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Abstract. More than 300 non-dispersive infrared (NDIR)
CO2 low-cost sensors labelled as LP8 were integrated into
sensor units and evaluated for the purpose of long-term oper-
ation in the Carbosense CO2 sensor network in Switzerland.
Prior to deployment, all sensors were calibrated in a pressure
and climate chamber and in ambient conditions co-located
with a reference instrument. To investigate their long-term
performance and to test different data processing strategies,
18 sensors were deployed at five locations equipped with a
reference instrument after calibration. Their accuracy during
19 to 25 months deployment was between 8 and 12 ppm. This
level of accuracy requires careful sensor calibration prior to
deployment, continuous monitoring of the sensors, efficient
data filtering, and a procedure to correct drifts and jumps in
the sensor signal during operation. High relative humidity
(>∼ 85%) impairs the LP8 measurements, and correspond-
ing data filtering results in a significant loss during humid
conditions. The LP8 sensors are not suitable for the detec-
tion of small regional gradients and long-term trends. How-
ever, with careful data processing, the sensors are able to re-
solve CO2 changes and differences with a magnitude larger
than about 30 ppm. Thereby, the sensor can resolve the site-
specific CO2 signal at most locations in Switzerland. A low-
power network (LPN) using LoRaWAN allowed for reliable
data transmission with low energy consumption and proved
to be a key element of the Carbosense low-cost sensor net-
work.

1 Introduction

The number of available low-cost sensor types for ambient
trace gas observations has increased in recent years. Fre-
quently, these sensors are combined with wireless data trans-
fer capabilities to form a versatile measurement unit. Low-
cost sensors for trace gas measurements are based on dif-
ferent working principles such as metal-oxide semiconduc-
tors, electrochemical cells or non-dispersive infrared detec-
tion (NDIR). For CO2, NDIR is the most common tech-
nique (Lewis et al., 2018). Similarly to other instruments,
knowledge of the sensors’ characteristics such as sensitiv-
ity, cross sensitivity or ageing is important for meaningful
applications. Moreover, the raw sensor output must be con-
verted into the molar fraction of the target gas using a math-
ematical function. The mathematical models provided by the
manufacturers are often not sufficient to meet the accuracy
demands of trace gas measurements in outdoor conditions.
Different approaches such as multilinear regression (Mueller
et al., 2017; Martin et al., 2017; Spinelle et al., 2017), random
forest models (Bigi et al., 2018; Zimmerman et al., 2018) or
artificial neural networks (Spinelle et al., 2017) are investi-
gated to derive better-performing sensor models. However,
thorough model validation that is adequate with respect to
the foreseen application is necessary for this task, especially
as many data-driven models include parameters that were not
shown to have a reproducible impact on the sensor signal.
Some approaches also employ information in the model that
is only valid in a statistical manner, such as similar pollutant
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concentrations at the sensor location and at the closest refer-
ence site during selected time periods (Mueller et al., 2017;
Kim et al., 2018). The use of a standardized terminology for
processing levels, as was recently proposed by Schneider et
al. (2019), is recommended to clearly define the type of in-
formation a sensor model is based on.

The design of low-cost sensors usually relies on a less sta-
ble and less controlled measurement environment than high-
end instruments. Therefore, the mathematical description of
sensor behaviour must be flexible and robust enough to ac-
commodate a wide range of operating conditions. Neverthe-
less, the accuracy level achieved by low-cost trace gas sen-
sors is still significantly below that of high-precision instru-
ments. This may be acceptable in view of their lower costs
if the achievable data quality remains suitable for a specific
application. Usually, low-cost sensors have to be individu-
ally calibrated for achieving their best performance, and data
processing is an essential element to obtain accurate mea-
surements. This data processing includes filtering to elimi-
nate and report outliers or data of reduced quality and the
detection of changes in sensor characteristics which require
the adaptation of the model that converts the raw sensor out-
put to the molar fraction.

Smart and dependable sensor integration is crucial for both
high data quality and reliable and cost-efficient operation. A
long-lasting autonomous sensor deployment requires that the
sensor unit has low energy consumption, which depends on
the energy consumption of the sensing device, the measure-
ment frequency, the on-site data processing and the method
that is used for data transmission. The latter can be achieved
using the LoRaWAN protocol (LoRa-Alliance, 2019), which
offers data transmission with highly reduced energy con-
sumption compared to mobile communication networks such
as GSM, UMTS and LTE.

