of all factor loadings.
This approach allowed us to compare the division of the ions
in each factor or component between the different methods.
However, this type of approach conceals the information of
the negative factor loadings in EFA and PCA (which are in-
cluded in the calculation of factor or component time series
as weights) and instead visualizes the general contribution
of an ion to a factor. Negative factor loadings may have dif-
ferent interpretations. They may indicate that the compound
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has a decreasing effect on the factor; i.e. they act as a sink
for the compounds with positive loading in the same factor.
In chamber experiments, negative loading may also refer to
a decreasing concentration of the compound participating in
chemical reactions if it acts as a precursor for other com-
pounds in the same factor. One example of this is benzene,
detected (as C6H+7 ) by PTR-MS. When inspecting the orig-
inal loading values from EFA, for example, it has negative
loading in FE1 (identified as later-forming and slowly form-
ing products) and positive loading in FE4 (identified as pre-
cursors from car exhaust or background). As benzene origi-
nates from the car exhaust, it contributes positively to FE4.
However, as it oxidizes over the course of the experiment
(thus has decreasing concentration), it has a strong correla-
tion with oxidation products but appears negative in FE1,
which mostly includes those later-generation products.

3.2 Clustering methods

Partitioning around medoids (PAM)

PAM, or k medoids, is a clustering algorithm in which the
data set is broken into groups in which the objects or ob-
servations share similar properties in a way that objects in
a cluster are more similar to each other than to the objects
in other clusters. The PAM algorithm is fully described else-
where (Kaufman and Rousseeuw, 1990). Briefly, PAM mini-
mizes the distances between the points and the centre of the
cluster (i.e. the medoid), which, in turn, describes the char-
acteristics of the cluster. The distance matrix (often also re-
ferred to as dissimilarity matrix) from the observed data can
be calculated in many ways. Here, the data were first stan-
dardized by subtracting the mean of each ion over the time
series and scaling each ion with the standard deviations of
the ions. Then, the Euclidean distances (Rencher and Chris-
tensen, 2012) were calculated between the ions before pro-
viding the distance matrix for PAM. The selection of suitable
distance metrics can be challenging and depends on the ap-
plication and the data. For example, Äijälä et al. (2017) tested
four different metrics in their study of pollution events. In our
study, also two other distance metrics were tested: the Man-
hattan distance (e.g. Pandit and Gupta, 2011) and correlation-
based distance metric. The results, however, were similar to
those acquired with Euclidean distances and therefore not
shown here. The clustering was performed in R statistical
software, applying the “factoextra” and “cluster” packages
(Kassambara and Mundt, 2017; Maechler et al., 2018; R Core
Team, 2019). Clusters are labelled as CL in the results.

Often clustering is applied to the observations in the data
(e.g. samples, time points). Here, we applied the clustering
to the variables instead to group similarly behaving chemi-
cal compounds together. This means that our calculated dis-
tance matrix provides the distances between the variables
(i.e. ions), and the centre of the cluster is the “characteris-
tic” ion for that specific cluster. The larger the distances, the

“farther apart” the ions are, and ions with shorter distances
should be assigned to the same cluster. There are several
clustering methods especially meant for clustering of vari-
ables (Vigneau, 2016). The time series for clusters are cal-
culated by summing the concentrations of the compounds
in the specific cluster. The interpretation of the results from
cluster analysis slightly differs from the interpretation of the
results of the other SDRTs. Due to the nature of cluster anal-
ysis in general (except fuzzy clustering; see e.g. Kaufman
and Rousseeuw, 1990), the variables (here ions) are strictly
divided between the clusters, whereas for the other SDRTs
presented in this study, one ion may have different weighting
parameters for different factors or components. Depending
on the aim of the study and the type of the data, this prop-
erty of cluster analysis may be considered to be either an ad-
vantage or disadvantage. One obvious advantage of cluster
analysis (or hard division techniques in general) is compu-
tational time, especially if analysing long ambient data sets.
For laboratory measurements, this most likely is not an is-
sue. Hard division techniques have also been shown to work
efficiently for VOC measurements when distinguishing be-
tween different coffee types (espresso capsules), where strict
separation between clusters is needed, as shown in Sánchez-
López et al. (2014). For source apportionment studies, where
one variable might originate from multiple sources, cluster
analysis using the hard division technique is probably not as
suitable as softer division techniques, which can assign one
variable to multiple sources and factors.

3.3 Determining the number of factors, components or
clusters

One of the most difficult tasks in dimension reduction is the
choice for the new dimensions of the data. For EFA and PCA,
multiple different methods determining the suitable factor
and component number exist. However, these are often more
guidelines than strict rules when handling measurement data,
as the processes creating the compounds which were mea-
sured can be somewhat unpredictable at times. Additionally,
as EFA and PCA were originally developed for normally dis-
tributed data, tests for determining the number of factors may
be influenced if the criterion of normality is not met. Fur-
thermore, the existing tests to investigate multivariate nor-
mality are often oversensitive, e.g. for outliers (Korkmaz et
al., 2014), which may influence the results. The analysis re-
sults from EFA and PCA, however, can be reasonably in-
terpreted despite the data distribution, as the normality of
the data mainly enhances the outcome and is not stated as a
strict requirement (Tabachnick and Fidell, 2014). In addition,
the two calculation methods selected for EFA were used, as
they are supposed to be more suitable for non-normally dis-
tributed data. ml-EFA is rather insensitive to changes in data
distribution (Fuller and Hemmerle, 1966), whereas pa-EFA is
actually suggested to be more efficient if the normality con-
dition is not met (Fabrigar et al., 1999). In this study, the mul-
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tivariate normality of the data was nonetheless investigated,
and results are reported in the Supplement.

For EFA and EVD-PCA, we used the scree test, first intro-
duced by Cattel (1966), the Kaiser criterion (Kaiser, 1960)
and parallel analysis (Horn, 1965) to investigate the suitable
number of factors or components. In the scree test, the fac-
tor number is estimated by plotting the acquired eigenvalues
(or explained variance) as a function of factor number (see
e.g. Fig. 1c). A steep decrease or inflection point indicates
the maximum number of usable factors. The Kaiser crite-
rion suggests discharging all factors that have eigenvalues
less than 1 (see e.g. Fig. 1d). In parallel analysis, an artifi-
cial data set is created, and the eigenvalues are compared to
the eigenvalues of the real data. Here, we created the arti-
ficial data set for parallel analysis by resampling the actual
measurement data by randomizing across rows, as suggested
by Ruscio and Roche (2012). For SVD-PCA, the inflection
point can be inspected, e.g. from a plot where the explained
variance is plotted as a function of component number (see
e.g. Fig. S11 in Sect. S3.1). In addition, for EFA, we calcu-
lated the standardized root-mean residuals (SRMRs; Hu and
Bentler, 1998) and empirical Bayesian information criterion
(BIC; Schwarz, 1978) values. These metrics measure slightly
different properties of the model. The BIC is a comparative
measure of the fit, balancing between increased likelihood
of the model and a penalty term for number of parameters.
The SRMR is an absolute measure of fit and is defined as the
standardized difference between the observed correlation and
the predicted correlation. See Sect. S3.2 for more details. A
steep decrease in the SRMR values could indicate the number
of factors similarly to the scree test with eigenvalues. From
the BIC, the minimum value suggests the best-fitting model.
It should be noted, however, that these methods may suggest
slightly a different number of factors or components. In addi-
tion, many statistical tests are often oversensitive if the data
are not completely normally distributed (Ghasemi and Zahe-
diasl, 2012), even if large sample sizes might improve test
performance, and, therefore, the final decision of the number
of factors should be made after evaluating the interpretability
of the results.

The suitable number of clusters for PAM was investigated
with the total within sum of squares (TWSS; e.g. Syakur et
al., 2018) and gap statistics (see e.g. Fig. 1e and f). Within-
cluster sum of squares is a variability measure for the obser-
vations within a cluster, and for compact clusters the values
are smaller, as the variability within the cluster is smaller. By
calculating the TWSS, preliminary guidelines for the number
of clusters can be derived by inspecting the inflection point
of the graph of the TWSS versus number of clusters (often
referred as the “elbow method”). In gap statistics, described
in detail, e.g. by Tibshirani et al. (2001), the theoretically
most suitable number of clusters is determined from either
the maximum value of the statistics or in a way that the small-
est number of clusters is selected where the gap statistics is

within 1 standard deviation of the gap statistics of the next
cluster number.

