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Abstract. Mobile-platform measurements provide new op-
portunities for characterizing spatial variations in air pollu-
tion within urban areas, identifying emission sources, and
enhancing knowledge of atmospheric processes. The Aclima,
Inc., mobile measurement and data acquisition platform was
used to equip four Google Street View cars with research-
grade instruments, two of which were available for the du-
ration of this study. On-road measurements of air quality
were made during a series of sampling campaigns between
May 2016 and September 2017 at high (i.e., 1 s) temporal
and spatial resolution at several California locations: Los An-
geles, San Francisco, and the northern San Joaquin Valley
(including nonurban roads and the cities of Tracy, Stock-
ton, Manteca, Merced, Modesto, and Turlock). The results
demonstrate that the approach is effective for quantifying
spatial variations in air pollutant concentrations over mea-
surement periods as short as 2 weeks. Measurement accu-
racy and precision are evaluated using results of weekly per-
formance checks and periodic audits conducted through the
sampler inlets, which show that research instruments located
within stationary vehicles are capable of reliably measur-
ing nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3),
methane (CH4), black carbon (BC), and particle number
(PN) concentration, with bias and precision ranging from

< 10 % for gases to < 25 % for BC and PN at 1 s time reso-
lution. The quality of the mobile measurements in the ambi-
ent environment is examined by comparisons with data from
an adjacent (< 9 m) stationary regulatory air quality mon-
itoring site and by paired collocated vehicle comparisons,
both stationary and driving. The mobile measurements in-
dicate that United States Environmental Protection Agency
(US EPA) classifications of two Los Angeles stationary reg-
ulatory monitors’ scales of representation are appropriate.
Paired time-synchronous mobile measurements are used to
characterize the spatial scales of concentration variations
when vehicles were separated by < 1 to 10 km. A data anal-
ysis approach is developed to characterize spatial variations
while limiting the confounding influence of diurnal variabil-
ity. The approach is illustrated using data from San Fran-
cisco, revealing 1 km scale differences in mean NO2 and O3
concentrations up to 117 % and 46 %, respectively, of mean
values during a 2-week sampling period. In San Francisco
and Los Angeles, spatial variations up to factors of 6 to 8 oc-
cur at sampling scales of 100–300 m, corresponding to 1 min
averages.
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1 Introduction

In 2017, air pollution was responsible for nearly 5 million
premature deaths worldwide, a 5.8 % increase from 2007
(Stanaway, J. D. and GBD 2017 Risk Factor Collaborators,
2018). Model projections indicate a possible doubling of pre-
mature mortality due to air pollution between 2010 and 2050
(Lelieveld et al., 2015). Multiple studies associate exposure
to nitrogen dioxide (NO2), particulate matter, carbon monox-
ide (CO), ozone (O3), and sulfur dioxide (SO2) with adverse
health effects (Stieb et al., 2002; U.S. EPA, 2008, 2010a, b,
2014, 2018; WHO, 2006).

Over the last 45 years, the public has relied on air quality
information from stationary regulatory monitoring sites that
are sparsely located throughout the US. With the advent of
air quality monitoring equipment that can be placed across
a range of locations using various sampling platforms (per-
sonal, stationary, and mobile), a greater spatial and tempo-
ral understanding of air quality can be obtained. With this
information, members of the public can potentially reduce
their health risks from air pollution. Improved understanding
of spatial variations in air pollutant exposure is expected to
yield increasingly accurate estimates of the health effects of
air pollution and is an important step in effectively reduc-
ing human exposure, acute and chronic health impacts, and
premature mortality (e.g., Steinle et al., 2013). High-spatial-
resolution measurements can reduce exposure misclassifica-
tion and provide improved inputs for modeling. Spatially
resolved air pollutant concentrations also aid in evaluating
emission estimates and elucidating the effects of atmospheric
processes on pollutant formation and accumulation. Urban
air pollutant concentrations are known to vary by up to an
order of magnitude over spatial scales ranging from meters
to hundreds of meters (Marshall et al., 2008; Olson et al.,
2009; Boogaard et al., 2011). Previous efforts to character-
ize spatial variations in air pollutant concentrations have in-
cluded near-roadway sampling (e.g., Baldauf et al., 2008;
Karner et al., 2010), grid-based modeling (e.g., Marshall et
al., 2008; Holmes et al., 2014; Friberg et al., 2016), land-
use regression models (e.g., Gilbert et al., 2005; Henderson
et al., 2007; Moore et al., 2007; Marshall et al., 2008; Han-
key and Marshall, 2015), satellite data (e.g., Laughner et al.,
2018), dense arrays of monitors (e.g., Blanchard et al., 1999;
Kanaroglou et al., 2005; Kim et al., 2018; Shusterman et
al., 2018), and measurements made using mobile platforms
(e.g., Brantley et al., 2014; Ranasinghe et al., 2016; Apte et
al., 2017; Messier et al., 2018). The feasibility of deploying
dense monitoring networks has increased with the availabil-
ity of inexpensive sensors, although questions about sensor
accuracy continue to be studied (e.g., Borrego et al., 2016;
Castell et al., 2017; Li and Biswas, 2017; Schneider et al.,
2017; Lim et al., 2019). Approaches that combine mobile
monitoring with measurements made at stationary monitor-
ing locations (Adams et al., 2012; Simon et al., 2018) or with
modeling (Messier et al., 2018) are being actively researched.

The Aclima, Inc., mobile measurement and data acquisi-
tion platform was previously used with two Google Street
View cars equipped with research-grade instruments to mea-
sure air quality on city streets in Oakland, California, be-
tween 28 May 2015 and 14 May 2016 (Apte et al., 2017)
and through 19 May 2017 (Messier et al., 2018). The Oak-
land sampling campaign provided nearly complete coverage
of all city streets with∼ 20–50 d sampling of each 30 m road
segment, from which high-spatial-resolution maps of aver-
age air pollution concentrations were constructed (Apte et
al., 2017; Messier et al., 2018). The maps reveal persistent
pollution patterns, with small-scale variability attributable to
local emission sources; 10–20 driving days reproduced spa-
tial patterns with low bias and good precision (Apte et al.,
2017). The Oakland results also demonstrate the efficiency
of data-based mapping: using the data from all road segments
obtained on only 4–8 driving days represented the full data
set better than measurements from a subset of road segments
combined with a land-use regression–kriging model (Messier
et al., 2018).

The Oakland study demonstrates an approach to mapping
average air pollution concentrations within a defined geo-
graphical area by repeated sampling of each street. Mobile-
platform data from other locations are needed to better un-
derstand how wider coverage with more limited numbers of
repeated samples within each neighborhood could be used
in conjunction with data from stationary air quality mon-
itoring locations to characterize neighborhood-scale varia-
tions. In addition, new driving strategies and analytical meth-
ods could help establish concentration decay rates of mo-
bile emissions with distance from roadways, comparability
of pollutant concentrations among neighborhoods, and com-
parability of neighborhood concentrations to data from sta-
tionary regulatory monitors.

The mobile sampling discussed here and in Apte et
al. (2017) is limited to weekdays between ∼ 09:00 and
17:00 LT (local time) Sampling is necessarily conducted
along roads and streets. Depending on the number of re-
peated driving segments, vehicles sample different road seg-
ments on different days or at different times of day. These
limitations are important considerations for studies whose
goal is to develop pollutant maps that represent long-term
concentration averages and which are intended to correctly
characterize spatial variations at specified spatial scales.
However, our study objectives are different, namely to (1) ex-
amine the capabilities of research instruments when placed
in stationary and moving vehicles, (2) compare our measure-
ments with those obtained from stationary air quality moni-
tors, (3) evaluate driving and sampling strategies, and (4) de-
velop statistical methods that account for sampling limita-
tions. Limitations that are specific to our study are that (1) it
was conducted as a series of geographically separated sam-
pling campaigns between May 2016 and September 2017,
generally lacking the number of repeated driving routes pre-
viously used to generate pollution maps (Apte et al., 2017;
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Messier et al., 2018), and (2) no set of driving routes com-
pletely covered any specific geographical domain (e.g., San
Francisco or specific neighborhoods therein). The results
presented here therefore focus on measurement and method-
ological questions that can be addressed with data available
from the individual sampling campaigns. A set of research
questions was developed initially and was then used to design
the individual sampling campaigns. In analyzing the results,
a need arose to distinguish between temporal variability (due,
for example, to sampling different places at different times)
and spatial variability. Statistical methods were therefore de-
veloped to characterize spatial heterogeneity within and be-
tween neighborhoods by utilizing time-synchronized differ-
ences in the pollutant concentrations that were measured by
different vehicles. Due to limited repeated sampling of in-
dividual road segments, our estimates of spatial heterogene-
ity do not in themselves identify locations having long-term
high and low pollutant concentrations. Additional statistical
methods were developed to demonstrate the use of short-term
campaign measurements to characterize intermediate-scale
(1 km) spatial variations in pollutant concentrations and to
identify areas with short-term high pollutant concentrations,
potentially indicating where more intense future sampling
would be warranted.

This study examines the field capabilities of mobile
research-grade instruments used in varied settings. Future
work will examine the capabilities of low-cost sensor data
and will address the comparability of sensor and research-
grade sampler data as well as the comparability of sensors
in mobile versus stationary platforms. In this paper, instru-
ment measurement accuracy and precision are evaluated us-
ing weekly performance checks, laboratory audits, and inde-
pendent field audits conducted through sampler inlets. The
quality of the mobile-instrument measurements in the am-
bient environment is then examined by comparisons with
adjacent (< 9 m) stationary air quality monitoring sites and
by side-by-side paired vehicle comparisons. Mobile-platform
measurements are compared to data from stationary air qual-
ity monitoring sites to evaluate and validate mobile-platform
data and to ensure that the mobile platforms maintain high
data quality. The measurements obtained from replicate mo-
bile platforms are compared using collocated vehicles that
were operated while stationary and while driving; these re-
sults are used to establish the capabilities of the instruments
for establishing high-temporal-resolution spatial variations
in pollutant concentrations. Finally, the mobile data are ana-
lyzed to examine the spatial representativeness of measure-
ments made at stationary monitoring locations during se-
lected time periods at a range of spatial scales (< 1 km to
> 10 km).

The mobile measurements were made in various loca-
tions; an overview is available at https://blog.aclima.io/
healthier-cities-through-data-ca-intro-6e9e22e00075 (last
access: 13 December 2019). Because the driving routes were
not designed to provide long-term repeated measurements

for any of the locations, we did not focus on presenting
pollutant maps. Data analysis methods were developed and
applied to data subsets to exemplify approaches that are
potentially applicable to larger data sets. Thus, some results
are illustrative rather than comprehensive. Since the mea-
surements made during the study period were intended to
address specific questions based on the results from specific
sampling days, analyses are presented using different subsets
of the data to address different questions. While performance
evaluations and audit results are documented in this paper for
all measured species, comparisons with stationary-monitor
data, between-vehicle comparisons, and summaries of
spatial variations are presented only for species that were
measured using more than one platform (i.e., two vehicles or
one vehicle plus one stationary monitor).

