(c) (1

Supplement of

A new optical-based technique for real-time measurements of mineral dust concentration in $\mathbf{P M}_{10}$ using a virtual impactor

Luka Drinovec et al.

Correspondence to: Luka Drinovec (luka.drinovec@ijs.si)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

S1. Virtual Impactor Characterization

The performance of the virtual impactor (VI) was characterized using NIST polystyrene-latex (PSL) spheres with nominal aerodynamic sizes from 0.7 to $10 \mu \mathrm{~m}$. A schematic of the experimental setup is provided in Figure S 1 . In brief, particles produced by atomization were consequently dried and their number distribution was measured using an Aerodynamic Particle Counter (APS; TSI mod 3321). The APS was operated with 5 (nominal) and with 1.5 (modified) I min^{-1} sampling flows. The VI was respectively operated at 95 (maximum available) and $75 \mathrm{I} \mathrm{min}^{-1}$, providing total-to-minor flow ratios of 19 (i.e., $95: 5$) and 50 (i.e., $75: 1.5$). Since the atomizer used was not capable of providing the above-mentioned total flows, a " Y " junction with a HEPA filter was used downstream the silica diffusion drier for supplementing air into the system (i.e., dilution). For maintaining the total flow and thus the dilution and the particle losses in the system constant, the high flow of the VI was always operational. The concentration of particles was measured before and after the VI using another "Y" junction. For measurements of the particle concentration with the VI, the APS was connected in the minor flow outlet of the VI, while a closed valve was used to block the other outlet of the second " Y " junction (Figure S1 a). Particle concentration before the impactor was measured by connecting the APS directly to the Y junction (i.e., upstream the VI), while the closed valve was put to the low flow outlet of the VI (Figure S1 b). Note that, in the latter case the high flow of the VI was operational as well for maintaining the total flow of the system constant.

Figure S1. Schematics of the experimental setup for characterizing the performance of the virtual impactor. Particle size distributions were measured using an APS downstream (a) and upstream the VI (b). In both cases the high flow of the VI was operational for maintaining the total flow and consequently the dilution and particle losses in the system constant.

Five samples were collected in each case (i.e., size distribution measured downstream and upstream the VI) for each PSL size and for each set of flow rates. The average measured size distributions were used for calculating the concentration enhancement factor $C E$ of the VI at the specific aerodynamic diameters (D), corresponding to the aerodynamic diameters of PSL particles used in each experiment as follows:

$$
\begin{equation*}
C E(D)=\frac{C_{V I}}{c} \tag{S1}
\end{equation*}
$$

The fraction of theoretical concentration efficiency $f C E$, defined as the ratio of the concentration efficiency calculated for each aerodynamic diameter D, with the virtual impactor flow ratio $F R$ (maximum efficiency) was also calculated as follows:

$$
\begin{equation*}
F R=\frac{F_{\text {in }}}{F_{\text {out }}}, \tag{S2}
\end{equation*}
$$

$$
\begin{equation*}
f C E(D)=\frac{C E(D)}{F R} . \tag{S3}
\end{equation*}
$$

Figure S 2 shows the results in terms of the enhancement factor for particles having nominal diameter from 0.7 to $10 \mu \mathrm{~m}$ when the VI was operated at two different flow settings, namely $95: 5$ and $75: 1.5 \mathrm{I} \mathrm{min}^{-1}$ (i.e., total:minor flow), respectively. Note that, the enhancement factor of $0.5 \mu \mathrm{~m}$ was calculated from the size distributions obtained from measuring particles with nominal diameter of $0.7 \mu \mathrm{~m}$ and that for the flow settings of $75: 1.5 \mathrm{I} \mathrm{min}^{-1}$ the maximum size of particles measured was $5 \mu \mathrm{~m}$.

Figure S2. Concentration efficiency for particles having aerodynamic diameters ranging from 0.7 to $10 \mu \mathrm{~m}$ when the VI was operated with $95: 5$ and $75: 1.5 \mathrm{I} / \mathrm{min}$, total:minor flow, respectively. For the larger flow, the concentration efficiency

Table S1. Aggregate results of the concentration efficiency (CE) and fraction of the theoretical concentration efficiency (fCE) of particles having aerodynamic diameters ranging from 0.7 to $10 \mu \mathrm{~m}$, when the VI was operated with $95: 5$ and with 75:1.5 flow ratios. Green values are extrapolated.