Increasing the spatial coverage of a measurement network
or reducing its costs by the operation of low-cost sensors is
appealing. However, the number of long-term applications of
low-cost sensors is still sparse (Mueller et al., 2017; Shuster-
man et al., 2016; Castell et al., 2017; Popoola et al., 2018).
The total costs of the sensors, their calibration, deployment,
data transmission, and data processing have to be in equilib-
rium with the information the sensors provide. Further tech-
nical and operational progress is required to enhance both
the efficiency and the data quality of low-cost sensor net-
works and to eventually integrate more low-cost sensors into
meaningful services. Examples of research activities in the
field of lower-cost CO2 measurements and sensor networks
are provided by Arzoumanian et al. (2019) and Shusterman
et al. (2016).

In this study we present the deployment of more than 250
low-cost CO2 sensors in Switzerland in the framework of the
Carbosense project, which aims to assess anthropogenic and
natural CO2 fluxes in Switzerland through a combination of
dense observations and high-resolution atmospheric trans-
port modelling. The entire CO2 sensor network is formed

by high-precision instruments, intermediate precision instru-
ments and low-cost sensors. The accuracy of the low-cost
sensors is clearly outside the extended compatibility goal
of 0.2 ppm for CO2 proposed within the activities of the
World Meteorological Organization (WMO) Global Atmo-
sphere Watch (Tans and Zellweger, 2014). However, these
sensors are not intended to resolve small regional gradients
and trends in atmospheric CO2. Rather they should comple-
ment the high-precision measurements by providing infor-
mation on short-term and local variations in CO2 on the order
of several tens of parts per million as expected near emission
sources, e.g. in the city of Zurich, or due to CO2 accumula-
tion when the boundary layer is shallow.

This paper focuses on the calibration of the LP8 CO2 sen-
sors, their operation within the Carbosense network, the sen-
sor data processing and the achieved data quality. Most of
the findings and developments carried out by means of the
Carbosense sensor network such as aspects of data transmis-
sion and data processing are generic and transferable to other
low-cost trace gas sensor networks.

2 Hardware and infrastructure

2.1 Carbosense network

The Carbosense CO2 sensor network covers the whole
of Switzerland with a regional focus on the city of
Zurich (Fig. 1). It is formed by three classes of sen-
sors: (i) seven high-precision cavity ringdown spectrome-
ters (Picarro G1301, G2302 and G2401); (ii) 20 temperature-
stabilized, mains-powered NDIR medium-cost sensors with
active sampling and reference gas supply (Senseair HPP;
Hummelgard et al., 2015); and (iii) 300 nodes of battery-
powered CO2 low-cost diffusive NDIR sensors (Senseair
LP8). The deployment of the first low-cost sensors started in
July 2017, and the network has been continuously extended,
reaching 230 sensors by September 2019. The CO2 low-cost
sensors are deployed at antenna locations of the telecommu-
nication company Swisscom (4–150 m above ground), mete-
orological measurement sites of the Federal Office of Mete-
orology and Climatology (MeteoSwiss; 10 m above ground),
and sites of the National Air Pollution Monitoring Network
NABEL (5 m above ground). Within the city of Zurich, the
sensors are also mounted on lamp posts or electricity poles
(3–5 m above ground). The low-cost sensor network cov-
ers a wide altitude range from 200 to 2390 m a.s.l. and vari-
ous orographic conditions and landscape types (urban areas,
agricultural lands, forests, mountain areas). This implies a
wide range of environmental conditions during the operation
of the sensors. The deployment of the HPPs started in Au-
gust 2018, and instruments were operating at 15 locations as
of 1 September 2019.
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Figure 1. Carbosense sensor network as of 13 September 2019. Red
dots depict LP8 sensor locations; yellow dots depict HPP sensor lo-
cations; blue dots depict locations of Picarro instruments. The can-
tons or administrative divisions of Zurich and Ticino are plotted and
marked by ZH and TI. Geographic data used for creating the base
map originate from http://www.diva-gis.org (last access: 29 Octo-
ber 2019) and https://www.swisstopo.admin.ch (last access: 29 Oc-
tober 2019).