Such straightforward statistical tests are not available for
PMF, but one possible option is to inspect the relation be-
tween Q and Qexpected. Ideally, the value of Qexpected cor-
responds to the degrees of freedom in the data (Paatero and
Tapper, 1993; Paatero et al., 2002), and when Q/Qexpected
(hereafter Q/Qexp) is plotted against the factorization rank,
an inflection point may be notable and the addition of fac-
tors does not significantly change the minimum value of
Q/Qexp (Seinfeld and Pandis, 2016). It should be noted,
however, that even if the Q/Qexp summed over all ions and
time steps is low, the corresponding values of individual ions
may still either be rather large or very small, thus compen-
sating each other and resulting in an unreliably good over-
all Q/Qexp value (interactive comment from Paatero, 2016,
to Yan, 2016). In addition, the used error scheme in PMF
has a large impact on the Q values. If the true measure-
ment error was used, Q/Qexp approaches a value of 1. If
the chosen error values were larger than this, the Q/Qexp
values will approach a final value smaller than 1. Note that
the shape of the curve of Q/Qexp versus number of factors
is not affected much by the chosen error scheme (see e.g.
Fig. 2b). Therefore, this method should be used as a first
suggestion rather than a strict criterion. A more empirical
method for determining the number of factors and interpre-
tation of them exists when investigating ambient AMS data.
The acquired factor mass spectra from PMF can be com-
pared to spectra from known sources (Zhang et al., 2011).
The time series of these identified factors are then com-
pared to tracer compounds for these factors measured with
other instruments (e.g. NOx for traffic emissions, black car-
bon for burning events). If several factors correlate with the
same tracers, it is very likely that too many factors have
been chosen. An extensive database of factor spectra ex-
ists for AMS data, and it is maintained by the community
(http://cires1.colorado.edu/jimenez-group/TDPBMSsd/, last
access: 9 September 2019). The PMF evaluation tool for Igor
Pro used in this study also provides other indices, includ-
ing the “explained variance/fraction of the signal”, which is
shortly discussed in Sect. 3.4.

Several approaches exist for NMF for selecting the fac-
torization rank p, but the choice of which method to use is
not straightforward (Yan et al., 2019). Brunet et al. (2004)
suggested selecting the factorization rank based on the de-
crease in the cophenetic correlation coefficient (CCC), i.e.
at the first value of p where the efficient decreases (see e.g.
Fig. 2a). In addition, we investigated the cost function that
approximates the quality factorization as a function of the
factorization rank p. For the Brunet algorithm that we ap-
plied in this study, this cost function is the divergence be-
tween data matrix X and approximation WH (see Eq. 3 in
Lee and Seung, 2001).
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Figure 1. Factor number indices for gas-phase data (PTR-MS). Empirical BIC (a) and SRMR (b) as a function of the number of factors for
ml-EFA. Parallel analysis (c) and Kaiser criterion (d) for EVD-PCA and TWSS (e) and gap statistic (f) for PAM. Larger points indicate the
solution that was selected for more detailed interpretation.

Figure 2. Factor number indices for gas-phase data (PTR-MS). Es-
timation of the factorization rank for NMF in (a), with CCC and
D(X||WH), and for PMF in (b), with Q/Qexp for the two error
schemes (static error and signal following error – S.f.e). Larger
points indicate the solution that was selected for more detailed in-
terpretation.

3.4 Determining the “goodness of fit”

When analysing the data sets, we realized that all of the fac-
torization methods in this study are sensitive to even small
changes in the data. In order to cross-validate the calculated
factorization and approximate the uncertainty in the factors,
20 resamples of the measurement data were created with

bootstrap-type sampling (Efron and Tisbshirani, 1986), i.e.
sampling with replacement from the original data. The re-
samples were formed by taking random samples (by row)
from the measurement data with replicates allowed while
preserving the structure of the time series. The different
methods were then applied to the resamples to validate if
the factorization created from the original measurement data
was real and the created factorization was robust enough to
maintain the achieved factor structure even if minor changes
would appear in the data. Simplified, this variation in the fac-
torization for the bootstrap-type resamples can be understood
as an uncertainty for the factorization results. If we had true
replicates of the data set, a similar approach could be used, as
in theory the same, repeated experiments with similar chem-
istry should include the same factors, and the occurring vari-
ation in the factorization illustrates the uncertainties in the
factorization.

In addition to the cross validation of the factorization, the
results should be evaluated in a way that we are able to jus-
tify how well the factors, components or clusters represent
the original data and the underlying information. Often in
studies where either EFA or PCA has been used, explained
variance (EV) is reported for the solution. In principle, the
EV could also be used as a guide when selecting the number
of factors by selecting factors until EV reaches an “appropri-
ate” value or does not change drastically when more factors
are added. In PCA, the EV for each component is calculated
by dividing the eigenvalue of each component by the sum of
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the eigenvalues. The sum of EVs for all n−1 components (n
is the number of variables in the data) equals 1. In EFA the
EV for the factor k (with p factors in total) can be calculated
by

EVk =
∑n
i=1(λ

2
ik)∑n

i=1

(∑p

j= 1

(
λ2
ij

)
+ diag(S−R)

) , (13)

where λij is an element from the loading matrix, S is the
original correlation matrix and R is the reconstructed corre-
lation matrix (R= λλT) (Revelle, 2018). Depending on the
algorithm used to calculate EFA, the calculation of EV may
vary. In PMF, the calculation of EV is not possible this way,
as PMF factorizes the data matrix instead of the correlation
matrix. Instead, for PMF there is a possibility to calculate, for
example, the “explained fraction of the signal” for the recon-
structed factor model. This can be calculated by comparing
the original total time series (sum of the data columns, i.e.
individual ion time series) to the reconstructed one by

Frac=
mean

(∑n
j= 1

(
x∗ij

))
mean

(∑n
j= 1

(
xij
)) , (14)

where x∗ij is the element from the recalculated data matrix
X∗ =GF (see Eq. 7), xij is an element from the original
data X, and n is the number of columns (variables, ions) in
the data. The disadvantage of this method is the use of the
mean. If the signal is both over- and underestimated at dif-
ferent parts of the data, the explained fraction of the signal is
still very good even if the fit is not. For NMF, a similar in-
dex could be calculated. However, due to the differences be-
tween EFA–PCA, NMF–PMF and PAM (which uses a fun-
damentally different approach), the indices calculated with
Eqs. (13) and (14) are not comparable between the methods
and therefore not presented here. Instead, we aim for more
universal ways to compare the SDRTs.

For NMF and PMF, it is possible to back-calculate how
well the created factorization can reproduce the information
in the original data. This method is rather straightforward,
as both factorization matrices from NMF and PMF are lim-
ited to positive values. This allows us to calculate the recon-
structed total signal for NMF–PMF, which can be compared
to the original total signal to produce residuals. For EFA and
PCA, the calculation of the total signal is not possible from
the created factorization in a similar fashion, as the acquired
loading values (contribution of an ion to a factor or com-
ponent) may be negative. Therefore, for EFA and PCA the
reconstruction is possible only for the correlation matrix, as
it is also the matrix that is factorized during the calculation
process. This allows us to compare the original correlation
matrix to the one produced by EFA or PCA in a similar
manner to all data in PMF and NMF. However, due to our
large data size, the visualization of the residual correlation
matrix is difficult, and instead we calculated the mean and

interquartile range (IQR: Q3–Q1) for the absolute values of
the residuals. The theoretical minimum value for the mean
and IQR is 0, indicating perfect reconstruction, and the the-
oretical maximum value, i.e. poor reconstruction, is 1. For
example, for a variable pair having a correlation coefficient
of 0.7, a mean absolute correlation residual of 0.02 and an
IQR of 0.04, this would mean that the model over- or under-
estimates the correlation by 2.86 % ((0.02/0.7)×100). An
IQR of 0.04 would mean that 50 % of all variable pairs with
correlation of 0.7 are within 5.7 % ((0.04/0.7)×100) of the
original value of 0.7.