2 Methods

2.1 Measurements

Measurements were made and processed by Aclima, Inc.
All data are quality-assured by Aclima, Inc., at data qual-
ity levels 1 or 2 (qualified data level 1 – QD1 – and qual-
ified data level 2 – QD2), as described in metadata doc-
umentation (Lunden and LaFranchi, 2017). The principal
differences between QD1 and QD2 data are that the QD1
data include measurements made when the cars were parked
overnight and the QD2 data exclude calibration checks. Ac-
cess to QD2 data is provided by Aclima, Inc., and Google,
Inc., through the Google Cloud Platform using Google Cloud
Shell and Google BigQuery (Google, 2018). Aclima QD1
data were used for all analyses because QD2 data (Google
2018) do not include the measurements made when the cars
were parked overnight; side-by-side comparisons of the mea-
surements obtained when the cars were parked next to each
other therefore required QD1 data sets (Aclima, 2018).

Street-level sampling was conducted in three California
locations: San Francisco, Los Angeles, and smaller cities
and nonurban areas within the northern San Joaquin Val-
ley (Table 1). Measurements were made between ∼ 09:00
and ∼ 17:00 LT on weekdays, with additional sampling oc-
curring while the vehicles were parked in the San Francisco
garage and a small (∼ 30 car) Los Angeles parking lot before
(∼ 06:00–09:00 LT) and after (∼ 17:00–22:00 LT) the driv-
ing periods. The instruments were switched from vehicle to
line power when parked overnight. The vehicles were parked
in dedicated areas away from traffic within each overnight
parking location. Specific time periods were selected for
analysis to represent data from different areas and to address
individual research questions (Table 2). The selected periods
do not represent the full set of driving routes in any of the
areas but are instead intended to address the research objec-
tives in Table 2, as discussed in Sect. 3. Driving routes were
mapped for visualization (Supplement). For clarity, data are
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Table 1. Summary of driving dates and plans.

Location Dates Driving plan

San Francisco May–Sep 2016 Map every street in San Francisco,
Apr–Jun 2017 targeted driving

Los Angeles Aug–Oct 2016 Map specific neighborhoods
with repeat visits

San Joaquin Valley Nov 2016–Apr 2017 Map multiple cities (Tracy,
Jun–Sep 2017 Stockton, Manteca, Merced,

Modesto, Turlock), denser spatial
coverage of Modesto

Table 2. Data sets used to evaluate spatial variability and to address individual research questions, including measurement uncertainty.

Location Dates Data analyses

San Francisco May 1–31, 2017 Stationary vehicle collocated comparisons (side-by-side
parking-garage car measurements); neighborhood
spatial variability

Los Angeles Aug 3–12, 2016 Stationary (side-by-side parking garage) and moving-
vehicle collocated comparisons; neighborhood spatial
variability; SCAQMD measurement audits

Los Angeles Sep 20, 2016 Comparisons to stationary-monitor data; SCAQMD
measurement audits

San Joaquin Valley Nov 16–23, 2016 Stationary (side-by-side parking garage) and moving-
vehicle collocated comparisons; urban–rural and
interurban contrasts

labeled by car names (Coltrane, Flora, Rhodes; these names
do not duplicate the names of any stationary monitors).

During the Los Angeles sampling, the South Coast
Air Quality Management District (SCAQMD) conducted
through-the-inlet audits and calibration checks when the
sampling vehicles were parked adjacent to stationary air
quality monitoring sites (Table 3). The SCAQMD also pre-
pared 1 min resolution data files for measurements made at
these and other stationary air quality monitoring sites (Ta-
ble 4; see also location map in Fig. S1 in the Supplement).
Data from one of the dates and locations (LAXH, 20 Septem-
ber 2016) were suitable for collocated comparison with mo-
bile measurements (Table 3). The stationary-monitor data
from W710 consisted only of 1 h resolution PM2.5 mass (Ta-
ble 4), which was not measured by the mobile platforms, and
no data were provided for the Santa Clarita site (Table 3).

The Aclima mobile measurement and data integration
platform consists of fast-response (< 1 to 8 s), research-grade
analyzers providing data at 1 s (1 Hz) resolution. Details
about the measurement techniques along with manufacturer
specifications are provided in Table S1 in the Supplement
(see also Lunden and LaFranchi, 2017). The inlet and sam-
pling manifolds were designed to minimize self-sampling as
well as particle- and gas-phase sample losses. Separate inlet

lines were used for particles (copper) and gases (Teflon™, a
brand name of polytetrafluoroethylene). The gas-phase inlet
line was set to a 90◦ angle to the direction of traffic, and the
particle and black carbon (BC) sampling inlet line faced for-
ward. BC was measured using a photoacoustic extinctiome-
ter, nitric oxide (NO) was measured using chemilumines-
cence, nitrogen dioxide (NO2) was measured using cavity-
attenuation phase-shift spectroscopy, ozone (O3) was mea-
sured using ultraviolet (UV) absorption, and methane (CH4)
was measured using off-axis integrated cavity output spec-
trometry. Particle number (PN) concentration was measured
using an optical particle counter, with particle counts per liter
(c L−1) reported in five size ranges: 0.3 to 0.5 µm (PN0.3–0.5),
0.5 to 0.7 µm (PN0.5–0.7), 0.7 to 1.0 µm (PN0.7–1.0), 1.0 to
1.5 µm (PN1.0–1.5), and 1.5 to 2.5 µm (PN1.5–2.5).

To ensure that the 1 Hz measurements did not drift in time,
on-board computers were synchronized throughout the day
using Network Time Protocol (NTP), which synchronizes
computers to coordinated universal time (UTC) with accu-
racies on the order of milliseconds. Each car recorded time
using NTP, and times were reported to the nearest second
in UTC. Timestamps were adjusted to account for residence
time in the tubing and instrument response as described in
Apte et al. (2017). We used time series plots to check the tem-
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Table 3. Sampling locations and dates for calibrations and audits through sample inlets conducted adjacent to stationary air quality monitors
in Los Angeles. Date format is as follows: mm/dd/yyyy.

Monitoring site Latitude Longitude Date

Long Beach near-road site (NRS) (W710) 33.86266 −118.19946 08/12/2016;
8/26/2016

Los Angeles International Airport (LAXH) 33.95500 −118.43028 09/20/2016

Santa Clarita 34.38342 −118.52822 10/6/2016;
10/25/2016

Table 4. Stationary monitoring sites in Los Angeles for which the SCAQMD provided high-resolution (1 min) measurements. Hourly average
gas and PM2.5 mass concentrations are available for other locations through EPA public data archives.

Code Name Latitude Longitude 1 min data Scale1

CELA Los Angeles N Main St4 34.0664 −118.2267 CO, NO, NO2, O3 Neighborhood
CMPT Compton 33.9014 −118.2050 CO, NO, NO2, O3 Multiple2

HDSN Long Beach (Hudson) 33.8022 −118.2197 CO, NO, NO2, O3 Neighborhood
LAXH LAX-Hastings 33.9550 −118.4303 CO, NO, NO2 Neighborhood
SLBH South Long Beach4 33.7922 −118.1753 Neighborhood
W710 Long Beach Route 710 33.8594 −118.2003 PM2.5 mass Micro
WSLA Los Angeles–VA Hospital 34.0508 −118.4564 CO, NO, NO2, O3 Multiple3

1 EPA scales of representation are documented in Appendix D to Part 58 – Network Design Criteria for Ambient Air Quality
Monitoring (https://www.law.cornell.edu/cfr/text/40/appendix-D_to_part_58, last access: 15 April 2020). Neighborhood scale is 0.5 to
4 km, middle scale is 100 m to 0.5 km, and micro-scale is several meters to ∼ 100 m. 2 Neighborhood scale for O3; middle scale for
other species. 3 Middle scale for NO2; neighborhood scale for O3. 4 Hourly PM2.5 or PM10 measurements available.

poral comparability of vehicle and stationary-monitor mea-
surements at 1 min resolution (Sect. 3.3).

The gas-phase instruments received zero air and span gas
weekly except for CH4, which was checked weekly at a
single concentration (2020 ppbv). Performance for the gas-
phase measurements is expressed as bias and precision, de-
fined according to the Data Quality Assessment guidelines
used by the United States Environmental Protection Agency
(US EPA) (Camalier et al., 2007). For O3, NO, and NO2,
the guideline analysis yields relative (in %) and absolute (in
ppbv) contributions to uncertainties (Table 5). For CH4, the
analysis yields an absolute uncertainty for bias and precision
of 66.7 ppbv (3.3 %), based on reference measurements at
2020 ppb.

Additional uncertainties, which range from 1 % to 3.6 %,
are associated with the accuracy of the calibration gas stan-
dards and the gas delivery and generation system. Field sam-
pling uncertainties are discussed later.

The performance of the BC and PN instruments was evalu-
ated from collocated parked vehicles (approximately weekly
for PN and nightly for BC), since certified reference stan-
dards are not available for BC and PN. Both PN and BC in-
struments were periodically returned to their respective man-
ufacturers, typically once per year or when the results of am-
bient collocations indicated substantial drift of one car rela-
tive to the other(s) or other diagnostic checks indicated that

Table 5. Performance summary of the gas-phase instruments (NO,
NO2, O3, and CH4) in parked vehicles (Lunden and LaFranchi,
2017). n/a: not applicable

Pollutant (car) Bias (ppbv)1 Precision (ppbv)1 Limit of
detection2

(2σ , 1 s)
(ppbv)

NO (Coltrane) ±2.1%+ 0.3 ±2.3%± 0.3 1.5
NO (Flora) ±3.6%+ 0.3 ±4.3%± 0.3 1.7
NO2 (Coltrane) ±2.1%± 0.4 ±2.8%± 0.5 < 0.1
NO2 (Flora) −2.4%+ 0.2 ±2.2%± 0.2 < 0.1
O3 (Coltrane) ±2.1%± 0.5 ±2.4%± 0.6 1.8
O3 (Flora) ±2.0%± 0.4 ±2.3%± 0.5 1.8
CH4 (Coltrane) ±3.3 ±3.3 n/a

1 Bias and precision are expressed as the upper bounds (at 90 % confidence) of bias and
precision metrics determined from differences between measured and target (audit)
concentrations (Camalier et al., 2007). 2 Limit of detection (LOD) is defined as the
minimum concentration at which an observation can be discriminated from zero (with
95 % confidence) at the specified sampling frequency (2 standard deviations of zero gas
measurements).

service was required. Table 6 shows the results of evaluations
performed between May 2016 and August 2017.

