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Abstract. Water vapour is an important substituent of the at-
mosphere but its spatial and temporal distribution is difficult
to detect. Global Positioning System (GPS) water vapour to-
mography, which can sense three-dimensional water vapour
distribution, has been developed as a research area in the
field of GPS meteorology. In this paper, a new water vapour
tomography method based on a genetic algorithm (GA) is
proposed to overcome the ill-conditioned problem. The pro-
posed approach does not need to perform matrix inversion,
and it does not rely on excessive constraints, a priori in-
formation or external data. Experiments in Hong Kong un-
der rainy and rainless conditions using this approach show
that there is a serious ill-conditioned problem in the tomo-
graphic matrix by grayscale and condition numbers. Numer-
ical results show that the average root mean square error
(RMSE) and mean absolute error (MAE) for internal and ex-
ternal accuracy are 1.52/0.94 and 10.07/8.44 mm, respec-
tively, with the GAMIT-estimated slant water vapour (SWV)
as a reference. Comparative results of water vapour density
(WVD) derived from radiosonde data reveal that the tomo-
graphic results based on GA with a total RMSE /MAE of
1.43/1.19 mm are in good agreement with that of radiosonde
measurements. In comparison to the traditional least squares
method, the GA can achieve a reliable tomographic result
with high accuracy without the restrictions mentioned above.
Furthermore, the tomographic results in a rainless scenario
are better than those of a rainy scenario, and the reasons are
discussed in detail in this paper.

1 Introduction

Water vapour is a major component of the atmosphere, and
its distribution and dynamics are the main driving force of
weather and climate change. A good understanding of water
vapour is crucially important for meteorological applications
and research such as severe weather forecasting and warnings
(Liu et al., 2005). Nevertheless, the variation of water vapour
is affected by many factors, including temperature, topogra-
phy and seasons with characteristics of changing fast with
time and changing strongly in vertical and horizontal direc-
tions, which makes it difficult to monitor with high temporal
and spatial resolutions (Rocken et al., 1993).

Thanks to the development of GPS station networks pro-
viding atmospheric information under all weather conditions,
GPS is considered a powerful technique to retrieve water
vapour. Since Bevis et al. (1992) first envisioned the poten-
tial of tomography to be applied in GPS meteorology, wa-
ter vapour tomography has become a promising method to
improve the restitution of the spatio-temporal variations of
this parameter (Braun et al., 1999; Nilsson et al., 2004; Song
et al., 2006; Perler et al., 2011; Rohm, 2012; Dong and Jin,
2018).

In GPS water vapour tomography, the research area should
be covered by ground-based GPS receivers and discretized
into a number of cubic closed voxels by latitude, longitude
and altitude, each of which has a fixed amount of water
vapour at a particular time (Guo et al., 2016). The observa-
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tions are GPS-derived slant water vapour data, the precip-
itable water in the direction of the signal ray path, which
travels through the troposphere from its top (Zhao and Yao,
2017). After obtaining the precise measurement of the sig-
nal ray distance in each voxel by ray tracing its path from
receiver to satellite, we can achieve the basic equation for
water vapour tomography, which can be expressed in linear
form (Flores et al., 2000; Yang et al., 2018):

SWVq =
n∑
i=1

d
q
i · xi, (1)

where the superscript q is the satellite signal index, SWVq

denotes the qth slant water vapour achieved by GPS tropo-
spheric estimation and n is the total number of tomographic
voxels discretized. dqi denotes the distance of the qth sig-
nal ray inside voxel i, which can be obtained by the satellite
and station coordinates, and xi is the water vapour density of
voxel i. Using all suitable SWV observations, we can form
the tomographic observation equation:

ym×1 = Am×n · xn×1, (2)

where y is a column vector of SWV,m is the total number of
SWV measurements in tomography, A denotes the intercept
matrix containing the distance of the signal ray in each of
the voxels, n is the number of voxels in the study area and x

denotes the vector of the unknown water vapour density.
Since a GPS signal ray can only pass through a small part

of the voxels in the study area, the elements of matrix A are
likely to be equal to zero, making it a large, sparse matrix. In
addition, the effective signal rays will concentrate around the
zenith due to the unfavourable geometry of the GPS stations
and the special structures of the satellites. These all make
Eq. (2) ill conditioned, and it is difficult to obtain the un-
knowns by performing the inversion of Eq. (2) in the form of
x = A−1

· y.
To circumvent the ill-conditioned problem, many methods

are explored in the literature. Flores et al. (2000) added con-
straints on the vertical and horizontal variability of tomogra-
phy with additional top constraints to the model. Most con-
straints are based on experience and difficult to match to the
actual water vapour distribution, resulting in the deviation
of tomographic results. Moreover, singular value decompo-
sition (SVD) is required to perform matrix inversion. Bender
et al. (2011) utilized an iterative algorithm called the alge-
braic reconstruction technique (ART) to solve the observa-
tion equation. Several reconstruction algorithms of the ART
family were also implemented, e.g. the multiplicative alge-
braic reconstruction techniques (MART) and the simultane-
ous iterations reconstruction technique (SIRT) (Stolle et al.,
2006; Liu et al., 2010). The ART techniques are iterative al-
gorithms that proceed observation by observation. Only two
vectors, y and x, and a data structure containing the slant
sub-paths in each voxel are required to solve the observa-
tion equations. The algorithms consist of two loops: The in-

