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Abstract. Polar stratospheric clouds (PSCs) play a key role
in polar ozone depletion in the stratosphere. Improved obser-
vations and continuous monitoring of PSCs can help to val-
idate and improve chemistry–climate models that are used
to predict the evolution of the polar ozone hole. In this pa-
per, we explore the potential of applying machine learning
(ML) methods to classify PSC observations of infrared limb
sounders. Two datasets were considered in this study. The
first dataset is a collection of infrared spectra captured in
Northern Hemisphere winter 2006/2007 and Southern Hemi-
sphere winter 2009 by the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS) instrument on board
the European Space Agency’s (ESA) Envisat satellite. The
second dataset is the cloud scenario database (CSDB) of sim-
ulated MIPAS spectra. We first performed an initial analysis
to assess the basic characteristics of the CSDB and to decide
which features to extract from it. Here, we focused on an
approach using brightness temperature differences (BTDs).
From both the measured and the simulated infrared spectra,
more than 10 000 BTD features were generated. Next, we
assessed the use of ML methods for the reduction of the di-
mensionality of this large feature space using principal com-
ponent analysis (PCA) and kernel principal component anal-
ysis (KPCA) followed by a classification with the support
vector machine (SVM). The random forest (RF) technique,
which embeds the feature selection step, has also been used
as a classifier. All methods were found to be suitable to re-
trieve information on the composition of PSCs. Of these, RF
seems to be the most promising method, being less prone to

overfitting and producing results that agree well with estab-
lished results based on conventional classification methods.

1 Introduction

Polar stratospheric clouds (PSCs) typically form in the po-
lar winter stratosphere between 15 and 30 km of altitude.
PSCs can be observed only at high latitudes, as they ex-
ist only at very low temperatures (T < 195K) found in the
polar vortices. PSCs are known to play an important role
in ozone depletion caused by heterogeneous reactions un-
der cold conditions, while denitrification of the stratosphere
extends the ozone destruction cycles into springtime, as the
absence of NOy limits the deactivation process of the reac-
tive ozone-destroying substances (Solomon, 1999; Salawitch
et al., 1993). The presence of man-made chlorofluorocarbons
(CFCs) in the stratosphere, which have been used for ex-
ample in industrial compounds present in refrigerants, sol-
vents, blowing agents for plastic foam, affects ozone deple-
tion. CFCs are inert compounds in the troposphere but get
transformed under stratospheric conditions to the chlorine
reservoir gases HCl and ClONO2. PSC particles are involved
in the release of chlorine from the reservoirs.

The main constituents of PSCs are three, i.e., nitric acid
trihydrate (NAT), supercooled ternary solution (STS), and
ice (Lowe and MacKenzie, 2008). Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) measurements
have been used to study PSC processes (Arnone et al., 2012;
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Khosrawi et al., 2018; Tritscher et al., 2019). The infrared
spectra acquired by MIPAS are rather sensitive to optically
thin clouds due to the limb observation geometry. This is par-
ticularly interesting for NAT and STS PSCs, as ice PSCs are
in general optically thicker than NAT and STS (Fromm et al.,
2003). As ice clouds form at a lower temperature than NAT
and STS, they are mainly present in the Antarctic, while their
presence in the Arctic (where the stratospheric temperature
minimum in polar winter is higher) is only notable for ex-
tremely cold winter conditions (e.g., Campbell and Sassen,
2008; Pawson et al., 1995).

Besides using MIPAS measurements, classification has
been carried out with different schemes based on the opti-
cal properties of PSCs by lidar measurements. A review of
those methods is available in Achtert and Tesche (2014).
Classification schemes are based on two features, namely
the backscatter ratio and the depolarization ratio. As exposed
in Biele et al. (2001), particles with large backscatter ratio
and depolarization are likely to be composed of ice (type II).
Type I particles are characterized by a low backscatter ra-
tio. The subtype Ia particles show a large depolarization and
are composed of NAT, whereas subtype Ib particles have low
depolarization and consist of STS. The threshold to classify
the PSC types varies among different works such as Browell
et al. (1990), Toon et al. (1990), Adriani (2004), Pitts et al.
(2009), and Pitts et al. (2011). The nomenclature presented
above is a simplification of real case scenarios, since PSCs
can occur also with mixtures of particles with different com-
position (Pitts et al., 2009). Other methods that are used to
measure PSCs are in situ optical and nonoptical measure-
ments from balloon or aircraft as well as microwave obser-
vations (Buontempo et al., 2009; Molleker et al., 2014; Voigt,
2000; Lambert et al., 2012).

The use of machine learning (ML) algorithms increased
dramatically during the last decade. ML can offer valuable
tools to deal with a variety of problems. In this paper, we used
ML methods for two different tasks: first, for the selection of
informative features from the simulated MIPAS spectra; sec-
ond, to classify the MIPAS spectra depending on the compo-
sition of the PSC. In this work we significantly extended the
application of ML methods for the analysis of MIPAS PSC
observations. Standard methods that exploit infrared limb ob-
servation to classify PSCs are based on empirical approaches.
Given physical knowledge of the properties of the PSC, some
features have been extracted from the spectra, for example
the ratio of the radiances between specific spectral windows.
These approaches have been proven to be capable of detect-
ing and discriminating between different PSC classes (Spang
et al., 2004; Höpfner et al., 2006).

The purpose of this study is to explore the use of ML meth-
ods to improve the PSC classification for infrared limb satel-
lite measurements and to potentially gain more knowledge
on the impact of the different PSC classes on the spectra. We
compare results from the most advanced empirical method,
the Bayesian classifier of Spang et al. (2016), with three au-

tomatic approaches. The first one relies on principal compo-
nent analysis (PCA) and kernel principal component analy-
sis (KPCA) for feature extraction, followed by classification
with the support vector machine (SVM). The second one is
similar to the first, but uses kernel principal component anal-
ysis (KPCA) for feature extraction instead of PCA. The third
one is based on the random forest (RF), a classifier that di-
rectly embeds a feature selection (Cortes and Vapnik, 1995;
Breiman, 2001; Jolliffe and Cadima, 2016). A common prob-
lem of ML is the lack of annotated data. To overcome this
limitation, we used a synthetic dataset for training and test-
ing, the cloud scenario database (CSDB), especially devel-
oped for MIPAS cloud and PSC analyses (Spang et al., 2012).
As a ground truth for PSC classification is largely missing,
we evaluate the ML results by comparing them with results
from existing methods and show that they are consistent with
established scientific knowledge.

In Sect. 2, we introduce the MIPAS and synthetic CSDB
datasets. A brief description of the ML methods used for fea-
ture reduction and classification is provided in Sect. 3. In
Sect. 4, we compare results of PCA+SVM, KPCA+SVM,
and RF for feature selection and classification. We present
three case studies and statistical analyses for the 2006/2007
Arctic and 2009 Antarctic winter season. The final discussion
and conclusions are given in Sect. 5.