We calculate the BC limit of detection (LOD; see foot-
note 2 – Table 5) using data reported while the instrument is
performing an internal zero, which occurs every 10 min for
60 s. This value is typically in the range of 0.2–0.3 µg m−3 for
the 1 Hz data while the cars are parked. For vehicles in mo-
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Table 6. Performance of particle instruments (PN and BC) based on collocated parked vehicles. Evaluations performed between May 2016
and August 2017 (Lunden and LaFranchi, 2017).

Pollutant Bias1 Precision2 RMSE3

PN0.3–0.5 ±10.9% ±9.8% 1293 c L−1 (1 s)
920 c L−1 (1 min)

PN0.5–0.7 ±7.2% ±7.5% 471 c L−1 (1 s)
237 c L−1 (1 min)

PN0.7–1.0 ±11.3% ±10.0% 170 c L−1 (1 s)
46 c L−1 (1 min)

PN1.0–1.5 +25.7% ±13.2% 69 c L−1 (1 s)
9 c L−1 (1 min)

PN1.5–2.5 +25.7% ±15.6% 71 c L−1 (1 s)
10 c L−1 (1 min)

BC ±11.9%± 0.07 µg m−3 Not estimated ±27.3%± 0.26 µg m−3 (1 s)
±15.6%± 0.08 µg m−3 (10 s)
±11.1%± 0.05 µg m−3 (1 min)

1 Bias for PN is calculated according to Camalier et al. (2007), where the values obtained by one car (Car A) are
substituted for target (audit) concentrations. The positive sign of the bias estimate for the PN1.0–2.5 (c L−1) indicates a
tendency of one instrument (Car B) to be biased high relative to the other instrument (Car A). Because BC
concentrations were often close to LOD, bias for BC was estimated from linear least-squares regression of bias vs
concentration. A single bias value was estimated for each 6 h collocation period using 1 min aggregations from two
vehicles. The bias estimates were regressed against the mean concentrations measured for the corresponding times. The
relative and absolute components of bias were identified from the slope and intercept, respectively, of this linear
regression (r2

= 0.37, p value < 0.0001). 2 Precision is calculated according to Camalier et al. (2007), where the mean
concentrations obtained by two cars are substituted for target (audit) concentrations. 3 PN root-mean-square error
(RMSE) is determined from the vehicles’ PN concentration differences relative to the means of the PN measured by the
vehicles. RMSE for BC is estimated through a linear regression method (RMSE vs concentration) analogous to the
procedure for estimating BC bias.

tion, we estimate 1 Hz LOD values of 0.4 µg m−3 for vehicle
speeds less than 5 m s−1 and 0.8 µg m−3 for vehicle speeds
greater than 5 m s−1.

2.2 Location uncertainty

Location uncertainty was determined as the variability in
recorded positions when vehicles were parked overnight. The
vehicles did not necessarily return to the same spaces within
the designated Aclima parking area each night. Therefore,
variances and standard deviations of parked-vehicle east–
west and north–south GPS locations were determined by
vehicle, date, and time of day (i.e., before and after each
daily drive). Composite east–west and north–south standard
deviations were then determined from individual variances
weighted by sample numbers. Composite variances were
converted to location uncertainty (twice the square root of the
sum of the east–west and north–south composite variances).
The observed 2σ location uncertainty for vehicles parked in
the San Francisco parking structure was±6.0 m, comparable
to the GPS manufacturer specifications (5 m). The location
uncertainties for vehicles parked in the Los Angeles park-
ing lot were larger (±12.2 m at 1 s resolution and ±11.5 m
for 1 min averages). The GPS location uncertainties therefore

impose inherent limits to the spatial resolution of the data on
the order of 10 m.

2.3 Comparisons between measurement platforms

For ambient comparisons between vehicles or between ve-
hicles and stationary monitors, our approach for computing
comparability necessarily differs from EPA guidelines for
determining precision and bias, which require testing against
analytical standards. Because neither vehicle nor stationary-
monitor measurements are analytical standards, comparabil-
ity must be determined in terms of the differences between
measurements made by different vehicles or between ve-
hicle and stationary-site data, which yields instrument-to-
instrument comparability. Data files were merged by 1 s or
1 min resolution times and were then used to determine time-
matched paired differences, which were evaluated as func-
tions of ambient concentration, intervehicle distance, and ve-
hicle speed. Paired differences were evaluated for bias of
one measurement relative to another. The variabilities in the
paired differences relative to the means of the paired dif-
ferences were also calculated. The computational approach
was necessarily limited to parameters that were measured
on each of two platforms (e.g., two cars or one car plus
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one stationary monitor). BC and CH4 were each measured
by only one vehicle while operating (during drives, one ve-
hicle was equipped with a BC sampler and the other with
a CH4 instrument). Therefore, it was not possible to com-
pare BC or CH4 concentrations between operational vehi-
cles. As previously noted, however, BC and CH4 instruments
were each installed on multiple vehicles and used to establish
parked-vehicle instrument-to-instrument bias and precision:
two vehicles were used in this study and two used by Apte et
al. (2017), but all four vehicles were parked in the same San
Francisco garage. BC and CH4 data were not available from
stationary monitors.

2.4 Statistical metrics

Various statistical metrics were computed to evaluate the
comparability of time-paired measurements between vehi-
cles or between vehicles and stationary monitors. These met-
rics include mean differences and fractional (relative) mean
differences:

Mean Difference (MD)= µA-B =mean(XA−XB)i

=Mean Difference (Car A−Car B), (1)

where σA-B is the standard error (SE) of the mean of (XA–
XB)i , “i” denotes the “ith” measurement of n paired mea-
surements, SE is (

√
n)−1
× standard deviation of (XA–XB),

and

Fractional (relative)Mean Difference (FMD)

= µA-B/µAB, (2)

is the mean difference (Car A – Car B) / mean of Car A and
Car B mean concentrations, σ 2

FMD = {(σA-B/µAB)
2
+(σAB×

µA-B/µ
2
AB)

2
} = FMD2

×{(σA-B/µA-B)
2
+ (σAB/µAB)

2
},

where µA-B = mean(XA–XB )i and σA-B = standard error
(SE) of the mean (XA–XB )i , µAB = {(1/2)× (µA+µB)}

and σ 2
AB = {(1/4)× (σ

2
A+ σ

2
B)},

Fractional AbsoluteMean Difference (FAMD)

= |µA-B|/µAB, (3)

= | Mean Difference (Car A–Car B)| / Mean of Car
A and Car B Mean Concentrations, σ 2

FAMD = FAMD2
×

{(σA-B/µA-B)
2
+ (σAB/µAB)

2
}, where µA-B =mean(XA−

XB)i and σA-B = SE(XA−XB)i and µAB = {(1/2)× (µA+

µB)} and σ 2
AB = {(1/4)×(σ

2
A+σ

2
B)}, and the following equa-

tion,

Fractional MeanAbsolute Difference= FMAD

= µ|A−B|,/µAB (4)

= Mean Difference | Car A–Car B |/Mean of
Car A and Car B Mean Concentrations σ 2

FMAD =

FMAD2
×{(σ|A−B|/µ|A−B|)

2
+ (σAB/µAB)

2
}, where

µA-B =mean|XA−XB|i and σA-B = SE|XA−XB|i and
µAB = {(1/2)×(µA+µB)} and σ 2

AB = {(1/4)×(σ
2
A+σ

2
B)}.

The variances σ 2
FMD, σ 2

FAMD, and σ 2
FMAD are derived

from standard formulae for propagating errors (Caldwell and
Vahidsafa, 2019; Goodman, 1960; Ku, 1966). Standard er-
rors are the appropriate measure of the variability in mean
concentrations and differences, such as those defined here,
whereas standard deviations are appropriately used to quan-
tify the variability in individual measurements (see Sect. 3,
“Results and discussion”).

The preceding equations, while expressed as car-to-car
comparisons, are readily applied to other comparisons, e.g.,
vehicle-to-stationary monitor. If one measurement (e.g.,
measurement A) is defined as a reference standard, then the
term µAB in the denominator of the expressions for frac-
tional mean difference (FMD), fractional absolute mean dif-
ference (FAMD), and fractional mean absolute difference
(FMAD) may be appropriately replaced by the reference
mean (µA). Mean differences are used when absolute com-
parisons (i.e., retaining concentration units) are informative.
Fractional differences are useful for establishing vehicle-to-
vehicle or vehicle-to-monitor differences relative to the mag-
nitudes of the mean concentrations.

The FMD retains its sign and therefore indicates if
µA >µB. This metric is useful when the sign is important
for identifying which instrument (e.g., mobile or stationary)
or which location records higher concentrations. The FAMD
and FMAD are useful if the sign of the difference is not
meaningful. The sign is usually not relevant, for example,
in the analysis of intervehicle measurement differences as a
function of the distance between the vehicles (“Results and
discussion”), in which the objective is to characterize the rate
at which measurement comparability decays with distance.
The FAMD is simply the absolute value of the FMD, and
both metrics approach zero when individual paired measure-
ment differences tend to average out over a set of samples.
In contrast, the FMAD provides a measure of the variability
in individual measurements because it averages absolute val-
ues of concentrations. The FMAD is relevant to understand-
ing the comparability of high-resolution (e.g., 1 s) measure-
ments, whereas the FAMD is a measure of the comparability
of a time or space average determined from individual mea-
surements.

Performance audits (Tables 5 and 6) indicate that frac-
tional differences (FAMDs) exceeding ∼ 0.1 (10 %) for
gases and ∼ 0.2 (20 %) for PN are, in general, likely to be
physically meaningful relative to measurement uncertainties
(bias and precision are each < 5 % for gases at concentra-
tions > 2–24 ppbv; 7 %–26 % for PN and BC). Only the two
largest PN size ranges exhibit bias exceeding 20 % (Table 6).
Combining bias and precision indicates a total uncertainty
of ∼ 10% for gases and ∼ 20% for PN0.3–0.5. In operation,
the comparability of measurements made in moving vehicles
differs from those made in parked collocated vehicles (see
“Results and discussion”), so we utilize a higher threshold
(i.e., 20 %) for establishing true spatial variations even for
gas-phase species.
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Table 7. Mean ambient concentrations and sample sizes as measured by the mobile platforms in each of the example study areas.1 NA: not
available.

