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Abstract. Recent years have seen the increasing inclusion
of per-retrieval prognostic (predictive) uncertainty estimates
within satellite aerosol optical depth (AOD) data sets, provid-
ing users with quantitative tools to assist in the optimal use
of these data. Prognostic estimates contrast with diagnostic
(i.e. relative to some external truth) ones, which are typically
obtained using sensitivity and/or validation analyses. Up to
now, however, the quality of these uncertainty estimates has
not been routinely assessed. This study presents a review of
existing prognostic and diagnostic approaches for quantify-
ing uncertainty in satellite AOD retrievals, and it presents a
general framework to evaluate them based on the expected
statistical properties of ensembles of estimated uncertainties
and actual retrieval errors. It is hoped that this framework
will be adopted as a complement to existing AOD valida-
tion exercises; it is not restricted to AOD and can in princi-
ple be applied to other quantities for which a reference val-
idation data set is available. This framework is then applied
to assess the uncertainties provided by several satellite data
sets (seven over land, five over water), which draw on meth-
ods from the empirical to sensitivity analyses to formal error
propagation, at 12 Aerosol Robotic Network (AERONET)
sites. The AERONET sites are divided into those for which
it is expected that the techniques will perform well and those

for which some complexity about the site may provide a
more severe test. Overall, all techniques show some skill in
that larger estimated uncertainties are generally associated
with larger observed errors, although they are sometimes
poorly calibrated (i.e. too small or too large in magnitude).
No technique uniformly performs best. For powerful formal
uncertainty propagation approaches such as optimal estima-
tion, the results illustrate some of the difficulties in appro-
priate population of the covariance matrices required by the
technique. When the data sets are confronted by a situation
strongly counter to the retrieval forward model (e.g. poten-
tially mixed land–water surfaces or aerosol optical proper-
ties outside the family of assumptions), some algorithms fail
to provide a retrieval, while others do but with a quantita-
tively unreliable uncertainty estimate. The discussion sug-
gests paths forward for the refinement of these techniques.

1 Introduction

The capability to quantify atmospheric aerosols from space-
borne measurements arguably goes back to 1972 with the
launch of the Multispectral Scanner System (MSS) aboard
the first Landsat satellite (e.g. Griggs, 1975; Kaufman and
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Sendra, 1988), primarily designed for land surface charac-
terization. Earlier satellite-based solar reflectance measure-
ments were (with the exception of the three-colour cam-
era on the Applications Technology Satellite 3, launched
1967) either panchromatic (and used for cloud mapping) or
broadband (for radiation). While it was realized from ex-
perience with similar sensors on Mars (Hanel et al., 1972)
that some aerosols could contribute to signals in the ther-
mal infrared (tIR), they were largely treated as a contam-
inant in temperature and water vapour retrievals and not
routinely quantified (Weaver et al., 2003). Landsat-1 MSS
was followed in 1975 by a second Landsat launch and the
Stratospheric Aerosol Measurement (SAM) instrument on
the Apollo–Soyuz Test Project, a proof-of-concept for mon-
itoring stratospheric aerosols (McCormick et al., 1979), and
then by a gradually expanding variety of instruments from
the late 1970s onwards.

At present there are several dozen sensors of various types
suitable for the quantification of aerosols in flight, and more
that have begun and ended operations in between. In addi-
tion to the variety of instruments, a variety of algorithms have
been developed to retrieve aerosol properties from these mea-
surements (e.g. Kokhanovsky and de Leeuw, 2009; Lenoble
et al., 2013; Dubovik et al., 2019, for some reviews of the
principles behind various techniques). The majority of these
sensors have been used to retrieve total-column aerosol opti-
cal depth (AOD) across some part(s) of the ultraviolet (UV),
visible, near-infrared and shortwave infrared, and tIR spec-
tral regions, where aerosol particles are optically active; the
most commonly reported is the mid-visible AOD at a wave-
length in the range 500–565 nm. Some sensors are able to
retrieve profiles of aerosol extinction, which may be inte-
grated vertically to give partial- or total-column AOD (de-
pendent on whether or not profiling is possible down to the
surface). This proliferation, combined with geophysical and
mathematic terminology, makes aerosol remote sensing an
incredibly acronym-heavy field; indeed, instruments and al-
gorithms are often referred to by their acronyms rather than
full names. Table 1 lists those sensors which have to date
been used to process AOD data products, and Table 2 lists
those which are able to provide extinction profiles; in many
cases, two or more of each type of design, either identical
or with small modifications, have been flown. Where mul-
tiples of a given sensor have flown the date ranges indicate
period(s) of continuous coverage as opposed to launch or de-
commission dates for individual instruments.

Retrieval algorithms are used to process the calibrated
observations (referred to as level 1 or L1 data) to provide
level 2 (L2) data products, consisting of geophysical quan-
tities of interest. These L2 products are typically on the L1
satellite observation grid (or a multiple of it) and often fur-
ther aggregated to level 3 (L3) products on regular space–
time grids. For further background and a discussion of satel-
lite data processing levels, see Mittaz et al. (2019). Table 3
provides acronyms and full names for some of the L2 pro-

cessing algorithms which have been applied to L1 measure-
ments from these instruments. Again, many of these algo-
rithms have been applied (identically or with small modifica-
tion) to multiple sensors. This table is provided as a conve-
nience to the reader to decode acronyms and decrease clutter
in later tables and discussions; specific relevant details and
references are provided later. Acronyms often summarize ei-
ther the principle of the technique or the institution(s) which
developed the algorithm. Some algorithms are not listed in
this table as they do not have acronyms and are typically re-
ferred to by data producers or users by the sensor or mis-
sion name. Further, this is not an exhaustive list as numerous
other approaches have been proposed in the literature; the
criteria for inclusion and broader discussion in this study are
that data have been (1) processed and (2) also made gener-
ally available for scientific use. Likewise, algorithms which
provide aerosol properties as a by-product but not a focus
(e.g. land–ocean surface atmospheric correction approaches)
are not discussed as often the aerosol components are less
detailed and/or used as a sink for other error sources in the
algorithm (e.g. Kahn et al., 2016).

L2 retrieval algorithm development is typically guided
by information content studies, sensitivity analyses, and re-
trieval simulations to gauge which quantities a given sensor
and algorithmic approach can retrieve and with what uncer-
tainty (e.g. Tanré et al., 1996, 1997; Hasekamp and Landgraf,
2007; Veihelmann et al., 2007; Young and Vaughan, 2009).
As aerosol remote sensing is an underdetermined problem
and there is considerable heterogeneity in the underlying
(surface and atmospheric) conditions giving rise to the L1
signals, sensitivities and uncertainties are typically highly
context-dependent. For example, the retrieval of AOD from
optical sensors over a dark ocean surface is typically much
easier than over a bright snow-covered surface. After an algo-
rithm has been developed, these analyses are typically com-
plemented by validation against reference data sets, most
commonly AOD from Sun photometers such as part of the
Aerosol Robotic Network (AERONET; Holben et al., 1998)
over land and from handheld instruments deployed on ocean
cruises in the Maritime Aerosol Network (MAN; Smirnov
et al., 2009, 2011). The resulting uncertainty estimates pro-
vided by these studies and validation analyses are diagnostic;
i.e. for a known true state they diagnose the retrieval error
(difference between retrieved and true states). This is useful
to identify the general tendencies for bias or loss of sensi-
tivity under different conditions and assess potential ways to
improve on them.

Increases in the quality of instrumentation, retrieval algo-
rithms, models, and computational power have prompted an
increasing desire for the provision of pixel-level uncertainty
estimates in L2 aerosol data products. This has been driven
in part by data assimilation (DA) applications, which need
a robust error model on data for ingestion into numerical
models (Benedetti et al., 2018), often in near-real time. Di-
agnostic uncertainty estimates are less useful here since the
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Table 1. Satellite instruments which have been used for column AOD retrieval; arranged by sensor type.

Acronym Instrument full name Orbit(s) Operation period(s)

Multispectral imager

ABI Advanced Baseline Imager Geostationary 2016+
AHI Advanced Himawari Imager Geostationary 2014+
AVHRR Advanced Very High Resolution Radiometer Sun-synchronous 1978+
CAI Cloud–Aerosol Imager Sun-synchronous 2009+
EPIC Earth Polychromatic Imaging Camera Lagrange point 2015+
(E)TM (Enhanced) Thematic Mapper Sun-synchronous 1982+
GOES Imager Geostationary Operational Environmental Geostationary 1978–2018

Satellite Imager
GOCI Geostationary Ocean Color Imager Geostationary 2010+
GLI GLobal Imager Sun-synchronous 2002–2003
MERIS MEdium Resolution Imaging Spectrometer Sun-synchronous 2002–2012
MODIS MODerate resolution Imaging Spectrometer Sun-synchronous 2000+
MSS Multispectral Scanner System Sun-synchronous 1972–2013
OLCI Ocean and Land Color Instrument Sun-synchronous 2016+
OLI Operational Land Imager Sun-synchronous 2013+
SeaWiFS Sea-viewing Wide Field-of-view Sensor Sun-synchronous 1997–2010
SEVIRI Spinning Enhanced Visible and InfraRed Imager Geostationary 2004+
VIIRS Visible Infrared Imaging Radiometer Suite Sun-synchronous 2012+
VIRS Visible and Infrared Scanner Precessing 1997–2015

Multispectral, multiangle imager or polarimeter

(A)ATSR (Advanced) Along-Track Scanning Radiometer Sun-synchronous 1991–2012
CHRIS Compact High Resolution Imaging Spectrometer Sun-synchronous 2001+
MISR Multiangle Imaging SpectroRadiometer Sun-synchronous 2000+
POLDER POLarization and Directionality of the Earth’s Sun-synchronous 1996–1997; 2002; 2004–2013

Reflectances
SGLI Second-generation GLobal Imager Sun-synchronous 2017+
SLSTR Sea and Land Surface Temperature Radiometer Sun-synchronous 2016+

Nadir-looking spectrometer

AIRS Atmospheric Infra-Red Sounder Sun-synchronous 2002+
GOME Global Ozone Monitoring Instrument Sun-synchronous 1995–2011
IASI Infrared Atmospheric Sounding Interferometer Sun-synchronous 2006+
OMI Ozone Monitoring Instrument Sun-synchronous 2004+
OMPS NM Ozone Mapping Profiler Suite Nadir Mapper Sun-synchronous 2012+
SCIAMACHY SCanning Imaging Absorption SpectroMeter for Sun-synchronous 2002–2012

Atmospheric CHartographY
TOMS Total Ozone Mapping Spectrometer Sun-synchronous 1978–1994; 1996–2005
TROPOMI TROPOspheric Monitoring Instrument Sun-synchronous 2017+

true state is not known (only the retrieved state), so a prog-
nostic (predictive) uncertainty model is needed instead. Early
aerosol DA applications either treated diagnostic uncertainty
estimates as prognostic ones (e.g. Collins et al., 2001; Matsui
et al., 2004) or constructed their own prognostic error models
as part of validation and bias-correction efforts (e.g. Zhang
and Reid, 2006; Benedetti et al., 2009; Hyer et al., 2011; Shi
et al., 2013). These uncertainty estimates are also valuable
outside DA to identify when a retrieval is likely to be use-
ful for a given purpose. As an example, air quality modelling
also typically uses L2 retrievals and can benefit from these

uncertainties. Climate applications often use L3 aerosol data
for which uncertainty estimates have yet to be robustly de-
veloped; this is an important emerging area of research re-
garding both methods of aggregation and/or reporting (e.g.
Levy et al., 2009; Kinne et al., 2017; Povey and Grainger,
2019; Sayer and Knobelspiesse, 2019) and the influence of
sampling (e.g. Sayer et al., 2010b; Colarco et al., 2014; Ge-
ogdzhayev et al., 2014; Schutgens et al., 2016, 2017), and L2
uncertainty estimates will be an important input to this.