ner loop processes SWV by SWV and applies an adequate
correction to each voxel. SWVs that execute the next itera-
tion start in the outer loop (Bender et al., 2011). Performing
the matrix inversion is not necessary, thus avoiding the ill-
conditioned problem. However, only the results of the vox-
els that travelled through via signal rays are updated, and
the tomographic results heavily depend on the exact initial
field, the data quality and relaxation parameter (Wang et al.,
2014). Nilsson and Gradinarsky (2004) adapted a Kalman fil-
ter approach to estimate tomographic results without adding
constraints and performing inversion. This approach assumes
that the water vapour density in each voxel meets the Gauss–
Markov random walk pattern for a certain period of time, and
it establishes the corresponding state equation of the Kalman
filter. The observation vector used is based on the mathemat-
ical model to perform the optimal estimation of the state vec-
tor, which is a process of continuous prediction and correc-
tion. In this method, initializing the filter with an informed
estimation of the water vapour field and providing the initial
covariance of state equation are based on external data. Other
approaches that enrich the information of the observation
equation were exploited in recent years, including the Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate (COSMIC) occultation data by Xia et al. (2013),
Interferometric Synthetic Aperture Radar (InSAR) by Bene-
vides et al. (2015), and water vapour radiometer (WVR) and
numerical weather prediction by Chen and Liu (2016).

In the above-mentioned tomographic methods, excessive
constraints on the matrix inversion, exact priori information
or external data are commonly used to overcome the ill-
conditioned problem. The mandatory usage of excessive con-
straints in tomographic experiments with poor voxel struc-
ture will induce limitations, while reliance on exact priori in-
formation will make the tomographic solutions too similar to
the priori data and decrease the role of the tomography tech-
nique. External data cannot be used in all tomographic ex-
periments. Therefore, this paper proposes a new tomography
method based on a genetic algorithm (Sect. 2). The tomogra-
phy experiments and results of the analysis are presented in
Sect. 3. Section 4 summarizes the conclusions.

2 Methodology

2.1 Troposphere estimation

In water vapour tomography, the observation is slant water
vapour, which can be converted from slant wet delay (SWD)
by the following formula (Adavi and Mashhadi, 2015):

SWV=5×SWD

=
106

ρw×
R
mw

(
k3
Tm
+ k2−

mw
md
× k1

) ×SWD, (3)
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where 5 denotes a conversion factor. k1 = 77.604K hPa−1,
k2 = 70.4K hPa−1 and k3 = 3.775× 105K2 hPa−1;
ρw is the liquid water density (unit: g m−3),
R = 8314 Pa m3 K−1 kmol−1 represents the univer-
sal gas constant, and mw = 18.02 kg kmol−1 and
md = 28.96 kg kmol−1 indicate the molar mass of wa-
ter and the dry atmosphere, respectively. Tm denotes the
weighted mean temperature, which is the ratio of two vertical
integrals though the atmosphere (Davis et al., 1985). In prac-
tice, an empirical formula is used to achieve approximate Tm
by surface temperature Ts in kelvin (Tm = 85.63+ 0.668 Ts)
(Liu et al., 2001; Astudillo et al., 2018). SWD can be
obtained as follows (Zhang et al., 2017):

SWD= f (ele)×ZWD+ f (ele)× cot(ele)

×
(
Gw

NS× cos(azi)+Gw
WE× sin(azi)

)
+Re, (4)

where ele and azi are the satellite elevation and azimuth, re-
spectively. f denotes the wet mapping function, Gw

NS and
Gw

WE refer to the wet delay gradient parameters in the north–
south and east–west directions, respectively. Re is the un-
modelled atmospheric slant delay, which is included in the
zero-difference residuals. ZWD represents zenith wet delay,
which is the wet component of zenith total delay (ZTD) af-
fected by water vapour along the satellite signal ray. It can
be separated from ZTD by subtracting the zenith hydrostatic
delay (ZHD). The ZTD is the primary parameter retrieved
with GPS, and it is a spatially averaged parameter. If pres-
sure measurements are available, the ZHD is calculated by
the Saastamoinen model as follows (Saastamoinen, 1972):

ZHD=
0.002277×Ps

1− 0.00266× cos(2ϕ)− 0.00028×H
, (5)

where Ps refers to the surface pressure, and ϕ and H rep-
resent the latitude and the geodetic height of the station, re-
spectively.

2.1.1 Water vapour tomography based on the least
squares method

After obtaining the observation equation (Eq. 2), three types
of constraints are usually added:

0=H · x, (6)
0= V · x, (7)
0= T · x. (8)

Equations (6)–(8) are the vertical, horizontal and top con-
straints, respectively. The horizontal constraint equation as-
sumes that the distribution of water vapour density is rela-
tively stable in the horizontal direction within a small region.
Thus, the water vapour density within a certain voxel can
be represented by the weighted average of its neighbouring
voxels in the same layers. The vertical constraint equation is
a relationship established for the voxels between two adja-
cent layers based on the analysis of meteorological data for

many years. The top constraint is obtained by setting the wa-
ter vapour density of the top boundary to a small constant.
Based on the principle of least squares, the tomographic re-
sults can be achieved by the following formula:

x =
(

ATA+H TH +V T V + T T T
)−1
×

(
AT y

)
. (9)

To obtain the inverse matrix in Eq. (9), the singular value
decomposition is required. More details on this technique can
be found in Flores et al. (2000).