2 Data

2.1 MIPAS

The MIPAS instrument (Fischer et al., 2008) was an infrared
limb emission spectrometer on board the European Space
Agency’s (ESA) Envisat satellite to study the thermal emis-
sion of the Earth’s atmosphere constituents. Envisat operated
from July 2002 to April 2012 in a polar low Earth orbit with
a repeat cycle of 35 d. MIPAS measured up to 87◦ S and
89◦ N latitude and therefore provided nearly global coverage
at day- and nighttime. The number of orbits of the satellite
per day was equal to 14.3, resulting in a total of about 1000
limb scans per day.

The wavelength range covered by the MIPAS interferom-
eter was about 4 to 15 µm. From the beginning of the mis-
sion to spring 2004, the instrument operated in the full reso-
lution (FR) mode (0.025 cm−1 spectral sampling). Later on,
this has to be changed to the optimized resolution (OR) mode
(0.0625 cm−1) due to a technical problem of the interferom-
eter (Raspollini et al., 2006, 2013). The FR measurements
were taken with a constant 3 km vertical and 550 km hori-
zontal spacing, while for the OR measurements the vertical
sampling depended on altitude, varying from 1.5 to 4.5 km,
and a horizontal spacing of 420 km was achieved. The al-
titude range of the FR and OR measurements varied from
5–70 km at the poles to 12–77 km at the Equator.
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Table 1. Infrared spectral regions considered for PSC classification.

Spectral region Index range Wavenumber range
(cm−1)

R1 0–57 782–840
R2 58–83 940–965
R3 84–98 1224–1250
R4 99–106 1404–1412
R5 107–112 1930–1935
R6 113–125 1972–1985
R7 126–130 2001–2006
R8 131–136 2140–2146
W1 137 788.2–796.2
W2 138 832–834.4
W3 139 819–821
W4 140 832.3–834.4
W5 141 947.5–950

For our analyses, we used MIPAS Level 1B data (ver-
sion 7.11) acquired at 15–30 km of altitude between May
and September 2009 at 60–90◦ S and between November
2006 and February 2007 at 60–90◦ N. The 2009 South-
ern Hemisphere winter presents a slightly higher than av-
erage PSC activity, especially for ice in June and August.
The 2006/2007 Northern Hemisphere winter is characterized
by a large area covered by NAT, with an exception made
for early January, and some ice is present in late Decem-
ber (this analysis was obtained from NASA Ozone Watch
from their website at https://ozonewatch.gsfc.nasa.gov, last
access: 20 April 2020). The high-resolution MIPAS spec-
tra were averaged to obtain 136 spectral windows of 1 cm−1

width, because PSC particles are expected to typically cause
only broader-scale features. The 1 cm−1 window data used
in this study comprise the eight spectral regions reported in
Table 1. In addition to these, five windows (W1–W5) larger
than 1 cm−1 have been considered, as used in the study of
Spang et al. (2016).

From the 1 cm−1 windows and the five additional larger
windows, more than 10 000 brightness temperature differ-
ences (BTDs) were extracted using a two-step preprocessing.
At first, the infrared spectra were converted from radiance
intensities to brightness temperatures (BTs). This approach
is considered helpful, as variations in the signals are more
linear in BT compared to radiances. Then, the BTDs were
computed by subtracting the BT of each window with re-
spect to the remaining ones. The main motivation for using
BTDs rather than BTs for classification is to try to remove
background signals from interfering instrument effects such
as radiometric offsets.

Other wavelength ranges covered by MIPAS have been
excluded here as they are mainly sensitive to the presence
of trace gases. The interference of cloud and trace gas emis-
sions makes it more difficult to analyze the effects of the PSC
particles (Spang et al., 2016). As an example, Fig. 1 shows

Figure 1. MIPAS measurements in Southern Hemisphere polar
winter at three tangent altitudes from the same profile showing
clear-air (light blue), optically thin (blue), and optically thick (dark
blue) conditions. The gray bars indicate the wavenumber regions
considered for PSC classification in this study.

Table 2. PSC constituents, particle concentrations, and sizes cov-
ered by the CSDB.

PSC Volume density Median radius
constituents (µm3 cm−3) (µm)

ice 10, 50, 100 1.0, 2.0, 3.0, 4.0, 5.0, 10.0
NAT 0.1, 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
STS 0.1, 0.5, 1.0, 5.0, 10.0 0.1, 0.5, 1.0

MIPAS spectra of PSC observations acquired in late August
2009 in Southern Hemisphere polar winter conditions, with
the spectral regions used for PSC detection and classification
being highlighted.

2.2 Cloud scenario database

A synthetic dataset consisting of simulated radiances for the
MIPAS instrument provides the training and testing data for
this study. The CSDB was generated by considering more
than 70 000 different cloud scenarios (Spang et al., 2012).
The CSDB spectra were generated using the Karlsruhe Opti-
mized and Precise Radiative Transfer Algorithm (KOPRA)
model (Stiller et al., 1998). Limb spectra were simulated
from 12 to 30 km tangent height, with 1 km vertical spacing.
Cloud top heights were varied between 12.5 and 28.5 km,
with 0.5 km vertical spacing. The cloud vertical extent varies
between 0.5, 1, 2, 4, and 8 km. The spectral features selected
from the CSDB are the same as those for MIPAS (Sect. 2.1,
Fig. 1).

As described in Spang et al. (2016), the CSDB was calcu-
lated with typical particle radii and volume densities of PSCs
(Table 2). Five different PSC compositions have been con-
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Figure 2. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x axis
represent the classes of the BC. The y axis indicates the fraction of the classes as predicted by the KPCA+SVM (a), PCA+SVM classifier
(b), and the RF classifier (c). N is the number of samples belonging to each class of the Bayesian classifier.

sidered: ice; NAT; STS with 2 % H2SO4, 48 % HNO3, and
50 % H2O (called later on STS 1); STS with 25 % H2SO4,
25 % HNO3, and 50 % H2O (STS 2); and STS with 48 %
H2SO4, 2 % HNO3, and 50 % H2O (STS 3). These values
are derived from the model by Carslaw et al. (1995) and
span over all possible compositions. The CSDB does not
give any representative frequency of real occurrences in the
atmosphere. For this study, we decided to split the set of
NAT spectra into two classes, large NAT (radius> 2µm) and
small NAT (radius<= 2µm). This decision was taken to as-
sess the capability of the classifiers to correctly separate be-
tween the two classes. It is well known that small NAT parti-
cles (radius<= 2µm) produce a specific spectral signature at
820 cm−1 (Spang and Remedios, 2003; Höpfner et al., 2006).
Spectra for large NAT particles are more prone to overlap
with those of ice and STS.