Driven by these needs, many AOD data sets now provide
prognostic uncertainty estimates; in some cases these addi-
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Table 2. As Table 1, except for satellite instruments which have been used for aerosol extinction profiling.

Acronym Instrument full name Orbit(s) Operation period(s)

Lidar

ALADIN Atmospheric LAser Doppler INstrument Sun-synchronous 2018+
CALIOP Cloud–Aerosol LIdar with Orthogonal Polarization Sun-synchronous 2006+
CATS Cloud–Aerosol Transport System Precessing 2015–2017
GLAS Geoscience Laser Altimeter System Polar (varied) 2003–2010
LITE Lidar In-space Technology Experiment Space shuttle 1994

Limb or occultation profiler

GOMOS Global Ozone Monitoring by Occultation of Stars Sun-synchronous 2002–2012
MIPAS Michelson Interferometer for Passive Atmospheric Sounding Sun-synchronous 2002–2012
OMPS LP Ozone Mapping Profiler Suite Limb Profiler Sun-synchronous 2012+
OSIRIS Optical Spectrograph and InfraRed Imaging System Sun-synchronous 2001+
SAGE Stratospheric Aerosol and Gas Experiment Precessing 1979–1982; 1984+
SAM Stratospheric Aerosol Measurement Precessing 1975; 1979–1993

tions have been developed to satisfy these user needs, while
in others they have always been available as they are inher-
ent to the retrieval technique. Unlike AOD validation, how-
ever, which has had a fairly standard methodology (Ichoku
et al., 2002), there is not yet a robust and well-used frame-
work for evaluating these uncertainty estimates (sometimes
called “validating the validation”). This study arose from dis-
cussions as part of the international AeroSat group of aerosol
remote sensing researchers as a step toward remedying that
gap. AeroSat is a grass-roots community who meet once a
year, together with researchers involved in aerosol modelling
(the AeroCom group) and measurement, to discuss and move
toward solving common issues in the field of aerosol remote
sensing. The purpose of this study is threefold:

1. to briefly review the ways in which uncertainty informa-
tion has been conveyed in satellite aerosol data products
(Sect. 2);

2. to provide a framework for the evaluation of pixel-level
AOD uncertainty estimates in satellite remote sensing,
which can be adopted as a complement to AOD vali-
dation exercises going forward, and use this framework
to assess AOD uncertainty estimates in several AOD re-
trieval products (Sect. 3); and

3. to discuss the strengths and limitations of each these ap-
proaches, and suggest paths forward for improving the
quality and use of L2 (pixel-level) uncertainty estimates
in satellite aerosol remote sensing (Sects. 3, 4).

2 Uncertainty estimates in current satellite aerosol
data sets

2.1 Terminology

The International Standards Organization document often
known as the GUM (Guide to Uncertainty in Measurement)
provides standardized terminology for discussing uncertain-
ties (Working Group 1, 2008). In the interests of standardiza-
tion and in line with other treatments of uncertainty and error
in remote sensing (e.g. Rodgers, 2000; Povey and Grainger,
2015; Loew et al., 2017; Merchant et al., 2017; Mittaz et al.,
2019; von Clarmann et al., 2019), the GUM terminology is
also adopted here. Terms are often used inconsistently in
writing or informal conversation (in particular “error” and
“uncertainty”), so to assist the reader, definitions of relevant
terms are as follows (and see previously cited references).

– A measurand is a quantity to be determined (measured),
in the case of this study the AOD.

– A measurement is the application of a technique to
quantify the measurand, in this case the application of
L2 retrieval algorithms to L1 satellite observations.

– The measured value is the output of the measurement
technique, i.e. here the result of the L2 retrieval algo-
rithm, often referred to as the “retrieved AOD”.

– The uncertainty is in the general sense an expression
of the dispersion of the measurand. For most of the data
sets discussed in this study it is presented as a 1 standard
deviation (1σ ) confidence interval around the retrieved
value (which is defined as the standard uncertainty by
the GUM). The true value of the measurand (AOD) is
expected to lie within this confidence interval ∼ 68.4 %
of the time (corresponding to 1 standard deviation, col-
loquially 1σ ), following Gaussian statistics.
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Table 3. Acronyms for some aerosol retrieval algorithms, data
records, and/or institution names applied to one or more satellite
instruments from Tables 1 and 2.

Acronym Algorithm full name

AAC Aerosols Above Clouds
ADV (A)ATSR Dual View
AerGOM Aerosol profile retrieval prototype for GOMOS
ASV (A)ATSR Single View
BAR Bayesian Aerosol Retrieval
CISAR Combined Inversion of Surface and AeRosol
DB Deep Blue
DT Dark Target
EDR Environmental Data Record
ESA European Space Agency
GACP Global Aerosol Climatology Project
GRASP Generalized Retrieval of Aerosol and Surface

Properties
IMARS Infrared Mineral Aerosol Retrieval Scheme
JAXA Japan Aerospace eXploration Agency
LDA Land Daily Aerosol
LMD Laboratoire de Météorologie Dynamique
MAIAC Multi-Angle Implementation of Atmospheric

Correction
MAPIR Mineral Aerosol Profiling from Infrared

Radiances
MODACA MODIS Above-Cloud Aerosol
NOAA National Oceanic and Atmospheric

Administration
OMACA OMI Above-Cloud Aerosols
OMAERO OMI Multi-wavelength AEROsol product
OMAERUV OMI AERosol UV product
ORAC Optimal Retrieval of Aerosols and Clouds
PMAp Polar Multi-sensor Aerosol product
SOAR Satellite Ocean Aerosol Retrieval
SU Swansea University
SYNAER SYNergetic AErosol Retrieval
ULB Université Libre de Bruxelles
xBAER eXtensible Bremen AErosol Retrieval

– The error is the difference between the measured and
true values of the measurand, i.e. here the difference
between true and retrieved AOD. Following the GUM
convention, a positive error means that the measured
value minus the true value is positive (and vice versa).

The error can only be known when the true value of the
measurand is also known, which is rare. This is the province
of validation exercises: Loew et al. (2017) note that in the
remote sensing community (and adopted here), validation
refers to a quality assessment of a data set, which is a differ-
ent definition from that of the metrology community. While
Loew et al. (2017) omit mention of aerosols, the points dis-
cussed there are applicable to aerosol remote sensing as well.
They also note that some authors (e.g. Rodgers, 2000) have
adopted a stricter definition of validation to also explicitly in-
clude the question of whether the theoretical characterization

and obtained properties of the data are consistent; the afore-
mentioned “validating the validation” framework developed
in the present study is one component of this.

For validation exercises AERONET AOD data are of-
ten taken as a reference truth because the uncertainty on
AERONET AOD data (around 0.01 in the mid-visible; Eck
et al., 1999) is generally much smaller than that of satellite
retrievals. This enables the diagnosis of retrieval errors at the
times and locations of matchups with AERONET (or similar
reference data), which are often generalized to infer the likely
error characteristics of retrievals under various aerosol, sur-
face, and geometric conditions. The implicit assumption is
that such a generalization is possible, but it is important to
bear in mind that validation data are spatiotemporally sparse
and may underrepresent or omit certain factors relative to the
real world (Virtanen et al., 2018).

In contrast to error, the uncertainty can be estimated for
each individual measured value (retrieval). The term “ex-
pected error” (EE) is often used in the aerosol remote sens-
ing literature (e.g. Remer et al., 2005; Kahn et al., 2010;
Sayer et al., 2013) to define these prognostic and diagnostic
estimates of the magnitude of the uncertainty, highlighting
(viz. “expected”) the fact that it is a statistical quantity; in
hindsight the term “estimated uncertainty” might have been
less confusing. The uncertainty is a statement about the level
of confidence (expected magnitude of the error), while the
actual error is a realization drawn from the uncertainty distri-
bution. By analogy, rolling a single unbiased die has a mean
value (expectation) of 3.5, although this result is impossible
to achieve on a single roll (which can take only integer values
from 1 to 6). The various techniques which have been applied
to provide prognostic estimates for AOD are discussed in
Sect. 2.2, while Sect. 2.3 discusses those data sets for which
only diagnostic uncertainty estimates are available. A diffi-
culty, which this study aims to tackle, is how to tell whether
these uncertainty estimates are quantitatively useful and reli-
able. Six “conditions of adequacy” have been proposed by
von Clarmann et al. (2019) for temperature and trace gas
profile uncertainty estimates, namely that they are the fol-
lowing: (1) intercomparable between instruments and/or er-
ror estimation schemes; (2) independent of vertical retrieval
grid (often less relevant for aerosols); (3) usable to the reader
not familiar with instrument or retrieval technical details;
(4) documented and traceable; (5) validatable (part of the fo-
cus of this study); and (6) can be summarized without ex-
cessive additional data volume overhead. These are desirable
from the point of view of aerosols as well.

2.2 Techniques for prognostic uncertainty estimates

Examples of existing prognostic uncertainty estimates for
AOD or aerosol extinction data sets are given in Table 4.
These fall into two broad camps: formal error propagation
techniques accounting for individual terms thought to be rel-
evant to the overall error budget and more empirical meth-
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ods. The term “error budget” (not defined in the GUM, but
in common colloquial use) here refers to, dependent on con-
text, the overall collection of contributions to input or output
uncertainty. Strictly, one might refer instead to “uncertainty
budget” and “uncertainty propagation”, but for reader ease,
the commonly used terms are adopted here.

2.2.1 Formal error propagation

The formal methods which have been applied to date are in
general Bayesian approaches, which can be expressed in the
formalism of Rodgers (2000), and are often referred to as
optimal estimation (OE). OE approaches provide the maxi-
mum a posteriori (MAP) solution to the retrieval problem:
maximization of the conditional probability P(x|y,xa) of
the retrieved state vector x, where y and xa represent the
satellite measurements and any a priori information on x, re-
spectively. The MAP solution is achieved by minimization of
a cost function J , and the formalism allows for the calcula-
tion of various contributions to the total uncertainty Ŝ on the
retrieved state. OE accounts for uncertainty on the satellite
measurements, retrieval forward model (e.g. atmospheric and
surface structure assumptions, ancillary data), a priori infor-
mation, and smoothness constraints (on e.g. spatial, tempo-
ral, or spectral variation of parameters). While notation dif-
fers between authors (see also Rodgers, 2000; Dubovik et al.,
2011; Govaerts and Luffarelli, 2018), a general form of the
cost function J can be written

J (x)=(F(x)− y)T S−1
y (F(x)− y)

+(xa− x)T S−1
a (xa− x)

+xTHT
s S−1

s Hsx

+. . ., (1)

where Sy and Sa are covariance matrices; Sy describes the
measurement and forward model uncertainty, Sa describes
the a priori uncertainty, and F(x) is the forward-modelled
measurements. The third term represents a generic smooth-
ness constraint on the state vector (which might be spatial,
temporal, spectral, or otherwise), where Hs is a block diag-
onal matrix and Ss its associated uncertainty; the ellipses in
Eq. (1) indicate the potential for the expansion of J to include
additional smoothness terms. These smoothness constraints
were first introduced in the context of aerosol remote sens-
ing by Dubovik and King (2000) for AERONET sky-scan in-
versions. In recent years they have become more widespread
in satellite aerosol remote sensing as more capable sensors
(e.g. POLDER) and/or algorithms with increased (spatiotem-
poral, spectral, or directional) dimensionality of measured or
retrieved quantities (Dubovik et al., 2011; Govaerts and Luf-
farelli, 2018; Shi et al., 2019) have been developed. Candi-
date algorithms for aerosol retrieval from information-rich
future sensors also tend to use smoothness constraints (e.g.
Xu et al., 2019). All these covariance matrices are assumed
to be Gaussian, which may not always be true in practice.