2.2 Water vapour tomography based on the genetic
algorithm

For water vapour tomography based on the genetic algo-
rithm, the first procedure is to construct the tomographic
equation. The idea of function optimization is then used to
solve Eq. (2) (Guo and Hu, 2009; Olinsky et al., 2004), which
is similar to the principle of least squares, V T PV=min (Flo-
res et al., 2000). Equation (2) can be converted into the fol-
lowing form:

minf (x)= (y−Ax)T P(y−Ax) ,x ∈ R+, (10)

where the terms are the same as in Eq. (2). In this equation,
the values of x that minimize function f (x) are the result
of tomography. To achieve the best values of x, the tradi-
tional method adopts a derivative method which needs ma-
trix inversion in the follow-up. The genetic algorithm, which
was first introduced by Holland (1992), provides an adap-
tive search method to achieve the tomographic results. It is
designed to simulate the evolutionary processes in nature,
in which the principle of survival of the fittest is applied
to produce better and better approximates to the function.
Equation (10) is regarded as the fitness function that is used
to measure the performance of the searched values of x by
computing the fitness value (Goldberg, 1989; Venkatesan et
al., 2004). Through searching generation after generation, the
water vapour result that best fits the function can be found.
The specific steps of water vapour tomography based on the
genetic algorithm are as follows:

1. construct the fitness function which is converted from
the tomographic equation.

2. generate some groups representing approximates of x
(water vapour density) stochastically, which form the
initial population,

3. select groups from the last generation of the population
as parents according to a lower-to-higher order of the
groups of x corresponding to their fitness values;

4. produce offspring groups from parents by crossover and
mutation to make up a new set of approximated solu-
tions (new generation);
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Figure 1. Flowchart of the water vapour tomography based on the genetic algorithm.

5. compute the fitness values of the new generation, go
back to step 3 and produce the next generation of the
population;

6. terminate the search when a group of approximates
meets the requirements of the fitness value. (Generally,
we set the stopping criteria for generation or calculation
time.)

The parameters of genetic algorithm are listed in Table 1
(Wang et al., 2010). Roulette is a function used for selec-
tion in step 3, referring to the concept of a roulette wheel in
which the area of each segment is proportional to its expected
value, and one of the sections is selected with a random num-
ber whose probability equals its area. For the crossover func-
tion, “Intermediate” in Table 1 is intended to create offspring
groups by a random weighted average of the parents. The
mutation process forces the individuals in the population to
undergo small random changes that enable the genetic algo-
rithm to search a wider space. Adaptive feasibility is cho-
sen for the mutation function, which means that the adap-
tive direction is generated randomly with respect to the last
successful or unsuccessful generation (Dwivedi and Dikshit,
2013). Based on these steps, the optimal solution of Eq. (10)
is derived; that is, the value of x that gives f (x) the minimum
value, and also the value of water vapour density in the tomo-
graphic equations. To more clearly show the process of water
vapour tomography based on a genetic algorithm, a flowchart
is shown in Fig. 1.

3 Experiment and analysis

3.1 Experiment description

In order to conduct the tomographic experiment based on a
genetic algorithm, Hong Kong was selected as the research

Table 1. Parameters of the genetic algorithm.

Parameter Strategy

Population size 200
Crossover fraction 0.8
Reproduction of elite count 10
Selection function Roulette
Crossover function Intermediate
Mutation function Adaptive feasibility
Generations of stopping criteria 100× number of variables

region. The boundary and resolution in west–east and south–
north directions were 113.87–114.35◦ and 0.06◦ and 22.19–
22.54◦ and 0.05◦, respectively; for the altitude direction, 0–
8.0 km and 800 m were chosen. A total of 8× 7× 10 voxels
in the tomography grid was obtained. As shown in Fig. 2, 13
GPS stations of the Hong Kong Satellite Positioning Refer-
ence Station Network (green triangle) were selected in the
tomography modelling to provide SWV measurements. An-
other GPS station (KYC1, red spot) and radiosonde station
(45 005, blue spot) were used to check the result of tomog-
raphy. Each GPS station recorded temperature, pressure and
relative humidity by an automatic meteorological device, by
which the hydrostatic parts of the troposphere delay can be
accurately achieved. All the stations are under 400 m and lo-
cated in the first layer of the tomographic grids.

The GPS tropospheric parameters (zenith tropospheric de-
lay and gradient parameters) were estimated by the GAMIT
10.61 software based on a double-differenced model. In or-
der to reduce the strong correlation of tropospheric param-
eters caused by the short baseline between GPS receivers
in the tomographic area, three International GNSS Service
(IGS) stations (GJFS, LHAZ and SHAO) were incorporated
into the solution model. In the processing, the sampling rate
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Figure 2. Geographic distribution of GPS, radiosonde stations and the horizontal structure of the voxels used in water vapour tomography.
Map data ©2018 Google.

of observations was 30 s, a cut-off elevation angle of 10◦ was
selected, and the IGS precise ephemeris was adopted. The
LC_AUTCLN and BASELINE modes were selected as the
processing strategies, meaning that the GPS observation was
the ionosphere-free linear combination and the orbital pa-
rameters were fixed, respectively. The tropospheric param-
eters, including troposphere delay gradients and ZTD at 4
and 2 h intervals, are estimated and interpolated to a 30 s
sampling rate in the GAMIT software. Note that the out-
puts of GAMIT are double-differenced residuals and tropo-
sphere delay gradients. To obtain the R in Eq. (4), double-
differenced residuals should be converted to zero-difference
residuals, and multipath effects should be considered by the
method proposed by Alber et al. (2000). To achieve the wet
delay gradients, Bar-Sever et al. (1998) considered the av-
erage of troposphere gradients within 12 h as the dry delay
gradients and subtracted it from the troposphere delay gra-
dients. Then all the necessary parameters are available for
Eq. (4) to build SWD, and SWV was obtained by Eq. (3).