To prepare both the real MIPAS and the CSDB data for
PSC classification, we applied the cloud index (CI) method
of Spang et al. (2004) with a threshold of 4.5 to filter
out clear-air spectra. In optimal conditions a CI< 6 de-

tects clouds with extinction coefficients down to about 2×
10−5 km−1 in the midinfrared (Sembhi et al., 2012). How-
ever, in the polar winter regions these optimal conditions
do not persist over an entire winter season. Hence, we se-
lected a threshold of 4.5 that reliably discriminates clear air
from cloudy air in the Southern and Northern Hemisphere
polar winter regions as it is sensitive to extinctions down to
5× 10−4 km−1 (Griessbach et al., 2020).

3 Methods

3.1 Conventional classification methods

Spang et al. (2016) provide an overview on various conven-
tional methods used to classify Envisat MIPAS PSC observa-
tions. Furthermore, a Bayesian approach has been introduced
in their study to combine the results of individual classifica-
tion methods. This approach is used as a benchmark for the
new classifiers introduced in the present paper. The Bayesian
classifier considers a total of 13 features, including corre-
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Figure 3. (a) Flowchart of the training process and (b) prediction. “F.e.” stands for feature extraction.

lations between the cloud index (CI) (Spang et al., 2004),
the NAT index (NI) (Spang and Remedios, 2003; Höpfner
et al., 2006), and another five additional BTDs. Each feature
has been assigned individual probabilities pi,j in order to
discriminate between the different PSC composition classes.
The output of the Bayesian classifier is calculated according
to Pj =

∏
ipi,j/

∑
j

(∏
ipi,j

)
, where the indices i = 1, . . . ,

13 and j = 1, 2, 3 refer to the individual feature and the PSC
constituent, respectively. The normalized probabilities Pj per
PSC constituent are used for final classification applying the
maximum a posteriori principle. The BC composition classes
are the following: unknown, ice, NAT, STS_mix, ICE_NAT,
NAT_STS, and ICE_STS. A stepwise decision criterion is
applied to classify each spectrum. If the maximum of Pj
(with j = 1. . .3) is greater than 50%, then the spectrum is
assigned a single PSC composition label. If two Pj values
are between 40 % and 50 %, then a mixed composition class,
for example ICE_STS for j = 1 and j = 3, is attributed. If
the classification results in P1, P2, or P3 < 40%, then the
spectrum is labeled as “unknown”. Considering the South-
ern Hemisphere 2009 case, the NAT_STS mixed composi-
tion class is populated with more than 4000 spectra, while
ICE_STS and ICE_NAT predictions are negligible (Fig. 2).
The analysis of the complete MIPAS period (9 Southern
Hemisphere and 10 Northern Hemisphere winters in Spang
et al., 2018) showed that ICE_STS and ICE_NAT classes are
generally only in the subpercentage range and statistically
not relevant. The Bayesian classifier requires a priori infor-

mation and detailed expert knowledge on the selection of the
features to be used as discriminators and in assigning the in-
dividual probabilities pi,j for classification. In this work, we
aim at investigating automatic ML approaches instead of the
manual or empirical methods applied for the Bayesian clas-
sifier. Nevertheless, being carefully designed and evaluated,
the results of the Bayesian classifier are used for further ref-
erence and comparison in this study.

3.2 Feature extraction using PCA and KPCA

In a first step, we calculated BTDs from the 1 cm−1 down-
sampled radiances of the CSDB. Calculating the BTDs be-
tween the 142 spectral windows resulted in 10 011 BTDs
for a total of 70 000 spectra. In a second step, in order to
reduce the number of data, we applied a variance thresh-
old to exclude BTD features with relatively low variance
(σ 2 < 10K2), as this indicates that the corresponding win-
dows have rather similar information content. In order to fur-
ther reduce the difficulties and complexity of the classifica-
tion task, we decided to even further reduce the number of
BTD features before training of the classifiers by means of
feature extraction.

Feature selection methods are used for picking subsets of
an entire set of features while keeping the information con-
tent as high as possible. The methods help to reduce the
training time of the classifier and to reduce the risk of over-
fitting. Feature selection methods typically belong to three
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Figure 4. Variance of normalized BTDs (a) and feature importance
as estimated by the RF classifier (b). The BT index numbers on the
x and y axis correspond to the spectral regions as listed in Table 1.

main families (Bolón-Canedo et al., 2016): (i) filter methods,
where the importance of the feature is derived from intrinsic
characteristics of it; (ii) wrapper methods, where the features
are selected by optimizing the performances of a classifier;
and (iii) embedded methods, where classification and selec-
tion happen at the same time. Here, we used a more advanced
approach to dimensionality reduction, which goes under the
name of feature extraction. In this case, instead of simply se-
lecting a subset of the original features, the set of features it-
self is transformed to another space where the selection takes
place.

Principal component analysis (PCA) is among the most
popular feature extraction methods (Jolliffe and Cadima,
2016). The main idea of the PCA is to reproject the data to
a space where the features are ranked on the variance that
they account for. At first a centering of the data through the
subtraction of the mean is performed. Then, the covariance
matrix is calculated and its eigenvectors and eigenvalues are
computed. At this point, selecting the eigenvectors whose

Figure 5. Correlations of the first two principal components from
the PCA (a) and KPCA (b) analysis applied to the CSDB.

eigenvalues are largest, it is possible to pick the components
on which most of the variance of the data lays. PCA already
found applications in the analysis of atmospheric midinfrared
spectra, in particular for the compression of high-resolution
spectra and for accelerating radiative transfer calculations
(e.g., Huang and Antonelli, 2001; Dudhia et al., 2002; Fau-
vel et al., 2009; Estornell et al., 2013). PCA has been used in
this study for two main purposes, dimensionality reduction
and visualization of the data.

Kernel PCA (KPCA) is an extension of the PCA where the
original data x are first transformed using a mapping func-
tion φ(x) to a higher dimensional feature space. The main
advantage of using KPCA relies in the fact that it can capture
nonlinear patterns, which PCA, being a linear method, may
fail to represent well. However the construction of the kernel
matrix K for mapping can be expensive in terms of mem-
ory. This latter problem undermines severely the possibility
of using this algorithm for large datasets. At this point the
kernel trick comes into play (Schölkopf et al., 1997). It helps
to avoid the inconvenience of having to compute the covari-
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Figure 6. Real (a) and imaginary (b) part of PSC particle refractive
indices. The gray bars represent the eight spectral regions consid-
ered in this study.

ance matrix in a large transformed space. Instead of translat-
ing each data point to the transformed feature space using the
mapping function φ(x), the inner product can be calculated
asK(xi,xj )= φ(xi)φ(xj ), resulting in a much less demand-
ing computational task. Among the most common kernels are
the radial basis function (RBF) and the polynomial (Genton,
2002), which we also considered in this study.