Subset NO NO2 O3 CH4 PN0.3–0.5 PN0.5–0.7 PN0.7–1.0 PN1.0–1.5 PN1.5–2.5 PN>2.5
(ppbv) (ppbv) (ppbv) (ppmv) (c L−1)2 (c L−1)2 (c L−1)2 (c L−1)2 (c L−1)2 (c L−1)2

LA13 10.5 15.3 44.1 NA 82 209 6725 1437 600 680 172
589 555 626 136 228 498 NA 338 033 338 033 338 033 338 033 338 033 338 033

LA24 21.4 22.5 37.7 2.17 42 818 4403 1251 537 748 274
889 010 909 722 377 183 524 128 620 421 620 421 620 421 620 421 620 421 620 421

SJV15 17.0 17.9 23.3 2.04 22 050 2769 742 304 375 153
478 671 766 946 143 796 279 863 572 851 572 851 572 851 572 851 572 851 572 851

SJV26 10.2 13.6 28.9 1.98 11 933 2527 1015 418 451 151
294 514 393 917 35 215 140 022 283 179 283 179 283 179 283 179 283 179 283 179

SF7 6.0 10.3 26.5 1.98 13 947 4934 2288 922 868 154
738 089 793 318 372 470 418 704 579 802 579 802 579 802 579 802 579 802 552 739

1 Sample sizes are total number of 1 s measurements summed across vehicles. Means are weighted by the number of measurements per vehicle. 2 Particle number in size
fractions 0.3–0.5, 0.5–0.7, 0.7–1.0, 1.0–1.5, 1.5–2.5, and > 2.5 µm. 3 LA1 is Los Angeles, 3–12 August 2016 (8 d). BC and CH4 = 1 car; NO, O3, NO2, and PN =2 cars.
4 LA2 is Los Angeles, 12–30 September 2016 (14 d). BC and CH4 = 1 car; NO, O3, NO2, and PN = 2 cars. 5 SJV1 is San Joaquin Valley, 16–23 November 2016 (6 d).
BC and CH4 =1 car, NO and O3 = 2 cars, and NO2 and PN = 3 cars. 6 SJV2 is San Joaquin Valley, 20–29 March 2017 (6 d). BC and CH4 = 1 car, NO and O3 =2 cars,
NO2 and PN = 2 cars. 7 SF is San Francisco, 1–12 May 2017 (10 d). BC and CH4 = 1 car; NO, O3, NO2, and PN = 2 cars.

3 Results and discussion

Mean concentrations during example study periods are sum-
marized in Table 7 for context. Subsequent analyses of spa-
tial heterogeneity, which are presented in later subsections
and depend on the availability of measurements from two
or more sampling platforms, focus on NO, NO2, O3, and
PN0.3–0.5. These pollutants are of interest because they are
measured with differing accuracies, they exhibit differing de-
grees of spatial variation, and they vary in their degree of at-
mospheric chemical processing. NO is a primary pollutant,
and NO2 forms rapidly (i.e., minutes) from NO. NO2 for-
mation and O3 loss are linked through the rapid reaction of
NO with O3 to form NO2; Seinfeld and Pandis (2016) cal-
culate a 1/e lifetime for NO of 42 s at 50 ppb O3. O3 forma-
tion and accumulation occur more slowly (i.e., hours) from
NO2 and volatile organic compounds (VOCs) in the pres-
ence of UV radiation (Seinfeld and Pandis, 2016). PN0.3–0.5
is the smallest size fraction that was measured, present in the
highest numbers (83 % of PN; Table 7), and is likely indica-
tive of newly aged particles from fresh motor-vehicle emis-
sions (Zhang and Wexler, 2004; Zhang et al., 2004; Zhu et
al., 2002).

The fraction of PN in the 0.3–0.5 µm size fraction was
lower in spring (60 % in San Francisco, May 2017, and 72 %
in the San Joaquin Valley, March 2017) and higher in summer
(90 % in Los Angeles, August 2016) and autumn (86 % in
Los Angeles, September 2016, and 84 % in the San Joaquin
Valley, November 2016) (Table 7). Although these differ-
ences in the PN size distributions possibly reflect regional-
scale spatial variability, no simple comparison among re-
gions is possible due to sampling them during different sea-

sons. The regional differences could in fact reflect seasonal
variations in PM composition: the observed variations in PN
distributions are consistent with past studies that indicate the
importance of PM nitrate (NO3) found in larger (> 0.5 µm)
size fractions primarily as ammonium nitrate in California
during cooler months (e.g., Herner et al., 2005), which could
lead to the observance of different size distributions in the
different regions.

Mean concentrations of gases were comparable among
the study locations and periods (Table 7). O3 concentrations
were highest in Los Angeles in August near downtown (south
of the CELA site; Figs. S6 and S7), followed by concentra-
tions in September in western Los Angeles near the WSLA
site (Fig. S8) and near Los Angeles airport (near the LAXH
site; Fig. S3). Mean O3 in the remaining locations (SJV and
SF) falls within a narrow range (23–29 ppbv) and is only
lower by a factor of less than 2 than in Los Angeles. Mean
concentrations of NO2 also vary by a factor of 2, with high-
est concentrations near the LA airport and lowest concentra-
tions in SF (Table 7). Concentrations of NO are highest by a
factor of about 2 in Los Angeles near the airport and in the
SJV in November during mostly freeway driving. At all loca-
tions studied, typical NO–NO2–O3 chemistry was observed,
with higher NO and NO2 concentrations and lower O3 levels
near mobile emission sources. Mean methane concentrations
were low (∼ 2 ppmv) during all periods and varied among
areas within < 0.1 ppmv. As with PN, these average concen-
trations likely vary due to time of year, location relative to
source emissions, and chemical processing.
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Table 8. External calibration checks (zero and span) performed in Los Angeles with equipment and gas standards managed by the SCAQMD
compared with internal checks performed by Aclima 1 month prior to the Los Angeles deployment, 1 month following this deployment, and
during a 1-week return to San Francisco in the middle of the deployment. External and Aclima calibration checks were conducted through
the inlet lines of the mobile platforms.

Species Audit Bias Precision Number of span Number of zero
(% ± ppbv) (% ± ppbv) checks checks

NO Aclima ±3.5%+ (< 1) ±4.5%+ (< 1) 22 22
SCAQMD ±8.2%+ (< 1) ±6.0%+ (< 1) 10 10

NO2 Aclima −3.7%± 0.4∗ ±3.7%± 0.4 19 20
SCAQMD −1.9%± 0.6∗ ±4.9%± 0.6 6 10

O3 Aclima ±2.4%± 0.9 ±2.3%± 1.1 20 18
SCAQMD ±3.3%± 1.2 ±3.8%± 1.5 10 10

∗ Negative bias only.

3.1 Comparability of measurements in the mobile
platforms to the inlet audits

Field calibration checks (zero and span) were conducted
through inlets using SCAQMD equipment and standards;
these checks were compared with Aclima calibration checks
that were made before, during, and after the period when
vehicles drove in Los Angeles (Table 8). The SCAQMD and
Aclima checks were comparable and indicate that measure-
ments of the tested gas-phase species (NO, NO2, and O3)
maintained accuracy and replicability in the field during the
Los Angeles driving routes. The Los Angeles drives followed
the same field protocols as the drives in San Francisco and
the San Joaquin Valley. The cross-lab differences between
the Aclima and SCAQMD calibration checks (defined as the
lab-to-lab differences in the mean relative differences from
target concentrations averaged over all calibration checks)
were −5%± 2.0% for NO, −1.5%± 1.0% for NO2, and
+0.5%±1.3% for O3 (not tabled). All differences were less
than the invalidating limits for the South Coast Air Quality
Management District’s weekly calibration checks: 7 % for
O3 and 10 % for CO, SO2, and NOx (Table 2.4; https:
//ww3.arb.ca.gov/aaqm/qa/pqao/repository/district_sops/
south_coast/quality_assurance/qapp_criteria_pollutants.pdf,
last access: 15 April 2020).

3.2 Similarity of concentrations obtained from
collocated vehicles when parked and when moving

Car-to-car comparisons were made to evaluate the compara-
bility of collocated ambient measurements made while the
vehicles were parked and while driving (Table 9). The cars
generally followed different routes, as discussed later; when
the cars traveled a route segment together, they drove “car-
avan style”, keeping each other in sight but not following
immediately behind each other. Time-synchronous measure-
ment differences reflect a combination of instrument and
ambient sampling uncertainties; for moving vehicles, differ-

ences may also reflect spatial variability, depending on mea-
surement integration times relative to intervehicle distances.
The comparisons are expressed as mean car-to-car differ-
ences ±1 standard deviation of the paired 1 s differences,
yielding metrics for car-to-car measurement bias and vari-
ability, respectively, averaged over ∼ 1000–50 000 paired
differences.

The observed mean paired differences between parked ve-
hicle measurements were 0.2–3.9 ppbv for NO, 0.3–1.9 ppbv
for NO2, and 0.8–4.5 ppbv for O3 (Table 9). The correspond-
ing FAMD values (absolute values of mean differences di-
vided by mean concentrations) range from 0.03 to 0.24 (3 %
to 24 %) for gases and 0.04 to 0.22 (4 % to 22 %) for PN.
These differences are comparable to, or larger than, instru-
mental bias and precision (< 5 % each for gases at concen-
trations > 2–6 ppbv – Table 5; 10–11 % for PN0.3–0.5 – Ta-
ble 6). For gases and PN, the variabilities (standard devia-
tions) in the 1 s paired differences exceed the mean differ-
ences (except O3 during the SJV sampling period of 16–
23 November 2016), which is expected because instrumental
variations average toward zero when instruments are unbi-
ased with respect to each other. The mean paired differences
varied among individual sampling days (Fig. S2). Between-
vehicle 1 s variability is higher in closely spaced moving ve-
hicles than in stationary vehicles, especially for NO2 (Ta-
ble 9; note that this comparison could not be made for NO).
We interpret this difference as indicating that moving vehi-
cles sampled heterogenous parcels of air, and the intervehi-
cle measurement differences are thus due to fine-scale spatial
variability.

3.3 Similarity of mobile concentrations to
stationary-monitor data

For field comparisons to stationary monitors, we worked with
SCAQMD staff who operate the monitors and are familiar
with all measurements made at each location. On 20 Septem-
ber 2016, two sampling cars parked next to the monitor at
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Table 9. Performance summary for measurements reported by collocated vehicles (mean difference ±1 standard deviation; mean concen-
trations in parentheses). Standard deviations are reported here to indicate the variability in the 1 s differences. Mean differences provide a
measure of average intervehicle differences. For periods when three vehicles were driven, the largest mean difference between vehicles is
listed. The signs of the mean differences are not indicated because no vehicle is an audit standard. All values were determined from 1 s time
resolution data.