To verify the proposed method, two periods of GPS obser-
vation data, with a sampling rate of 30 s, were used in the
tomography experiment. One from 13 to 19 August 2017
(day of year (DOY) of 225 to 231, 2017), during which a
spell of fine weather prevailed in Hong Kong with a ridge of
high pressure extending westwards from the Pacific to cover
south-eastern China on 16–18 August. In that period of time,
the daily rainfall was 0 mm. Moreover, the relative humid-
ity and SWV produced in the selected stations on average
are 75 % and 79.1 mm, respectively. This period is defined as

rainless days. Hence, fine weather occurs without any rain-
fall. In addition, the relative humidity and SWV are small.
The other period is from 12 to 18 June 2017 (DOY of 163
to 169, 2017), which covers the rainy days. During the se-
lected rainy period, the weather of Hong Kong was first af-
fected by the approach and the passage of a severe tropical
storm, named Merbok, with more than 150 mm of rainfall
recorded on 13–14 June. Thereafter, from 15 and 16 June,
the influence of an enhanced southwest monsoon and the de-
velopment of a lingering through of low pressure made the
remaining weather unstable and rainy till 21 June. In this pe-
riod of time, the maximum daily rainfall is up to 203.7 mm,
and the average daily rainfall is 66.8 mm. The average rel-
ative humidity and SWV produced in the selected stations
are 89 % and 112.9 mm, respectively. This period represents
rainy days, indicating that continuous rainfall occurs, and the
relative humidity and SWV are high. The period covered is
0.5 h for each tomographic solution. The radiosonde data,
collected twice daily at 00:00 and 12:00 UTC in these two
periods, were treated as reference data.

According to the flowchart presented in Fig. 1, the above
GPS observation data were processed to construct the tomo-
graphic equation and further converted into the fitness func-
tion for the optimization algorithm. Population size is cho-
sen based on the total number of unknown parameters (water
vapour density). The value of 200 is the default option of the
algorithm when the number of unknowns exceeds a certain
amount. The reproduction of elite count is chosen to be 10 to
specify the number of individuals that are guaranteed to sur-
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Figure 3. Grayscale graph of number of signal rays passing through each voxel and distribution of voxel with sufficient signal rays (a, b stand
for a rainless and a rainy day, respectively).

vive to the next generation because it is based on population
size (0.05× population size). The crossover fraction is set to
the default value of 0.8 to specify the fraction of the next
generation that crossover produces. In this study, generation
is chosen as the stopping criteria and “100× number of vari-
ables” is the default. Other parameters, including roulette, in-
termediate and adaptive feasibility, are selected because they
are the most commonly used settings for genetic algorithms.
Other selection functions as well as crossover and mutation
functions can be adopted in the genetic algorithm. In ad-
dition, population size, crossover fraction, elite count and
stopping criteria can also be set to other values which may
slightly affect solution time and results. The specific impact
can be explored in depth in future research.

3.2 Analysis of matrix ill condition

In a tomographic solution, the structure of the coefficient ma-
trix in the observation equation depends on which voxels are
crossed by SWV and the number of signal rays penetrating
each voxel. Figure 3 illustrates this in the form of a grayscale
graph for two different days: 13 August 2017 at 00:00 UTC,
a rainless day (a), and 13 June 2017 at 12:00 UTC, a rainy
day (b). In the upper panels of each sub-figure, the deepen-
ing of the grayscale refers to an increase in the number of
signal rays crossing through the voxel. The closer the layer
is to the ground, the more voxels are not crossed by any sig-
nal rays. Although there are few voxels with no signal rays
passing through in the upper layers, many of the voxels have
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Figure 4. Scatter diagram of the SWV residuals in different weather conditions for internal accuracy testing.

a lighter grayscale, which means that the voxels are crossed
by fewer signal rays.

Note that when the signal ray passes vertically through the
tomographic region, the ray crossed a minimum number of
voxels; that is, 10 in the tomographic area. Therefore, the
minimum probability that a voxel will be crossed by a ray
is 1.79 % (10/560; 560 is the total number of voxels in this
tomographic experiment). Thus 1.79 % of the total SWV is
taken as a criteria to further illustrate the structure of the co-
efficient matrix. If the number is greater than the threshold,
the voxel is considered to be crossed by sufficient rays, oth-
erwise the voxel is defined as an insufficient one. For the two
examples shown, the number of total SWV and the criteria
are 4930/4569 and 88/81, respectively. The lower panels of
each sub-figure display the distribution of sufficient (black
rectangle) and insufficient (white rectangle) ones. Obviously,
many voxels are not crossed by enough satellite rays, both for
the upper layers or the lower layers.

To better analyse the ill-conditioned nature of the observa-
tion equation in tomography modelling, the number of zero
elements in matrix A is counted. We found that the propor-
tion of zero element is over 97 % in all tomographic solu-
tions. In addition, the concept of matrix condition number is
introduced to measure the degree of dispersion of the eigen-
values of the coefficient matrix (Edelman, 1989). The larger
the value of the condition number, the more ill-conditioned
the matrix is. The results show that the condition number in
every tomographic solution is infinite, which means a serious
ill-conditioned problem.