Note that here Sy represents the total of measurement un-
certainty, forward model uncertainty (due to approximations
made in the radiative transfer), and the contribution of uncer-
tainties in forward model parameters to the simulated signal
at the top of the atmosphere (TOA). These model parameters
are factors which affect the TOA signal but typically insignif-
icantly enough to be retrieved. For example, many AOD re-
trieval algorithms ingest meteorological reanalysis to correct
for the impact of absorbing trace gases (such as H2O) on
the satellite signal at TOA (Patadia et al., 2018) and to pro-
vide wind speed to calculate glint and whitecap contributions
to sea surface reflectances (Sayer et al., 2010a). Sometimes
these are represented in J instead by a “model parameter er-
ror” matrix denoted Sb and similar squared deviations, al-
though mathematically since the terms in Eq. (1) are addi-
tive the two formalisms are equivalent if the model param-
eter uncertainty is transformed into measurement space and
included in Sy (as is typically the case).

As Sy and Sa (etc.) are square matrices, correlations be-
tween wavelengths or parameters can (and, where practical,
should) be accounted for. These terms often affect several
satellite bands such that an error in e.g. reanalysis data in-
gested as part of an AOD retrieval would manifest in a corre-
lated way between these bands. However, due to the difficulty
in estimating these off-diagonal elements, in practice they are
frequently neglected and the covariance matrices are often
assumed to be diagonal (which does not, however, mean that
Ŝ is diagonal). Dependent on the magnitude and sign of these
correlations, their neglect can lead to overestimates or under-
estimates in the level of confidence in the solution. When the
cost function has been minimized, the uncertainty Ŝ on the
retrieved state is given by

Ŝ=
(

KT S−1
y K+S−1

a +HT
s S−1

s Hs

)−1
, (2)

where K, known as the weighting function or Jacobian ma-
trix, is the sensitivity of the forward model to the state vector
∂F(x)/∂x, typically calculated numerically. The 1σ uncer-
tainty on the retrieved AOD is then the square root of the
relevant element on the diagonal of Ŝ (dependent on the con-
tents of the state vector). Many current approaches in Table 4
omit a priori and/or smoothness constraints, in which case the
corresponding terms in Eqs. (1) and (2) vanish. Only BAR
and CISAR include both a priori and smoothness constraints.
AerGOM, GRASP, and the MIPAS stratospheric aerosol data
set use smoothness constraints without a priori on the aerosol
state. Others (LDA, JAXA AHI, MAPIR, ORAC) use a pri-
ori but no smoothness constraints. Smoothness constraints
are attractive for algorithms such as the GRASP application
to POLDER, which includes the retrieval of binned aerosol
size distribution and spectral refractive index (which are ex-
pected to be smooth for physical reasons), as well as those
(e.g. BAR, CISAR, GRASP) moving beyond the indepen-
dent pixel approximation to take advantage of the fact that
certain atmospheric and/or surface parameters can be ex-
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pected to be spatially and/or temporally smooth on relevant
scales.

These smoothness and a priori constraints provide a reg-
ularization mechanism to suppress “noise-like” variations in
the retrieved parameters when they are not well-constrained
by the measurements alone, although there is a danger in
that overly strong constraints can suppress real variability.
As a result, a priori constraints on AOD itself are often inten-
tionally weak compared to those on other retrieved param-
eters. Strictly, the MAP is a maximum likelihood estimate
(MLE) only if the retrieval does not use a priori informa-
tion, although it is often referred to as an MLE regardless
(see Sect. 4.1 of Rodgers, 2000, for more discussion on this
distinction). This distinction is made in the descriptions in
Table 4.

The rest of the error propagation methods in Table 4,
whether formulated as OE or not, are essentially propagat-
ing only measurement (and sometimes forward model) un-
certainty through to the retrieval solution through Jacobians.
MAIAC is a special case here because, rather than using the
measurement uncertainty directly, it propagates the uncer-
tainty of surface reflectance in the 470 nm band, which is
thought to be the leading contribution to the total error bud-
get (Lyapustin et al., 2018). It is important to note that the
cost function and uncertainty estimate calculations in Eq. (2)
are conditional on several factors.

1. The forward model must be appropriate to the problem
at hand and capable of providing unbiased estimates
of the observations. Typically if the forward model is
fundamentally incorrect, and/or any a priori constraints
strongly inappropriate, the retrieval will frequently not
converge to a solution or have unexpectedly large J .
For this reason, high cost values are often used in post-
processing to remove problematic pixels (e.g. unde-
tected cloud or snow) or candidate aerosol optical mod-
els from the provided data sets (Martonchik et al., 1998;
Thomas et al., 2010).

2. The covariance matrices Sy,Sa, and Ss (on measure-
ments, a priori, and smoothness) must be appropriate; if
systematically too large or small, uncertainty estimates
will likewise be too large or small. These can be tested,
to an extent, by examining the distributions of residuals
(on measurements and a priori) and the cost function
and comparing to theoretical expectations (e.g. Sayer
et al., 2010a, 2012c).

3. The forward model must be approximately linear with
Gaussian errors near the solution. This assumption
sometimes breaks down if the measurements are un-
informative on a parameter and a priori constraints are
weak or absent, and the resulting state uncertainty esti-
mates will be invalid. This can be tested (Thomas et al.,
2009; Sayer et al., 2016) by performing retrievals us-
ing simulated data, perturbing their inputs according to

their assumed uncertainties, and assessing whether the
dispersion in the results is consistent with the retrieval
uncertainty estimates.

4. The retrieval must have converged to the neighbourhood
of the correct solution (i.e. near the global, not a local,
minimum of the cost function), which can be a problem
if there are degenerate solutions. In practice algorithms
try to use reasonable a priori constraints, first guesses,
and make a careful selection of which quantities to re-
trieve vs. which to assume (e.g. Thomas et al., 2009;
Dubovik et al., 2011). Note that the iterative method of
convergence to the solution is not important in itself.

A detailed further discussion on these conditions from the
perspective of temperature and trace gas retrievals, which
share some similar conceptual challenges to aerosol remote
sensing, is provided by von Clarmann et al. (2019).

2.2.2 Other approaches

A particular challenge for the formal error propagation tech-
niques is the second point above: how to quantify the individ-
ual contributions to the error budget necessary to calculate
the above covariance matrices? This difficulty has motivated
some of the empirical approaches in Table 4.

Sayer et al. (2013) used the results of validation analy-
ses against AERONET to construct an empirical relationship
(discussed in more detail later) expressing the uncertainty in
MODIS DB AOD retrievals as a function of various factors.
This basic approach was later adopted for other data sets,
including GOCI and NOAA VIIRS EDR aerosol retrievals
(Huang et al., 2016; Choi et al., 2018). This has some simi-
larity to diagnostic EE envelopes, although importantly these
prognostic estimates are framed in terms of retrieved rather
than reference AOD. An advantage of this method is that, if
AERONET can be taken as a truth and collocation-related
uncertainty is small (Virtanen et al., 2018), it empirically
accounts for the important contributions to the overall error
budget without having to know their individual magnitudes.
However, there are some disadvantages: if validation data are
sparse or do not cover a representative range of conditions,
there is a danger of overfitting the expression, and for an on-
going data set there is no guarantee that past performance
is indicative of future results as sensors age and the world
changes. For a quantity without available representative val-
idation data, the method cannot be performed. Further, pro-
grammatically, it requires processing data twice: once to per-
form the retrievals and do the validation analysis to derive the
expression and a second time to add the resulting uncertainty
estimates into the data files. The LMD IASI retrieval has a
similar parametric approach (Capelle et al., 2014), although
as validation data are sparse, the parametrization draws on
the results from retrieval simulations as well.

The MISR algorithms use different approaches. Both the
land and water AOD retrieval algorithms perform retrieval
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using each of 74 distinct aerosol optical models (known as
“mixtures”) and calculate a cost function for each. In ear-
lier algorithm versions (Martonchik et al., 1998) uncertainty
was taken as the standard deviation of AOD retrieval from
mixtures which fit with a cost below some threshold. This
is equivalent to assuming that aerosol optical models are the
dominant source of uncertainty in the retrieval and that the 74
mixtures provide a representative sampling of microphysical
and optical properties.

This approach was refined (for retrievals over water pix-
els) by Witek et al. (2018b) by considering the variation of
retrieval cost with AOD for each model and transforming
this to give a probability distribution of AOD, with the un-
certainty taken as the width of this distribution. A similar
approach has been proposed for the OMAERO retrieval by
Kauppi et al. (2017), although it has not yet been imple-
mented on a large scale. It has conceptual similarities with
the propagation of measurement error in Eq. (2), except cal-
culating across the whole range of AOD state space rather
than an envelope around the solution and summing the re-
sults from multiple distinct retrievals (corresponding to the
aerosol mixtures). These methods are, however, reliant on the
set of available optical models being sufficient.

2.3 Examples of diagnostic uncertainty estimates

Available AOD data sets which do not currently provide
prognostic uncertainty estimates are listed in Table 5. In
these cases, algorithm papers typically summarize the re-
sults of sensitivity analyses to provide a rationale for choices
made in algorithm development and to provide a summary
of expected performance. Sensitivity analyses often include
similar aspects to those employed in error propagation ap-
proaches: namely, characterization of the expected effects of
uncertainties in sensor calibration and forward model lim-
itations (e.g. assumed aerosol optical models, surface re-
flectance) on the retrieval solution, singly or jointly. In most
cases these are provided for a subset of geometries and
atmosphere–surface conditions. Compared to formal error
propagation, this has the advantage of being easier to com-
municate to a reader concerned about a particular assumption
(provided the results of the sensitivity analysis are represen-
tative), but on the other hand the summary results are specific
to only the simulations performed, and real-world uncertain-
ties may be more complicated, particularly when multiple re-
trieval assumptions are confounded.

Sensitivity analyses are often complemented by dedicated
validation papers which summarize the results of compar-
isons against AERONET, MAN, or other networks (e.g. Re-
mer et al., 2005; Kahn et al., 2010); aerosol remote sensing
is fortunate compared to some other disciplines in that high-
quality AOD validation data are fairly readily available. It
is common for the results to be summarized in terms of EE
envelopes or similar metrics; these envelopes are sometimes
adjusted if pre-launch expectations prove too optimistic or Ta
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pessimistic (e.g. Levy et al., 2013). Diagnostic and prognos-
tic uncertainty estimates should not be regarded as exclusion-
ary; diagnostic analysis is useful to guide algorithm refine-
ment and assess assumptions, and many data products which
provide prognostic uncertainties also show the results of di-
agnostic validation activities. However, extending the data
sets in Table 5 to also provide prognostic estimates would
improve their specificity and utility for applications like DA.

2.4 Systematic and random contributions to
uncertainty

Both the diagnostic and prognostic techniques typically (im-
plicitly or explicitly) make the assumption that the sensor and
retrieval algorithm are unbiased and that the resulting uncer-
tainty estimates are unbiased and symmetric. However, it is
well-known that many of the key factors governing retrieval
errors are globally (e.g. sensor calibration, Lyapustin et al.,
2014) or seasonally–regionally (e.g. aerosol optical model,
surface reflection, cloud contamination, Eck et al., 2013;
Zhao et al., 2013; Gupta et al., 2016) systematic and that true
random error (i.e. propagated noise) is often small. While
these systematic factors may partially cancel each other out
over large ensembles of data (drawn from e.g. different re-
gions, seasons, or geometries), this is not a given.

Uncertainty propagation approaches such as OE can in
principle account for systematic uncertainty sources, as they
(and any spectral or parameter correlations) can be included
in the required covariance matrices. This can produce esti-
mates of total uncertainty which are reasonable for an indi-
vidual retrieval, but the true (large-scale) error distributions
would then not be symmetric, lessening their value. Like-
wise, systematically biased priors can lead to systematically
biased retrievals. As a result, it would be desirable to remove
systematic contributions to the retrieval system uncertainty
as far as possible. In practice this is often done through val-
idation exercises, whereby diagnostic comparisons can pro-
vide clues as to the source of biases, which are then (hope-
fully) lessened in the next version of the algorithm. Distri-
butions of the residuals of predicted measurements at the re-
trieval solution can also be indicative of calibration and for-
ward model biases at the wavelength in question.