A very important criterion for the quality of the factoriza-
tion is the interpretability of the results. If the interpretation
of the factors is impossible, the results are useless for the
data analysis. Note that all methods presented in this paper
are purely based on mathematics, and the “best” result is ob-
tained by solving a computational problem not connected to
the real processes in the chamber and instruments leading to
the measured data set. Thus, the user has to apply the avail-
able external information (e.g. about possible reaction prod-
ucts or if ions should be split between multiple factors) to
validate the feasibility of a factorization result. But there is
a fine line between applying this prior knowledge about the
possible chemical and physical processes in the chamber to
validate a factorization result and dismissing an unexpected
feature discovered by the factorization method as unphysi-
cal and thus wrong. Applying more than one factorization
method may be helpful to protect the user from dismissing
unexpected results.

4 Results and discussion

4.1 Gas-phase composition from PTR-MS

4.1.1 EFA

Figure 1 shows results for the tests described in Sect. 3.3.
The eigenvalues and parallel analysis results for EFA are not
shown, as the results were very similar to those acquired
for PCA. Also, the factorization results from ml-EFA and
pa-EFA were so similar that only the results from ml-EFA
are presented here. Figure 1a shows the empirical BIC and
Fig. 1b the SRMR values for factorization ranks ranging
from 1 to 10. The minimum value in the empirical BIC was
achieved with four factors, and the inflection point in the
SRMR also lies around four factors.

As all these tests suggest a four-factor solution for PCA
and EFA, we compared the factor time series and factor con-
tribution for the four-factor (Fig. 3) and five-factor solution
(Fig. S9 in Sect. S4.1) for EFA with oblimin rotation. The
additional FE5 seems to be a mixed factor with a small con-
centration created from FE4 and FE2 instead of a new factor
with different properties. The original loading values for the
four-factor solution are presented in Fig. S10 as a scatter plot.
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Figure 3. The factor time series (a) and contribution (b) for ml-
EFA with oblimin rotation for the four-factor solution. Shaded areas
in the time series indicate the factor range for the bootstrap resam-
ples; solid lines are for the measured gas-phase (PTR-MS) data. The
colour code identifying factors is the same in both panels. Factors
were identified as later-forming and slowly forming products (FE1),
early products (FE2), α-pinene precursor (FE3), and background or
car exhaust precursor (FE4).

The variation in the factors from the resamples is largest
around the start of the photo-oxidation, as expected, when
there are fast and large changes in the concentrations. The
mean and IQR for the absolute values of residual correla-
tions for the four-factor solutions were 0.0109 and 0.0108,
indicating good reconstruction.

In the following, we interpret the factors for all SDRT
methods based on their characteristic factor time series shape
and the identified compounds in the factors. An overview of
this interpretation is given in Table 1. Based on the shapes
of the factor time series, FE1 can be identified as an ox-
idation reaction product factor. It starts increasing slowly
when the photo-oxidation starts, so either these are products
from slow reactions or multiple reaction steps are needed
before these compounds are formed. FE2 is also an oxida-
tion reaction product factor, but these are first-generation (or
early-generation) products which rise quickly after photo-
oxidation starts and are slowly removed by consecutive re-
actions as the photo-oxidation continues and/or by partition-
ing to the particle phase or chamber walls. FE3 is a pre-
cursor factor which shoots up during the α-pinene addition
(slightly after t =−50 min) and is stable until the start of
the photo-oxidation. Together with the factor mass spectrum
which is dominated by signals at m/z 137 and 81, this is a
clear indication that FE3 represents α-pinene in the cham-
ber. Note that although proton transfer is a relatively soft
ionization technique, a certain amount of fragmentation of
the mother molecule α-pinene (m/z 137) is observed, show-
ing fragments at, for example, m/z 81 (Kari et al., 2018).

FE4 seems to include some car exhaust VOCs and residue
from the background. It has very low concentrations com-
pared to the other factors. It decreases slightly throughout the
whole experiment and seems not to be affected by the onset
of photo-oxidation.

4.1.2 PCA

Figure 1c shows the eigenvalues as a function of the com-
ponent number for EVD-PCA with the results from parallel
analysis. In Fig. 1d the eigenvalues for the first two com-
ponents are omitted to show the changes with more compo-
nents better. The blue line shows the Kaiser criterion (eigen-
value= 1). SVD-PCA (when applied to scaled data ma-
trix) was not able to separate α-pinene as its own compo-
nent but instead created two factors which were dominated
by the unreacted α-pinene and its fragments (see Fig. S12
in Sect. S4.1). In addition, the unrotated solution included
a large number of negative loadings, which complicated
the interpretation of the components. No improvement was
achieved when SVD-PCA was applied to the data matrix
without any scaling (see Fig. S13). Oblimin rotation was ap-
plied to create factors that could be interpreted in a physically
more meaningful way, but the algorithm did not converge. So
this is a case where the result of the factorization method is
very difficult to interpret or even contrary to the available
information (e.g. the α-pinene precursor behaviour). As ad-
ditionally the underlying algorithm struggles with the data
set (i.e. not converging), we will not discuss these results in
detail here but rather focus on the EVD-PCA.

The number of components indicated by parallel analysis
is four (Fig. 1c), but the eigenvalues decrease to below one
only with 10 components (Fig. 1d), indicating that nine com-
ponents should be selected. However, the eigenvalues for the
components five through nine are rather close to the Kaiser
limit (between 1.47 and 1.04, respectively), and therefore
the four-component solution was selected. In addition, the
“knee” in the eigenvalues is around four or five components,
but as for EFA, the addition of a fifth component did not
create a new component with different properties but mixed
properties of the previous components.

Figure 4 shows the component time series and total contri-
bution from EVD-PCA with oblimin rotation, and the orig-
inal loading values for the four-component solution are pre-
sented in Fig. S14 as a scatter plot. Oblique rotation was used
despite the orthogonality assumption of the components, as
for true physical components the assumption of orthogonal-
ity is not that realistic either because it would indicate that the
chemical processes taking place in the chamber do not have
any correlation between the different processes. Oblique ro-
tations allow correlation between the components, meaning
that the detected ions in different components interact with
each other. For example, the decrease in the α-pinene con-
centration is mostly caused by chemical processes which
in turn form other ions detected by PTR-MS. Additionally,
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Table 1. Summary of the results for gas-phase composition data. Best solution refers to the number of factors, clusters or components. The
m/z refers to the mass with the H+.

Type of analysis EFA EVD-PCA PAM NMF PMF PMF (signal Example
(static error) following error) compounds

Best solution 4 4 4 5 5 5

Rotation if used Oblimin Oblimin – – – –

Precursor (α-Pinene) 3 3 3 3 3 3 α-pinene, C7H10,
toluene

Early products 2 2 2 2 2 2 MVK, furan,
acetaldehyde

Later products and
slowly
forming products

1 1 1 1 1 1 C2H2O, C2H8O,
CH3O2, MEK

Intermediate products – – – 5 5 5 Nopinone, m/z 157.08

Precursor (car exhaust)
or background

4 4 4 4 4 4 C4H8O2, m/z 167.06,
dimethylbenzene

Figure 4. The component time series (a) and contribution (b) for
EVD-PCA with oblimin rotation for the four-component solution.
Shaded areas in the time series indicate the component range for
the bootstrap resamples; solid lines are for the measured gas-
phase (PTR-MS) data. The colour code identifying components
is the same in both panels. Components were identified as later-
forming and slowly forming products (CO1), early products (CO2),
α-pinene precursor (CO3), and background or car exhaust precur-
sor (CO4).

there are multiple consecutive processes (reactions) at work
simultaneously, so the correlation between the components
is not a straightforward indicator of connected processes, but
it is more realistic than no correlation at all.

The mean and IQR for the absolute values of the residu-
als of the correlations were 0.0116 and 0.0107, respectively.
Compared to the EFA solution with four factors, the residu-

als are slightly larger. The total contribution of compounds to
each factor is very similar for EFA and EVD-PCA (Figs. 3b
and 4b or Figs. S10 and S14), which agrees with the very
similar factor or component time series in general in Figs. 3a
and 4a. The interpretation CO1, CO2, CO3 and CO4 is there-
fore the same as above for the EFA factors FE1, FE2, FE3
and FE4, respectively.