3.3 Internal accuracy testing

To evaluate the performance of water vapour tomography
based on a genetic algorithm, slant water vapour of GPS sta-
tions for the data of 13 to 19 August and 12 to 18 June 2017
were computed using the tomographic results based on the

water vapour tomographic observation equation established
in Eq. (1). In this process, the parameters on the right side
of Eq. (1) (the distance of the signal ray in each of the
voxels and the water vapour density calculated by the to-
mographic modelling) are taken as known quantities. More-
over, the SWV on the left is the parameter to be determined,
i.e. the tomography-computed SWV. The differences against
the GAMIT-estimated SWV (as a reference) were also iden-
tified.

For internal accuracy testing, 13 GPS stations used in the
tomographic modelling were adopted. The change of tomog-
raphy computed vs. GAMIT-estimated slant water vapour
residuals with elevation angle is shown in Fig. 4, where the
blue and red dots represent the rainy and rainless days, re-
spectively. The maximum residuals for rainy and rainless
scenarios are 10.74 and −9.84 mm, respectively. The root
mean square error (RMSE) and mean absolute error (MAE)
for rainy and rainless days are 1.56/0.98 and 1.48/0.89 mm,
respectively. Figure 4 shows that most of the residuals are
concentrated between −2.0 and 2.0 mm, which indicates
good internal accuracy.

To normalize SWV residuals for their evaluation in a
single unit, we mapped the tomography-computed SWVs
back to the zenith direction using the 1/sin(e) formula and
computed their differences with the GAMIT-estimated SWV
(Michal et al., 2017). Figure 5 shows the statistical results of
the residuals in the zenith direction. In the figure, the colours
indicate the weather conditions (blue for rainy days and red
for rainless days), and the 13 stations were arranged in the
order in which they were added to the tomographic model.
The maximum and minimum RMSE in the two periods are
0.79 and 1.81 mm, respectively, whereas the maximum and
the minimum values for MAE are 0.43 and 1.54 mm, respec-
tively. The RMSE and MAE of rainless days are better than
those of rainy days in each station. The medians of RMSE
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Figure 5. Comparison of SWV residuals in zenith direction: circles for RMSE and diamonds for MAE; blue for rainy days and red for
rainless days.

Figure 6. Histogram for MAE (a) and RMSE (b) of SWV residuals
(differences between the tomography-computed SWV and GAMIT-
estimated SWV) for the KYC1 station, which has not been used
in the tomographic modelling (blue for rainy days, red for rainless
days).

and MAE are displayed for 13 stations to highlight differ-
ences among the stations. A particular outlier is the HKMW
station, with RMSE and MAE values of 1.81/1.53 and
1.60/1.23 mm in rainy and rainless days, respectively. The
reason for the divergent behaviour may be that two stations
(HKPC and HKMW) exist in the same voxel, which may
result in the station (HKPC) data first introduced into the to-
mographic model affecting the subsequent station (HKMW)
data. This hypothesis will be further investigated in future
research. However, plots with RMSE and MAE are consis-
tent within 2.0 mm among all the stations (1.5 mm except for
HKMW).

Figure 7. Comparison of SWV residuals (differences between the
tomography-computed SWV and GAMIT-estimated SWV) for the
KYC1 station in each elevation bin; (a,b) for RMSE /MAE; (c, d)
for normalized RMSE /MAE.

3.4 External accuracy testing

For external accuracy testing, the data from KYC1 station,
which was not included in the tomographic modelling, were
used. Figure 6 shows the histogram for MAE (upper) and
RMSE (lower) of SWV residuals (differences between the
tomography-computed SWV and GAMIT-estimated SWV),
in which the blue and red bars represent rainy and rainless
days, respectively. The dashed bars are the averages for those
different weather conditions. From this figure, it can be noted
that all MAE and RMSE values are below 15 mm, with av-
erage values lower for rainless days than for rainy days, re-
spectively 8.75/7.33 and 11.38/9.54 mm for RMSE /MAE.
Therefore, a good external accuracy is achieved by tomo-
graphic solutions, considering the low RMSE and MAE of
rainy and rainless days.
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Figure 8. Box plots of the SWV residuals (differences between the
tomography-computed SWV and the GAMIT-estimated SWV) for
the KYC1 station.

To further assess external accuracy, slant water vapour out-
puts were grouped into individual elevation bins of 5◦, i.e. all
SWVs with an elevation angle between 10 and 15◦ were eval-
uated as a single unit. The RMSE and MAE of each elevation
bin were calculated. To examine the dependence of relative
errors in SWVs at different elevations, normalized RMSE
and MAE were computed. For this computation, residuals of
SWV were divided by the GAMIT-estimated SWV and mul-
tiplied by 100 to obtain the percentages. Figure 7 shows the
variation of RMSE, MAE, normalized RMSE and normal-
ized MAE as the elevation angle changes in different weather
conditions. For Fig. 7a and b, the RMSE and MAE reduc-
tion of SWV residuals are clearly visible as the increasing
elevation angle, which is consistent with the trend shown in
Fig. 4. The colours in the figure indicate that better RMSE
and MAE results can be achieved on a rainless day than on
a rainy day in each elevation bin. In terms of normalized
RMSE and MAE, we note that they remain almost constant
over all elevation angles, indicating a consistent relative per-
formance of computing SWV in each type of weather con-
dition. It is noted that the normalized RMSE and MAE of
rainless days are close to those of rainy days which may be
due to the large SWV during rainy days that introduced a
large denominator in the normalized calculation. Therefore,
the good performance on relative error in SWVs at different
elevations with a low normalized RMSE /MAE (< 0.125 for
normalized RMSE and< 0.106 for normalized MAE) points
to good external accuracy.