A possible solution to this is to perform a vicarious cali-
bration, calculating a correction factor to the sensor gain as
a function of time and band by matching observed and mod-
elled reflectances at sites where atmospheric and surface con-
ditions are thought to be well-known (e.g. thick anvil clouds,
Sun glint, and AERONET sites). The derived correction fac-
tor then accounts for the systematic uncertainty on calibra-
tion and the radiative transfer forward model, although if this
latter term is non-negligible then the vicariously calibrated
gains will still be systematically biased (albeit less so for the
application at hand). This has the advantage of transform-
ing the calibration uncertainty from a systematic to a more
random error source at the expense of creating dependence

on the calibration source and radiative transfer model. There
is therefore a danger in creating a circular dependence be-
tween the vicarious calibration and validation sources as it
can hinder understanding of the physics behind observed bi-
ases. Further, this has the side effect of potentially increasing
the level of systematic error in other quantities or in condi-
tions significantly different from those found at the vicari-
ous calibration location if the forward model contribution to
systematic uncertainty is significant (Kahn et al., 2016). Vi-
carious calibration is common within the ocean colour com-
munity (Franz et al., 2007), in which retrieval algorithms
are in some cases more empirical and amenable to tuning
than physically-driven aerosol retrieval algorithms. It has
also been used for on-orbit calibration of instruments lacking
on-board capabilities to track absolute calibration and degra-
dation (e.g. Heidinger et al., 2010).

3 Statistical framework to evaluate pixel-level AOD
uncertainty estimates

3.1 Background and methodology

The notation adopted herein is as follows. The AOD is de-
noted τ ; unless specified otherwise, references to AOD indi-
cate that at 550 nm. The reference (here AERONET) AOD
is τA and satellite-retrieved AOD is τS. The 1σ estimated un-
certainties on these are denoted εA and εS, respectively. If the
reference AOD is assumed to be the truth, then the error 1S
on the satellite AOD is given by 1S = τS− τA.

Figure 1 provides a simulation experiment to illustrate
the relationship between AOD, uncertainty, and error dis-
tributions. Panel (a) is a histogram of AOD generated
(1 000 000 points) assuming a lognormal distribution with
geometric mean 0.2 and geometric standard deviation 0.35,
which is a typical shape for many locations in North America
and Europe (O’Neill et al., 2000). Panel (b) shows two dis-
tributions: in black is the distribution of the expected AOD
uncertainty magnitude (often, as discussed before, called ex-
pected error or EE), assuming error characteristics of the
MODIS DT land retrieval, εS =±(0.05+0.15τ) (Levy et al.,
2013). This is obtained simply by multiplying the histogram
in Fig. 1a by the magnitude of uncertainty |εS|. The red line,
in contrast, is the distribution of actual absolute retrieval er-
rors (i.e. |τS− τA|), which would be expected to be seen in a
validation exercise against AERONET if the expression for
εS holds true. This red line is obtained by taking draws from
the AOD distribution and then, for each, generating a nor-
mally distributed random number with mean 0 and standard
deviation εS to provide the retrieval error (note that the abso-
lute value of this retrieval error is shown in Fig. 1b).

An important nuance which bears repeating is that the dis-
tributions of estimated uncertainty and actual error in Fig. 1
are quite different in shape. This is because the estimated un-
certainty distribution is one of the expectations of εS (given
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Figure 1. (a) Sample AOD histogram drawn from a lognormal AOD distribution with geometric mean 0.2 and geometric standard deviation
0.35. (b) Distribution of (black) estimated retrieval uncertainties and (red) actual absolute retrieval errors obtained if error characteristics
followed the MODIS DT land model, εS =±(0.05+ 0.15τ).

Figure 2. Scatter density joint histogram (on a logarithmic scale) of
the simulated expected uncertainties and retrieval errors in Fig. 1b.
The 1 : 1 line is shown in black. Bins containing no data are shown
in white.

the AOD distribution), while the distribution of errors is one
of the realizations of (draws from) εS. Recall again the dis-
tinction between the expectation of rolling an unbiased die
(i.e. a result of 3.5) and the actual realization (result) of
rolling a die (1, 2, 3, 4, 5, or 6). The latter distribution is
broader. This illustrates why comparing errors and uncertain-
ties on a 1 : 1 basis, or comparing distribution magnitudes, is
not expected to yield agreement, and an evaluation of con-
sistency requires a statistical approach. Figure 2 shows this
more directly: there is little correspondence between the two
on an individual basis.

When comparing satellite and reference data, the total
expected discrepancy (ED) between the two for a single
matchup, denoted εT, should account for uncertainties on
both the satellite and reference (here AERONET) data,

εT =

√
ε2

S+ ε
2
A, (3)

adding in quadrature under the assumption that the uncertain-
ties on satellite and AERONET AOD are independent of one
another. One can then define a normalized error 1N as the

ratio of the actual error to the ED, i.e.

1N =
1S

εT
=

τS− τA√
ε2

S+ ε
2
A

(4)

In the ideal case εA� εS, in which case the shape of 1N
is dominated by the uncertainty and errors on the satellite-
retrieved AOD. If the uncertainties on satellite and reference
AOD have been calculated appropriately and the sample is
sufficiently large, then the normalized error 1N should ap-
proximate a Gaussian distribution with mean 0 and variance
1. Thus, the distribution of 1N can be checked in several
ways against expected shapes for Gaussian distributions, for
example the probability distribution function (PDF) and cu-
mulative distribution function (CDF) as shown in Fig. 3.

The above distribution analyses are informative on the
overall magnitude of retrieval errors compared to expecta-
tions (as well as, in the case of the PDF analysis, whether
there is an overall bias on the retrieved AOD). However,
alone they say little about the skill in assessing variations in
uncertainty across the population. Taking things a step fur-
ther, the data can be stratified in terms of ED and a quan-
tile analysis performed to assess consistency with expecta-
tions. This is equivalent to taking a single location along the x
axis in Fig. 2 and assessing the distribution of retrieval errors
found for the points from that histogram. These, too, should
follow Gaussian statistics.

An example of this is shown in Fig. 4. The data are di-
vided by expected discrepancy εT into 10 equally populated
bins, and within each bin the 38th, 68th, and 95th percentiles
(i.e. approximate 0.5σ , 1σ , 2σ points, following Gaussian
statistics) of absolute retrieval error are plotted. If the un-
certainties are appropriate, these should lie along the 0.5 : 1,
1 : 1, and 2 : 1 lines. This analysis provides a way of check-
ing the validity of the uncertainty estimates across the spec-
trum from low to high estimated uncertainties as opposed to
population-average behaviour (i.e. do the distributions of re-
trieval error change in the expected way as the estimated un-
certainty varies?). The 68th percentile is of the most direct
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Figure 3. (a) PDF and (b) CDF of normalized error distributions drawn from the numerical simulations in Fig. 1; theoretical (grey shading)
and simulation (red) results lie on top of one another. Note that the CDF is of absolute normalized error. Dashed lines indicate various
well-known percentage points of Gaussian distributions.

Figure 4. Expected AOD discrepancy against percentiles of abso-
lute AOD retrieval error. Symbols indicate binned results from the
numerical simulation; within each bin, paler to darker tones indi-
cate the 38th, 68th, and 95th percentiles (approximate 0.5σ , 1σ , 2σ
points) of absolute retrieval error. Dashed lines (0.5 : 1, 1 : 1, 2 : 1,
respectively) show theoretical values for the percentiles of the same
colour.

interest as it corresponds most directly to the expectation of
the retrieval error, but examining other percentiles provides a
way to assess whether the distribution is broader or narrower
than expected (due to, perhaps, the presence of more or fewer
outliers than expected).

The binned analysis is similar to the assessment of forecast
calibration in meteorology (Dawid, 1982). Note in a fore-
cast sense that the term calibration refers to a comparison
of forecast vs. observed frequencies or magnitudes, distinct
from the common meaning of calibration to refer to radio-
metric accuracy in remote sensing. By further analogy to the
forecast community (compare to the expressions in Murphy,
1988), a calibration skill score scal can be defined,

scal = 1−

B∑
b=1

(
εT,b− |1

1σ
S,b|

)2

B∑
b=1

(
|1S| − |1

1σ
S,b|

)2
, (5)

where |11σ
S,b| is the 1σ absolute retrieval error in bin b (Fig. 4)

over B bins total. This compares the observed squared dis-
crepancy from the 1 : 1 line in Fig. 4 with that which would
be obtained if a data user assumed that the retrieval uncer-
tainty was equal to the mean absolute retrieval error (|1S|)
from a validation exercise at that location, which is what
might be done in the absence of pixel-level uncertainty es-
timates. This skill score is computed using binned values
rather than individual matchups due to the previously dis-
cussed nature of the relationship between uncertainty and er-
ror (Figs. 1, 2). The highest possible score is 1, and a score of
0 indicates that the uncertainty estimates do not have greater
skill than simply assuming the average retrieval error. If the
magnitudes of εT are in error then it is possible for scal to take
unbounded negative values, in which case the uncertainties
are said to be poorly calibrated (Dawid, 1982). This is quite
a difficult test for a data set as a positive skill score requires
that both the magnitudes of the uncertainty and the variations
in both uncertainty and error must be accurate. This may be
particularly difficult if the error does not vary much at a given
location. As a result scal should not be used as a single metric
in isolation but rather examined in a broader context.

Figures 3 and 4 provide the basis for the framework pro-
posed in this study. An earlier version of this method was
designed during the development and assessment of prognos-
tic uncertainty estimates for MODIS DB retrievals by Sayer
et al. (2013). It has been further advanced through discus-
sions at annual AeroSat meetings. These ideas have been fur-
ther practically applied to NOAA VIIRS AOD data by Huang
et al. (2016), to GOCI data by Choi et al. (2018), to retrievals
of absorbing aerosols above clouds against airborne measure-
ments by Sayer et al. (2019b), and to the latest MISR prod-
uct over ocean by Witek et al. (2019). The idea of looking at
normalized retrieval error distributions was also explored for
AOD by Popp et al. (2016) and Kinne et al. (2017) when eval-
uating ESA Climate Change Initiative (CCI) aerosol prod-
ucts and in a more general sense (with cloud-top height as
an example) by Merchant et al. (2017). Indeed, the method
is not restricted to AOD, although AOD has the advantage of
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comparatively readily available, high-quality reference data
in AERONET and other networks.

3.2 Practical application to satellite data products

3.2.1 AERONET data used and matchup criteria

Here, the reference AOD τA is provided using level 2.0
(cloud-screened and quality assured) direct-Sun data from
the latest AERONET version 3 (Giles et al., 2019). As
AERONET Sun photometers do not measure at 550 nm, the
AOD is interpolated using a second-order polynomial fit to
determine the coefficients a0,a1, and a2 for each measure-
ment,

log(τλ)= a0+ a1 log(λ)+ a2 log(λ)2, (6)

where λ is the wavelength. All available (typically four)
AOD measurements in the 440–870 nm wavelength range
are used in the fit, which is more robust to calibration prob-
lems in individual channels than a bispectral approach and
accounts for spectral curvature in log(τλ) (Eck et al., 1999;
Schuster et al., 2006). The uncertainty on mid-visible AOD
is dominated by sensor calibration and is ∼ 0.01 (Eck et al.,
1999). The sampling cadence is typically once per 10 min in
cloud-free, daytime conditions but is more frequent at some
sites.