Setting Period1 NO2 (ppbv) O2
3 (ppbv) NO2

2 (ppbv) PN2
0.3–0.5 (c L−1)

Parking lot3 LA1 0.6± 49.5 (11.3) 1.5± 8.1 (41.6) 0.3± 12.0 (15.8) 18346± 21024 (81929)
Parking lot3 LA2 3.9± 66.9 (21.5) 1.0± 9.9 (34.6) 1.9± 14.3 (22.7) 6525± 20049 (44058)
Parking structure3 SJV1 0.5± 2.1 (3.8) 4.5± 2.3 (18.9) 1.0± 1.5 (16.7) 1126± 3922 (12527)
Parking structure3 SF 0.2± 7.5 (3.5) 0.8± 3.9 (24.2) 1.1± 5.7 (6.2) 507± 1865 (14 154)
Moving4, < 10 m SJV18 NA10 NA10 5.6± 32.7 (15.1) 132± 4242 (7661)
Moving5, 10–100 m SJV18 NA10 NA10 1.9± 20.1 (16.2) 454± 2478 (5883)
Moving6, < 10 m SF–LA9 13.8± 56.7 (27.9) 1.8± 2.2 (40.9) 3.4± 9.4 (16.8) 20797± 5410 (64 187)
Moving7, 10–100 m SF–LA9 5.1± 49.1 (26.5) 0.5± 3.2 (42.2) 1.0± 12.1 (17.3) 19294± 7670 (60 046)

1 LA1 is 3–12 August 2016 (8 d), LA2 is 12–30 September 2016 (14 d), SJV1 is 16–23 November 2016 (6 d), and SJV2 is 21–30 March 2017 (6 d).
2 Vehicle-to-vehicle concentration differences were determined from 1 s measurements. Means and standard deviations of paired differences were determined
for each data pair. Time periods when a vehicle was sampling through a calibration port (whether a calibration was in process) were excluded to ensure that
vehicles were sampling the same ambient air for all comparisons. 3 The parking lot in Los Angeles was used for LA1 and LA2. The parking structure in San
Francisco was used for all SF and SJV drives. 4 Intervehicle distance < 10 m (average = 5 m); average speed = 3.0 m s−1 (10.6 km h−1). 5 Intervehicle distance
10–100 m (average = 32 m); average speed = 25.6 m s−1 (92.0 km h−1). 6 Intervehicle distance < 10 m (average = 6 m); average speed = 5.9 m s−1

(21.2 km h−1). 7 Intervehicle distance 10–100 m (average = 44 m); average speed = 27.7 m s−1 (99.7 km h−1). 8 On 16 November 2016 (I-580 and other
locations, Flora and Rhodes; Fig. S2). 9 On 1 August 2016 driving from San Francisco to Los Angeles (I-5 and other locations). 10 Not available. SJV1: one car
(Rhodes) of collocated moving pair lacked NO and O3 samplers.

LAXH (Tables 3 and 4; Figs. S3 and S4). Relative to the
ground-level position of the stationary-monitor probe (lo-
cated inside a fenced enclosure), the vehicles alternated po-
sitions, from closer when audited (Coltrane – 6.6 m from
LAXH; Flora – 8.5 m from LAXH) to further when sampling
(Coltrane – 24.1 m for 1 h; Flora – 18.5 m for 2 h), as deter-
mined from GPS coordinates for the monitor and vehicles.
The heights of the LAXH instrument probes are 4.2 m a.g.l.
(meters above ground level; SCAQMD, 2018a), whereas the
mobile sampler inlet heights are 2 m a.g.l.. The monitoring
instruments at LAXH are in a vacant field north of Los Ange-
les International Airport (Fig. S4). The site is surrounded by
several schools to the NE, N, and NW, with residential com-
munities (Playa Del Rey and Westchester) north of the airport
and further away surrounding the site. The closest communi-
ties include homes and two-story to four-story apartments.
Minimal traffic is expected immediately adjacent to the site.

The mobile platforms recorded mean concentrations of
NO, NO2, O3, and Ox (=NO2+O3) that were comparable
to LAXH monitor concentrations: most mean paired differ-
ences between mobile-platform and LAXH concentrations
were less than 10 % of the average concentrations (Table 10).
Time series of 1 min Flora, Coltrane, and LAXH measure-
ments show agreement (Fig. S5) (mean Flora–Coltrane dis-
tances were 12.2 and 20.2 m). CH4 is reported in motor-
vehicle emissions (Nam et al., 2004), so a correlation be-
tween NO and CH4 will usually be observed when sampling
fresh automotive exhaust emissions; all NO values correlated
with Coltrane CH4 concentrations (r2

= 0.84 to 0.87; Flora
did not report CH4).

3.4 Differences between mobile concentrations and
stationary-monitor data when the cars are not close
to monitors

Spatial variation is defined by differences in time-
synchronous measurements made in differing areas. To in-
terpret the paired differences as spatial variation, rather than
measurement uncertainty, we refer to the preceding analy-
ses of instrument and sampling performance in audit tests
(Tables 5 and 6) and collocated vehicles (Table 9). As previ-
ously noted, the results for measurement bias and precision
(Tables 5 and 6) and for comparability of collocated vehicles
(Table 9) lead us to define FAMD > 0.2 (20 %) as an indi-
cator that spatial variations exceed measurement and sam-
pling uncertainties. The intent of the analyses in this section
is to help elucidate the spatial scales over which stationary-
monitor and mobile-platform data represent ambient concen-
trations and to characterize spatial heterogeneity of pollutant
concentrations within neighborhoods.

Because vehicles sampled different road segments on dif-
ferent days and at different times of day, we compiled time-
synchronous differences between the concentrations mea-
sured by two cars (or cars and monitor) to remove the con-
founding effects of day-to-day and diurnal variability. Ran-
dom differences, such as short, intermittent exposures of one
car to a high-emitting vehicle or to variations in wind direc-
tions, are averaged out in the FAMD statistic. In contrast,
systematic car-to-car (or car-to-monitor) differences yield
higher FAMD values. Systematic differences could occur if
the instrumentation in one car were biased relative to the
other car (e.g., Apte et al., 2017) or to the monitor. If in-
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Table 10. Comparison of mobile-platform to collocated stationary-site measurements made at LAXH on 20 September 2016. The two
cars alternated positions between an audit location at 6.6 m, for Coltrane, and 8.5 m, for Flora, horizontal distance from the ground-level
coordinates of the LAXH monitor (inlet situated 4.2 m a.g.l. inside a fenced enclosure) and a sampling location further from the monitor
(24.1 m for Coltrane and 18.5 m for Flora). Data from the audit tests are excluded. The Coltrane audit period was 10:22–00:20 PDT (n= 119).
The Flora audit period was 09:19–22:20 PDT (n= 56). The means ± standard errors of the means were determined for each car from
the 1 min measurements made at the two distances from the stationary monitor. Standard errors indicate the uncertainties of the mean
concentrations and mean differences. Differences of 1 min measurements were determined prior to averaging. The variabilities in the 1 min
differences can be obtained by multiplying standard errors by square root of sample size (n).

Platform N1 NO (ppbv) NO2 (ppbv) O3 (ppbv) Ox (ppbv)2

Coltrane 56 17.7± 1.1 37.7± 1.8 16.2± 0.6 53.9± 1.3
Flora 56 18.8± 1.2 37.0± 1.7 ND ND
LAXH 56 19.0± 1.2 36.6± 1.7 20.3± 0.4 56.9± 1.3
Coltrane – LAXH 56 −1.3± 0.4 1.2± 0.4 −4.1± 0.3 −3.0± 0.2
Flora – LAXH 56 −0.2± 0.3 0.6± 0.3 ND ND
Coltrane 119 4.5± 0.4 16.5± 1.0 41.7± 0.4 52.2± 0.6
Flora 119 3.1± 0.3 14.7± 0.9 36.1± 0.7 50.7± 0.3
LAXH 119 4.1± 0.4 14.6± 0.9 38.8± 0.7 53.4± 0.3
Coltrane – LAXH 119 −0.1± 0.2 0.3± 0.2 −0.9± 0.3 −0.2± 0.3
Flora – LAXH 119 −1.0± 0.1 0.04± 0.2 −2.6± 0.2 −2.6± 0.2

1 Total minutes. Flora audit period – 09:19–22:20 PDT (n= 56), and Coltrane audit period – 10:22–00:20 PDT
(n= 119). Sample sizes for individual measurements may be smaller due to excluding audit values. Mean paired
differences are computed only for non-audit samples. 2 Ox=NO2 +O3.

strumental sources of systemic car-to-car or car-to-monitor
difference can be eliminated through side-by-side sampling
comparisons (Sect. 3.2 and 3.3), we can then conclude that
larger FAMD values (e.g., > 0.20 % or 20 %) represent spatial
heterogeneity due to the two cars sampling different neigh-
borhoods. FAMD is also a useful metric for evaluating the
spatial scale of representativeness of stationary monitors.
The relationships between FAMD and vehicle–monitor or in-
tervehicle distance, discussed below, characterize the spatial
scales of pollutant heterogeneity but do not indicate which
neighborhoods experienced higher pollutant concentrations.
For that purpose, we examined maps (Sect. 3.4) and devel-
oped the visualization discussed in Sect. 3.5.

3.4.1 Los Angeles, August 2016

Between 3 August (the first complete Los Angeles driving
day) and 12 August, the two vehicles traversed different
neighborhoods south of the central Los Angeles stationary
monitor (CELA; Table 4; Figs. S6 and S7) between 09:00
and 18:00 PDT at car-monitor distances ranging from 1 to
7 km. The monitoring instruments at CELA are located on
a rooftop of a two-story building, and the heights of various
instrument probes range from 11 to 12 m a.g.l. (SCAQMD,
2018b). Driving routes for the first sampling day (3 August)
are shown in Fig. S6; most of the routes on other dates were
similar. In general terms, the US 101 and one section of the
I-5 freeway run across the southern border of the sampling
area; the area sampled is split by a N–S portion of I-5 and
bordered to the north by I-10. The I-10 freeway is situated
between CELA and the measurement area. For comparison

with the 1 min resolution CELA data, 1 min average concen-
trations were created from the 1 s mobile-platform data. Be-
cause driving speeds averaged ∼ 2–5 m s−1, the typical dis-
tances traveled in 1 min were ∼ 100–300 m. The 1 min av-
erage positions of the mobile sampling are visibly discrete
(Fig. S6). Differences between CELA and car 1 min concen-
trations were highest when cars drove along freeways but
also show spatial heterogeneity within the neighborhoods
sampled (Fig. 1). While in motion, generally beginning af-
ter 09:00 and ending between 17:00 and 18:00 PDT, the cars
recorded higher concentrations of NO and NO2 than the
CELA stationary air monitor did, likely due to the prox-
imity of fresh vehicle emissions experienced by street-level
sampling in the vehicles (Figs. 1 and 2). During the driving
hours, the vehicles recorded lower levels of O3 than CELA
did (Fig. 2). As noted in the previous comparison of collo-
cated and stationary-monitor data, much of this difference
is attributable to street-level reaction of fresh NO emissions
with O3; this interpretation is supported by the closer agree-
ment between cars and CELA of Ox than O3 (Fig. 2).