In the above analysis, RMSE and MAE were used for the
external accuracy testing of the tomographic results based on
the GA. Box plots are used to explore the statistical charac-
teristics of SWV residuals and to detect the outliers in the
tomographic errors. Five characteristic values are shown in

the box plots. Q1 and Q3 located at the bottom and top of the
box represent the first and third quartiles; the second quar-
tile (Q2) is located inside the box; the ends of the whiskers
refer to the upper and lower bounds, which are located at
Q1− 1.5 (IQR) and Q3+ 1.5 (IQR), respectively. IQR is the
interquartile range, defined as the difference between Q3 and
Q1, and it reflects the discreteness of a set of data. In Fig. 8
the length of the box and the range of bound in rainless days
(in red) are smaller than those in rainy days (in blue), indicat-
ing better residual distribution in rainless days than in rainy
days. The right plot (in green) denotes the result of the com-
bination of rainless and rainy days, representing the overall
distribution of SWV residuals of tomography based on a ge-
netic algorithm. In our experiments, 50 % of the residuals are
concentrated between −7.08 and 4.47 mm and only 3.24 %
of the residuals are outliers when combining the data of rainy
and rainless days.

3.5 Comparison with radiosonde data

The water vapour density profile derived from the radiosonde
data can be used as a reference value, which is well suited to
evaluate the accuracy of the tomographic results based on
a genetic algorithm. As the radiosondes are launched daily
at 00:00 and 12:00 UTC, the tomographic results of 12 to
18 June (rainy days) and 13 to 19 August 2017 (rainless
days) at these times were compared. Figure 9 shows the wa-
ter vapour density comparisons between radiosonde data and
tomographic results for different altitudes at individual dates
(rainy period). It is clear from the profiles that the water
vapour density (WVD) decreases with increasing height. The
WVD profiles reconstructed by the GA tomographic solu-
tions conform with those derived from the radiosonde data,
especially in the upper troposphere in absolute terms. With
respect to the relative error, the values of the voxels higher
than 5 km and lower than 5 km are 31 % and 15 %, respec-
tively. The reason for this phenomenon is that the value of
water vapour in the upper layers is relatively low. Even a
small difference between the radiosonde and tomographic re-
sult can also lead to a large relative error, whereas the water
vapour content resides for more than 90 % below 5 km near
the Earth’s surface. In certain cases, a relatively good consis-
tency can also be seen in the lower atmosphere. This may be
because a GPS station (HKSC) for tomography modelling is
located at the voxel where the radiosonde station is situated,
resulting in the low atmosphere with sufficient signal rays
passing through.

To further illustrate the comparison with the radiosonde
data, Table 2 lists RMSE and MAE of the WVD. In the
table, the WVD in the voxels above the radiosonde station
computed by tomography and those derived from radiosonde
are counted to calculate their RMSE and MAE in each so-
lution. Thus, the average RMSE /MAE of rainless days are
1.35/1.08 g m−3, which is smaller than 1.51/1.29 g m−3 in
rainy days. This finding is consistent with the comparison of
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Figure 9. Panels (a)–(n) represent water vapour density comparisons between radiosonde and tomography based on the genetic algorithm at
00:00 and 12:00 UTC from 12 to 18 June 2017 (rainy days).

SWV above. We compare those values with the results ob-
tained from other Hong Kong tomographic experiments. For
example, Xia et al. (2013) obtained an RMSE of 1.01 g m−3

by adding the COSMIC profiles as external data based on
a two-step reconstruction. Using the least squares method
with horizontal and vertical constraints, Yao et al. (2016) ob-
tained an RMSE of 1.23 g m−3 by maximally using GPS ob-
servations and an RMSE of 1.60 g m−3 without the operation.
Zhao et al. (2017) achieved an RMSE of 1.19 and 1.61 g m−3

considering the signal rays crossing from the side of the re-
search area and an RMSE of 1.79 g m−3 without this con-
sideration. Yao et al. (2017) achieved an RMSE from 1.48 to
1.80 g m−3 using different voxel division approaches. Ding et
al. (2017) obtained an RMSE of 1.23 g m−3 by utilizing the
new parametric methods based on inverse-distance-weighted
(IDW) interpolation and an RMSE of 1.45 g m−3 using the
traditional methods, respectively. Note that the RMSE val-
ues calculated in the above experiments are based on the
radiosonde data. Therefore, the total RMSE of 1.43 g m−3

for the two time periods in this paper can be considered to
be in good agreement with the radiosonde data regardless
of the weather conditions. Moreover, many different settings
are applied in tomographic experiments by different groups,
such as the selection of tomographic boundary, differences in
experimental period and weather conditions, division rule of
horizontal and vertical voxel, and addition of other observa-
tions.

To explore the overall accuracy of water vapour density
reconstructed by the GA tomography, the linear regression
analysis and box plot were adopted for different weather
conditions. Figure 10 shows the linear regression of the wa-
ter vapour density for rainy days (Fig. 10a), rainless days
(Fig. 10b) and their combination (Fig. 10c), in which the
scatter points of three graphs are close to the 1 : 1 lines. In
comparison with the coefficients of regression equations, the
results from rainless days are slightly better than those of
rainy days. When combining the data of two periods, the
starting point of the regression equation is 0.5631 and the
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Figure 10. Linear regression of the water vapour density from radiosonde and tomography based on the genetic algorithm. Panels (a), (b)
and (c) represent rainy days, rainless days and their combination, respectively.

Table 2. RMSE and MAE of the water vapour density comparison between radiosonde and tomography based on the genetic algorithm for
different weather conditions (g m−3).