	Experiment 1$\left(F_{\text {in }}=75\left\|\mathrm{~min}^{-1}, F_{\text {out }}=1.5\right\| \mathrm{min}^{-1}, F R=50\right)$		Experiment 2$\left(F_{\mathrm{in}}=95 \mathrm{I} \mathrm{~min}^{-1}, F_{\mathrm{out}}=5 I \mathrm{~min}^{-1}, \quad F R=19\right)$	
$D(\mu \mathrm{~m})$	CE	fCE	CE	fCE
0.5	1.00	0.0200	1.00	0.0526
0.7	1.06	0.0212	1.11	0.0584
1	1.20	0.0240	1.87	0.0984
2.5	5.68	0.1135	2.14	0.1126
5	11.19	0.2238	4.07	0.2142
7	21.74	0.4347	8.26	0.4347
10	43.68	0.8737	16.60	0.8737

a)

b)

Figure S5. The compensation parameter k values determined by AE33 (a) and those used for offline compensation of data from Aethalometer with a virtual impactor inlet (b).

Figure S6. BC vs. ATN analysis for raw data (left side) and data compensated using fixed k values, derived from the left plot (right side).

S3. Uncertainty of AE33 measurements

The uncertainty of AE33 measurements was determined calculating the ratio of $B C$ between instrument with TSP and $P M_{1}$ inlets. Because there is almost no dependence of $B C_{T S P} / B C_{P M 1}$ ratio on mineral dust concentration (Figure S7), the variation of this parameter results from the measurement uncertainty. Uncertainty of $B C$ during the Cyprus campaign is thus calculated as a standard deviation of $B C_{\mathrm{TSP}} / B C_{\mathrm{PM} 1}$ ratio (Table S 2).

a)

b)

Figure S7. Correlation between 24h average ratios $B C_{T S P} / B C_{P M 1}$ and Mineral dust concentration for Aethalometer channel 1 (a) and channel 6 (b).

Table S2. Uncertainty estimation during the Cyprus campaign

Wavelength	$B C_{\text {TSP }} / B C_{P M 1}$	Uncertainty for $B C$
370 nm	1.14 ± 0.21	18%
880 nm	1.07 ± 0.12	11%

S4. Correlation between PM measurements by TEOM and filter weighting
TEOM and filter measurements data obtained between 15 April 2016 and 6 May 2016 are compared (Figure S8, Table S3). The two methods show high R^{2} value and a slope which differs from unity by less than 10%. On average TEOM overestimates $P M$ by 2% for $P M_{2.5}$ and 8% for $P M_{10}$.

a)
b)

Figure S8. Correlation between $P M_{2.5}(\mathrm{a})$ and $P M_{10}(b)$ measured by TEOM and filter weighting.

Table S3. Fitting results for correlation between TEOM and filter weighting method.

	Slope	$\boldsymbol{R}^{\mathbf{2}}$
$P M_{2.5}$	1.02 ± 0.04	0.978
$P M_{10}$	1.08 ± 0.03	0.987

S5. Correlation between APS and TEOM

The aerodynamic particle size distribution from APS was used to calculate particle volume for PM_{10} and $\mathrm{PM}_{2.5}$ size fraction assuming the sphericity of the particles. Particle volume was compared with the particle mass concentrations $P M_{2.5}$ and $P M_{10}$ obtained by TEOM (Figure S9). The correlation is better for sub $10 \mu \mathrm{~m}$ size fraction with R^{2} of 0.97 . The sub $2.5 \mu \mathrm{~m}$ fraction has a 33% smaller volume/mass slope compared to the sub 10 $\mu \mathrm{m}$ fraction.

Figure S9. Time series of particle mass concentration (PM) and particle volume concentration (PV) concentrations in 2.5 $\mu \mathrm{m}$ and $10 \mu \mathrm{~m}$ size fractions (a, b) and correlations (c, d).

Table S4 . Fitting results for correlation between APS and TEOM.

Correlation	Slope $\left(\boldsymbol{\mu m}^{\mathbf{- 3}} \boldsymbol{\mu \mathrm { g } ^ { - \mathbf { 1 } })}\right.$	$\boldsymbol{R}^{\mathbf{2}}$
$P V_{10}$ vs. $P M_{10}$	$5.36 \mathrm{E} 5 \pm 9 \mathrm{E} 3$	0.87
$P V_{2.5}$ vs. $P M_{2.5}$	$3.54 \mathrm{E} 5 \pm 9 \mathrm{E} 3$	0.70

S6. Mass closure on daily PM10 samples

a)

Figure S11. Time series (a) and average (b) contributions of different components to $\mathbf{P M} \mathbf{M}_{2.5}$ (a) during the measurement campaign.

a)
b)

Mass closure was performed by combining $P M_{10}$ from the high volume sampler filters, chemical analysis for cations ($\mathrm{NH}_{4}{ }^{+}, \mathrm{K}^{+}$) and anions $\left(\mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2}\right)$. Calcium concentration was used to establish mineral dust concentration assuming its 12% mass fraction in mineral dust. Organic matter was calculated from organic carbon concentration (OC) using a organic mass-to-organic carbon factor of 2.

a)

Figure S10. Time series (a) and average (b) contributions of different components to $\mathbf{P M} \mathbf{M}_{10}$ (a) during the measurement campaign.