To quantify differences within and between neighbor-
hoods, between-vehicle paired comparisons were determined
as differences between time-synchronous 1 min mobile con-
centrations for 3–12 August (near CELA), which were then
averaged over 0.5 km bins (0–0.25 km, 0.25–0.75 km, etc.)
(Fig. 3). The bin-average FAMDs ranged from 0.02 (2 %) at
0.125 km to 0.14–0.44 (14 %–44 %) at 4.5–5.5 km (mean =
0.12, or 12 %, over all bins) for NO2 and from 0.006 (0.6 %)
at 0.125 km to 0–0.07 (0 %–7 %) at 4.5–5.5 km (mean =
0.02, or 2 %, over all bins) for O3. For these two pollutants,
the mean differences among streets and neighborhoods were
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Figure 1. Paired differences in 1 min NO concentrations measured by cars and by the air quality monitor in downtown Los Angeles (CELA)
during 3–12 August 2016. Map generated with QGIS version 3.2.2 (https://qgis.org/en/site/, last access: 12 June 2020) open-source soft-
ware licensed under the GNU General Public License (http://www.gnu.org/licenses/licenses.html, last access: 12 June 2020). California state
highway shapefiles obtained from the OpenStreetMap community (© OpenStreetMap contributors 2020, distributed under a Creative Com-
mons BY-SA License; http://www.openstreetmap.org, last access: 12 June 2020) and MapCruzin (http://www.mapcruzin.com, last access:
12 June 2020), licensed under the Creative Commons Attribution ShareAlike 2.0 license. US highways shapefile obtained from US Bureau of
the Census TIGER/Line Shapefiles public data (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html, last
access: 12 June 2020).

therefore small (12 % and 2 %, respectively, at 0.125–5.5 km
spatial scale). For NO, bin-average FAMDs were larger and
ranged from 25 % at 0.125 km to 4 %–75 % at 4.5–5.5 km.

The intervehicle differences averaged over distance bins
concisely summarize large numbers of measurements, but
this averaging could mask finer spatial variations in possible
interest. We compared the standard deviations of the mean
intervehicle concentration differences to the corresponding
mean concentrations to characterize variability within the
spatial averages. These ratios (standard deviation of interve-
hicle difference / mean concentration) ranged from 0.4 to 1.0
(average = 0.5) for NO2. Within the binned intervehicle av-
erages, therefore, vehicle-to-vehicle NO2 concentration dif-
ferences varied by up to a factor of 2 (twice the standard
deviation of the mean differences) times the mean observed
concentrations. For NO, the ratios ranged from 1.2 to 4.0 (av-
erage = 2.8), indicating that vehicle-to-vehicle NO concen-
tration differences varied by up to a factor of 6 (2 standard
deviations) within the binned intervehicle averages.

The number of particles in the size range 0.3 to 0.5 µm
exhibited FAMDs exceeding 0.2 (20 %) that were less vari-

able than the NO FAMD. Both NO concentrations and par-
ticle numbers likely varied, as the vehicles sampled different
streets and neighborhoods and experienced differing levels of
fresh emissions at any given time (e.g., Figs. S6 and S7). The
peak in the NO FAMD at 3 and 3.5 km corresponds to mean
NO concentrations of 6.6 and 8.1 ppbv, respectively, for Flora
and mean NO concentrations of 14.8 and 15.3 ppbv, respec-
tively, for Coltrane. Many of the 85 and 120 differences
of 1 min average concentrations in the 3 and 3.5 km bins,
respectively, correspond to cases where Coltrane sampled
close to the confluence of the Santa Anna and Golden State
freeways, while Flora collected data further from freeways
(Fig. S7). An approach to identifying high-concentration lo-
cations is illustrated later in the discussion of data from San
Francisco (Sect. 3.5).

The NO FAMD for car–CELA comparisons largely ex-
ceeded 1; the NO2 and O3 FAMDs were less than 0.5 and
0.2, respectively, at most car–CELA distances (Fig. 4). Al-
though the two cars drove different routes, the two car–
CELA comparisons were similar (Fig. 4). The representative-
ness of CELA and other sites is discussed below (Sect. 3.6).
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Figure 2. Mean vehicle speeds and pollutant concentrations averaged by hour over all Los Angeles driving days between 3 and 12 Au-
gust 2016. Standard errors of the means are plotted but are generally smaller than the symbol sizes.

3.4.2 Los Angeles, September 2016

Driving routes were near (< 0.2 to 5 km) the western Los
Angeles stationary monitor (WSLA; Table 4) on 4 of the
14 d between 12 and 30 September (including areas shown
in Fig. S8 for 13 and 19 September; similar routes were
driven on 26 and 29 September). Drives began at ∼ 09:00
and ended by 17:00 PDT. Because only one car drove near

WSLA on each of the 4 d, only car-to-WSLA comparisons
are presented. The monitoring instruments at WSLA are lo-
cated on the roof of a trailer on the grounds of the VA Hos-
pital, and the heights of the instrument probes are 4.2 m a.g.l.
(SCAQMD, 2018c) (Fig. S9). The monitor is located < 600 m
west of I-405 and about 200 m south of a major arterial,
Wilshire Boulevard. The immediate surrounding area to the
north and south is grass with some trees, and slightly further
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Figure 3. Intervehicle FAMD vs mean intervehicle distance associated with sampling in Los Angeles (near CELA) from 3 to 12 August,
averaged over 0.5 km bins (0–0.25 km, 0.25–0.75 km, etc.). Error bars are 1σ uncertainties determined as described in the definition of
FAMD. The sizes of the error bars reflect variations in the number of samples in each bin (N = 14 to 2433) as well as sampling variability.

Figure 4. Fractional absolute mean difference (FAMD) for (a) NO, (b) NO2, and (c) O3 vs mean intervehicle distance for 3–12 August 2016,
Los Angeles sampling, averaged over 0.5 km bins. Error bars are 1σ uncertainties as described in the text. The sizes of the error bars reflect
variations in the number of samples in each bin (N = 3–19 at 6.5 km to 222–338 at 3.5 km). The 3 km bin (N = 1273–3906) consists
primarily of measurements made in the parking lot.
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out, the area is primarily residential multistory (two-story to
three-story) apartment buildings.

The mobile platforms recorded substantially (between
70 % up to a factor of 32) higher concentrations of both
NO and NO2 than WSLA, while the cars drove from the
parking garage on the Santa Monica freeway to the neigh-
borhood destinations (Fig. 5; WSLA–car distances > 5 km).
Even at distances < 0.2 km up to 5 km from WSLA, the mo-
bile platforms recorded higher concentrations of NO and
NO2. However, mean car and WSLA Ox concentrations at
distances < 10 km were more similar than corresponding car
and WSLA concentrations of NO2 and O3 (Fig. 5). For NO
and NO2, the FAMD exceeded 1.5 and 0.4, respectively, at
all distances outside the parking garage (Fig. 6). During part
of their routes, the cars were sampled adjacent to the San
Diego (I-405) freeway, which likely contributed to higher
mean NO and NO2 concentrations for the mobile platforms.
The WSLA monitoring site (grounds of VA Hospital) has
a middle-scale zone of representation (100 m to 0.5 km) for
NO2 (Table 4), consistent with our results. For O3 and Ox ,
the FAMDs were < 0.2 and < 0.05, respectively, within 5 km
of WSLA.

3.5 Differences between pollutant concentrations
reported by vehicles operating in different
neighborhoods

This section helps identify neighborhoods where pollu-
tant concentrations are typically higher than they occur
elsewhere, potentially indicating where long-term monitors
could be located for characterizing higher pollution im-
pacts. In such neighborhoods, air pollutant exposures may
be higher than levels measured by regulatory monitors, since
the latter are typically focused on community-scale air pol-
lution.

3.5.1 San Francisco, May 2017

Measurements made by paired vehicles operating in different
neighborhoods of San Francisco between 1 and 12 May 2017
are used to illustrate short-term (2-week) neighborhood-scale
spatial variability. Example driving routes are shown as 1 s
averages for 1 d in Fig. S10. The 1 s data were aggregated
to 1 min averages, and the 1 min averages for all routes for
1–12 May are depicted in Fig. 7a. Different routes were
taken on different days to obtain measurements in different
neighborhoods in San Francisco. Since the averaging driv-
ing speeds between 1 and 12 May were 4.5 and 4.8 m s−1

for Coltrane and Flora, respectively, the positions shown in
Fig. 7a represent the midpoints of segments averaging 270–
290 m.

One-minute averages were next averaged spatially to the
nearest kilometer (based on conversion of latitude and lon-
gitude to Universal Transverse Mercator – UTM – coordi-
nates) separately for each car (Fig. 7b), which is a spatial

scale corresponding to about a 3 min average. However, the
sampling times of the 1 km average concentrations varied by
up to 6 h among locations, which confounds spatial with di-
urnal variability. Instead of analyzing 1 km average concen-
trations by vehicle, therefore, each 1 min average was paired
with the corresponding 1 min average reported by the other
vehicle, and synchronous concentration differences were de-
termined. When these synchronous differences are averaged
to 1 km resolution, they represent the average enhancement
or deficit of a pollutant at a given 1 km location when com-
pared to simultaneous measurements made elsewhere, i.e.,
the average excess or deficit relative to co-measured concen-
trations (Fig. 7c and d). This approach permits consideration
of spatial variations in a manner that limits the confounding
influence of diurnal variability and provides a better relative
comparison of pollutant levels among neighborhoods.

One-kilometer averages consisting of fewer than 10 one-
minute data points were excluded, yielding 97 of 236 possi-
ble spatial averages for NO2 and 107 of 271 possible spatial
averages for O3. The decision to exclude 1 km averages con-
sisting of fewer than 10 one-minute data points was based
on the high standard errors of such averages (e.g., > 0.2 for
the NO2 FAMD when n< 10). The number of 1 min aver-
ages within each 1 km average ranged from 10 to 95 (i.e.,
60–5700 one-second averages); for the 1 km average cover-
ing the parking garage, there were 1813 and 2520 one-minute
O3 and NO2 averages, respectively.