3.3 Classification using support vector machines and
random forests

Supervised classification is a ML task in which the classes or
labels of unknown samples are predicted by making use of
a large dataset of samples with already known labels. In order
to do that, the classification algorithm first has to be trained;
i.e., it has to learn a map from the input data to its target val-
ues. After a classifier is trained, one can give it as input an
unlabeled set of data points with the aim of predicting the
labels. The training of a classifier is usually a computation-
ally demanding task. However, the classification of unknown

Figure 7. Prediction accuracy using subsets of the CSDB of differ-
ent size.

samples using an already trained classifier is computationally
cheap.

A large number of classifiers exist based on rather different
concepts. Bayesian classifiers follow a statistical approach.
Support vector machines (SVMs) are based on geometrical
properties. Random forests (RF) are based on the construc-
tion of multiple decision trees. Neural networks try to emu-
late the behavior of the human brain by stacking a number
of layers composed of artificial neurons (Zeiler and Fergus,
2014). According to the “no free lunch” theorem, it is not
possible to state safely which algorithm is expected to per-
form best for any problem (Wolpert, 1996). In this study, we
selected two well-established methods, RFs and SVMs, to
test their performance.

Random forest is an algorithm that learns a classification
model by building a set of decision trees. A decision tree is
composed of decision nodes, which lead to further branches
and leaf nodes, which finally represent classification results.
RFs are nonparametric models that do not assume any un-
derlying distribution in the data (Breiman, 2001). RF builds
a number of decision trees selecting a random subset of the
original features for each tree. In this way the model becomes
more robust against overfitting. The classification result of
the RF model will be the label of the class that has been voted
for by the majority of decision trees (Liu et al., 2012). An in-
teresting characteristic of the RF classifier is that it can give
by calculating the Gini index (Ceriani and Verme, 2012) also
a measure of the feature importance. In this way, the RF clas-
sifier can also be exploited for performing feature selection.

The performance of a RF classification model depends on
a number of hyperparameters, which must be defined before
training. (i) The “number of estimators” or decision trees of
the forest needs to be defined. (ii) A random subset of the
features is selected by each decision tree to split a node. The
dimension of the subset is controlled by the hyperparameter
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Figure 8. MIPAS observations of PSCs on 14 June 2009 in the Southern Hemisphere at tangent altitudes between 18 and 22 km. The
classification was performed with (a) the Bayesian classifier, (b) the SVM based on PCA features, (c) the SVM based on KPCA features,
and (d) the RF classifier.

“maximum number of features”. (iii) The “maximum depth”,
i.e., the maximum number of levels in each decision tree,
controls the complexity of the decision trees. In fact, the
deeper a decision tree is, the more splits can take place in
it. (iv) The “minimum number of samples before split” that
has to be present in a node before it can be split also needs
to be defined. (v) A node without a further split has to con-
tain a “minimum number of samples per leaf” to exist. (vi)
Finally, we have to decide whether to use “bootstrapping”
or not. Bootstrapping is a method used to select a subset of
the available data points, introducing further randomness to
increase robustness (Probst et al., 2019).

SVMs became popular around the 1990s (Cortes and Vap-
nik, 1995). The method is based on the idea of identifying
hyperplanes, which best separate sets of data points into two
classes. In particular, SVM aims at maximizing the margin,
which is the distance between few points of the data, referred
to as “support vectors”, and the hyperplane that separates the
two classes. The “soft margin” optimization technique takes
into account the fact that misclassification can occur due to
outliers. For that reason a tuning parameter C is included
in order to allow for the presence of misclassified samples
during the optimization of the margin to a given extent. The
choice of the parameter C is a trade-off between minimizing

the error on the training data and finding a hyperplane that
may generalize better (Brereton and Lloyd, 2010).

SVM had been originally developed to find linear deci-
sion boundaries. However, the introduction of the kernel trick
(cf., Sect. 3.2) enables the possibility for nonlinear decision
boundaries. Kernel functions, e.g., radial basis functions or
polynomials, are mapping from the original space to a non-
linearly transformed space, where the linear SVM is applied
(Patle and Chouhan, 2013). In the case of a nonlinear kernel,
the parameter γ is used to define how much a support vec-
tor has influence on deciding the class of a sample. A small
value of γ implies that this support vector also has impact on
samples far in the feature space, and a large value of γ has an
influence only on samples that are close in the feature space.

We recap in Fig. 3 the entire pipeline for training and
prediction. The BTDs extracted from the CSDB dataset are
given as input to the PCA or KPCA methods, and the ex-
tracted features are fed to the SVM classifier for model train-
ing (PCA+SVM and KPCA+SVM). On the other hand, the
RF classifier is given as input BTDs directly, without prior
feature extraction. The input samples (BTDs) are annotated
with a label as explained in Sect. 2.2. In prediction (Fig. 3b),
the BTDs extracted from the MIPAS measurements are the
input to the three methods PCA+SVM, KPCA+SVM, and
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Figure 9. Same as Fig. 8 but for 26 August 2009.

RF, where the outputs are the predicted label for each sam-
ple. The RF classifier provides a feature importance measure
as well. During prediction, the sample is assigned to one of
the following classes representing the main constituent: ice,
small NAT, large NAT, STS 1, STS 2, and STS 3. Compared
to the NAT class of the Bayesian classifier, in the proposed
ML methods NAT particles are assigned to small and large
NAT subclasses. The STS_mix class of the BC overlaps with
STS 1, STS 2, and STS 3. There are no directly correspond-
ing classes to the mixed composition ones of the BC. As dis-
cussed above in the text, only a few spectra are classified by
the BC as ICE_STS or ICE_NAT. Samples belonging to the
NAT_STS class of the BC, characterized by a non-negligible
population, are labeled by the new ML classes mostly as STS
1 (Fig. 2).