Data from a total of 12 AERONET sites, listed in Table 6,
are used here to assess the AOD uncertainty estimates in var-
ious satellite data sets. This is evenly split to provide six
sites to evaluate AOD retrievals from algorithms over land
and six over water. Each category is further split; three sites
are described as “straightforward”, for which the AOD re-
trieval problem is comparatively uncomplicated (i.e. likely
no significant deviations from retrieval assumptions) and so
the uncertainty estimates might be expected to be reasonable,
and three sites are “complex”. These complex sites were cho-
sen as they have complicating factors which are not well-
captured by existing retrieval forward models and might be
expected to lead to breakdowns in the techniques used by the
retrieval algorithms to provide uncertainty estimates.

The reasons for identifying a particular site as complex are
as follows. Over land, Ilorin (Nigeria) and Kanpur (India) can
exhibit complicated mixtures of aerosols with distinct opti-
cal properties and vertical structure (Eck et al., 2010; Giles
et al., 2012; Fawole et al., 2016). Many AOD retrieval algo-
rithms, in contrast, assume a single aerosol layer of homoge-
neous optical properties. Pickle Lake (Canada) is in an area
studded by lakes of sizes similar to or smaller than satellite
pixel size. This might be expected to interfere with data set
land masking (which often determines algorithm choice) and
surface reflectance modelling in a non-linear way (Carroll
et al., 2017). Over water, Cape Verde (on Sal Island, officially
the Republic of Cabo Verde) is characterized by frequent
episodes of Saharan dust outflow; these particles have com-
plex shapes, which are often approximated in AOD retrieval

Figure 5. Example results of matchup and filtering criteria for
MISR data at Ascension Island. Red points indicate matchups in-
cluded for further analysis on the basis of filters described in the
text, and grey indicates those excluded from analysis. Horizontal
and vertical error bars indicate the 1σ uncertainty on AERONET
and MISR data, respectively. The 1 : 1 line is dashed black.

algorithms by spheres or spheroids. This assumption leads
to additional uncertainties in modelling the aerosol phase
matrix and absorption cross section, which are larger than
for many other aerosol types and may not be accounted for
fully in the retrieval error budget (Mishchenko et al., 1997;
Kalashnikova et al., 2005). ICIPE Mbita (hereafter Mbita, on
the shore of Lake Victoria in Kenya) is similar to Pickle Lake
but for water retrievals; i.e. it allows for the sampling of nom-
inal water pixels which may be influenced by partial misflag-
ging of coastlines, 3-D effects from the comparatively bright
land, and outflow into the water affecting surface brightness.
Finally, Venice (Italy) is in the northern Adriatic Sea, slightly
beyond the outflow of the Venetian lagoon, and its water
colour is strongly divergent from the Case 1 (brightness tied
to chlorophyll a concentration; Morel, 1988) assumption em-
ployed by most AOD retrieval algorithms.

This breakdown is inherently subjective as all retrievals in-
volve approximations; the dozen sites chosen are illustrative
of different aerosol and surface regimes but not necessarily
indicative of global performance. The purpose of this study
is to define and demonstrate the framework for evaluating
pixel-level uncertainties and provide some recommendations
for their provision and improvement. It is hoped that, with
growing acceptance of the need to evaluate pixel-level un-
certainties, this approach can be applied on a larger scale.
The sites were chosen as they are fairly well-understood and
have multi-year data sets (data from all available years were
considered from the analysis). Note that some of the satellite
data sets considered here do not provide data at some sites
for various reasons (discussed later).

The matchup protocol is as follows. AERONET data are
averaged within ±15 min of each satellite overpass (pro-
viding τA) and compared with the closest successful satel-
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Table 6. AERONET sites used and their categorization.

Site Latitude (◦ N) Longitude (◦ E) Complexity

For land algorithm evaluation

Avignon 43.93 4.88 Straightforward
Goddard Space Flight Center (GSFC) 38.99 −76.84 Straightforward
Palencia 41.99 −4.52 Straightforward
Ilorin 8.48 4.67 Complex
Kanpur 26.51 80.23 Complex
Pickle Lake 51.45 −90.22 Complex

For water algorithm evaluation

Ascension Island −7.98 −14.41 Straightforward
Midway Island 28.21 −177.38 Straightforward
University of California Santa Barbara (UCSB) 34.42 −119.85 Straightforward
Cape Verde 16.73 −22.94 Complex
International Centre of Insect Physiology and Ecology (ICIPE) Mbita −0.43 34.21 Complex
Venice 45.31 12.51 Complex

lite retrieval which has a pixel centre within 10 km of the
AERONET site. This provides τS and εS. Each satellite
data set’s recommended quality assurance (QA) filtering
criteria are applied as provided in the data products. The
AERONET uncertainty, εA, is taken as the quadrature sum
of the AERONET measurement uncertainty (±0.01; Eck
et al., 1999) and standard deviation of the AERONET mea-
surements (typically 2–3) during the ±15 min temporal win-
dow. Additionally, matchups are discarded if εA > 0.02 or
if only one AERONET measurement is obtained during the
time window, as this indicates the potential for heteroge-
neous scenes. Dependent on the site and sensor, this addi-
tional filtering step removes around 10 %–60 % of potential
matchups; Fig. 5 shows an example for MISR over-water re-
trievals at the Ascension Island site. As a reminder, the focus
here is not on validating the AOD but rather validating the
AOD uncertainty estimates (vertical lines in the figure).

These matchup criteria are stricter than what is commonly
applied for AOD validation (e.g. Ichoku et al., 2002), which
typically averages AERONET data within ±30–60 min and
satellite retrievals within ∼±25 km; the smaller spatiotem-
poral window and additional filtering criteria decrease the
potential (unknown) contribution of collocation uncertainty
to εA, which increases as the collocation criteria are loos-
ened (Virtanen et al., 2018). The reasoning behind taking the
nearest, rather than average, satellite retrieval is similar: av-
eraging would have the potential to decrease the apparent re-
trieval error, which would make the comparison less useful
for evaluating εS. Weakening these criteria could increase
the data volume for analysis at the expense of increased
collocation-related uncertainty, and there is no objective way
to determine universal optimal thresholds. However, in the
future, site-specific criteria could be guided by analysis of

high-resolution (spatiotemporal) model simulations and sur-
face observations.

This work considers satellite AOD products from seven
algorithm teams; five of these contain both land and water
retrievals (albeit sometimes with different algorithms), while
two only cover land retrievals. Only pixels retrieved as land
are used for comparison with AERONET data from land sites
in Table 6, and vice versa for water sites. These data sets are
briefly described below, and the reader is referred to the ref-
erences cited here and in Tables 4 and 5 for additional infor-
mation. Note in the discussion that the term “pixel” refers to
individual L2 retrievals, sometimes referred to “superpixels”
in the literature as they are often coarser than the source L1
data.

3.2.2 MODIS data sets

Four of the data sets (three land, one water) are derived from
MODIS measurements; there are two MODIS sensors pro-
viding data since 2000 and 2002 on the Terra and Aqua satel-
lites, respectively. The sensors have a 2330 km swath width,
which is advantageous in providing a large data volume for
analysis. Since launch, the MODIS aerosol data products
have included AOD from the DT algorithm family, which
has separate algorithms for water and vegetated land pixels
(Levy et al., 2013). These data sets provide only diagnos-
tic uncertainty estimates of the form εS =±(a+ bτA); in
practice (and here) these are often treated as if they were
framed instead in terms of τS with the same coefficients a
and b when a prognostic estimate is needed. For retrievals
over land, εS =±(0.05+ 0.15τA), which is consistent with
the expected performance of the algorithms at launch (Remer
et al., 2005). Over water, the estimate has been revised since
launch to εS =±(0.03+0.1τA). Limited validation based on
Collection 6 data by Levy et al. (2013) suggested that there
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might be an asymmetry to the envelope with the 1σ range
over water being from−0.02−0.1τA to+0.04+0.1τA. This
has not yet been corroborated by a global validation of C6 or
the latest Collection 6.1 (C6.1), and it is also plausible that
calibration updates in C6.1 may have ameliorated some of
this bias. As a result the symmetric envelope is used here.

The DB algorithm retrieves AOD only over land and was
introduced to fill gaps in DT coverage due to bright surfaces
such as deserts (although it has since been expanded to in-
clude vegetated land surfaces as well). The latest version is
described by Hsu et al. (2019). Prognostic AOD retrieval un-
certainties are estimated as described in Sayer et al. (2013),

εS =±

(
a+ bτS

1
µ0
+

1
µ

)
, (7)

where µ0 and µ are the cosines of solar and view zenith an-
gles, respectively, and a and b are coefficients depending on
the QA flag value, sensor, and (since C6.1) surface type. The
latest values of a and b are given by Hsu et al. (2019).

BAR also performs retrievals only over land; it uses the
same radiative transfer forward model as DT but reformu-
lates the problem to retrieve the MAP solution of aerosol
properties and surface reflectance simultaneously for all veg-
etated pixels in a single granule (Lipponen et al., 2018). This
includes both a priori information and spatial smoothing con-
straints. Uncertainty estimates are provided organically by
the MAP technique (Eq. 2). Note that BAR data are only
available at present for 2006–2017.

For all MODIS products, data from the latest C6.1 are
used. All products are provided at nominal (at-nadir) 10 km
horizontal pixel size. Identical algorithms (and approaches
for estimating uncertainty) are applied to both Terra and
Aqua measurements, and the results of the evaluation were
not distinguishable for Terra and Aqua data. For conciseness
and to increase data volume Terra and Aqua data are not sep-
arated in the discussion going forward.

3.2.3 MISR data sets

The MISR sensor also flies on the Terra platform and con-
sists of nine cameras viewing the Earth at different angles,
with a fully overlapped swath width around 380 km (Diner
et al., 1998). The latest version 23, used here, provides AOD
retrievals at 4.4 km horizontal pixel size. Both land and wa-
ter retrievals (Garay et al., 2017; Witek et al., 2018b) at-
tempt retrieval using each of 74 candidate aerosol mixtures,
although they differ in their surface reflectance models and
uncertainty estimates. The overland “heterogeneous surface”
retrieval estimates uncertainty as the standard deviation of
AOD retrieved using those aerosol mixtures which provide a
sufficiently close match to TOA measurements (Martonchik
et al., 1998, 2009). The “dark water” approach (Witek et al.,
2018b) looks at the variation of a cost function across the

range of potential AOD and aerosol mixtures,

f (τ)=
1
N

N∑
m=1

1
χ2
m(τ )

, (8)

where the sum is over N = 74 aerosol mixtures and χ2
m is

a cost function similar to the first term of Eq. (1). The un-
certainty εS is then taken as the full-width at half maximum
of f (τ), which is often found to be monomodal and close
to Gaussian (Witek et al., 2018b). Note that MISR does not
provide retrievals over Mbita or Venice as the dark water al-
gorithm logic excludes pixels within the matchup radius used
here as too bright and unsuitable; thus, the approach cannot
be evaluated at those sites.

3.2.4 ATSR data sets

The ATSRs were dual-view instruments measuring near-
simultaneously at nadir and near 55◦ forward. ATSR2 (1995–
2003) and AATSR (2002–2012) had four solar and three
infrared bands, with approximately 1 km pixel sizes and a
550 km swath (although ATSR2 operated in a narrow-swath
mode over oceans). Their predecessor ATSR1 lacked three
of the solar bands and so has not been used widely for AOD
retrieval. In 2016 the first of a new generation of successor
instruments (the SLSTRs) was launched; SLSTR has sev-
eral additional bands, a rear view instead of forward, the na-
tive spatial resolution of solar bands is finer, and the swath
broader (Coppo et al., 2010). This study uses two data sets
derived from this family of sensors.