2.2 CO2 low-cost sensor unit

2.2.1 Integrated sensors

The CO2 low-cost sensor units (dimensions 110mm×
80mm× 65mm) were engineered by Decentlab GmbH
(Fig. 2). A sensor unit comprises a Senseair LP8 sen-
sor (Senseair, 2019), a Sensirion SHT21 sensor (Sensirion,
2019), a LoRaWAN communication module, a microproces-
sor and two batteries for power supply. There is no active
ventilation. The LP8 and SHT21 sensors are located close to
the opening of the box to ensure fast response times. Dead
volumes are kept as small as possible for the same reason.
The LP8 sensor reports the infrared (IR) measurement, a CO2
molar fraction based on factory calibration, temperature and
its status. The SHT21 sensor measures temperature and rel-
ative humidity (±0.3 ◦C, ±2% RH). The measurement fre-
quency was set to 1 min for all the sensors, and the measure-
ments are transmitted as 10 min averages together with the
last single measurement of the infrared and temperature val-
ues over Swisscom’s Low Power Network (LPN; based on
LoRaWAN). However, during the first weeks of using the
sensor units in spring 2017, only the last single values were
transmitted for all the measurement types. Since the unit is
not equipped with a pressure sensor, pressure has to be mea-
sured independently or has to be estimated from other infor-
mation sources, which is possible with a small uncertainty of
±1 hPa as described in Sect. 3.2.

2.2.2 LP8 sensor

Operating conditions of the LP8 sensor are specified by the
manufacturer as 0–50 ◦C, 0 % RH–85 % RH and 0–2000 ppm
CO2. The specifications in terms of accuracy are ±50 ppm
and ±3 % of reading (Senseair, 2019), which are insufficient
for applications in ambient air. The LP8 sensor provides a
CO2 measurement based on the factory calibration, the sen-
sor temperature and sensor status information. In addition,
the LP8 infrared measurement (preprocessed by the sensor
firmware) is accessible. It enables a calibration based on an
extended mathematical sensor model that relates the infrared
measurement to the CO2 mole fraction χCO2 in moist air. The
parameters of the sensor model have to be determined during
a calibration process.

The LP8 is a non-dispersive infrared sensor, and, thus, its
working principle is based on the Beer–Lambert law.

log
(
I0

I1

)
= ελ · c · d (1)

I0 and I1 denote the emitted and detected light; c is the num-
ber density of the gas (mol m−3); ελ is the molar attenuation
coefficient (m2 mol−1); d is the path length (m) of the beam
of light through the cell.

The number of moles of CO2 (nCO2 ) equals

nCO2 = χCO2 ·
p ·V

R · T
= χCO2 · nP0,T0 ·

p · T0

p0 · T
, (2)

with p, T and V denoting the pressure, temperature and vol-
ume of the gas, p0 = 1013.25 hPa and T0 = 273.15 K the
standard pressure and temperature, R the universal gas con-
stant (8.3145 J K−1 mol−1), and χCO2 the CO2 mole fraction
in moist air. With the CO2 number density cCO2 = nCO2/V

(mol m−3), combining Eqs. (1) and (2) yields

χCO2 ·
p · T0

p0 · T
=

V

nP0,T0 · ελ · d
· (log(I0)− log(I1)) . (3)

The volume V , the path length d and the molar attenua-
tion coefficient ελ are unknown constants. Also the emitted
light I0 cannot directly be observed. It is expected to slightly
change over time. In order to compensate for temperature
effects (e.g. through effects on the optical filter or the detec-
tor), pressure effects (e.g. through pressure-dependent spec-
tral line broadening), and changes in the intensity of the emit-
ted light (I0) or in the geometry of the light beam, Eq. (3) is
expanded by additional terms as follows:

χCO2 ·
p · T0

p0 · T
= k0+ k1 · log(I1)+

3∑
i=1

ui · T
i
+

3∑
i=1

vi

·
T i

I1
+w1 ·

(
p−p0

p0

)
+ f (t) . (4)

These terms are empirically chosen with the objective of
keeping the model simple. The coefficients ki , ui , vi and wi
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Figure 2. (a) CO2 low-cost sensor unit and LP8 sensor (front). (b) Schematic view of the sensor unit. The LP8 and SHT21 sensors reside
close to the opening of the sensor unit. The sensing area of the LP8 is indicated by a thick line. The volume around the sensors is minimized
on three sides (left, back, right) by filling material. The board separates by its form the lower from the upper part of the unit.

are unknown and have to be determined by calibration. Tem-
perature effects are described by a polynomial of up to the
third order and pressure effects by a linear model. The terms
associated with the parameters vi are based on the transfor-
mation log(I1+e)= log(I1 · (1+e/I1))= log(I1)+ log(1+
e/I1)≈ log(I1)+ e/I1, where e is a small impacting effect.