4 Results

4.1 Feature extraction

In this study, we applied PCA and KPCA for feature extrac-
tion from a large set of BTDs. Both PCA and KPCA are re-
projecting the original BTD features to a new space, where
the eigenvectors are ordered in such a way that they max-
imize variance contributions of the data. Figure 4a shows

a matrix of the normalized variances of the individual BTDs
considered here. The matrices in Fig. 4 are symmetric; thus
the reader can either focus on the location (i.e., the indices
of the BTs from which the BTD feature has been computed)
of the maximum values in the upper or lower triangular part.
A closer inspection shows that the largest variances originate
from BTDs in the range from 820 to 840 cm−1 (indicated
as spectral region R1 in Table 1) and 956 to 964 cm−1 (R2).
BTDs close to 790 cm−1 (R1, BT index∼ 10) also show high
variance. Another region with high variances originates from
BTDs between 820 and 840 cm−1 (part of R1) and between
1404 and 1412 cm−1 (R4) as well as between 1930 and 1935
cm−1 (R5). Around 820, 1408, and 1930 cm−1 the imagi-
nary part (absorption contribution) of the complex refractive
index of NAT has pronounced features (Höpfner et al., 2006),
whereas around 960 cm−1 the real part (scattering contribu-
tion) of the complex refractive index of ice has a pronounced
minimum (e.g., Griessbach et al., 2016). Even though in our
work the ML classifiers are given BTDs (computed from ra-
diance) as input and refractive indices are not directly used
in the classification process, the latter can provide insights on
microphysical properties of the different PSC particles and
additional information on the features used by the ML meth-
ods.
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Table 3. Top ten list of BTDs providing maximum feature impor-
tance as estimated by the RF classifier.

Feature BTD BTD wave-
importance indices numbers (cm−1)

0.006815 85–105 1225.5–1410.5
0.005798 61–83 942.5–964.5
0.004334 57–76 839.5–957.5
0.003233 37–56 819.5–838.5
0.002649 86–139 1226.5–820
0.002633 58–139 840.5–820
0.002272 40–87 822.5–1227.5
0.001677 26–139 808.5–820
0.001592 27–101 809.5–1406.5
0.001033 102–137 1407.5–792.2

The first and second principal components, which capture
most of the variance in the data, are shown in Fig. 5. Com-
paring PCA and KPCA, we note that they mostly differ in
terms of order and amplitude. This means that the eigenval-
ues change, but the eigenvectors are rather similar in the lin-
ear and nonlinear case. For this dataset, the nonlinear KPCA
method (using a polynomial kernel) does not seem to be very
sensitive to nonlinear patterns that are hidden to the linear
PCA method. However, it should be noted that the SVM clas-
sifier is sensitive to differences in scaling of the input features
as they result from the use of PCA and KPCA for feature se-
lection. Therefore, classification results of PCA+SVM and
KPCA+SVM can still be expected to differ and are tested
separately.

As discussed in Sect. 3.3, RF itself is considered to be an
effective tool not only for classification but also for feature
selection. It is capable of finding nonlinear decision bound-
aries to separate between the classes. However, the method
does not group the features together in components like PCA
or KPCA. It is rather delivering a measure of importance of
all of the individual features. Figure 4b shows the feature im-
portance matrix provided by the RF. Note that the values are
normalized; i.e., the feature importance values of the upper
triangular matrix sum up to 1. We can observe that this ap-
proach highlights clusters similar to Fig. 4a.

Similarly to PCA and KPCA, BTDs between windows
in the range from 820 to 840 cm−1 (R1) and from 956 to
964 cm−1 (R2) are considered to be important by the RF al-
gorithm. BTDs between 1224 and 1250 cm−1 (R3) and be-
tween 1404 and 1412 cm−1 (R4) are also regarded as im-
portant. The importance of the RF features located in this
cluster is in contrast with the relatively low BTD variance
in the same area. A similar observation can be done regard-
ing BTDs between 782 and 800 cm−1 and between 810 and
820 cm−1 (both belonging to R1). This region is in the range
of values of the NAT feature, providing a possible expla-
nation of the capability of the RF to detect the characteris-
tic peak of small NAT as well as its shift with the increase

in the radius. BTDs between 960 cm−1 (R2) and 1404 to
1412 cm−1 (R4) are also quite important. Table 3 specifically
provides the most important BTDs between the different re-
gions. Actually, Fig. 6 shows that all the windows or BTDs
found here by the RF are associated with physical features of
the PSC spectra, namely a peak in the real and imaginary part
of the complex refractive index of NAT around 820 cm−1 or
a minimum in the real part of the complex refractive index of
ice around 960 cm−1. STS can be identified based on the ab-
sence of these features. Considering the larger windows W,
the matrices of the variance and of the RF feature importance
seem to agree, with the exception of W3 (∼ 820 cm−1) that
is regarded as important by the RF scheme but is not charac-
terized by high variance, confirming the capability of the RF
for detecting the NAT feature.

A closer inspection reveals an interesting difference be-
tween PCA and KPCA on the one hand and RF on the other
hand. Two additionally identified windows around ∼ 790
(BT index ∼ 10) and ∼ 1235 cm−1 (BT index ∼ 90) are lo-
cated at features in the imaginary part of the refractive index
of ice and NAT, respectively (Höpfner et al., 2006). This lat-
ter set of BTDs is considered to have a large feature impor-
tance by the RF method but does not show a particularly large
variance. This suggests that a supervised method like RF can
capture important features where unsupervised methods like
PCA and KPCA may fail.

4.2 Hyperparameter tuning and cross-validation
accuracy

Concerning classification, we compared two SVM-based
classifiers that take as input the features from PCA and
KPCA and the RF that uses the BTD features without prior
feature selection. The first step in applying the classifiers is
training and tuning of the hyperparameters. Cross validation
is a standard method to find optimal hyperparameters and to
validate a ML model (Kohavi, 1995). For cross validation
the dataset is split into a number of subsets, called folds. The
model is trained on all the folds, except for one, which is
used for testing. This procedure is repeated until the model
has been tested on all the folds. The cross-validation accu-
racy refers to the mean error of the classification results for
the testing datasets. Cross validation is considered essential
to avoid overfitting while training a ML model. Selecting the
best hyperparameters that maximize the cross-validation ac-
curacy of a ML model is of great importance to exploit the
models’ capabilities at a maximum.

In this study, we applied 5-fold cross validation on the
CSDB dataset. For the SVM models we decided to utilize
a grid-search approach to find the hyperparameters. As the
parameter space of the RF model is much larger, a random-
search approach was adopted (Bergstra and Bengio, 2012).
The test values and optimum values of the hyperparameters
for the SVM and RF classifiers are reported in Tables 4 and
5, respectively. For the optimum hyperparameter values, all

Atmos. Meas. Tech., 13, 3661–3682, 2020 https://doi.org/10.5194/amt-13-3661-2020



R. Sedona et al.: Machine learning methods for PSC classification 3671

Table 4. Hyperparameter choices considered for the SVM classifier.

Hyperparameter Test values Optimal value

Kernel linear, RBF, polynomial RBF
C 1, 10, 100, 1000 1000
γ 0.0001, 0.001, 0.01, 0.1, 1, 10 1 (PCA) / 10 (KPCA)

Table 5. Hyperparameter choices considered for the RF classifier.