ORAC is a generalized OE retrieval scheme which has
been applied to multiple satellite instruments. Here, the ver-
sion 4.01 ATSR2 and AATSR from the ESA CCI are used
(Thomas et al., 2017), along with an initial version 1.00
of data from SLSTR. ORAC provides AOD retrievals over
both land and ocean surfaces; the retrieval approaches are
the same except for the surface reflectance models, which
also inform the a priori and covariance matrices. Over wa-
ter, surface reflectance is modelled according to Sayer et al.
(2010a) with fairly strong a priori constraints. Over land, two
approaches have been implemented in ORAC; the one used
here is a model developed initially for the SU (A)ATSR re-
trieval algorithm (North et al., 1999), which assumes that the
ratio between forward and nadir surface reflectance is spec-
trally invariant and has very weak a priori constraints. Note
that AOD and aerosol effective radius have weak and strong
a priori constraints, respectively. Retrievals are performed
at native resolution, and cost functions and uncertainty es-
timates are as in Eqs. (1) and (2) without smoothness con-
straints. ORAC simultaneously retrieves aerosol and surface
properties, performing an AOD retrieval for each of a number
(here, 10) of candidate aerosol optical models (mixing four
components defined by the aerosol CCI; Holzer-Popp et al.,
2013) and choosing the one with the lowest cost as the most
likely solution. Retrievals passing quality checks (Thomas
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et al., 2017) are then averaged to a 10 km Earth-referenced
sinusoidal grid.

ADV uses the ATSR dual view over land to retrieve the
contribution to total AOD from each of three aerosol CCI
components (with the fraction of the fourth dust component
prescribed from a climatology) by assuming that the ratio of
surface reflectance between the sensor’s two views is spec-
trally flat. This has some similarity with the North et al.
(1999) approach, except for ADV the ratio is estimated from
observations in the 1600 nm band at which the atmosphere
is typically most transparent, rather than being a freely re-
trieved parameter (Kolmonen et al., 2016). Over the water,
the algorithm only uses the instruments’ forward view as this
has a longer atmospheric path length and is less strongly af-
fected by Sun glint. Because of this, the water implemen-
tation is often called ASV rather than ADV (Table 3), al-
though for convenience here the term ADV is used through-
out. Water surface reflectance is modelled as a combination
of Fresnel reflectance and the chlorophyll-driven model of
Morel (1988). The land and water algorithms treat other fac-
tors (e.g. aerosol optical models) in the same way. Unlike
ORAC, ADV aggregates to a 10 km grid before performing
the retrievals. ADV uncertainty estimates are calculated us-
ing Jacobians at the retrieval solution, i.e. the first compo-
nent of Eq. (2), with Sy assumed diagonal. The uncertainty
on the TOA measurements is taken as 5 %, which is some-
what larger than that assumed by ORAC, so ADV is implic-
itly adding some forward model uncertainty into this calcula-
tion. Version 3.11 of the data sets (Kolmonen and Sogacheva,
2018), also from the ESA aerosol CCI, is used here.

Aside from pixel and/or swath differences, for both ADV
and ORAC the implementation of the algorithms is the same
for the three sensors. Matchups from the two (for ADV) or all
three (for ORAC) sensors are combined here in the analysis
to increase data volume due to the similarity in sensor charac-
teristics and algorithm implementation. Note, however, that
the difference in viewing directions between (A)ATSR and
SLSTR (i.e. forward vs. rear) means that different scatter-
ing angle ranges are probed over the two hemispheres, which
influences the geographic distributions of retrieval uncertain-
ties. For both of these data sets, a large majority of matchups
(75 % or more) obtained are with AATSR, as the ATSR2 mis-
sion ended before the AERONET network became as exten-
sive as it is at present, and the SLSTR record to date is short.
The results do not significantly change if only AATSR data
are considered.

3.2.5 CISAR SEVIRI

Unlike the other data sets considered here, the SEVIRI sen-
sors fly on geostationary rather than polar-orbiting platforms.
This analysis uses data from the first version of the CISAR
algorithm (Govaerts and Luffarelli, 2018) applied to SEVIRI
aboard Meteosat 9; due to computational constraints, only
SEVIRI data for 2008–2009 have been processed and in-

Figure 6. Site-to-site corrected sampling n̂ for each data set, shown
on a relative scale. Symbols are used to aid in differentiating over-
lapping data points but carry no further information.

cluded here. This sensor has a sampling cadence of 15 min
and observes a disc centred over North Africa, covering pri-
marily Africa, Europe, and surrounding oceans. The horizon-
tal sampling distance is 3 km at nadir, increasing to around
10 km near the limits of useful coverage. This sampling
means that several of the AERONET sites (GSFC, Kanpur,
Midway Island, Pickle Lake, UCSB) are not seen by the sen-
sor and cannot be analysed.

CISAR is also an OE retrieval scheme, which in its SE-
VIRI application accumulates cloud-free measurements from
three solar bands over a period of 5 d and simultaneously re-
trieves aerosol and surface properties, reporting at each SE-
VIRI time step. Surface reflectance is modelled following
Rahman et al. (1993) over land and Cox and Munk (1954a, b)
over water, although the retrieval approach is otherwise the
same between the two surface types. It employs a priori data
and several smoothness constraints, so uncertainty estimates
(Luffarelli and Govaerts, 2019) broadly follow Eq. (2).

3.3 Results

With the above criteria, the number of matchups n obtained
for each AERONET site with each data set is shown in Ta-
ble 7. This additionally includes the long-term climatologi-
cal mean (March 2000–February 2019) daytime cloud frac-
tion fC from MODIS Terra, taken from the C6.1 level 3
monthly product (MOD08_M3) for the 1◦ grid cell in which
the AERONET site lies. The cloud-masking approach is de-
scribed by Frey et al. (2008), with more recent updates listed
in Sect. 3 of Baum et al. (2012). Data from Terra are used as
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Table 7. Number of matchups obtained for each AERONET site and data set, together with climatological cloud fraction.

Data set AERONET site
Land matchup counts

Straightforward sites Complex sites

Avignon GSFC Palencia Ilorin Kanpur Pickle Lake

ADV 266 199 98 89 100 57
BAR 1793 2088 2017 893 1087 1119
CISAR 1749 0 868 493 0 0
DB 3045 3010 1924 1144 1493 1068
DT 2519 2409 1774 895 1250 529
MISR 241 271 203 82 153 108
ORAC 344 326 200 105 104 106
Cloud fraction 0.50 0.57 0.55 0.68 0.55 0.67

Water matchup counts

Straightforward sites Complex sites

Ascension Island Midway Island UCSB Cape Verde Mbita Venice

ADV 30 43 81 59 57 137
CISAR 210 0 0 716 336 1442
DT 748 443 1812 768 341 2698
MISR 74 59 196 115 0 0
ORAC 66 79 135 143 68 257
Cloud fraction 0.59 0.63 0.34 0.72 0.42 0.58

the majority of the aerosol data sets, like Terra, have a late-
morning overpass time.

To make the counts more comparable between sites a
sampling-corrected count n̂ can be calculated,

n̂= n
cos(φ)
(1− fC)

mS

mA
, (9)

where φ is the site’s latitude (important as for polar-
orbiting satellites a given latitude is overflown proportional
to 1/cos(φ)), mS the number of months of the satellite
record, and mA the number of months during the satellite
record for which the AERONET site was in operation. For
example, CISAR data used here cover the period 2008–2009
(mS = 24); for these years, AERONET data at Ascension
Island are available for 5 months in 2008 and 11 in 2009
(mA = 16). Equation (9) thus provides a first-order estimate
of the number of matchups which would have been obtained
in the absence of clouds (as the data sets consider cloud-free
pixels only), an equal rate of being overflown, and with the
AERONET site in constant operation through the satellite
lifetime. Normalizing each satellite data set to the maximum
of n̂ across sites (to account for swath width and mission
length differences, which determine total counts) provides a
relative measure of how often each data set provides a valid
retrieval at each location; the resulting relative sampling fre-
quencies are shown in Fig. 6. This measure will be used in the
ongoing discussion. Note that as CISAR is applied to geosta-
tionary SEVIRI data, the factor of cos(φ) is omitted (since

each point on the disc is sampled once per scan, and each
point outside the disc is never seen).

Graphical evaluations of the pixel-level uncertainties are
shown in Figs. 7 and 8 for land and water retrievals, respec-
tively. In both of these the left-hand column shows CDFs of
absolute normalized error |1N| against theoretical expecta-
tions (see Fig. 3b), and the middle and right columns show
the ED εT and twice ED binned against the 1σ and 2σ points
of absolute retrieval error |1S|, respectively (see Fig. 4). Due
to the very different sampling between data sets and sites (Ta-
ble 7), the number of bins is taken as the lesser of n/20 or
n1/3 (rounded to the nearest integer). This choice is a bal-
ance between well-populated bins to obtain robust statistics
and the desire to examine behaviour across a broad range of
εT. These figures also include an estimate of the digitization
uncertainty on the binned values: for example, in a bin con-
taining 100 matchups, the uncertainty on the 68th percentile
(1σ point) binned value shown is taken as the range from
the 67th to 69th matchup in the bin. For the MODIS-based
records (which have the highest sampling) this digitization
uncertainty is often negligible, but for others (ADV, MISR,
ORAC) it is sometimes not.

A further way to look at the data is provided by Fig. 9,
which shows the mean and standard deviation of1N for each
data set and AERONET site; for unbiased retrievals with per-
fectly characterized errors (see Fig. 3a) the results should fall
at coordinates (0, 1). This is a complement to the previously
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Figure 7. Evaluation of pixel-level uncertainty estimates for overland retrievals. Each row corresponds to a different AERONET site, and
colours are used to distinguish data sets. The left-hand column shows a CDF of the absolute normalized retrieval error |1N| (see Fig. 3b),
and the middle and right columns show 1σ and 2σ expected discrepancy ED vs. absolute retrieval errors |1S| (see Fig. 4), respectively. In
the left column, theoretical expectations are shaded grey; in the others, the 1:1 line is indicated dashed in grey, and vertical bars indicate the
uncertainty on the bin value, as described in the text.
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Figure 8. As Fig. 7, except for AERONET sites used for over-water retrieval evaluation.
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Figure 9. Mean and standard deviation of normalized error 1N obtained for each AERONET site and satellite data set for (a) land and
(b) water sites. Horizontal and vertical bars indicate the standard errors on the estimates of the mean and standard deviation, respectively.
Diamonds and triangles indicate straightforward and complex AERONET sites (Table 6). Note that the x axis is truncated and the y axis is
logarithmic.

shown CDFs as it also provides measures of systematic bias
in the AOD retrieval and systematic problems in estimating
error magnitude: horizontal displacement from the origin in-
dicates the relative magnitude and direction of systematic er-
ror, and vertical displacement indicates a general underesti-
mation or overestimation of the typical level of error. Further,
it shows how closely (or not) results from the different sites
cluster together. For a larger-scale analysis of hundreds of
AERONET sites, this type of plot could be expanded to a heat
map. The CDFs in Figs. 7 and 8 assess the overall magnitude
of normalized errors and the shape of the distribution, while
the binned ED assesses the overall skill in the specificity of
the estimates. In these figures, the top and bottom three rows
show sites expected to be straightforward or complicated test
cases for the uncertainty estimate techniques (Table 6). Ta-
ble 8 provides the overall calibration skill scores for 1σ er-
ror at each site (Eq. 5), plus the coefficient of determination
R2 (where at least three bins were available) between binned
uncertainty and 1σ error from the middle columns of Figs. 7
and 8. Together, these facilitate a visual and quantitative eval-
uation of the pixel-level uncertainty estimates.