The function f (t) accounts for possible temporal changes
in light intensity I0 or changes in optical path length. For
practical reasons, it was modelled as a step function with a
temporal resolution of approximately 14 d during calibration.
The variable T is the temperature provided by the LP8 sen-
sor. Usually, atmospheric transport models use χCO2,dry as in-
put. The CO2 dry-air mole fraction χCO2,dry can be computed
as χCO2/(1−χH2O), with χH2O being the air mole fraction of
water. This quantity is computed from T , RH (SHT21 sen-
sor) and p. The formula used is given in the Supplement.

For each sensor, the coefficients of Eq. (4) are deter-
mined during initial calibration. The final calibrated model
describes the CO2 mole fraction based on I1, T and p ac-
counting for the ideal gas law and additional optical and
thermal effects of the sensor. Some of the terms compensat-
ing for optical and thermal effects include I1. If I1 changes
strongly, the respective compensations are not adequate any-
more. Therefore, an additional simplified model is defined
with only one term depending on I1. This model has a re-
duced capability to account for different environmental con-
ditions, but it is more robust against large changes in I1.

χCO2 ·
p · T0

p0 · T
= k0+ k1 · log(I1)+

3∑
i=1

ui · T
i
+w1

·

(
p−p0

p0

)
+ f (t) (5)

For each sensor and calibration, the coefficients of Eqs. (4)
and (5) are determined.

The presented LP8 sensor model corresponds to level-2B
in the terminology presented by Schneider et al. (2019). This

means that, related to the sensor unit, internal and external
information is employed but is limited to parameters that are
appropriate for artefact correction and directly related to the
measurement principle.

Equations (4) and (5) do not include a term that is depen-
dent on humidity although, from the theory of spectroscopy,
a certain impact of humidity on the detected light is likely.
We did not find a parametrization with respect to RH that
leads to clear improvements in CO2 accuracy compared to
reference measurements. The water molar fraction might be
more relevant than RH, but as temporal variation in this quan-
tity is much smaller than in RH, we expect that a part of it is
absorbed by f (t). Therefore, we did not further investigate
this option.

2.2.3 Data transmission over the LPN

The measurements of the sensor units are transmitted ev-
ery 10 min over Swisscom’s Low Power Network (LPN) to
a central database hosted by Decentlab GmbH. Swisscom’s
LPN is based on the LoRaWAN protocol (LoRa-Alliance,
2019), using chirp spread spectrum modulation in the fre-
quency band between 863 and 870 MHz and operating as a
commercial service. LoRaWAN is a wireless network pro-
tocol focusing on asymmetrically organized, energy-efficient
data transmission. Data can be transmitted as far as several
tens of kilometres in rural areas.

In our case, the sensor units have a transmission rate of
10 min, while the LP8 and SHT sensors operate at a sampling
rate of 1 min. Every transmitted message contains 33 bytes
(14 numbers). The energy consumption of data transmis-
sion over the LPN depends on the spreading factor (SF).
Most sensor units in the Carbosense network operate on SF7.
In this case, a sensor unit can independently operate for
5.1 years before the two batteries (alkaline, 1.5V, IEC LR14)
need to be replaced. Here, radio transmission requires 22 %
of the total energy used by the sensor unit.
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2.3 Sensor calibration infrastructure

2.3.1 Climate and pressure chambers

Calibration data for the determination of the temperature and
pressure dependencies of the LP8 sensors were obtained by
placing the sensors in climate and pressure chambers. One
climate chamber and one pressure chamber at Empa and one
pressure chamber at METAS (Federal Institute for Metrol-
ogy) were used for this task.