4.1.3 PAM

The test parameters TWSS and gap statistics for PAM are
shown in Fig. 1e and f. The TWSS versus number of cluster
values do not show a clear inflection point, but it could be
roughly assigned between three and five clusters. There is no
maximum value reached with gap statistics, which indicates
that the theoretical number of clusters is nine, as there the
gap statistic is within 1 standard deviation of the gap value
in the 10-cluster solution. However, the increase in the gap
value clearly slows down after three clusters. After careful
evaluation, the four-cluster solution is determined as most
interpretable, and the cluster time series and distribution of
the ions are shown in Fig. 5. Four clusters were selected, as
the selection of only three clusters (Fig. S15 in Sect. S4.1)
is not enough to explain the variation in the data because
the addition of one cluster reveals new features. On the other
hand, the five-cluster (Fig. S16 in Sect. S3.1) solution seems
to split off an additional low-concentration cluster from CL4
(Fig. 5a) instead of showing a new distinct cluster. The dis-
tinction between the “more correct” solution with four or
five clusters is not, however, straightforward because CL5
(Fig. S16) could be interpreted as a car exhaust precursor
cluster, as shown by CL4 in Fig. 5. Clustering statistics are
presented in Table S2 (Sect. S4.1).
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Figure 5. The time series (a) of the clusters and the distribution
of ion to clusters (b) from PAM with four-cluster solution. Shaded
areas in the time series indicate the cluster range for the bootstrap
resamples; solid lines are for the measured gas-phase (PTR-MS)
data. The colour code identifying clusters is the same in both pan-
els. Clusters were identified as later-forming and slowly forming
products (CL1), early products (CL2), α-pinene precursor (CL3),
and background or car exhaust precursor (CL4).

When comparing the shape of the cluster time series to the
EFA and PCA results in Figs. 3 and 4, the results agree well.
The largest difference appears in the CL4, which has larger
concentrations in PAM compared to FE4 acquired from EFA
and CO4 from PCA. The shapes of FE4 and CL4 are also
slightly different, as CL4 has a small decrease in the concen-
tration at 0 min, whereas FE4 is barely affected. However,
comparing the actual concentrations between these methods
(EFA–PCA and PAM) may be misleading, as in EFA and
PCA, the acquired loading values are used as weights when
calculating the factor time series, whereas in PAM the time
series of the clusters are calculated as a direct sum of the
cluster compounds, as explained in Sect. 3.2.1.

Dichotomized loadings (for each ion: 1 for factor with
largest loading, 0 for the other factors) for EFA were tested
to see if then the results agree better with those from PAM,
as in PAM there are no loading values, meaning that an ion
is either in a cluster or not. With dichotomized EFA load-
ings we make the same assumption: one ion is classified to
one factor only and therefore stems from only one source
or source process. Figure S17 (Sect. S4.1) shows the results
from dichotomized EFA. When compared to PAM (Fig. 5),
the factor or cluster concentrations agree well, but there are
clear differences in the ion distribution. EFA classifies the
weak ions with a low concentration to the product factors
(FE1, FE2), whereas PAM assigns them to the background
or precursor cluster (CL4).

Figure 6. The time series (a) of the factors and the distribution of
ion to factor (b) from NMF with five-factor solution. Shaded areas
in the time series indicate the factor range for the bootstrap resam-
ples; solid lines are for the measured gas-phase (PTR-MS) data. The
colour code identifying clusters is the same in both panels. Factors
were identified as later-forming and slowly forming products (FN1),
early products (FN2), α-pinene precursor (FN3), background or car
exhaust precursor (FN4), and intermediate products (FN5).

4.1.4 NMF

Figure 2a shows the divergence of the cost function
D(X||WH) and CCC for factorization ranks from 2 to 10 for
NMF. The CCC has a first decrease in the values at rank 4,
and theD(X||WH) shows an inflection point around ranks 4–
5. Figure 6 shows the factor time series and total contribution
for the NMF with factorization rank 5. Five factors were se-
lected, even though CCC suggest only four factors, as the
addition of one factor to the four-factor solution (Fig. S18 in
Sect. S4.2) did add a new feature to the solution in contrast to
the SDRTs presented above. FN2 in the four-factor solution
decreases drastically between t =−50 and t = 0, indicating
that it might include background ions, but on the other hand,
it also peaks right after t = 0, indicating that oxidation prod-
ucts also contribute to that factor. These mixed properties in
the factor FN2 indicate that more factors are needed, and in-
deed in the five-factor solution this contradictory behaviour
no longer occurs.

Similar to the results shown above, the range in the factor
time series for the bootstrap replicates is larger when the fac-
tors exhibit fast changes in the concentration (Fig. 6a). In ad-
dition, FN3 from the real measurement data has a lower max-
imum concentration when compared to the bootstrap repli-
cates. This indicates that NMF is rather sensitive to the small
changes in the data, and only a few deviant observations
present in the data but not in the majority of the resamples
can cause this kind of discrepancy. Factors FN1–FN4 seem
to correspond to the same factors found with EFA, PCA and
PAM (Figs. 2, 3 and 4), and especially α-pinene is clearly as-
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signed to the same factor (FE3–CO3–CL3–FN3) in all the
used methods. FN5 in NMF, however, has properties that
were not detected (or separated from others) with EFA, PCA
or PAM even if more factors were added. This new factor
could be interpreted also as oxidation product factor, but as
it increases slower and decreases later than the early-product
factor (FN2), it mostly includes intermediate products. These
are most likely compounds which are formed through (mul-
tiple) reactions and consumed in further oxidation reactions.

By recalculating the data matrix, X, with the original fac-
torization matrices W and H, we can inspect how well it has
been reproduced. Here, the total signal (total time series) is
then calculated by summing all ions for each time step for the
original data matrix and the reconstructed data matrix. The
differences between the original total signal and the one pro-
duced by NMF (i.e. the residuals) were smaller than 10−10,
indicating a good mathematical reconstruction. The boxplot
of the residuals with four and five factors is shown in Fig. S19
(Sect. S4.2)

4.1.5 PMF

The acquiredQ/Qexp values for different factorization ranks
in PMF with the constant error scheme are presented in
Fig. 2b. The values are the minimum values from all pos-
sible solutions, with fpeak values from −1 to 1 by a step of
0.5. The Q/Qexp values were at the minimum at fpeak = 0
with the number of factors (1–10) tested. We notice that the
values are slightly smaller in general when using the signal
following error, as the absolute values of the errors in this er-
ror scheme are significantly larger around fast changes than
in the static error scheme and thus decreasing the observed
Q values (see Fig. S4 for the different error schemes). Val-
ues for the signal following error decrease slightly below 1
(0.88) for the five-factor solution, whereas with the static er-
ror they stay above 1.91. After careful evaluation of the re-
sults with a different number of factors, the solution with five
factors (Fig. 7; fpeak = 0) was selected to be presented and
interpreted here. The solutions with fewer factors were in-
conclusive, and the addition of a fifth factor did add a new
feature. The results with four factors are shown in the Sup-
plement (Sect. S4.2, Fig. S20). In the five-factor solution, the
solid lines in the time series are the results for the measured
data, and the shaded areas show the ranges for the bootstrap
resamples.

For the static error case, the factorization from resamples
agrees well with that from measurement data. For the signal
following error (Fig. 7c–d) the differences are significantly
larger; for example, FP5 has a larger peak concentration than
in any of the resamples. This is most likely caused by a few
deviant values in the data which are not present in the re-
samples, thus creating a smaller peak concentration for FP5
for the resampled data. Resampled data include more sudden
changes due to added and/or missing data rows, thus caus-
ing PMF to perform poorer. In addition, the other variations

in the resampled ion time series may cause ion contributions
(especially those originally assigned in-between factors) to
shift slightly from FP5 to FP2, as for FP2, the values in the
time series are higher in the resamples compared to the origi-
nal data. This difference between the error schemes is caused
by the error values themselves. For the signal following error,
the factorization is more “precise” (fewer wiggly factors), but
even small shifts in the data (bootstrap resamples) distort the
factorization more than in the static error case.

