Supplement of Atmos. Meas. Tech., 13, 3683–3696, 2020 https://doi.org/10.5194/amt-13-3683-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.







## Supplement of

# A vacuum ultraviolet ion source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources

Yi Ji et al.

Correspondence to: L. Gregory Huey (greg.huey@eas.gatech.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



**Figure S1.** CIMS ion current at m/z 145 ( $I^-$ ·H<sub>2</sub>O) as a function of voltage across the krypton. Note that the lamp ignites at voltage of ~280 V.



**Figure S2.** TOF-CIMS (a) reagent signal levels (b) sensitivity (c) normalized sensitivity as a function of  $CH_3I$  at 30 torr.

### Peroxyacetyl nitrate (PAN) measurements using I -Q-CIMS

$$CH_3C(O)O_2NO_2 \xrightarrow{\Delta} CH_3C(O)O_2 + NO_2 \tag{RS1}$$

$$CH_3C(O)O_2 + I^-(H_2O)_n \rightarrow CH_3C(O)O^-(H_2O)_n + IO$$
 (RS2)



Figure S3. Mass spectra of zeroed ambient air with and without PAN calibration standard.

#### Organic acids measurements using SF<sub>6</sub><sup>-</sup>-Q-CIMS

Detection of formic and acetic acid by the following reactions with SF<sub>6</sub> (Nah et al., 2018).

$$SF_6^- + HC(O)OH \rightarrow HC(O)O^- \cdot HF + SF_5$$
 (RS3)

$$SF_6^- + CH_3C(O)OH \rightarrow CH_3C(O)O^- \cdot HF + SF_5$$
 (RS4)



**Figure S4.** (1) Time series of formic acid signal (HCOO<sup>-</sup>·HF, m/z 65, red line), acetic acid signal (CH<sub>3</sub>COO<sup>-</sup>·HF, m/z 79, black line), and ambient pressure (blue line). (2) A correlation plot of the CH<sub>3</sub>COO<sup>-</sup>·HF signal (m/z 79) versus HCOO<sup>-</sup>·HF signal (m/z 65). Data was taken from the NCAR GV during a test flight based out of Broomfield, CO using a VUV-IS.

#### Sample Calculation of Absorption of VUV light by CH<sub>3</sub>I

To calculate how much of the VUV light is absorbed, the Beer-Lambert Law is applied,

$$\frac{I(\lambda)}{I_0(\lambda)} = \exp(-\sigma(\lambda)nL)$$

where  $I(\lambda)$  is the intensity of light at wavelength  $\lambda$  after absorption,  $I_0(\lambda)$  is the original light intensity at wavelength  $\lambda$ ,  $\sigma(\lambda)$  is the absorption cross section of the absorber molecule at wavelength  $\lambda$ , n is number concentration of the absorber molecule, and L is the path length over which the light can be absorbed.

#### Sample calculation:

For 86.5 ppmv of CH<sub>3</sub>I at a pressure of 20 torr  $n = 5.70 \times 10^{13}$  molecule cm<sup>-3</sup>  $\sigma(\lambda) = 7 \times 10^{-17}$  cm<sup>2</sup> molecule<sup>-1</sup> (Olney et al., 1998) L = 21 cm  $\frac{I(\lambda)}{I_0(\lambda)} = \exp(-\sigma(\lambda)nL) = 0.92$ 

Therefore, in this example ~8% of the light emitted from the VUV lamp is absorbed by the methyl iodide.