Hyperparameter Test values Optimal value

Number of estimators 200, 210, . . . , 2000 1000
Maximum number of features auto, sqrt auto
Maximum depth 10, 20, . . . , 110 50
Minimum number of samples before split 2, 5, 10 2
Minimum number of samples per leaf 1, 2, 4 1
Bootstrapping true, false false

Table 6. Scores of the RF classifier on a small subset of CSDB
samples.

Class Precision Recall F1 score Support

Ice 1.00 1.00 1.00 56
NAT_large 1.00 0.91 0.95 23
NAT_small 1.00 1.00 1.00 33
STS_1 0.96 0.76 0.85 34
STS_2 0.78 0.97 0.86 33
STS_3 0.94 0.97 0.96 34
Total 0.95 0.94 0.94 210

classification methods provided an overall prediction accu-
racy close to 99 %. Also, our tests showed that the ML meth-
ods considered here for the PSC classification problem are
rather robust against changes in the hyperparameters.

During the training of the classifiers, we conducted two
experiments. In the first experiment, we checked how large
the amount of synthetic samples from the CSDB needs to be
in order to obtain good cross-validation accuracy. For this ex-
periment, we performed the training with subsets of the orig-
inal CSDB data, using randomly sampled fractions of 50 %,
20 %, 10 %, 5 %, 2 %, 1 %, 0.05 %, 0.02 %, 0.01 %, 0.005 %,
0.002 %, and 0.001 % of the full dataset. This experiment was
run for all three ML models (PCA+SVM, KPCA+SVM,
and RF) using the optimal hyperparameters found during the
cross-validation step. The results in Fig. 7 show that using
even substantially smaller datasets (> 0.02% of the original
data or about 1200 samples) would still result in acceptable
prediction accuracy (> 80%). This result is surprising and
points to a potential limitation of the CSDB for the purpose
of training ML models that will be discussed in more detail
in Sect. 5.

In the second experiment, we intentionally performed and
analyzed the training and testing of the RF method with
a rather small subset of data. Although the results from this
procedure are less robust, they can help pinpoint potential is-
sues that cannot be detected using the full dataset. We com-
puted different scores to assess the quality of the predic-
tion for the RF classifier in the case of 600 randomly se-
lected samples used for training and around 200 samples
used for testing. As shown in Table 6, also using a limited
number of samples for training leads to very high classifi-
cation accuracy. The metrics used in Table 6 are precision
P = TP/(TP+FP), recall R = TP/(TP+FN), and F1 score
F1= 2(R×P)/(R+P), where TP is the number of true pos-
itives, FP the number of false positives, FN the number of
false negatives, and support is the number of samples (Thar-
wat, 2018). As reported in Table 6, it is found that ice and
small NAT accuracies are higher than the ones of STS. This is
a hint to the fact that distinguishing small NAT and ice from
the other classes is an easier task than separating spectra of
PSCs containing larger NAT particles from those populated
with STS, which is consistent with previous studies (Höpfner
et al., 2009).

An additional experiment was performed on the CSDB
spectra labeled as large NAT. The BC misclassifies a large
amount of those spectra (99 % of them classified as
STS_mix), whereas the proposed ML methods correctly
classify them as large NAT (Table 7). This experiment sug-
gests that the new classification schemes can help in over-
coming the inability of the BC in discriminating between
large NAT and STS.
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Table 7. Predicted labels vs. CSDB classes, with analysis restricted to NAT large (radius >2 µm).

NAT large, CSDB

BC class Pred. by BC Proposed ML class Pred. by PCA+SVM Pred. by KPCA+SVM Pred. by RF

ICE 0 ICE 0 0 0
NAT 0.0012 NAT_small 0 0 0

NAT_large 1 1 1
STS_mix 0.9988 STS_1 0 0 0

STS_2 0 0 0
STS_3 0 0 0

NAT \ STS 0
ICE \ NAT 0
ICE \ STS 0

Figure 10. Same as Fig. 8 but for 25 January 2007 and the Northern Hemisphere.

4.3 Classification using real MIPAS data

4.3.1 Case studies

For three case studies looking at individual days of MIPAS
observations, two in the Southern Hemisphere and one in the
Northern Hemisphere winter season, we compared the results
of the different classification methods (Figs. 8 to 10). Early
in the Southern Hemisphere PSC season, on 14 June 2009

(Fig. 8), we found that the classification results are mostly co-
herent among all the classifiers, not only from a quantitative
point of view but also geographically, especially concern-
ing the separation of ice and STS PSCs. Further, we found
that most of the PSCs, which were labeled as NAT by the
Bayesian classifier, were classified as STS by the ML clas-
sification methods. While both SVM classification schemes
did not indicate the presence of NAT, the RF found some
NAT, but mostly at different places than the Bayesian classi-
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Figure 11. Area covered by STS clouds from May to September 2009 in the Southern Hemisphere based on results of (a) the Bayesian
classifier, (b) the PCA+SVM classifier, (c) the KPCA+SVM classifier, and (d) the RF classifier. The bins span a length of 1 d in time and
1 km in altitude. A horizontal (3 d) and vertical (3 km) moving average has been applied for the sake of a smoother representation.

fier. Note that from a climatological point of view, NAT PSCs
are not expected to be the dominant PSC type until the mid-
dle to end of June for the Southern Hemisphere (Pitts et al.,
2018).

Later in the Southern Hemisphere PSC season, on 26 Au-
gust 2009 (Fig. 9), it is again found that the separation be-
tween ice and nonice PSCs is largely consistent for all the
classifiers. The NAT predictions by the RF classifier tend to
agree better with the Bayesian classifier than the NAT clas-
sifications by the SVM method. Overall, the Southern Hemi-
sphere case studies seem to suggest that the SVM classifiers
(using PCA or KPCA) underestimate the presence of NAT
PSCs compared to the BC and the RF classifiers. We note
that separating the NAT and STS classes from limb infrared
spectra presents some difficulties.

As a third case study, we analyzed classification results
for 25 January 2007 for the Northern Hemisphere (Fig. 10).
This case was already analyzed to some extent by Hoffmann
et al. (2017). It is considered to be particularly interesting, as
ice PSCs have been detected over Scandinavia at synoptic-

scale temperatures well above the frost point. Hoffmann et al.
(2017) provided evidence that the PSC formation in this case
was triggered by orographic gravity waves over the Scandi-
navian Mountains. Also in this case study the classification of
ice PSCs over Scandinavia shows a good agreement for the
new ML methods with the Bayesian classifier. Further, we
see that the two SVM and the RF methods identified small
NAT where the Bayesian classifier also found NAT. How-
ever, at the locations where the Bayesian classifier indicates
a mixture of NAT and STS, the ML methods indicate STS,
and the ML methods indicate large NAT at locations where
the Bayesian classifier found STS.