When comparing the results for the measurement data with
different error schemes in Fig. 7, we note that the α-pinene
precursor factor is slightly less pronounced with the signal
following error; i.e. the solving algorithm assumes that these
fast changes are not “real” but rather outliers. This is caused
by the used error scheme, where errors are larger for the fast
changes in the data (Fig. S4b). In ambient data not measured
in instant proximity of strong emission sources, for which
PMF is often used, this type of error is beneficial, as there
the fast changes are more likely to be noise or instrument
malfunctions (excluding, for example, sudden primary emis-
sion plumes), and we are more interested in the long-term
changes instead. For laboratory data, where large changes are
often caused by rapid changes in actual experimental condi-
tions, e.g. due to injecting α-pinene or turning the UV lights
on, the static type of error is most likely preferable. Usage of
the static error scheme helps to avoid overcorrecting inten-
tional (large) changes in experimental conditions and con-
fusing them with real variation taking place during the ex-
periment and typically being much less pronounced.

Figure 8 shows how well the original data matrix can be re-
produced with the created factorization matrices. The residu-
als for the static error are generally larger, as most of them are
in the range 0± 0.5 (for signal following error 0± 0.15), but
there are much larger “outlier” values for the signal follow-
ing error. This is due to the structure of the signal following
error, which is larger during the fast changes in the data, as
shown in Fig. S4b (Sect. S1.4). For the static error the resid-
uals vary more throughout all the data, whereas for the sig-
nal following error the residuals are smaller, but a few rather
large values appear at the start of the photo-oxidation, as seen
in Fig. 8b. This highlights the role of the selected error val-
ues in PMF, which act as weights for the data. A smaller error
value means that the corresponding Q value at this time will
be much larger, and an improvement of the model at this part
of the data will have a big impact on the optimization value.
This means that the error values can be used to emphasize
certain parts of the data set which otherwise would not be re-
covered very well by PMF. Note that this is a key difference
to NMF, where no error-based weighting of the data is done.

4.1.6 Comparing the SDRTs applied to gas-phase
composition

Table 1 summarizes the acquired results from different
SDRTs for the gas-phase composition data measured with
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Figure 7. Factor time series and contribution from PMF with static error (a–b) and signal following error (c–d) for factorization rank 5.
Shaded areas in the time series indicate the factor range for the bootstrap resamples; solid lines are for the measured gas-phase (PTR-MS)
data. The colour code identifying the factors is the same in the top and bottom panels. Factors were identified as later-forming and slowly
forming products (FP1), early products (FP2), α-pinene precursor (FP3), background or car exhaust precursor (FP4), and intermediate
products (FP5).

Figure 8. Boxplot (a) and the time series (b) of the residuals (original total signal – reconstructed total signal) with static error and signal
following error (S.f.e) with five factors from PMF for the measured gas-phase (PTR-MS) data.

PTR-MS, and Figs. S21 and S22 in Sect. S5 show separate
factor contributions for each of the SDRTs. Comparison of
the total factor contribution for some selected compounds for
the four factors from EFA, PCA and PAM is shown in Fig. 9.
We note that the differences are very minor between EFA
and PCA and hardly visible in the coloured bars. When com-
pared to PAM, we see that, for example, acetaldehyde and
methyl ketene are assigned to the red cluster (CL2), which
also dominates in EFA and PCA (FE2, CO2). Figure 10
shows the same compounds for NMF and PMF. There, the
largest difference is between the two oxidation product fac-
tors, coloured in black (slow-oxidation products; factor 1 in
Table 1) and red (fast-oxidation products; factor 2 in Table 1).
For the selected compounds, NMF has more weight assigned

to the fast-forming products than PMF. In addition, PMF as-
signs much more weight to the intermediate-oxidation prod-
uct factor (pink) for some of the compounds.

The factorization acquired from PMF agrees well with the
factorization from NMF when comparing the factor time se-
ries, as expected, since the methods are rather similar. Com-
parison of the concentrations of the factors between PMF and
NMF directly is not exact, as these methods have different
weighting between the produced factorization matrices due
to the different solving algorithms. The largest difference is
the early-product factor, FN/FP 2. In NMF (Fig. 6), this fac-
tor (FN2) increases from 0 to 30 ppb very fast at t = 0 min;
then it decreases rapidly to just above 20 ppb and contin-
ues to decrease almost linearly towards 10 ppb. In PMF, this
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Figure 9. Total factor, component or cluster contribution of selected compounds from (a) ml-EFA, (b) EVD-PCA and (c) PAM for the
measured gas-phase (PTR-MS) data. Colour code identifying the factors, components or clusters is the same in all panels and is identified as
later-forming and slowly forming products (black), early products (red), α-pinene precursor (green), and background or car exhaust precursor
(blue).

factor (FP2; Fig. 7) has a similar increase at t = 0 min, but
it decreases exponentially instead of the fast drop and con-
stant decrease present in NMF solution. The different slope
has direct implications for the interpretation of the factor. A
faster decrease is interpreted as a faster removal or destruc-
tion process for ions classified into this factor. This is typi-
cally related to reaction speeds or to how far along a prod-
uct is in the chain of oxidation reactions. When comparing
the total contribution of FN2 in NMF and FP2 in PMF, in
NMF ions with m/z 90–100 have a much higher contribu-
tion to FN2, whereas in PMF these ions seem to be assigned
to FP1 instead. Otherwise the factors agree well with those
acquired from NMF, and their interpretation is therefore sim-
ilar: three oxidation product factors (FP1, FP2 and FP5), one
background or car exhaust precursor factor (FP4), and one
α-pinene injection factor (FP3).

Another important difference between NMF and PMF is
the relation between the factors at the end of the experi-
ment. In PMF, at the end everything is shifted to FP1 (later-
generation oxidation products) and the other factors decrease
to 0, whereas in NMF there still is a contribution from the
other oxidation product factors FN2 and FN5 in addition to
FN1. A more fundamental study of the algorithms for both
PMF and NMF is needed to explain this behaviour.

The factorization acquired with EFA, PCA and PAM is
more robust compared to NMF and PMF when inspecting
the bootstrap ranges in the top panels in Figs. 3, 4, 5, 6 and
7. This may be explained with the different number of fac-
tors (four or five), as with more factors, one factor includes
fewer (strongly) contributing ions, which causes factoriza-

tion to vary more when the data are different. But most of
the differences between these SDRTs are still explained by
the methods themselves and the solving algorithms. PMF
and NMF are more sensitive to small changes in the data,
whereas EFA, PCA and PAM succeed more reproducibly in
finding larger structures and changes in the data.

The addition of a fifth factor to EFA, PCA and PAM did
not add a factor showing a new feature, as it did in NMF and
PMF, but a sub-factor. This sub-factor has a very low con-
centration, but if inspected separately (not shown), it peaks
around t = 0 min, similar to the second factor. This means
that instead of adding a factor consisting of intermediate-
oxidation products (as in NMF and PMF), the added fac-
tor is another early-product (or background) factor. This is
also caused by the difference in the methods, as these three
SDRTs (EFA, PCA and PAM) concentrate more on the fast
changes (which take place here at t = 0 min), whereas NMF
and PMF focus more on slow changes. This is one exam-
ple where the chosen method (EFA–PCA or NMF–PMF) has
a direct impact on the interpretation of the data. For under-
standing the chemical processes in the experiment, the ex-
istence of two or three oxidation product factors is of great
importance.

Factor 4 has different behaviour in the time series in EFA
and PCA compared to NMF, PMF and PAM. In the latter
SDRTs this factor starts decreasing immediately and the con-
centration drops throughout the whole experiment, implying
that it is affected by car exhaust precursors that are oxidized,
and the products are assigned to other factors later on. In EFA
and PCA, this factor has a small and rather stable concentra-
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tion over the time series (also in addition to a small contri-
bution to the total signal), suggesting that it could consist
of background compounds present throughout the whole ex-
periment. Without exact identification of all the compounds
present in these factors (which is out of the scope of this
study), it is hard to say if this difference is real or if it is
related to the different calculation of the SDRTs. We provide
more details of the comparison between the factors from dif-
ferent SDRTs in Sect. S5 in the Supplement.