Weather Date RMSE MAE

condition 00:00 UTC 12:00 UTC 00:00 UTC 12:00 UTC

Rainy days 12 June 1.54 1.68 1.27 1.43
13 June 1.20 1.57 1.81 1.39
14 June 1.37 1.79 0.85 1.56
15 June 1.63 1.38 1.41 1.27
16 June 1.77 1.48 1.56 1.31
17 June 1.49 1.33 1.55 1.18
18 June 1.52 1.38 1.34 1.22
Average 1.51 1.29

Rainless days 13 August 1.44 1.35 1.14 0.93
14 August 1.46 1.25 1.18 1.05
15 August 1.54 1.27 1.26 0.83
16 August 1.29 1.14 1.03 0.89
17 August 1.38 1.39 1.09 1.24
18 August 1.46 1.26 1.19 1.06
19 August 1.23 1.40 1.03 1.19
Average 1.35 1.08

Total 1.43 1.19
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Figure 11. Box plots of the WVD residuals, which are computed
between the GA tomographic approach and radiosondes.

slope is 0.9468; water vapour density can be achieved with
high accuracy by tomography based on the GA. The corre-
sponding box plots are shown in Fig. 11. It can be noted that
the WVD residuals are concentrated in the range of −2 to
2 mm, and the rainless scenario is better than the rainy sce-
nario. The Q1 /Q3 values are −1.28/1.08, −1.20/0.65 and
−1.24/0.87 mm for rainy days, rainless days and their com-
bination, respectively. The upper and lower boundaries are
located near 4 and −4 mm. No outlier is present in this box
plots, probably due to few WVD residuals.

3.6 Comparison with tomographic results of the least
squares method

The least squares method is most commonly used in wa-
ter vapour tomography, and numerous experiments prove
that water vapour density with high accuracy can be ob-
tained with this method (Flores, et al., 2000; Zhang et al.,
2017; Zhao et at., 2017). To verify the accuracy of the ge-
netic algorithm, we compared the tomographic results be-
tween the genetic algorithm and the least squares method
in this section. The specific process and introduction to the
least squares method can be found in detail in Flores et
al. (2000), Guo et al. (2016) and Yang et al. (2018). Fig-
ure 12 shows the three-dimensional distribution of water
vapour density derived from tomography based on the GA
and the least squares method. The water vapour computed by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) data, which provides various meteorological pa-
rameters at different pressure levels with a spatial resolution
of 0.125◦× 0.125◦, is displayed in the figure as a reference.
Here both the GA and the least squares method give a reason-
able tomographic result. In certain voxels, the GA achieves
the closer results to the ECMWF data, whereas for other vox-
els, the least squares method performs better. Both methods

Table 3. Statistical results of the GA and the least squares method
comparison; ECMWF data are shown as a reference (g m−3).

GA method Least squares
method

RMSE MAE RMSE MAE

Rainy scenario 1.84 1.42 1.94 1.47
Rainless scenario 1.71 1.39 1.79 1.37
Average 1.78 1.41 1.87 1.42

(the GA and the least squares) generally have a good con-
sistency with ECMWF data regardless of the weather condi-
tions, and they can accurately describe the spatial distribu-
tion of water vapour. Additionally, a larger variation of water
vapour with altitude occurs in a rainy scenario than in a rain-
less scenario, especially in the upper atmosphere, which is
well captured by the GA and the least squares method. Nu-
merical results including RMSE and MAE during the whole
experimental period are listed in Table 3 to show the com-
parison of the GA and the least squares method, in which the
water vapour density derived from ECMWF data is regarded
as the true value. It indicates that the result of the GA is a
little better than that of the least squares method.

To further analyse the tomographic results of the GA
and the least squares method, regression and boxplot anal-
yses are conducted and displayed in Fig. 13, which cov-
ers all solutions, each of them containing 560 voxel re-
sults. In Fig. 13a, a good linear regression relationship is
shown by the distribution of scatter points and the straight
line of regression. Specifically, the starting points of the re-
gression equation and the slope are 0.5198 and 0.9401, re-
spectively. The right panel shows the distribution of differ-
ences between the two types of tomographic results. The
Q1 and Q3 are −0.84 and 0.60 g m−3, respectively, which
means that more than 50 % of the differences between the
two methods are within 1 g m−3. The upper and lower bounds
are 2.75 and −2.98 g m−3, respectively, and outliers only
account for 3.11 %. Consequently, the tomographic results
based on the GA are in agreement with those of the least
squares method for this experiment. A reliable tomographic
result can be achieved by the GA without being restricted by
constraint equations and matrix inversion like the traditional
least squares method.

Moreover, a detailed comparison between GA and the
least squares method is conducted using the voxels above
the radiosonde station. Figure 14 shows the changes in wa-
ter vapour density derived from GA and the least squares
method with altitudes in different days (rainless days), in
which the radiosonde data and ECMWF data are considered
reference data. All the profiles derived from the two methods
decrease with increasing height and show good consistency
with the reference data. The statistical values are computed
and listed in Table 4 to illustrate the comparison of GA and
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Figure 12. The three-dimensional distribution of water vapour density derived from ECMWF data, the GA method and the least squares
method (upper for rainless scenario and lower for rainy scenario).