4.3.2 Seasonal analyses

For a seasonal analysis, we first considered MIPAS observa-
tions during the months from May to September 2009. Fig-
ures 11 to 13 show the area coverage for each class of PSC
along time and altitude. Comparing the time series of the
classification results, we can assess the agreement quantita-
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Figure 12. Same as Fig. 11 but for ice.

tively. The mixed composition classes of the Bayesian clas-
sifier (NAT_STS, ICE_STS, and ICE_NAT) are not consid-
ered in this analysis. Taking a look at STS (Fig. 11), all the
classifiers predict an early season appearance. While the RF
predicts a time series that resembles quite closely the one
predicted by the Bayesian classifier, the other two ML meth-
ods (PCA+SVM and KPCA+SVM) predict a significantly
larger coverage of STS clouds over the winter. Regarding the
ice PSCs (Fig. 12), the patterns in the time series are sim-
ilar between all classifiers. However, we can observe that,
even if the spatiotemporal characteristics are similar, both
SVM methods predict a notably larger area covered by ice
clouds. Moreover, the KPCA+SVM classifier predicts an
earlier emergence of ice with respect to the other classifiers.
Considering the NAT time series (Fig. 13), all the classifiers
predict a late appearance during the season. The classifica-
tion schemes based on SVM predict a much lower presence
of NAT with respect to the RF and the Bayesian classifier.
Furthermore, most of the bins with a high value of NAT cov-
erage in the Bayesian classification scheme are predicted as
small NAT particles. This result confirms that the spectral

features of small NAT are strong enough to find a good deci-
sion boundary, as explained in Sect. 2.2.

Figure 14 shows the overall percentages of the PSC classes
for May to September 2009 for the Southern Hemisphere.
The occurrence frequencies of ice PSCs are quite consis-
tent, ranging from 32 % for the Bayesian classifier to 39 %
for KPCA+SVM. It is found that the approaches based on
SVM slightly overestimate the presence of ice with respect
to the RF (35 %) and the Bayesian classifier. However, the
main differences that were encountered are in the separation
between STS and NAT. The two classification schemes us-
ing SVM predict a much smaller amount of NAT PSCs (17
and 26 % taking small and large NAT together) compared to
the RF (33 % considering only small NAT, 37 % taking small
and large NAT together) and the Bayesian classifier (32 %
NAT). The RF and the Bayesian classifier are more coherent
between themselves. Other interesting findings are related to
the classification between small and large NAT. Indeed, the
vast majority of the NAT predictions in the KPCA+SVM
and RF methods belong to the small NAT class. PCA+SVM
diverges significantly from the other methods, largely under-
estimating small NAT and overestimating large NAT. This
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Figure 13. Same as Fig. 11 but for NAT.

suggests once more that the discrimination between small
NAT and STS PSCs is more easily possible using midinfrared
spectra for classification, while larger NAT PSCs are harder
to separate.

In addition to the results presented above, we conducted
the seasonal analyses also for MIPAS observations acquired
in the months from November 2006 to February 2007 in the
Northern Hemisphere (Fig. 15). As expected, a much smaller
fraction of ice PSCs (4–6 %) was found compared to the
Southern Hemisphere. As in the Southern Hemisphere win-
ter, the SVM classifiers taking as input the PCA and KPCA
features found significantly less NAT (both 6 %) than the
Bayesian classifier (15 %), whereas the RF classifier iden-
tified a significantly larger fraction of large NAT spectra
(30 %) that resulted in a significantly higher NAT detection
rate (37 %). This finding may point to a potential improve-
ment of the RF classifier compared to the Bayesian classifier.
In fact, it had been already reported by Spang et al. (2016)
that the Bayesian classifier for MIPAS underestimated the
fraction of NAT clouds compared to Cloud-Aerosol Lidar

with Orthogonal Polarization (CALIOP) observations. Fur-
ther, the STS partitioning between the three STS subclasses
is different between the Southern and Northern Hemisphere
winters. While in the Southern Hemisphere STS 1 is dom-
inant, in the Northern Hemisphere STS 2 is dominant and
the fraction of STS 3 is significantly increased. This re-
sult is plausible, because the Northern Hemisphere winters
are warmer than the Southern Hemisphere winters, and STS
1 forms at lower temperatures (e.g., ∼ 189 K) than STS 2
(∼ 192 K) and STS 3 (∼ 195 K at 50 hPa, Carslaw et al.,
1995).

Figures 16 and 2 show cross tabulations between the clas-
sification results of the Bayesian classifier and the three ML
methods. They allow us to directly assess how much the dif-
ferent classification schemes agree in terms of their predic-
tions for the different classes. For instance, considering the
ice class of the PCA+SVM and KPCA+SVM classifiers, it
can be seen that around 80 % of the samples were classified
consistently with the Bayesian method, while this percent-
age is above 90 % for the RF (Fig. 16). Concerning NAT, the
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Figure 14. Partitioning of the PSC composition classes for the Southern Hemisphere winter (May to September 2009) derived by (a) the
Bayesian classifier, (b) the PCA+SVM classifier, (c) the KPCA+SVM classifier, and (d) the RF classifier. Percentage values and number
of events are reported in the legends.

RF classifier predicts as small NAT more than 80 % of what
had been classified as NAT class by the Bayesian classifier
(Fig. 2). The PCA+SVM and KPCA+SVM methods pre-
dict a smaller fraction of small NAT for the NAT class of
the Bayesian classifier, around 30 % and 70 %, respectively.
The PCA+SVM in particular predicts a significantly smaller
amount of samples belonging to the small NAT class than
the other methods (Fig. 16), while it predicts a larger number
of samples of the STS subclasses. This result may suggest
that PCA+SVM and KPCA+SVM are not as sensitive as
BC for small NAT detection, while RF is. Considering the
STS subclasses of the RF and KPCA+SVM classifiers alto-
gether, they seem to mostly agree with the STS_mix predic-
tions of the Bayesian classifier. On the other hand, the total
number of samples predicted by the PCA+SVM scheme as
belonging to the STS subclasses is notably larger than the
predictions of the Bayesian classifier (Fig. 16). This finding
is in line with what has been discussed a few lines above and
in Sect. 4.3.2. There is a large percentage of spectra predicted
as large NAT by the proposed ML methods that are instead
classified as STS by the BC, especially in the results of the
RF scheme. This is probably caused by the fact that the BC

misclassifies spectra of large NAT, as discussed in Sect. 4.2
for the CSDB.