4.2 Particle-phase composition from AMS

4.2.1 EFA and PCA

As the AMS data from the experiment include only one ob-
servation about every 10 min, the data have many more vari-
ables (compounds) than observations. This causes problems
for EFA and EVD-PCA, as those methods are based on the
correlation matrix, which will not be positive definite due
to the small number of observations (rows) compared to the
number of variables (columns). In EVD-PCA, the second
step is to calculate the eigenvalues, which in this case may
also be negative and result in a non-interpretable outcome.
With this type of data, the results of EFA are also sensitive to
the used algorithm. The calculation in ml-EFA did not con-
verge at all, but pa-EFA was able to produce results. Due to
these restrictions in the calculation process, the results from
EFA and PCA are only briefly discussed below, and exam-
ple figures can be found in the Supplement (Sect. S6.1). In
addition, due to the very small data size, the bootstrap-type
resampling of the data has too drastic an effect on the data
structure to validate the repeatability of the factorization and
is therefore not applied for any of the SDRTs.

Figure S23a and b (Sect. S6.1) shows the results for the
tests investigating the correct number of factors and compo-
nents pa-EFA and EVD-PCA. For EFA in Fig. S23a, the em-
pirical BIC reaches a minimum value with four factors, and
the inflection point in SRMR is at four factors. For EVD-
PCA, however, parallel analysis (Fig. S23c) suggests only
one component, mainly indicating that the data are not suit-
able for PCA at all. The eigenvalues also do not reach 1
(Kaiser criterion) with up to 10 components tested. The
eigenvalues for EFA (not shown) reached 1 for the six-factor
solution, and parallel analysis results (not shown) indicated
selecting only one factor. The differences in these test re-
sults are mostly caused by the computational issues men-
tioned above. Indeed, neither EFA nor PCA (SVD or EVD)
were able to separate more than two factors or components
from the data, when two to five factors or components were
tested (see e.g. Figs. S24 and S25 in Sect. 6.1). While a two-
factor solution could be correct in principle, it seems unlikely
for the investigated system. The particle phase is constantly
formed by low-volatility gaseous compounds condensing.
As shown above, the gas-phase composition changes con-
stantly as compounds are produced and consumed. Thus, it

Figure 10. Total factor contribution of selected compounds
from (a) NMF and (b) PMF with static error for the measured gas-
phase (PTR-MS) data. Colour code identifying the factors is the
same in both panels and is identified as later-forming and slowly
forming products (black), early products (red), α-pinene precursor
(green), background or car exhaust precursor (blue), and intermedi-
ate products (pink).

is highly unlikely that during the 4 h of chemical reactions
in the chamber the same mix of low-volatility compounds is
present and condenses onto the particles.

4.2.2 PAM

No clear inflection point is visible in the TWSS plot in
Fig. S23e; the value decreases when increasing the cluster
number with a small “bump” at four clusters. The gap statis-
tics (Fig. S23f) does not reach a maximum value, and it also
does not reach the other criteria explained in Sect. 3.3. The
inconclusiveness of the tests’ results may be caused by dif-
ferent reasons, and to investigate this further, PAM was con-
ducted with two to five clusters, and the results are shown
in the Supplement (Figs. S26 and S27). Increasing the num-
ber of clusters from three (Fig. S26b) upwards adds clusters
with extremely small concentrations and a similar time se-
ries shape to the previously found clusters. The very similar
shape of the time series of the clusters suggests that only one
type of SOA particles was formed quickly after the start of
photo-oxidation and that the chemical composition changed
only marginally. Again, this seems unlikely for the investi-
gated system.

The inability of PAM to identify multiple SOA particle
types most likely lies in the method itself. Each variable (ion)
is assigned to one cluster and cannot be spread over mul-
tiple clusters. However, it is well known that AMS applies
a “hard” ionization technique. Thus, a high degree of frag-
mentation is expected, and indeed, most carboxylic acids, for

https://doi.org/10.5194/amt-13-2995-2020 Atmos. Meas. Tech., 13, 2995–3022, 2020



3012 S. Isokääntä et al.: Comparison of dimension reduction techniques

Figure 11. Factor number indices for particle-phase data (AMS).
Estimation of the factorization rank for NMF in (a), with CCC and
D(X||WH), and for PMF in (b), with Q/Qexp for the two error
schemes. Larger points indicate the solution that was selected for
more detailed interpretation.

example, are detected as CO+2 (m/z 44). This means that a
highly oxidized organic acid, formed late in the experiment
after multiple steps of oxidation, will be detected at the same
variable (ion) as a different acid formed much earlier. Due
to the “one variable – one cluster” method, PAM is inca-
pable of resolving this information in the data. While EFA
and PCA could still be used if the data matrix is suitable (i.e.
more rows than columns), PAM is unsuitable for this AMS
data set or generally for data sets where variables have strong
contributions from more than one source.

4.2.3 NMF

The D(X||WH) has an inflection point at factorization
rank 4, and CCC shows the first decrease in the values with
four factors, as shown in Fig. 11a. We selected the four-factor
solution for the detailed interpretation. We discuss additional
reasons why the four-factor solution should be selected in
Sect. S6.2. The factor time series are shown in Fig. 12a. Fig-
ure 12b shows the original ion-to-factor contributions from
NMF without any scaling. The total factor contribution plots
are omitted, as we do not have PCA–EFA results to com-
pare. The delay in the time series after t = 0 (before the fac-
tors starts increasing or decreasing) is most likely caused by
the small time resolution (10 min) of the data. The residu-
als were on the same order of magnitude as for the PTR-MS
data, indicating again very good reconstruction of the origi-
nal signal.

The mass spectrum of FN1 is dominated by the CnH+2n+1
and CnH+2n−1 ion series, conforming to the typical features
of combustion-related primary organic aerosol, and thus it
is interpreted as a hydrocarbon organic aerosol (HOA) fac-
tor. FN1 was originated from car exhaust, as it already ap-
pears before t = 0 min. FN1 increases slightly at the start
of the photo-oxidation. The increase is partly attributed to

the new formation of the HOA component, when the HOA-
type compounds in the hot exhaust gas were introduced into
the chamber and contain marker ions associated with HOA
(e.g. m/z 57; Zhang et al., 2005) condensed again in a
cooler chamber. Meanwhile, we cannot rule out the possi-
bility that HOA has been produced as a minor product after
the photo-oxidation reaction was enabled in this study. FN2
can be interpreted as α-pinene secondary-organic-aerosol-
derived semi-volatile oxygenated organic aerosol (αP-SOA-
SVOOA) after we carefully compared the factor mass spectra
with pure α-pinene experiments conducted at similar settings
reported by Kari et al. (2019b). In addition, FN2 is charac-
terized by the prominent peak as m/z 43. The mass spec-
tra of FN2 and FN4 are rather similar, but FN4 has a higher
contribution from m/z 44, a marker of oxygenated organic
aerosol (Zhang et al., 2005), and thus it is identified as an αP-
SOA-LVOOA (LVOOA – low-volatility oxygenated organic
aerosol) factor. The FN3 was appointed as a mixed LVOOA.
Except for the high peak at m/z 44 in the FN3 mass spec-
trum, its time series is also consistent with the SOA forma-
tion in the mixed α-pinene or car exhaust SOA experiments
conducted in similar settings (Kari et al., 2019b), and thus it
is identified as a mixed-LVOOA factor stemming from later-
generation oxidation products. A summary of the generated
factors from NMF can be found in Table 2.

4.2.4 PMF

The Q/Qexp values for the two error schemes are shown in
Fig. 11b. Neither of the error schemes show a clear inflec-
tion point. Examples of behaviour of the errors as a time
series are shown in Fig. S7 (Sect. S2.2). With the standard
AMS error, the Q/Qexp values do not reach 1 (with 10 fac-
tors Q/Qexp = 1.76), whereas with the static error the val-
ues decrease to below 1 for seven factors. The solutions with
two to five factors were inspected, and the two-factor so-
lution (Fig. 13) is presented here as the most interpretable
one (summarized in Table 2). The primary OA factor, sepa-
rated by NMF (Fig. 12; FN2), was only found if using four
factors and the static error scheme in PMF (see Sect. S6.2,
Fig. S31a–b). However, interpretation of the time series for
that solution was found to be very difficult due to the ex-
treme anticorrelation between the time series, and thus the
two-factor solution was selected. The two factors were in-
terpreted as SVOOA and LVOOA. In addition, the largest
relative decrease in the Q/Qexp was observed with the two-
factor solution.