3.3.1 Land sites

Turning to the land sites (Fig. 7), all the techniques show
some skill in that the ED generally increases with retrieval
error. There is, however, considerable variation between sites
(which points to the utility of considering results site by
site for this demonstration analysis) and data sets. For the
straightforward sites, there is an overall tendency for the un-
certainty estimates to be too large. This may indicate that
the retrieval error budgets are a little too pessimistic; since
overall errors and uncertainties also tend to be small at these
sites, it is also possible that the uncertainty on the AERONET
data (which can be a non-negligible contribution to ED here)
is overestimated. A notable exception here is MISR, for

which uncertainty estimates are very close to theoretical ex-
pectations. This implies that the overall assumptions made
by this technique (that the principle contribution to error
is in aerosol optical model assumptions, and the 74 mix-
tures provide a representative set such that the standard de-
viation of retrieved AOD between well-fitting mixtures is a
good proxy for uncertainty) are valid. A second exception
is CISAR, which more significantly overestimates the uncer-
tainty, indicating that the retrieval is more robust than ex-
pected. For these sites the binned plots of 1σ and 2σ retrieval
error vs. ED look similar, suggesting that, within each bin,
the retrieval errors are roughly Gaussian (even if the mag-
nitudes of uncertainty are not perfectly estimated). MODIS
DT tends to overestimate uncertainty on the low end and un-
derestimate on the high end, suggesting (at least for these
sites) that the first and second coefficients in the expres-
sion εS =±(0.05+0.15τ) may need to be decreased and in-
creased, respectively.

For the complex land sites, the picture is different. At
Ilorin, MODIS DB and ADV tend to overestimate uncer-
tainty, while the others underestimate it. This site was cho-
sen as a test case because of the complexity of its aerosol
optical properties, which are more absorbing than assumed
by many retrieval algorithms and can show large spatiotem-
poral heterogeneity due to a complex mix of sources (Eck
et al., 2010; Giles et al., 2012; Fawole et al., 2016). Using air-
craft measurements, Johnson et al. (2008) found mid-visible
single-scattering albedo (SSA) from smoke-dominated cases
between 0.73 and 0.93, with a central estimate for the smoke
component of 0.81. DB has a regional SSA map with more
granularity (Hsu et al., 2019), while the other algorithms
do not contain sufficiently absorbing particles, leading to a
breakdown in their uncertainty estimates when strong ab-
sorption is present.

The most absorbing component in the MISR aerosol mix-
tures has an SSA of 0.80 at 558 nm; mixtures including this
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Table 8. Calibration skill scores scal and coefficient of determination R2 from binned 1σ uncertainties in Figs. 7 and 8.

Data set AERONET site

scal R2 scal R2 scal R2 scal R2 scal R2 scal R2

Land calibration skill scores; R2

Straightforward sites Complex sites

Avignon GSFC Palencia Ilorin Kanpur Pickle Lake

ADV < 0 0.58 < 0 0.87 < 0 0.72 0.29 0.99 < 0 0.99 0.08 0.99
BAR < 0 0.55 < 0 0.94 < 0 0.57 < 0 0.37 < 0 0.84 0.11 0.88
CISAR < 0 0.67 – – < 0 0.075 < 0 0.94 – – – –
DB < 0 0.98 0.57 0.98 0.65 0.96 < 0 0.99 < 0 0.97 0.61 0.86
DT 0.57 0.89 0.47 0.89 0.53 0.92 < 0 0.04 0.69 0.91 0.50 0.99
MISR 0.84 0.85 0.97 0.99 0.93 0.98 0.62 0.75 < 0 0.38 0.87 0.96
ORAC < 0 0.82 < 0 0.70 < 0 0.36 0.82 0.95 < 0 0.88 < 0 0.84

Water calibration skill scores; R2

Straightforward sites Complex sites

Ascension Island Midway Island UCSB Cape Verde Mbita Venice

ADV < 0 – < 0 – 0.40 0.79 < 0 0.91 < 0 0.35 0.11 0.70
CISAR < 0 0.11 – – – – < 0 0.42 < 0 0.28 < 0 0.33
DT 0.72 0.87 0.38 0.95 0.45 0.99 0.73 0.93 0.62 0.92 0.63 0.98
MISR 0.52 0.94 < 0 0.45 0.80 0.97 0.78 0.94 – – – –
ORAC < 0 0.84 < 0 0.48 < 0 0.06 < 0 0.92 < 0 0.047 < 0 0.063

component have SSA from 0.81 to 0.96, and all other MISR
mixtures have SSA> 0.90 (Tables 2, 3 of Kahn et al., 2010).
In smoke cases retrievals are biased low and the uncertainty
estimates are too narrow because the set of candidate aerosol
mixtures is not representative of optical properties at this lo-
cation. MODIS DT and BAR (which uses the same optical
models as DT) assume a fine-mode-dominated model with
mid-visible SSA of 0.85 for December–May and 0.90 for
June–November (Fig. 3 of Levy et al., 2007); this is mixed
with a less absorbing coarse-dominated model, so they suf-
fer from similar issues. CISAR retrieves AOD by a combina-
tion of aerosol vertices in SSA-asymmetry parameter space;
the most absorbing (for SEVIRI’s 640 nm band, which is the
shortest wavelength) has SSA around 0.79 (Fig. 4 of Luf-
farelli and Govaerts, 2019). Due to the spectral curvature
of smoke SSA, this would imply a weaker effective absorp-
tion in the mid-visible. ADV and ORAC share aerosol com-
ponents prescribed by the aerosol CCI (Holzer-Popp et al.,
2013); the most absorbing fine-mode component has mid-
visible SSA around 0.80, although this is also always mixed
with more weakly absorbing fine-mode (which have SSA of
0.98) and coarse-mode particles in varying proportions, so in
practice the assumed SSA is always higher (Tables 1 and 2
of Thomas et al., 2017). It may be that ADV is providing rea-
sonable estimates at this site despite this due to the somewhat
larger assumed forward model uncertainty than ORAC. For
Kanpur, except for MISR (which has similar issues as Ilorin)

and CISAR (as SEVIRI does not observe the site), these is-
sues are lessened. This may be because, while Kanpur has
similar complex mixed aerosol conditions, the components
are overall less strongly absorbing and so these issues are
less acute, with a typical SSA (similar to that of Ilorin in
mixed, as opposed to smoke-dominated, conditions) around
0.89 (Giles et al., 2012). The issues with MISR may imply
that the wrong mixture(s) are being selected here.

The case at Pickle Lake is more diverse: similar to the
straightforward sites, MODIS DT, DB, and BAR all over-
estimate uncertainty. ADV and MISR are fairly close to the-
oretical values; despite this, their skill scores are fairly low
(Table 8) as the magnitudes of their uncertainties are not
perfect and the range of 1σ retrieval errors is fairly small.
All these algorithms provide retrievals significantly less of-
ten than would be expected by the site’s cloud cover, lati-
tude, and AERONET availability (Fig. 6). This implies that
the algorithms may be coping with a potential violation of as-
sumptions (i.e. land mask issues from numerous small lakes)
by simply not providing a retrieval at all. ORAC underesti-
mates uncertainties at this site but provides retrievals rela-
tively more frequently than the other data sets. As the land–
sea mask is determined at full (1 km) resolution and used
to set the surface model, it is likely that some of the pix-
els within the 10 km grid will be affected by misflagging
and/or mixed surface issues, contributing to additional errors
which are not being caught by these quality checks. Which
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behaviour is more desirable (no data vs. more uncertain data
than expected) is a philosophical and application-dependent
matter. As it lies outside the SEVIRI disc, CISAR provides
no retrievals at this site.

Aside from DB, DT, and MISR, skill scores (Table 8) are
in most cases negative; for the former two the uncertainty es-
timates are somewhat empirical and not independent of the
AERONET data, so the fact they are fairly well-calibrated
is not surprising. Despite this R2 is typically not negligi-
ble (although the small number of bins means the estimates
of R2 are somewhat uncertain). This implies that, while the
absolute magnitudes of estimated uncertainty are often too
small or large, the techniques do show some skill at predict-
ing which retrievals are comparatively less or more uncertain
at a variety of locations. Neither scal nor R2 should be over-
interpreted in terms of site-to-site variations, as these depend
strongly on the number of bins, the range in estimated uncer-
tainties, and the range in actual retrieval errors at a given site.
The main points of note are whether scal > 0 and whether
there is a positive association between binned uncertainty
and error.

3.3.2 Water sites

For the water sites (Fig. 8), only five satellite data sets are
available – also recall that the MODIS DT uncertainty enve-
lope is narrower than over land, and the MISR uncertainty is
a PDF based on a cost function composited over AOD and
aerosol mixtures rather than (as over land) a simple stan-
dard deviation. At the straightforward sites there is some
commonality with the land sites. Specifically, the MISR ap-
proach works fairly well, CISAR overestimates uncertainty
(although of the three, only Ascension Island is within the
SEVIRI disc), and MODIS DT slightly overestimates uncer-
tainty overall, with a tendency to overestimate on the low end
and underestimate on the high end. In general a similar pic-
ture is also seen in terms of scal andR2: most data sets are not
well-calibrated, although there is skill at assessing variations
in uncertainty at individual sites.

ADV and ORAC are more systematic in their underesti-
mation of uncertainty over water compared to over land, al-
though as the over-water errors are often fairly small in abso-
lute terms, they appear fairly large in relative terms. This dif-
ference in the ATSR-based records between land and ocean
sites is intriguing. ADV assumes 5 % uncertainty in the TOA
signal, while ORAC includes separate measurement and for-
ward model terms for a slightly lower total uncertainty over-
all (typically 3 %–4 % dependent on band and view), which
in part explains ORAC’s larger normalized errors. The com-
mon behaviour either implies (1) that the calibration of the
sensors may be biased or more uncertain than expected for
these fairly dark ocean scenes or (2) that the over-water sur-
face reflectance models or (for ORAC) their uncertainties (ei-
ther in their contribution to forward model error in Sy or the
strength of the a priori constraint in Sa) might be less reliable

than assumed. Figure 9 implies that there is a significant sys-
tematic error source in ORAC contributing to a positive bias
over water. A thorough comparison between the two data sets
using the matchups collected here is difficult due to the fairly
low data volumes involved, especially for ADV. ADV pro-
vides significantly fewer retrievals overall than ORAC (for
both land and water), implying stricter pixel selection and/or
retention criteria; this is consistent with ESA CCI validation
analysis of earlier versions of these data sets by Popp et al.
(2016) and Kinne et al. (2017).

Despite the expected complexities at Cape Verde from
mixtures of low-level sea spray and higher-altitude nonspher-
ical mineral dust (Mishchenko et al., 1997; Kalashnikova
et al., 2005), the error characterization at this complex site
does not appear different from that obtained at the more
straightforward sites. Interestingly, these algorithms seem
more selective about when to provide retrievals at the three
straightforward sites than they are at Cape Verde (Fig. 6). The
reasons for this are unclear unless the estimate provided by
n̂ (Eq. 9) is not a good approximation for these sites; each is
close to the coast and all should be roughly equally affected
by Sun-glint sampling-related losses.

Mbita is in some sense the inverse of the land site Pickle
Lake, and similar comments apply. MODIS DT uncertainties
are reasonable, although the data volume is fairly low relative
to expectations from Fig. 6. ADV and ORAC retrieve more
frequently and perform well but with more high-error outliers
than expected, likely due to mixed or misflagged land–water
pixels. CISAR retrieves with a similar frequency at Mbita as
Ascension Island (that is, less than expected but no less so
than at the straightforward site). Looking at the binned ED
vs. error, the errors for the 1σ points (Fig. 8n) are slightly
overestimated and those for the 2σ points (Fig. 8o) underes-
timated, implying more extreme outliers than expected and
indicating possible surface contamination issues. Note that
MISR does not provide retrievals at this site as the algorithm
does not consider Lake Victoria to be dark water.

Venice is sampled close to the expected rates by ADV,
CISAR, MODIS DT, and ORAC (Fig. 6), and again it is ex-
cluded by MISR due to the bright, turbid water. Here, the
CISAR 1σ retrieval error is ∼ 0.05 and the 2σ error is about
double that, regardless of the ED; the uncertainty estimates
do not show skill overall. As SEVIRI’s wavelengths (640,
810, 1640 nm) are less strongly affected by water turbidity
than the other sensors, the issues causing complexity here
may not apply, and the overall tendency for CISAR to re-
port too large an uncertainty may be dominating. ADV and
DT results are reasonably in line with expectations, implying
either that the turbid water is not a hindrance for the algo-
rithm or that the additional uncertainty from this factor is
compensated for by lower uncertainties in some other aspect
of the algorithm. ORAC tends to more strongly underesti-
mate the retrieval uncertainty. The water surface reflectance
model (Sayer et al., 2010a) is based on low-turbidity Case I
water (Morel, 1988), so it is likely providing a low-biased a
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priori for the retrieval with too strong a constraint, leading
to a high bias in AOD retrievals with overly high confidence
in the solution, which becomes large when expressed in nor-
malized terms.