Figure 13. Regression (a) and boxplot (b) for tomographic results (WVD) of the GA and the least squares method.
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Figure 14. Water vapour density comparisons between GA and the least squares method in the selected voxels at 00:00 and 12:00 UTC from
13 to 19 August 2017 (rainless days); radiosonde and ECMWF data are used as reference.

the least squares method. The RMSE and MAE indicate that
both the GA and the least squares method can achieve good
tomographic results compared with the reference values (ra-
diosonde and ECMWF data) whether in the rainy or rainless
scenario. The GA which has an average RMSE /MAE of
1.43/1.19 and 1.30/1.05 g m−3 compared with radiosonde
and ECMWF data, respectively, performs slightly better than
the least squares method, of which the average RMSE /MAE
are 1.49/1.23 and 1.36/1.12 g m−3.

3.7 Analysis of results in different weather conditions

In our experiments, the comparisons under various weather
conditions illustrate that the tomographic result of rainless
scenarios was better than rainy scenarios, which is also con-
cluded in other studies (Yao et al., 2016; Zhao et al., 2017;
Ding et al., 2017). This result is because the spatial struc-
ture of atmospheric water vapour is relatively stable in rain-
less weather, whereas its spatial distribution changes faster
in rainy weather. Thus, certain limitations are imposed on to-
mography to obtain accurate water vapour during unstable
weather conditions. Additionally, all the water vapour densi-

ties along the radiosonde path were collected during the ex-
periments. Their changes with altitude are shown in Fig. 15,
in which the rainy and rainless weather are represented by
blue and red dots, respectively. The situation of 8–12 km is
magnified to show the water vapour information outside the
tomographic region. In the figure, the larger value of WVD
can be observed above 8 km in rainy days compared with that
of rainless days. For the rainless situation, the value of WVD
within 8–12 km is small and near to zero. By contrast, the
value is basically not close to zero in the rainy situation, espe-
cially in the range of 8–10 km, which is substantially greater
than 0.5 g m−3. Referring to the selection of the tomographic
heights in other articles, considering the long-term statistics
of water vapour in Hong Kong, and taking into account the
drawbacks of the excessive number of tomographic voxels,
we selected 8 km as the top boundary of the research area in
this paper, which ignores the water vapour information above
8 km in our tomographic model. Obviously, it has limited in-
fluence on the accuracy of the tomographic result in rainless
weather condition. For the rainy weather condition, the ef-
fect could be slightly larger, which is one reason why the
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Table 4. Statistical results of the GA and the least squares method using radiosonde and ECMWF data as reference in the selected voxels
(g m−3).

Data comparison Rainy days Rainless days Average

RMSE MAE RMSE MAE RMSE MAE

Radiosonde vs. GA 1.51 1.29 1.35 1.08 1.43 1.19
Radiosonde vs. least squares method 1.58 1.34 1.40 1.16 1.49 1.25
ECMWF vs. GA 1.35 1.12 1.25 0.97 1.30 1.05
ECMWF vs. least squares method 1.43 1.20 1.29 1.03 1.36 1.12

Figure 15. Changes in water vapour density with altitude in dif-
ferent weather conditions; data are from radiosonde measurements
(blue for rainy days from 12 to 18 June 2017 and red for rainless
days from 13 to 19 August 2017).

tomographic results of rainy days were worse than those of
rainless days in our experiments.

4 Conclusions

In this paper, a new tomography approach based on the
genetic algorithm was proposed to reconstruct a three-
dimensional water vapour field in Hong Kong under rainy
and rainless weather conditions. The inversion problem was
transformed into an optimization problem that no longer de-
pends on excessive constraints, a priori information or exter-
nal data. Thus, many problems do not need to be considered,
including the difficulty of inverting the sparse matrix, the
limitation and irrationality of constraints, the weakening of
tomographic technique by prior information, and the restric-
tion of obtaining external data. Based on the fitness function
established by the tomographic equation, the water vapour
tomographic solution could be achieved by the genetic algo-

rithm through the process of selection, crossover and muta-
tion.

Our new approach is validated by tomographic experi-
ments using GPS data collected over Hong Kong from 12
to 18 June (rainy days) and 13 to 19 August 2017 (rain-
less days). The problem of matrix ill condition was dis-
cussed and analysed by the grayscale graph and condition
number. In a comparison of the SWV residuals, internal and
external accuracy testing were used for the GA tomogra-
phy. The internal accuracy testing refers to computing the
differences between the tomography-computed SWV and
GAMIT-estimated SWV for the 13 GPS stations used in the
tomographic modelling, whereas the external accuracy test-
ing denotes the differences for the KYC1 station which is not
included in the tomographic modelling. The RMSE /MAE
of SWV residuals are 1.52/0.94 and 10.07/8.44 mm for the
internal and external accuracy testing, respectively. Thus, a
good tomographic result is achieved. In addition, the water
vapour density of the proposed method agreed with that of
radiosonde. The RMSE and MAE are 1.43 and 1.19 g m−3,
whereas the starting point and the slope of the regression
equation are 0.5631 and 0.9468, respectively. ECMWF data
are utilized to display the three-dimensional distribution of
tomographic results. The least squares method is selected as
the representative of the traditional tomographic method to
compare with the GA. A good consistency is demonstrated in
terms of RMSE, MAE, linear regression and boxplot. Thus, a
reliable tomographic result can be achieved by the GA with-
out being restricted by constraint equations and matrix in-
version like the traditional least squares method. Moreover,
the comparison under various weather conditions illustrated
that the tomographic result of the rainless scenario was bet-
ter than that of the rainy scenario, and the reasons were dis-
cussed. In a future study, the tomography approach based on
the genetic algorithm, which is not dependent on constraints,
a priori data and external data, could provide potential in-
terest for the establishment of a real-time or near-real-time
water vapour tomographic system.
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Data availability. The GNSS observations and the relative meteo-
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