In the climate chamber at Empa, the sensors were exposed
to at least four 24 h long temperature profiles uniformly de-
creasing from 50 to −5 ◦C at CO2 levels of 350, 450, 700
and 1000 ppm. In the pressure chamber at METAS, pres-
sure levels were varied between 780 and 1050 hPa at CO2
levels of 420 and 900 ppm and at a temperature of 24 ◦C.
In the pressure chamber at Empa, pressure levels were var-
ied between 800 hPa and ambient pressure (approximately
960 hPa) at CO2 levels between 350 and 1000 ppm. The three
chambers were not completely airtight and thus required a
continuous supply of air with a specific CO2 molar frac-
tion, ventilation to ensure a uniform mixture of air within
the chambers and a pump for the pressure chamber. Picarro
G1301 and G2401 instruments were connected to the cham-
bers to provide CO2 reference values. Pressure was recorded
by calibrated instruments (outside the climate chamber, in-
side the pressure chambers).

2.3.2 High-precision CO2 measurement sites

High-precision CO2 field measurements are performed at
several locations in Switzerland. Those used in this project
for sensor calibration and assessment of the sensors’ long-
term performance as well as for correcting the sensor drifts
(see Sect. 3.5) are listed in Table 1 and shown in Fig. 1. The
CO2 measurement facilities at sites BRM, GIMM and LAEG
were initiated within the CarboCount project (Oney et al.,
2015; Berhanu et al., 2016). Sites HAE, PAY and RIG belong
to the Swiss National Air Pollution Monitoring Network,
NABEL (Empa, 2018). The CO2 measurement infrastructure
at DUE was specifically set up within the Carbosense project
to provide an accurate reference for LP8 sensors during am-
bient calibration. The CO2 measurement instruments were
calibrated using working standards with traceability to the
WMO X2007 calibration scale (Zhao and Tans, 2006; Tans
et al., 2017).

2.4 Data storage infrastructure

The raw data from the sensor units, after being transmit-
ted via the LPN to a Swisscom server, are forwarded via
the Internet to Decentlab where they are stored in an Influx
database (InfluxDB, 2019), providing near-real-time access
to the data. Decentlab provides web-based dashboards for
data visualization as well as APIs for data access in various
scripting languages. Information about the sensor network

such as deployment history, calibration runs, calibration pa-
rameters, observations from reference instruments and pro-
cessed sensor measurements is stored in a MySQL database
hosted by Empa.

3 Data processing

3.1 Important issues for LP8 long-term measurements

The deployment of a large number of LP8 sensors in this
study revealed two issues that are important for ambient
long-term measurements with this sensor type. First, the
response characteristics of the LP8 infrared measurement
can change over time, both steadily and abruptly. Sudden
changes in the sensor response might be due to mechan-
ical stress of the plastic housing under continuously vary-
ing environmental conditions. Second, the infrared measure-
ments are susceptible to humidity exceeding a value of about
85 %. This behaviour is common to all LP8 sensors, but ac-
tual thresholds differ among individual sensors. Therefore,
additional processing steps subsequent to the application of
the calibration function are required to achieve a data set of
sufficiently high accuracy and completeness (Sect. 3.3, 3.4,
and 3.5).

Several analyses that are presented in the following sec-
tions refer to the term deployment. We define deployment as
the time period within which a specific sensor unit is placed
at a particular outdoor location. A sensor unit can be used in
several consecutive deployments.

3.2 LP8 sensor calibration and application of the
sensor model

Each LP8 sensor was individually calibrated. For this pur-
pose, each sensor unit was placed in the climate and pressure
chambers for at least one complete calibration. Furthermore,
each unit was operated under ambient conditions at site DUE
until it was shipped for deployment in the Carbosense net-
work. The sensors were run at DUE under ambient condi-
tions in parallel with a Picarro instrument for a time period
of between several weeks and several months.

Thus, an extensive data set of both chamber and ambient
measurements was collected for each sensor unit to deter-
mine the calibration parameters of Eqs. (4) and (5). Filters
that exclude conditions near condensation and large changes
in IR measurements or in ambient CO2 were applied to this
data set for optimal parameter estimation. The data filtering
during calibration is more rigorous than the outlier detection
applied to the sensors deployed in the Carbosense network
(see Sect. 3.4). A robust estimator (Huber loss function) was
used for the parameter estimation to minimize the impact
of large residuals (e.g. persons breathing near the sensors).
The parameters of the LP8 sensor models are stored in the
MySQL database. The sensor unit has to pass a new calibra-
tion cycle whenever the LP8 sensor is exchanged.
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Table 1. High-precision CO2 measurements available for this study. The locations of the sites are shown in Fig. 1. H denotes the altitude of
the instrument; HI denotes the height above ground level of the inlet of the tube that connects to the high-precision instrument; HS denotes
the height above ground level of the LP8 sensors deployed at this site.