4 Conclusions and path forward

Pixel-level uncertainty estimates in AOD products are an
important complement to the retrievals themselves to allow
users to make informed decisions about data use for data as-
similation and other applications. Ideal estimates are prog-
nostic (predictive), and these are increasingly being provided
within data sets; when they are absent, diagnostic estimates
can be used as a stopgap. This study has reviewed existing
diagnostic and prognostic approaches, provided a framework
for their evaluation against AERONET data, and demon-
strated this framework using a variety of satellite data prod-
ucts and AERONET sites. It is hoped that this methodology
can be adopted by the broader community as an additional
component of data product validation efforts. Several con-
clusions about the performance of these existing estimates
follow.

1. All tested techniques show skill in some situations (in
that the association between estimated uncertainty and
observed error is positive, and on average magnitudes
are reasonable), although none are perfect, and there is
no clear single best technique. Small data volumes for
some sensors and locations limit the extent to which per-
formance in the high-uncertainty regime can be probed.

2. The points in Fig. 9 tend to cluster by data set more
strongly than by site. This implies that some of the
quantitative limitations in the uncertainty estimates pro-
vided within the current data sets are large-scale is-
sues (e.g. persistent underestimate or overestimate of
some aspect of the retrieval error budget). Further, as
the performance at expected straightforward vs. com-
plex AERONET sites was not always distinct, these lim-
itations (or other unknown factors) may at present be
more significant error sources than the issues associated
with the ground sites.

3. While skilful, the uncertainties are not always well-
calibrated; i.e. they are often systematically too large or
too small. If characterization of the error budgets of the
retrievals cannot be significantly improved, it is plau-
sible that a simple scaling (using e.g. averages of the
standard deviations on the y axis in Fig. 9) could be de-
veloped to bring the magnitudes more into line with the
expected values.

4. The formal error propagation techniques (employed
here by BAR, CISAR, and ORAC) are very powerful.
Their differing behaviour and performance illustrate the
difficulties in appropriately quantifying terms for the

forward model, a priori covariance matrices, and appro-
priate smoothness constraints. For these sites, CISAR
tends to overestimate the uncertainty most strongly,
BAR to overestimate slightly, and ORAC to underesti-
mate (more strongly over water than land). The simpler
approach taken by ADV (Jacobians from a flat 5 % er-
ror on TOA reflectance) tends to be about right over land
but also underestimates the true uncertainty over water.

5. The empirical validation-based MODIS DB approach
works well but on average overestimates the total un-
certainty and at these sites has little bias overall. That
may indicate that the sites used here are coincidentally
better-performing than the global results used to fit the
expression. This points to the fact that the expression
(which draws on AOD, geometry, quality flag, and sur-
face types) captures many, but not all, of the factors rel-
evant for quantifying total uncertainty.

6. The diagnostic MODIS DT approaches perform reason-
ably well if used instead as prognostic uncertainty esti-
mates; they have a tendency to be insufficiently confi-
dent (overestimate uncertainty) on the low end and over-
confident (underestimate uncertainty) on the high end.
Despite the possibility for unphysical negative AOD re-
trievals in the DT land product, both land and ocean re-
sults indicate a systematic positive bias in the retrievals.

7. MISR’s two approaches (applied for land and water sur-
faces) are both based on diversity between different can-
didate aerosol optical models. They both perform well
at most sites, although they have a tendency to under-
estimate the total uncertainty slightly. The implication
from this is that the diversity in AOD retrievals from dif-
ferent candidate optical models does capture the leading
cause of uncertainty in the MISR retrievals. The fact that
they are underestimates does imply at least one remain-
ing important factor which is not captured by this diver-
sity, which could perhaps be a systematic error source
such as a calibration or retrieval forward model bias.

More broadly, these results suggest paths for the devel-
opment and refinement of pixel-level AOD uncertainty esti-
mates for existing and new data sets. For algorithms attempt-
ing AOD retrievals from multiple candidate aerosol optical
models, the diversity in retrieved AOD between these differ-
ent models could be a good proxy for part of the retrieval un-
certainty. The MODIS DT ocean and ORAC algorithms both
perform retrievals for multiple optical models. As ORAC is
already an OE retrieval, this aerosol-model-related uncer-
tainty is one of the few components not directly included
in the existing error budget, so it could perhaps be added in
quadrature to the existing uncertainty estimate. MODIS DT
provides only a diagnostic AOD uncertainty estimate; diver-
sity between possible solutions (which draw from 20 possi-
ble combinations of four fine modes and five coarse modes)
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could be explored as a first-order prognostic extension or re-
placement of that. One caveat is that this metric is only useful
when the candidate set of optical models is representative; re-
sults at Ilorin, where aerosol absorption is often stronger than
assumed in retrieval algorithms and the MISR approach does
not perform well, illustrate that this is not always the case.

A general principle behind the error propagation tech-
niques is the assumption of Gaussian departures from some
underlying forward model. When this is not true, the tech-
niques tend to fail. The Ilorin case is one such example of
this. Another is the higher-level issue of coastal or lake areas,
as most algorithms make binary retrieval decisions with non-
linear implications (e.g. treat pixel as land or water for sur-
face reflectance modelling), which cause problems if pixels
are either misflagged or “contaminated” and contain mixed
water or land. The algorithms tested here tend to deal with
this in one of two ways. The first is simply to fail to provide
a valid retrieval at all; in this case, the uncertainty estimates
for available retrievals tend to be reasonable, although the
data volume is significantly less than expected. The second
option is to provide a retrieval but consequently provide a
poor estimate (and typically an underestimate) of the asso-
ciated uncertainty. Neither is entirely satisfactory. Perform-
ing retrievals at a higher spatial resolution with strict filter-
ing might ameliorate these issues, as a smaller fraction might
then be contaminated or misflagged; however, the resolutions
of the sensor measurements and land mask (and its quality)
place hard constraints on what could be achieved. Another
option might be to attempt retrievals using both land and wa-
ter algorithms for these pixels and either report both or an av-
erage (including the difference between them as an additional
contribution to the uncertainty estimate). This would provide
some measure of the potential effect of surface misclassifica-
tion and at the least provide a larger uncertainty estimate to
alert the data user about problematic retrieval conditions. A
deeper understanding of the representativity of AERONET
sites on satellite retrieval scales would be useful to better un-
derstand the distributions of retrieval success rates and errors.
This is a topic of current research (e.g. Schutgens et al., 2016,
2017; Kinne et al., 2013; Li et al., 2016; Schutgens, 2019) al-
though often on a temporal basis or on coarser spatial scales
than relevant for L2 validation.

A further difficulty in the assumption of Gaussian ran-
dom errors is that sensor calibration uncertainty tends to be
dominated by systematic effects rather than random noise.
While in practice it is often (as in the algorithms assessed
here) treated as a random error source, when it is a dominant
contribution to the retrieval error budget it will tend to skew
the retrievals toward one end of the notional uncertainty en-
velopes. This may explain some of the systematic behaviour
along the x axis in Fig. 9 within individual data sets (although
the position along this axis is determined not only by the ac-
tual error, but also the estimated uncertainty). As discussed
in Sect. 2.4, a pragmatic method for amelioration of this (if
the forward model contribution to the systematic uncertainty

cannot be significantly reduced by improvements to retrieval
physics) would be to perform a vicarious calibration. Ship-
borne AOD observations were also used as one part of the
MISR calibration strategy for low-light scenes (Witek et al.,
2018a); if this removes the bulk of the systematic calibra-
tion error, it may help explain why the uncertainty estima-
tion technique (dispersion in possible solutions with different
aerosol optical model assumptions) generally works so well.

The framework for evaluating uncertainties here is general
and not restricted to AOD. In practice, however, it is difficult
to extend it to other aerosol-related quantities at the present
time. For profiling data sets (such as lidar), uncertainties in
extinction profiles are often strongly vertically correlated as
the effects of assumptions propagate down the profile (Young
et al., 2013). An assessment would also have to account for
the vertical resolution of the sensors and compute appropri-
ate averaging kernels (Rodgers, 2000); this is by no means
intractable and has been done using ground-based lidar sys-
tems for aerosol properties (e.g. Povey et al., 2014) as well
as other geophysical quantities (e.g. atmospheric temperature
by Sica and Haefele, 2015). Possibly a stronger limitation is
that there are relatively few validation-quality data sets (i.e.
with significantly smaller uncertainty than the spaceborne
sensor) to compare them to, so the ground-based contribution
to the total expected discrepancy would not be negligible.

For the total column, other key quantities of interest
include the Ångström exponent (AE), fine-mode fraction
(FMF) of AOD, and aerosol SSA. The AE can easily be as-
sessed using this framework, although AERONET AE itself
can be quite uncertain in the low-AOD conditions which pre-
dominate in many locations around the globe (Wagner and
Silva, 2008). In that case the expected discrepancy would in-
clude significant contributions from AERONET uncertainty,
so the comparison would be less informative about the qual-
ity of the satellite uncertainty estimate. These issues are
somewhat lessened in high-AOD conditions, however. Simi-
lar comments apply to AERONET FMF, which has an uncer-
tainty of the order of ±0.1 in moderate- to high-AOD con-
ditions and larger when AOD is low (O’Neill et al., 2003,
2006). The framework presented here would not become in-
valid in these cases (although it becomes statistically prob-
lematic for locations where FMF is close to the bounds 0
or 1) but would become a measure of the joint consistency
of both satellite and AERONET uncertainties, rather than
a test primarily of the satellite uncertainty estimates. Some
of these issues are lessened if, instead of FMF, fine-mode
AOD (i.e. the product of FMF and AOD) and coarse-mode
AOD are used. While AOD is also positive definite, numer-
ical issues associated with AOD near 0 can be removed if
retrievals are performed in log space, reflecting the closer-
to-lognormal distributions of AOD found in nature (O’Neill
et al., 2000; Sayer and Knobelspiesse, 2019); ORAC, for ex-
ample, retrieves AOD in log space.

Issues with SSA are somewhat more difficult; AERONET
almucantar inversions have an uncertainty in SSA around
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±0.03 under favourable conditions (moderate to high AOD
and large solar zenith angle) but uncertainties can be signif-
icantly larger otherwise (Dubovik et al., 2000). Given that
SSA (like FMF) is inherently bounded in the range 0–1, and
most aerosol types have SSA in the visible spectral region
around 0.8–1 (e.g. Dubovik et al., 2002), in practical mat-
ters this uncertainty is a significant fraction of the variabil-
ity in the parameter to be observed. Further, the hard bound-
ary of SSA = 1 means that the Gaussian statistics on which
many uncertainty estimates and part of this framework rely
will be less useful models of the real error characteristics.
As such (similarly to FMF) it may be better to assess related
optical properties, such as absorption AOD (AAOD), rather
than SSA itself. This would address some of the statistical is-
sues (plus AAOD is more directly connected to the radiative
effect than SSA alone) but would not remove the underly-
ing difficulty of accurate quantification of aerosol absorption,
which remains both difficult to measure and difficult to re-
trieve from ground, airborne, or satellite remote sensing. De-
spite these difficulties with other aerosol properties (and the
current limitations of techniques for quantifying AOD uncer-
tainty), the routine provision, evaluation, and scientific use
of prognostic AOD uncertainty estimates from satellite re-
mote sensing will constitute an important step toward more
optimal and robust applications of these data sets.
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