For both NO2 and O3, most 1 km average concentration
differences exceeding 2 ppbv (or <−2 ppbv) were statisti-
cally nonzero (i.e., the interval of the mean difference ±2
standard errors of the mean did not cover zero); most dif-
ferences in the range between −2 and 2 ppbv were not sta-
tistically different from zero (Fig. 7c and d). These figures
exclude the few larger differences that were not statistically
different from zero (7 O3 and 4 NO2 averages), which may
include atypical events. Both fractional differences and the
signs (excess or deficiency) of the differences are of inter-
est; therefore, the mean fractional differences are expressed
as FMD rather than FAMD (Fig. 7e and f), since the sign of
the difference is important. For NO2, FMD values exceed-
ing 0.5 (or <−0.5) were statistically different from zero; for
O3, FMD values exceeding 0.05 (or <−0.05) were statis-
tically different from zero. The contrast in the detectability
of nonzero fractional NO2 and O3 differences between vehi-
cles (FMD) is pronounced but readily explained: the average
intervehicle concentration differences were comparable for
NO2 and O3 (Fig. 7c and d), but mean O3 concentrations ex-
ceeded mean NO2 concentrations (Table 8).

During 1–12 May, locations on the eastern side of San
Francisco experienced higher NO2 concentrations and lower
O3 concentrations than central and western locations (Fig. 7).
This result is consistent with typically prevailing winds from
the west to northwest and with high traffic volumes on ma-
jor freeways, I-80 (Bay Bridge), I-280, and US 101, which
are expected to yield higher emissions and ambient concen-
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Figure 5. Mobile-platform monitoring and WSLA measurements versus distance between cars and WSLA on 4 d (13, 19, 26, and 29 Septem-
ber 2016) when the cars drove near WSLA. The first bin includes all distances less than 0.5 km; the minimum distance between cars and
monitor was 158 m. Locations are indicated. Standard errors of the means are shown, but most are smaller than the symbols.

trations closer to areas with higher traffic volumes. Because
fresh NO emissions initially reduce ambient O3 concentra-
tions, O3 concentrations are typically lower where NO2 con-
centrations are higher. The results of this limited analysis in-
dicate that the measurement system can reveal differences
among air pollutant levels occurring in different neighbor-
hoods during short (i.e., days to weeks) time periods.

The San Francisco results reveal mean 1 km scale spatial
differences in NO2 and O3 concentrations up to 117 % and
46 %, respectively, of mean values during the 2-week sam-
pling period. The results obtained for 1 km averages can be
further examined to demonstrate higher variability on smaller

spatial scales. We compared the standard deviations of the
1 km mean intervehicle NO2 differences to the correspond-
ing 1 km mean NO2 concentrations to characterize variabil-
ity within 1 km spatial averages. These ratios (standard devi-
ation of intervehicle difference / mean concentration) ranged
from 0.5 to 3.0 (average = 1.3). Within the 1 km averages,
therefore, vehicle-to-vehicle NO2 concentration differences
varied by factors of 1–6 (twice the standard deviation of
the mean differences) times the mean observed 1 km average
concentrations.

Another indicator of spatial variability at finer resolution is
the FMAD: as previously noted, the FMAD provides a mea-
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Figure 6. FAMD between mobile-platform monitoring and WSLA measurements versus distance between cars and WSLA on 4 d (13, 19,
26, and 29 September 2016) when the cars drove near WSLA. The first bin includes all distances less than 0.5 km; the minimum distance
between cars and monitor was 158 m. Locations are indicated. One-sigma uncertainties of the FAMD were determined as described in the
definition of FAMD in the text.

sure of the variability in individual measurements because
it averages absolute values of concentrations and is there-
fore relevant to understanding the comparability of high-
resolution measurements. For the San Francisco data, the
FMAD represents the variability in the 1 min time averages
that comprise each 1 km spatial average. The average of the
FMAD values across all 1 km spatial averages was 0.74,
nearly twice as high as the average FAMD of 0.44.

3.5.2 San Joaquin Valley, November 2016

Over 10 months, driving routes in the northern San Joaquin
Valley were located within the cities of Tracy (2017 pop-
ulation – 90 890), Stockton (320 554), Manteca (76 247),
Merced (84 464), Modesto (215 080), and Turlock (72 879)
(https://www.cacities.org/Resources-Documents/About-Us/
Careers/2017-City-Population-Rank.aspx, last access:
2 December 2019) (Table 1). The initial drives occurred on
16–23 November 2016 (Fig. 8; see also examples of drives
on other days in Figs. S11–S15). Because the destinations
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Figure 7. San Francisco sampling locations and results for 1–12 May 2017: (a) 1 min resolution locations (gold is Flora, lavender is Coltrane),
(b) 1 km resolution locations (gold is Flora, lavender is Coltrane), (c) NO2 intervehicle differences (red is positive, blue is negative; large
symbol = <−4 or > 4 ppbv, medium =−4 to −2 or 2 to 4 ppbv, small =−2 to +2 ppbv), (d) O3 intervehicle differences (same scale
as NO2), (e) NO2 FMD (red is positive, blue is negative; large symbol = <−0.5 or > 0.5, small =−0.5 to +0.5), (f) O3 FMD (red is
positive, blue is negative; large = <−0.05 or > 0.05, small =−0.05 to +0.05). Maps generated with QGIS version 3.2.2 (https://qgis.org/
en/site/, last access: 12 June 2020) open-source software licensed under the GNU General Public License (http://www.gnu.org.licenses, last
access: 12 June 2020). California coastline shapefile obtained from the OpenStreetMap community (© OpenStreetMap contributors 2020,
distributed under a Creative Commons BY-SA License; http://www.openstreetmap.org, last access: 12 June 2020) and MapCruzin (http:
//www.mapcruzin.com, last access: 12 June 2020), licensed under the Creative Commons Attribution ShareAlike 2.0 license. US highways
and California county boundary shapefiles obtained from US Bureau of the Census TIGER/Line Shapefiles public data (https://www.census.
gov/geographies/mapping-files/time-series/geo/tiger-line-file.html, last access: 12 June 2020).
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Figure 8. San Joaquin Valley driving routes on 16 November 2016. The positions of each car at the beginning of each hour are marked. The
drives began and ended at the parking garage in San Francisco. Locations of cities identified in the text are also shown. Map generated with
QGIS version 3.2.2 (https://qgis.org/en/site/, last access: 12 June 2020) open-source software licensed under the GNU General Public License
(http://www.gnu.org.licenses, last access: 12 June 2020). California coastline and state highway shapefiles obtained from the OpenStreetMap
community (© OpenStreetMap contributors 2020, distributed under a Creative Commons BY-SA License; http://www.openstreetmap.org,
last access: 12 June 2020) and MapCruzin (http://www.mapcruzin.com, last access: 12 June 2020), licensed under the Creative Com-
mons Attribution ShareAlike 2.0 license. US highways and California county boundary shapefiles obtained from US Bureau of the Cen-
sus TIGER/Line Shapefiles public data (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html, last access:
12 June 2020).

were located over 100 km from where the cars were parked
overnight in the San Francisco parking garage, the cars
drove longer distances and sampled more nonurban roads
(both rural and high-traffic volume interstates) each day than
they did in Los Angeles or San Francisco. The San Joaquin
Valley car-to-car comparisons therefore provide insight into
variations on larger spatial scales (e.g., 10–100 km), which
are of interest for understanding enhancements of urban
over nonurban pollutant concentrations as well as pollutant
transport between cities or subregions.

Between 16 and 23 November 2016, the cars drove on
nonurban roads and on city streets in Stockton, Manteca,
and Modesto, providing information on pollutant concen-
trations in Stockton relative to other portions of the north-
ern San Joaquin Valley and in the eastern half of the San
Joaquin Valley compared with the western side (Table 11;
Figs. 7 and S11–S15). For each geographical pairing, pol-
lutant enhancements varied by pollutant and date (Table 12;
see Tables S1–S4 for detailed tabulations). For example, rel-
ative to sampling in both a rural area and near I-205 in Tracy,
Stockton exhibited enhancements of NO2 concentrations and
PM0.3−0.5 counts on November 16 along with deficits of
NO and O3. Since mean NOx (NO+NO2) concentrations
in Stockton (31.3 ppbv) did not differ from the rural route

(31.8 ppbv) (Tables S1, S2), the Stockton–rural differences in
NO and NO2 concentrations may have been related to atmo-
spheric chemical reactions and air mass aging. On November
23, the Stockton–highway comparison exhibited the opposite
pattern to November 16: deficits of NO2 concentrations and
PM0.3–0.5 c L−1 along with enhancements of NO and O3 (Ta-
ble 12) compared to routes in Modesto (within 1 km of High-
way 99) and along Highway 99 (Modesto to Merced), High-
way 140 (Highway 99 to I-5), and I-5 (Figs. S15). High traffic
volumes (∼ 50000–150 000 vehicles per day, annual aver-
age peak volumes) are typical of Highway 99 (https://dot.ca.
gov/programs/traffic-operations/census/traffic-volumes, last
access: 15 April 2020), so the results on 23 November indi-
cate higher pollutant concentrations on and near major high-
ways than on city streets in Stockton and in Modesto (Ta-
bles 12, S2–S5).

The spatial analyses do not show consistent enhancements
of pollutant concentrations in northern San Joaquin Valley
cities over concentrations occurring in surrounding areas.
This result suggests a complex situation in which pollutant
levels in the study cities depend on both local emissions and
intra-regional pollutant transport. Similarly, the relationships
between measured concentrations and intervehicle distance
in the San Joaquin Valley depend upon the locations of the
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Table 11. Dates, locations, and times when vehicle pairs sampled different areas within the northern San Joaquin Valley.

Date Areas sampled Vehicles Hours Mean distance Species measured by
(km) both vehicles

Nov 16 Stockton–rural Flora–Coltrane 12–14 56.2 NO NO2 O3 PM
Nov 16 Stockton–Tracy Flora–Rhodes 12–14 37.5 NO2 PM
Nov 17 Stockton–Manteca Coltrane–Flora 13–14 18.7 NO NO2 O3 PM
Nov 17 Stockton–Stockton Coltrane–Rhodes 13–14 1.2 NO2 PM
Nov 17 Stockton–Manteca Rhodes–Flora 12–15 17.9 NO2 PM
Nov 18 East–west SJV Flora–Coltrane 12 -14 49.9 NO NO2 O3 PM
Nov 18 East–west SJV Rhodes–Coltrane 12–14 49.7 NO2 PM
Nov 21 East–west SJV Flora–Rhodes 12–14 47.1 NO2 PM
Nov 21 East–west SJV Coltrane–Rhodes 12–14 37.9 NO2 PM
Nov 22 Stockton–Modesto Flora–Coltrane 12–14 43.9 NO NO2 O3 PM
Nov 22 Stockton–Modesto Flora–Rhodes 12–14 44.6 NO2 PM
Nov 23 Stockton–Modesto Flora–Rhodes 10–13 30.4 NO2 PM
Nov 23 Stockton–highway Flora–Coltrane 10–13 61.0 NO NO2 O3 PM

Table 12. Fractional mean differences (FMDs) when vehicle pairs sampled different areas within the northern San Joaquin Valley. Vehicles
A and B correspond to the first and second areas sampled, respectively. Uncertainties are 1 standard error of the means. NA is not available;
one car (Rhodes – R) measured only NO2 and PM concentrations.