Site name Code Latitude Longitude H HI HS Manufacturer Type Remark
(◦) (◦) (m) (m) (m)

Beromünster BRM 47.18959 8.17547 798 12.5 5 Picarro G2401 Rural
Dübendorf DUE 47.40297 8.61347 432 2 1–2 Picarro G1301 Suburban
Gimmiz GIMM 47.05345 7.24793 443 32 – Picarro G2301 Rural
Härkingen HAE 47.31187 7.82050 430 5 5 LI-COR LI-7000 Rural, next to a motorway
Lägern LAEG 47.48196 8.39725 855 28.5 28.5 Picarro G2401 Rural, hilltop
Payerne PAY 46.81308 6.94448 489 5 5 Picarro G2302 Rural
Rigi-Seebodenalp RIG 47.06739 8.46333 1030 5 5 Picarro G2302 Rural, hillside

Measurements from LP8 sensors deployed within the Car-
bosense network are processed by using Eqs. (4) and (5)
with the corresponding coefficients determined during the
calibration phase, yielding a first-guess CO2 molar fraction
CO2,CAL. Thereby, there are two parallel processing chains,
but besides the computation of CO2,CAL, the further process-
ing is performed equally (outlier detection, drift correction).
The function f (t) in Eqs. (4) and (5) is replaced by a con-
stant that equals the last value of this step function during
calibration.

The first-guess CO2,CAL is subsequently corrected for sen-
sor drifts as described in Sect. 3.5. Equations (4) and (5) re-
quire the pressure at the sensor location. This value is de-
rived from 10 min pressure measurements from the meteoro-
logical measurement network SwissMetNet operated by Me-
teoSwiss (Supplement Fig. S2). A procedure was set up that
estimates the vertical pressure gradient in Switzerland and
horizontally interpolates the pressure reduced to sea level ev-
ery 10 min. These values allow for the computation of the
pressure for any location and height above ground level with
an uncertainty of about 1 hPa. The accuracy of the pressure
interpolation has been determined from a comparison to mea-
surements at SwissMetNet sites performing a leave-one-out
cross validation.

Results and flags of subsequent processing steps are stored
in the MySQL database to guarantee full traceability and to
support the comparison of different processing options.

3.3 Flagging for high relative humidity

A relative humidity threshold RHtrsh was determined for ev-
ery LP8 sensor based on the measurements from the ambient
calibration performed at DUE. The purpose is to review the
operation limits specified by the manufacturer and to develop
a method for flagging the sensor measurements that may be
impacted by humidity.

First, the standard deviation of the CO2 residuals (dif-
ference between computed CO2 values of the sensors and
CO2,moist measured by the Picarro) is computed in 2 % RH
intervals in a range of relatively dry conditions between

40 % RH and 70 % RH (resulting in 15 values in total), and
the median of these values denoted as σres is determined. Sec-
ond, the 95 % quantile of the residuals is computed in 2 % in-
tervals from 0 % RH to 100 % RH. RHtrsh is then selected as
the maximum interval for which the 95 % quantile is smaller
than 3 ·σres. The CO2 residuals and the computed RHtrsh val-
ues are exemplarily depicted for two sensors in Fig. 3a and b.
The operation limits for humidity indicated by the manufac-
turer (0 % RH–85 % RH) concur with our results (Fig. 3c).
All the RHtrsh values are stored in the database.

Flagging the measurements of the deployed sensors by ap-
plying the criterion RH > RHtrsh results in a data set with very
few outliers but, concurrently, a significant number of mea-
surements are falsely rejected. In Sect. 3.4 a more adaptive
outlier detection algorithm is presented that does not rely on
any reference measurements. The choice of the filtering ap-
proach depends on the intended use of the measurements and
whether the number of undetected outliers or the number of
falsely flagged outliers is more important.