The residuals for the standard AMS error were smaller, as
shown in Fig. 14. This agrees with the analysis of the gas-
phase data set, where the residual for the signal following
error (which has a similar profile in time as the standard AMS
error) was generally smaller compared to the static error.

The signal following error, used for PTR-MS, was also
tested for particle-phase data. However, as this type of error
showed very similar behaviour as a time series to the stan-
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Table 2. Summary of the results for particle-phase composition data. Best solution refers to the number of factors or clusters.

Type of analysis NMF PMF PMF (standard Example
(static error) AMS error) compounds

Best solution 4 2 2
Primary OA (HOA) 1 – – m/z 12, 57, 59
Mixed LVOOA 3 – – m/z 44
αP-SOA-SVOOA 2 – – m/z 43
αP-SOA-LVOOA 4 – – m/z 44
SVOOA 1 1 m/z 43
LVOOA 2 2 m/z 44

Figure 12. The factor time series (a) and relative factor spec-
tra (b) from NMF with four factors for the measured particle-phase
(AMS) data. The colour code identifying the factors is the same
in both panels. Factors were identified as primary OA (FN1), αP-
SOA-SVOOA (FN2), mixed LVOOA (FN3) and αP-SOA-LVOOA
(FN4).

dard AMS error and produced a very similar outcome, those
results are omitted from this paper.

4.2.5 Comparing the SDRTs applied to particle-phase
composition

Table 2 summarizes the acquired results from NMF and PMF
for the particle-phase composition data measured with AMS.
PAM was not able to separate distinct clusters due to the in-
ability of clustering techniques to classify an ion into multi-
ple clusters. Comparing the relative factor spectra and frac-
tion of signal from NMF and PMF with the static error (Figs.
12b and 13b), the distribution of ions is similar between the

LVOOA in the PMF solution and the mixed-LVOOA factor
in the NMF solution and also similar between the SVOOA
in the PMF solution and the αP-SOA factor (integrated αP-
SOA-SVOOA and αP-SOA-LVOOA factors). When inspect-
ing the individual ion time series in the original AMS data,
most of them have a rather “smooth” behaviour, similar to
the factors acquired from NMF. It seems that PMF gives
more weight to the background ions (with very small con-
centration), which do not have that clear of a structure in
their time series, thus including more of their behaviour in
the final factors, if the number of factors in PMF is increased
from two (see Sect. S6.2, Figs. S30–S32). Residuals from
NMF reconstruction (with four factors) were over 10 or-
ders of magnitudes smaller (for NMF between −1.3×10−13

and 7.1× 10−14) than those from PMF (between −0.06 and
0.13 for the two-factor solution with standard AMS error;
see Fig. 14), indicating better reconstruction of the data with
NMF. Most likely, PMF struggles with the small data set,
thus not being able to recover all the factors found by NMF
and construct reasonable time series for those factors (see
four-factor solution in Fig. S31), whereas NMF does not
seem to be affected by the data size. In addition, the weight-
ing between the factorization matrices between NMF and
PMF is different not only due to the error matrix that is given
as a weight in PMF but also because of the different solving
algorithms for each method. This, on the other hand, assigns
different emphases between the matrices, possibly causing
NMF to use more effort to reconstruct the data matrix with
factor time series. However, the reader should keep in mind
that for detailed chemical analysis of such a data set, espe-
cially with PMF, downweighting is advisable. In addition,
the replacement of very small negative numbers with very
small positive numbers is not mandatory for PMF, as it can
run with a few negative values into some extent. However,
we did the replacement here, as the NMF algorithm used here
does require strictly positive input data. Acquiring a balance
between statistically good results and realistic factors might
be challenging, and to achieve more robust results, testing
different error schemes may be beneficial, especially for a
data set of such a small size.
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Figure 13. Factor time series and contribution from PMF with static error (a–b) and standard AMS error (c–d) for factorization rank 2 for
the measured particle-phase (AMS) data. Factors were identified as SVOOA (FP1) and LVOOA (FP2).

Figure 14. Boxplot (a) and the time series (b) of the residuals (original total signal – reconstructed total signal) with static error and standard
AMS error with two factors from PMF for the measured particle-phase (AMS) data.

4.3 Computational cost

To approximate the differences in the computational time be-
tween the different SDRTs, the methods were applied with
2–10 factors each, with nine runs in total for each method.
No rotations were applied (no rotation for EFA and PCA,
fpeak = 0 for PMF), as the rotational methods between EFA–
PCA and PMF are not directly comparable. Computation
times include the calculation of the correlation matrix when
needed and calculation of the factor time series for PAM,
EFA and PCA (which is calculated outside the main algo-
rithms), as described in Sect. 3.1.1. Three data sets with dif-
ferent sizes were tested, and the results are presented in Ta-

ble 3. AMS includes the particle-phase measurement data
(size 26× 306) presented in Sect. 4.2. and PTR-MS the gas-
phase composition data (size 300× 133), which were anal-
ysed in detail in Sect. 4.1. PTR-MS*5 is a larger data set
created from the gas-phase composition data by duplicating
the data rows five times (final size 1500× 133). The compu-
tational times for NMF and PMF were clearly longer when
comparing to the other SDRTs. This is not surprising, as PMF
and NMF calculate both factorization matrices at the same
time, whereas for the other SDRTs only the matrix present-
ing the contribution of the ion to the factor is found at first,
and the time series of the factors, components or clusters are
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Table 3. The computational time (in seconds) for two to nine factors
for different SDRTs and data types and sizes.

SDRT AMS PTR-MS PTR-MS*5

EVD-PCA – 1.93 5.23
SVD-PCA 0.571 0.838 1.59
ml-EFA – 14.2 16.9
pa-EFA – 2.96 6.18
PAM 0.672 0.771 1.69
NMF 21.6 39.7 134
PMF (static error) 30.0 101 476
PMF (standard AMS 31.1 122 543
error or noise error)

calculated afterwards. In addition, the PMF2 algorithm used
through the PMF evaluation tool for Igor Pro reads and writes
text files for each PMF run, thus significantly increasing the
computational time.

4.4 Summary of the SDRTs used in this study

The methods tested in this study have many similarities and
many, fundamental or computational, differences. However,
in the literature, they are applied many times to similar prob-
lems. In this section we will summarize some of these prop-
erties.

EFA is fundamentally different from the other methods, as
it is by definition a measurement model of a latent variable,
i.e. the factor (Osborne, 2014), whereas the other methods
basically describe the measured data with linear combina-
tions of measured variables. The latent variables in EFA, i.e.
the factors, cannot be directly measured, but instead, they are
seen through the relationships they initiate in a set of Y vari-
ables, which are measured. In the other methods, in turn, the
factors, components or clusters are calculated directly from
the measured variables Y (Rencher and Christensen, 2012;
Osborne, 2014).

The approach to data reduction in PCA is to create one or
more summarizing variables from a larger set of measured
variables by retaining as much as possible of the variation
present in the original data set (e.g. Jolliffe, 2002). This is
done by using a linear combination of a set of variables.
The created summarizing variables are called components.
The main idea of the PCA is to figure out how to optimize
this process: the optimal number of components, the optimal
choice of measured variables for each component and the op-
timal weights when calculating the component scores.

The objective of cluster analysis is to divide the observa-
tions into homogeneous and distinct groups (Rencher and
Christensen, 2012). Cluster analysis is a method where the
aim is to discover unknown groups in the data, which are not
known in advance. The goal of the clustering algorithm is to
partition the observations into homogeneous groups by using
some measure of similarity (or dissimilarity) such that the

within-group similarities are large compared to the between-
group similarities. The choice of the similarity measure can
have a large effect on the result. One property of cluster anal-
ysis is that it will always calculate clusters, even if there is
no strong similarity present between the variables in the data
(Wu, 2012). This should be noted when interpreting the re-
sults, especially if the user has no a priori information about
the number of clusters.