Date Areas sampled Car∗ A–B NO NO2 O3 PM

Nov 16 Stockton–rural F–C −0.30± 0.02 0.30± 0.02 −0.24± 0.004 0.96± 0.01
Nov 16 Stockton–Tracy F–R NA 0.46± 0.02 NA 0.14± 0.01
Nov 17 Stockton–Manteca C–F 0.61± 0.03 −0.16± 0.01 0.01± 0.004 0.02± 0.004
Nov 17 Stockton–Stockton C–R NA 0.007± 0.01 NA 0.11± 0.003
Nov 17 Stockton–Manteca R–F NA −0.18± 0.01 NA 0.12± 0.004
Nov 18 East–west SJV F–C −0.61± 0.05 −0.30± 0.02 NA 0.23± 0.004
Nov 18 East–west SJV R–C NA −0.23± 0.02 NA 0.14± 0.004
Nov 21 East–west SJV F–R NA −0.30± 0.02 NA −0.13± 0.008
Nov 21 East–west SJV C–R NA 0.30± 0.02 NA 0.23± 0.006
Nov 22 Stockton–Modesto F–C 0.36± 0.03 0.49± 0.01 −0.42± 0.01 0.10± 0.005
Nov 22 Stockton–Modesto F–R NA 0.70± 0.01 NA −0.12± 0.006
Nov 23 Stockton–Modesto F–R NA −0.09± 0.01 NA −0.65± 0.02
Nov 23 Stockton–highway F–C 0.40± 0.03 −0.09± 0.01 0.18± 0.006 −0.57± 0.02

∗ C is Coltrane, F is Flora, and R is Rhodes.

vehicles (Fig. S16). Results for 16 November are shown for
multiple species in Fig. S17. NO2 and particle numbers ex-
hibited FAMDs exceeding 0.2 over most intervehicle dis-
tances. The largest FAMDs for NO2 and particle numbers
were associated with contrasts between locations within the
San Joaquin Valley and locations along an upwind boundary;
these contrasts appear as intervehicle distances of 50–80 km,
corresponding to times when Coltrane traversed the highway
between San Jose (hour 11) and Crows Landing (near hour
14 at I-5 in the San Joaquin Valley) while Flora was sampling
city streets in Stockton (Fig. 7). Paired O3 values were simi-
lar (FAMD < 0.2 up to intervehicle distances of 50 km), illus-
trating the regional character of O3 in much of the northern
San Joaquin Valley. The smaller FAMDs at 25 and 45 km in-
tervehicle distances occurred when both vehicles were sam-
pling freeway locations in the urban San Francisco Bay Area

(Fig. S17). The larger FAMDs at intervehicle distances of
15 km occurred when the cars traversed I-580 between Man-
teca and Hayward (near Castro Valley Freeway; Fig. 8) on
their return trip in the afternoon, and the vehicles experienced
differences in traffic levels due to their positions in urbanized
versus nonurban portions of I-580 (hour 15; Figs. 8, S17).

3.6 Spatial representation of measurements from
regulatory monitors

Comparisons of mobile-platform concentrations to concen-
trations recorded by the downtown Los Angeles stationary
monitor (CELA) showed that the FAMD for NO largely ex-
ceeded 1 (100 %); most NO2 and all O3 FAMDs were less
than 0.2 (20 %) at car–monitor distances ranging from 0.5
to 4 km. The results indicate that the US EPA classification
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of the downtown Los Angeles location as a neighborhood-
scale site (0.5–4 km zone of representation; Table 3) is appro-
priate for NO2 and O3. Comparisons of mobile monitors to
data from the western Los Angeles monitor (WSLA) showed
that the mobile platforms recorded much higher concentra-
tions of NO and NO2 than the monitor at vehicle-to-monitor
distances ranging from < 0.5 to 5 km; for NO and NO2, the
FAMD exceeded 1.5 (150 %) and 0.6 (60 %), respectively.
The results support the US EPA classification of WSLA as
a middle-scale site (100 m to 0.5 km zone of representation;
Table 3). The methods used for evaluating the spatial rep-
resentativeness of CELA and WSLA are readily applied to
other locations.

3.7 Effectiveness of the driving routes for addressing
study questions

Driving routes followed in this study were intended to
address various research questions focused on evaluating
mobile-platform performance and spatial scales of represen-
tativeness (per previous subsections in “Results and discus-
sion”). Different routes were deployed for different ques-
tions. The routes utilized in the comparisons with station-
ary regulatory monitors in Los Angeles provided effective
coverage of neighborhoods located 100 m to 4 km from two
stationary monitors. The results supported the EPA classifi-
cations of those monitors.

The sampling conducted in San Francisco was intended to
delineate spatial variations in pollutant concentrations across
the city. Sampling during a single 2-week period, which
covered a subset of a compact urban environment, clearly
revealed 300 m–1 km spatial differences in pollution con-
centrations but varied by pollutant. In contrast, sampling
was conducted over a much larger area in the northern San
Joaquin Valley, and the results were difficult to interpret from
a limited (2-week) set of measurements because the spatial
domains sampled were different on different days. For ex-
ample, contrasts between an urban area (Stockton) and ar-
eas surrounding Stockton were expected to yield information
on the urban pollution enhancement in Stockton. However,
three different types of environments were sampled in con-
junction with the initial 2 weeks of Stockton measurements:
(1) nearby cities (e.g., Manteca, Tracy, and Modesto, located
19 to 45 km from Stockton), (2) a major freeway (Highway
99, mean distance 61 km from Stockton), and (3) a rural area
(56 km from Stockton). Establishing quantitative contrasts
for each of these comparisons likely requires at least 2 weeks
of data for each type of comparison (e.g., Stockton vs ru-
ral). Such comparisons could be explored using the full San
Joaquin Valley data set.

4 Conclusions

The Aclima, Inc., mobile measurement and data acquisi-
tion platform, which equips Google Street View cars with
research-grade instruments to measure air quality at high spa-
tial resolution, is an effective approach to obtaining improved
understanding of spatial variations in air pollutant concentra-
tions. Data provided by the system will be highly useful for
evaluating air quality management policies intended to re-
duce human air pollutant exposure, acute and chronic health
impacts, and premature mortality. Audit results demonstrate
that reference instruments in stationary vehicles are capable
of reliably measuring NO, NO2, O3, and PN, with bias and
precision ranging from < 5 % to < 25 % at 1 s time resolution.

During experiments conducted in Los Angeles, San Fran-
cisco, and the San Joaquin Valley, California, collocated
parked and moving mobile platforms replicated mean NO,
NO2, and O3 concentrations with mean differences in 1 s
measurements ranging from 0.2 to 5.6 ppbv; mean differ-
ences in PN0.3–0.5 varied from 500 to 21 000 c L−1. On a rel-
ative basis, the mean differences between replicate mobile
platforms ranged from 1 % to 37 % of the mean NO, NO2,
and O3 concentrations and 2 % to 32 % of PN, with higher
mean differences observed in the larger particle size ranges
(which also had few numbers of particles). The majority (21
of 26) of comparisons of collocated mobile platforms exhib-
ited differences < 20 % of the mean concentrations, thereby
suggesting that differences exceeding 20 % obtained by ve-
hicles operating simultaneously in different neighborhoods
represented measurable spatial variation.

Paired time-synchronous mobile measurements were used
to characterize the spatial scales of concentration variations
when vehicles were separated by < 1 to 10 km. Measure-
ments made in Los Angeles during August 2016 exhibited
intervehicle FAMDs that ranged from 2 % at 0.125 km to
14 %–44 % at 4.5–5.5 km (mean 12 %) for NO2 and from
0.6 % at 0.125 km to 0 %–7 % at 4.5–5.5 km (mean 2 %)
for O3. The standard deviations of bin averages indicated
that finer-scale (e.g., 100–300 m, 1 min averages) intervehi-
cle variations were larger, indicating variability by up to a
factor of 2 for NO2 and a factor of 6 for NO (2 standard de-
viations) within the binned intervehicle averages.

For NO and PN0.3–0.5, bin-average mean differences ex-
ceeded 20 % for the same driving routes, indicating mea-
sured spatial variability exceeding the uncertainties in mea-
surement methods when employing the mobile platforms.
For NO, the standard deviations of bin averages ranged from
1.2 to 4.0 (average = 2.8), indicating that vehicle-to-vehicle
NO concentration differences varied by up to a factor of 6 (2
standard deviations) within the binned intervehicle averages.

A data analysis approach was developed to characterize
spatial variations in a manner that limits the confounding in-
fluence of diurnal variability. The approach involved exam-
ining synchronous differences between 1 min measurements
made by two mobile platforms, which were then averaged
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to 1 km resolution. The approach was illustrated using data
from San Francisco, revealing mean 1 km scale spatial dif-
ferences in NO2 and O3 concentrations up to 117 % and
46 %, respectively, of mean values during a 2-week sam-
pling period. Within the 1 km averages, vehicle-to-vehicle
NO2 concentration differences varied by factors of 1–6 times
the mean observed 1 km average concentrations, implying
higher variability at spatial scales < 1 km (i.e., among 1 min
averages, corresponding to∼ 300 m distances). Locations on
the eastern side of San Francisco experienced higher NO2
concentrations and lower O3 concentrations than central and
western locations, likely due to differences in traffic density
and to meteorological factors, with prevailing winds from the
west or northwest.

The mobile data were also used to provide insight into the
spatial representativeness of measurements made at station-
ary monitoring locations. Comparisons of mobile measure-
ments to data from two stationary monitors in Los Angeles
indicate that the US EPA classifications of the monitors as
representative of neighborhood-scale (0.5–4 km) or middle-
scale (100 m–0.5 km) pollutant concentrations are appropri-
ate. The methods used for evaluating the spatial represen-
tativeness of the two monitors are readily applied to other
locations.

Data availability. Access to Aclima QD2 data is pro-
vided by Google, Inc., on request (Google, Inc., 2020;
https://goo.gl/EJMcCD, last access: 12 June 2020) through
the Google Cloud Platform using Google Cloud Shell and
Google BigQuery (Google, Inc., 2018; https://console.cloud.
google.com/bigquery?GK=street-view-air-quality&page=table&
t=California_2016_2017&d=California_201605_201709_
GoogleAclimaAQ&p=street-view-air-quality&redirect_from_
classic=true&project=aclima-airview&folder=&organizationId=,
last access: 22 April 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-13-3277-2020-supplement.
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