Figure S12. Correlation between gravimetric measurements of $P M$ and that reconstructed from chemical analysis.

S7. Trace element analysis on PM_{10} filters using inductively coupled plasma mass spectrometry (ICP-MS)

24h PM_{10} filters were analysed for trace elements $\mathrm{As}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Ni}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Al}, \mathrm{V}, \mathrm{Mn}, \mathrm{Zn}$ and Ti . Al and Fe can be used to identify mineral dust (Guieu et al., 2002), showing good correlation with Ca obtained by ion chromatography (Figure S13). for the whole year 2016 we obtained average slope between $A l$ and $C a$ of $0.58 \pm$ 0.01 and average slope between Fe and Ca of 0.44 ± 0.01 (Figure S14).

Statistical analysis of chemical ratio $\mathrm{Fe} / \mathrm{Ca}$ can give us information on the variability of chemical composition of mineral dust (Table S5) and directly influences the accuracy of the VI-PM1 method.

Figure S13. Time series of ambient $\mathrm{Ca}^{2+}, \mathrm{Al}$ and Fe concentration in PM_{10} fraction during the calibration campaign

Figure S14. Correlation between $A I(a)$ and $F e(b)$ with $C a$ measured on $24 \mathrm{~h} \mathrm{PM}_{10}$ filters. The figures contain data for the whole year 2016.

Table S5. Elemental composition and ratios for iron, calcium and aluminium for the whole $\mathbf{2 0 1 6}$ and for the calibration part of the Cyprus campaign.

	Year 2016	Variability	Interval 16.4.2016-6.5.2016	Variability
$F e / P M_{10}$	0.015 ± 0.008	53%	0.019 ± 0.006	32%
$C a / P M_{10}$	0.037 ± 0.017	46%	0.047 ± 0.016	34%
$F e / C a$	0.41 ± 0.15	38%	0.42 ± 0.17	40%

S8. Characterization of mineral dust using scanning electron microscopy - energy dispersive X-ray (SEM-EDX) analysis of $P M_{10}$ filters

Several filter samples were analyzed for their elemental composition using energy-dispersive X-ray spectroscopy - similarly to Engelbrecht et al. (2016). An example of SEM-EDX measurement is presented on Figure S15. Each of the selected filter samples was characterized by an average of 10-20 SEM-EDX analyses 10%), iron ($0-5 \%$) and potassium ($0.5-2 \%$) contributions differ a lot between the different filters. Formenti et al. (2008) showed a similar variability of mineral composition for dust from different source regions.

All results in weight\%

Figure S15. SEM-EDX analysis of particles (Spectrum 1 \& 2) collected on the quartz fiber filter (Spectrum 3).

Figure S16. Elemental composition of mineral dust filter samples obtained using EDX spectroscopy. The error bars show the standard deviation of 10-20 measurements on each sample.

References

Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965-1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Engelbrecht, J. P., Moosmüller, H., Pincock, S., Jayanty, R. K. M., Lersch, T., and Casuccio, G.: Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions, Atmos. Chem. Phys., 16, 10809-10830, https://doi.org/10.5194/acp-16-10809-2016, 2016.
Formenti, P., Rajot, J. L., Desboeufs, K., Caquineau, S., Chevaillier, S., Nava, S., Gaudichet, A., Journet, E., Triquet, S., Alfaro, S., Chiari, M., Haywood, J., Coe, H. and Highwood, E.: Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOPO/DABEX and DODO field campaigns, J. Geophys. Res., 113, D00C13, doi:10.1029/2008JD009903, 2008.
Guieu, C., Lo"ye-Pilot, M.-D., Ridame, C., and Thomas, C.: Chemical Characterization of the Saharan dust endmember: Some biogeochemical implications for the Western Mediterranean sea, J. Geophys. Res., 107, doi:10.1029/2001JD000582, 2002.
Park, S. S., Hansen, A. D. A., and Cho, Y.: Measurement of real time black carbon for investigating spot loading effects of Aethalometer data, Atmos. Environ., 11, 1449-1455, doi:10.1016/j.atmosenv.2010.01.025, 2010.