NMF and PMF provide an alternative approach to the
decomposition, assuming that the data and the components
are non-negative (Paatero and Tapper, 1994; Lee and Seung,
1999). Thus, all the features learned via NMF and PMF are
additive; that is, they add together strictly positive features.
PCA and EFA tend to group both positively correlated and
negatively correlated components together, as they only look
for the correlations of variables (except SVD-PCA, which
can be applied to the data matrix directly). On the other hand,
NMF and PMF, by constricting W and H to positive values,
find patterns with the same direction of correlation. Thus,
NMF and PMF work well for modelling non-negative data
with positive correlations. However, if the interest is not only
in the positive effects, then PCA and EFA can provide more
information for the investigated system. Cluster analysis is
suitable for classifying observations based on certain crite-
ria. The researcher can measure certain aspects of a group
and divide them into specific categories using cluster analy-
sis. However, this method is not suitable for data with vari-
ables which should show contributions from multiple fac-
tors or components (e.g. strongly fragmented signals in AMS
data).

Factorization methods, including those used in this paper,
operate on the fundamental assumption that the factor pro-
files (here factor mass spectra) are constant over the inves-
tigated period. Often, this has been interpreted in a way that
chemical processes occurring in a chamber experiment or the
atmosphere violate this assumption. However, this interpre-
tation is based on too narrow a definition of what a factor
represents. A factor can be seen as a direct (emission) source
of compounds which changes its contribution to the whole
signal (e.g. primary emissions from biomass burning as a fire
develops and then dies). But a factor can also be interpreted
as a group of compounds showing the same temporal be-
haviour. If this group is released together as an emission or if
the compounds are formed in the same ratio by some chemi-
cal process should not matter. In the latter case, it is important
how wide the group is selected, i.e. if we group products of
processes together for which the contribution changes with
time. This means that choosing the optimal number of fac-
tors becomes even more important when chemical processes
occur. EFA and PCA account for the chemistry happening in
chamber measurements with negative loadings, as described
above. The same factor can contain educts and products of
a chemical process (e.g. oxidation), with the difference that
their loadings are negative and positive, respectively.
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Taking account of everything above, the most important
thing to consider when selecting the SDRT is the interpre-
tation. What are the features the researcher wants to deduct
from the data, what are the properties of the data, and how
can the data answer the research questions? As we have
shown in the “Results and discussion” section, the methods
provide quite similar reconstructions of the time series, but
the interpretations of the steps leading to these are quite dif-
ferent. For example, comparing reconstructions of EFA fac-
tor FE4 in Fig. 3a and PMF factor FP4 in Fig. 7a, they seem
to show the same procedure, but the first one includes both
positive and negative effects and the second one consists only
of positive effects.

5 Conclusions

The main objectives in this study were to (a) investigate how
different SDRTs perform for gas- and particle-phase com-
position data measured with mass spectrometers, (b) how
the interpretation of the factors changes depending on which
SDRTs have been used, and (c) how well the SDRTs were
able to resolve and classify the factors representing chem-
istry behind the investigated data set of photo-oxidation of
car exhaust combined with α-pinene. We showed that EFA,
PCA and PAM were able to identify four factors from the
gas-phase composition data, whereas NMF and PMF suc-
ceeded in separating one additional oxidation product factor.
The behaviour of the factors as time series was similar, when
considering the differences in the calculation of the factor
time series matrix in different SDRTs. For example, the EFA
and PCA factors were nearly identical, and the differences in
the interpretation lie more in the definition; principal com-
ponents are defined as linear combinations of the variables
(ions), whereas in EFA the variables are expressed as lin-
ear combinations of the acquired factors. From the particle-
phase data, NMF was able to separate four factors, whereas
PMF separated two. PAM was not able to find more than
two separate clusters, most likely due to the high degree of
fragmentation in the data and the constrain of PAM to as-
sign one ion to only one cluster, as discussed in Sect. 4.2.2.
EFA and PCA had computational constraints due to the small
data size acquired from the AMS and could not be applied.
In addition, PMF also faced assumedly computational issues
with the small particle-phase data set, thus not being able to
reasonably separate the HOA factor.

The difference, which might be an advantage or disadvan-
tage depending on the application, between PCA–EFA and
PMF–NMF is their use of the correlations of the variables
instead of the raw data. When using the raw data, ions with
a high concentration may dominate and hide interesting be-
haviour occurring in the lower-concentration ions and instead
classify those as insignificant background ions. When using
correlations, the concentrations of the ions do not affect the
created factorization until the factor time series are calcu-

lated, and in principle, variables with different units can be
factorized simultaneously. On the other hand, it may dimin-
ish some of the more minor and subtle changes. As NMF and
PMF do not rely on the correlations, they are more sensitive
to the smaller changes taking place in the data. The disadvan-
tage of signals with high intensity dominating in the analysis
can be tackled in PMF by choosing an appropriate error ma-
trix that weights the ion signals. Selection of the error matrix
can also be crucial when interpreting the PMF output, as a
sub-optimal choice may hide the identification of important
properties of the data.

The gas-phase data resulting from PAM agreed moderately
with those from EFA and PCA, when taking into account the
ability of PAM to assign one ion to only one cluster instead
of multiple ones. When comparing the performance of the
SDRTs to the bootstrap-type resampled data, we noted that
the factorizations from EFA, PCA and PAM were more ro-
bust compared to the PMF and NMF results. Results from
PMF with different error schemes were similar, but the static
error provided more robust solutions when applied to the
bootstrap-type resamples.

The findings by Koss et al. (2020) proposed that HCA can
be used to quickly identify major patters in mass spectra data
sets, which is in agreements also with our results from PAM.
Our findings for PMF partly differ, as they suggest that PMF
is not able to sort chemical species into clear generations
by their oxidation state. In our study, we found three factors
(factors 1, 2 and 5; see Table 1), which can be interpreted as
representatives for different oxidation states. However, they
can also present reactions taking place with different reaction
kinetics (faster and slower reactions), as discussed in the re-
sults. In addition, Koss et al. (2020) used gas-phase data from
I− CIMS and PTR3 with NH+4 as a reagent ion, which are
more sensitive to later-generation oxidation products com-
pared to the PTR-MS which we have used here. We have
also used slightly different error types for PMF, which we
showed to have a significant impact on the resolved factors,
especially if the data size is small. Our results from PMF and
NMF agreed reasonably well, even though NMF does not
use an error matrix as input, and it solves the bilinear equa-
tion with a different algorithm, indicating that our PMF is
reasonable and correctly interpreted.

From a mathematical point of view, the selection of the
most useful SDRT depends on neither the instrument used to
measure the data nor the extent of fragmentation taking place
in the instrument. Only PAM is an exception here, as cluster-
ing techniques in general do not assign variables to multiple
clusters (i.e. “between” clusters), whereas all the other pre-
sented SDRTs have the ability to share an ion between mul-
tiple factors. Similarly, if a large number of isomers is to be
expected, NMF or PMF may be preferable over EFA or PCA,
as the latter two try to maximize the contribution of an ion to
a single factor. Ultimately, however, the most useful choice of
SDRT also depends on what kind of chemical processes are
expected and measured, as the splitting of ions into multiple
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factors generally makes the interpretation of the factors more
difficult, especially if the prevalence of possible isomeriza-
tion is not known. Splitting of ions to multiple factors is also
an important topic to discuss in source apportionment anal-
ysis, where an ion with specific m/z may emerge from var-
ious sources or source processes. However, it is a very sub-
tle choice between possibly dismissing an unexpected fea-
ture discovered by SDRT and using prior knowledge to vali-
date the factorization results. Therefore, applying more than
one SDRT not only may protect the user for determining sur-
prising results to be unphysical, and thus erroneous, but also
gives a more robust outcome for the research when the results
from different techniques agree.
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Appendix A: Mathematical symbols and notations used
in the equations throughout the paper

X, Xij Data matrix (n×m), data matrix element
p Number of factors, components or clusters
yj Variable/ion j (time series vector), column j from X
cj PCA component j
f EFA factor
λ, λij EFA loading matrix, loading-matrix element
S, R Observed correlation matrix, implied correlation matrix
G Factorization matrix (factor time series) PMF (n×p)
F Factorization matrix (factor spectra or contribution) in PMF (p×m)
µ PMF error matrix
E Residual matrix in PMF
W Factorization matrix (factor time series) in NMF (n× k)
H Factorization matrix (factor spectra or contribution) in NMF (k×m)
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