5 Summary and conclusions

In this study, we investigated whether ML methods can be
applied for the PSC classification of infrared limb spectra.
We compared the classification results obtained by three dif-
ferent ML methods – PCA+SVM, KPCA+SVM, and RF
– with those of the Bayesian classifier introduced by Spang
et al. (2016). First, we discussed PCA, KPCA, and RF as
methods for feature extraction from midinfrared spectral re-
gions and showed that the selected features correspond with
distinct features in the complex refractive indices of NAT and
ice PSCs. Then we compared classification results obtained
by the ML methods with respect to previous work using con-
ventional classification methods combined with a Bayesian
approach.

We presented three case studies as well as seasonal anal-
yses for the validation and comparison of the classification
results. Based on the case studies, we showed that there is
spatial agreement of the ML method predictions between ice
and nonice PSCs. However, there is some disagreement be-
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Figure 15. Same as Fig. 14 but for November 2006 to February 2007 for the Northern Hemisphere.

tween NAT and STS. We evaluated time series and pie charts
of cloud coverage for the Southern Hemisphere polar winter
2009 and the Northern Hemisphere polar winter 2006/2007,
showing that all methods are highly consistent with respect
to the classification of ice. For the NAT and STS predictions,
RF and the Bayesian classifier tend to agree best, whereas the
SVM methods yielded larger differences. The agreement be-
tween the different classification schemes was further quan-
tified by means of cross tabulation. While the SVM meth-
ods found significantly less NAT than the Bayesian classifier,
the RF classifier found slightly more NAT than the Bayesian
classifier. The RF results might be more realistic, because
the Bayesian classifier is known to find less NAT for MIPAS
compared to CALIOP satellite observations, especially for
Northern Hemisphere winter conditions (Spang et al., 2016).
A practical advantage of RF, presented in Sect. 3.3 and fur-
ther discussed in Sect. 4.1, is that it enables a better control
on the importance of the features it selects to train the model.
Moreover, RF is a fully supervised method, from feature se-
lection to training, whereas the feature extraction methods
PCA and KPCA are unsupervised methods and may fail to
capture important features if they do not show high vari-
ance. From the user point of view, RF is also simpler to de-
ploy since it embeds feature selection and does not require
a two-step process of feature extraction and training (unlike

PCA+SVM and KPCA+SVM). Parallel implementations
of the ML methods presented in this paper are also available,
enabling significant acceleration of model training and pre-
diction with a large number of data (Cavallaro et al., 2015;
Genuer et al., 2017).

The Bayesian method developed by Spang et al. (2016) re-
quires a priori knowledge of a domain expert to select the de-
cision boundaries and to tune the probabilities used for clas-
sification for different areas in the feature space. The ML
schemes proposed in this work are more objective in the
premises and rely only on the available training data with-
out additional assumptions. Models have been trained on the
CSDB, a simulation dataset that has been created systemati-
cally sampling the parameter space, not reflecting the natural
occurrence frequencies of parameters. This point is in our
opinion of great importance, as we demonstrated that ML
methods are capable of predicting PSC composition classes
without the need of substantial prior knowledge, providing
a means for consistency checking of subjective assessments.
Although the lack of ground truth narrows the assessment
down to comparison with other classification schemes, we
found that the classification results of the ML methods are
consistent with spectral features of the PSC particles, in par-
ticular, the features found in the real and imaginary part of
their refractive indices. Another important benefit of the pro-
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Figure 16. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x axis
represent the classes of the KPCA+SVM classifier (a), the PCA+SVM classifier (b), and the RF classifier (c). The y axis indicates the
fraction of the classes as predicted by the Bayesian classifier. N is the number of samples belonging to each class of the ML classifiers.

posed ML methods is that they have shown the potential of
extending the prediction to NAT particles with large radius,
which was not possible with the BC scheme. This aspect has
been successfully tested on the synthetic CSDB dataset and
might be a promising path for future research.

However, there are still some limitations to the proposed
ML approach. First, the feature selection methods found the
highest variance and feature importance at spectral windows
where ice and NAT have pronounced features in the complex
refractive indices, whereas the main features of STS are lo-
cated at wavenumbers not covered by the CSDB. Since the
classification of STS is therefore based on the absence of fea-
tures in the optical properties and for the large NAT particles
the features in the optical properties vanish as well, the dis-
crimination between STS and large NAT is more complicated
than the identification of ice. Hence, we suppose that the in-
clusion of more spectral windows, especially regions where
the optical properties of STS have features, may bear the po-
tential to improve the separation between STS and NAT. Sec-
ond, we showed that using a much smaller subset of the orig-
inal CSDB for training of the ML methods would have been
sufficient to achieve similar classification results. This sug-
gests that the information provided by the CSDB is largely
redundant, at least in terms of training of the ML methods.

Despite the fact that the CSDB contains many training spec-
tra, it was calculated only for a limited number of PSC vol-
ume densities, particle sizes, and cloud layer heights and
depths as well as fixed atmospheric background conditions.
It could be helpful to test the ML methods using a training
dataset providing better coverage of the micro- and macro-
physical parameter space and more variability in the atmo-
spheric background conditions. Third, in the CSDB and the
ML classification schemes we assumed only pure constituent
(ice, NAT, STS 1, STS 2, and STS 3) PSCs, whereas in the at-
mosphere mixed clouds are frequently observed (e.g., Desh-
ler et al., 2003; Pitts et al., 2018). In future work, mixed PSCs
should be included, as an investigation of mixed PSCs could
be beneficial to assess how far the ML methods applied to
limb infrared spectra agree with predictions from CALIOP
measurements that already comprise mixed-type scenarios.

In general, the presented classification methods are
straightforward to adopt on spectrally resolved measure-
ments of other infrared limb sensors like the Cryogenic In-
frared Spectrometers and Telescopes for the Atmosphere
(CRISTA) (Offermann et al., 1999) or the GLObal limb Ra-
diance Imager for the Atmosphere (GLORIA) (Riese et al.,
2005, 2014; Ungermann et al., 2010) space- or airborne in-
struments. It could be of interest to extend the methods to

Atmos. Meas. Tech., 13, 3661–3682, 2020 https://doi.org/10.5194/amt-13-3661-2020



R. Sedona et al.: Machine learning methods for PSC classification 3679

combine different observational datasets, even with different
types of sensors providing different spectral and geometri-
cal properties of their acquisitions. This study has assessed
the potential of ML methods in predicting PSC composition
classes, which may be a starting point for new classification
schemes for different aerosol types in the upper troposphere
and lower stratosphere region (Sembhi et al., 2012; Griess-
bach et al., 2014, 2016), helping to answer open questions
about the role of these particles in the atmospheric radiation
budget.

Code and data availability. The MIPAS Level 1B
IPF version 7.11 data can be accessed via ESA’s
Earth Online portal at https://earth.esa.int/web/guest/-/
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