3.4 Outlier detection

We call an LP8 measurement an outlier when it cannot be re-
lated to the ambient CO2 molar fraction by means of the sen-
sor models described by Eqs. (4) and (5). Outliers are primar-
ily caused by relative humidity exceeding about 85 % (see
Fig. 3). Under these conditions the light absorption within
the measurement cell can be increased due to the presence of
water droplets or condensation of water on the mirrors. Such
conditions may last for periods of between a few minutes
and more than a day. The difficulty in detecting such events
is that the signals in the LP8 IR and SHT21 RH time series
do not follow a characteristic profile but exhibit significant
variation depending on the actual progression of the meteo-
rological conditions. The distinction between small humidity
effects and a true increase in CO2 is not a simple task as the
sensor measurements do not fully describe the conditions in
the measurement cell. In addition, temporary enhancements
from closely located emission sources can unusually impact
the CO2 measurements and should not be treated as outliers.
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Figure 3. (a) and (b) CO2 residuals (sensor minus reference; based on Eq. 4) versus relative humidity during calibration at ambient conditions
at the DUE site for sensor units 1062 and 1071. The vertical dashed line indicates RHtrsh; the other three lines depict the 5 %, 50 % and 95 %
quantiles of the residuals in 2 % RH intervals. (c) Overlaid histograms of RHtrsh for all the sensors (ALL), from the Carbosense-network-
deployed sensors (DEPL) and from sensors deployed at reference sites (REF). The indicated quantiles refer to the set of deployed sensors.

The outlier detection algorithm was designed to rely en-
tirely on the measurements from the sensor unit itself and to
require no auxiliary information such as measurements from
a reference instrument. It analyses and processes quantities
derived from sensor observations that, under normal condi-
tions, vary only slowly. The algorithm learns the sensor’s
usual behaviour at its current location from data obtained
during the particular deployment and flags unusual measure-
ments. Prerequisites for the algorithm are that environmental
conditions and their changes remain within certain limits and
that stable relations exist between specific sensor quantities
and environmental conditions. Learning sensor behaviour in
the field is an important element for minimizing the required
calibration time.

Thus, the LP8 outlier detection algorithm is primarily
based on the differences in consecutive log(IR) and temper-
ature values plus statistical measures that are derived from
a large number of IR measurements. The algorithm also re-
views the relative humidity to enhance the robustness of the
algorithm. The absolute values of IR and the corresponding
values of CO2,CAL were not directly used as both are not sta-
ble over time due to drift or jumps and as they depend on
CO2, temperature and pressure, which are variable over time.

First, the outlier detection algorithm requires the compu-
tation of several auxiliary quantities. In the following, IR,
T and RH denote the infrared measurement, the LP8 tem-
perature and the SHT21 relative humidity. The subscripts M
and L refer to the mean and the last single measurement in
a 10 min interval. 1t indicates the time between subsequent
measurements transmitted to the database (subsequent mea-
surements are only considered if the difference does not ex-
ceed 20 min).

1. Difference in log(IR). 1IR,M(t)= log(IRM(t))−

log(IRM(t −1t))

2. Difference in T . 1T ,M(t)= T (t)− T (t −1t)

3. Mean RH of two measurements. MRH(t)= 1/2 ·
(RH(t)+RH(t −1t))

4. Difference between single measurement and mean.
γ (t)= log(IRL(t))− log(IRM(t)))

5. Variance of log(IRM(t)). σ 2
M (t)=

1
10 ·

1
n
·
∑
γ (τ)2τ ∈

[t − 2h. . .t − 10min]

6. Noise in log(IRL). IRnoise =

MAD(log(IRL(τ ))− log(IRM(τ )))τ ∈ Tdeployment

7. Median absolute deviation of the differ-
ence in consecutive log(IRM). 1IRlarge =

MAD(log(IRM(τ ))− log(IRM(τ −1t)))τ ∈

Tdeployment

In item 5, n is the number of used γ (t) values and 10 is the
number of single sensor measurements within a 10 min inter-
val.

Second, based on the samples in relatively dry condi-
tions (RH < 80 %), a quadratic function 1IR,M = f (1T ,M)

is robustly determined which describes the normal change
in log(IR) with a change in temperature. The correspond-
ing residuals r for all samples are computed, and, again
based only on the dry samples, the median absolute devia-
tion (MAD) is calculated (Fig. 4).

A measurement IR(ti) is flagged when |r(ti)|> 3 ·MAD∩
|1IR,M(ti)|>3 · σM(ti)∩RH(ti)>70% (value set according
to Fig. 3c). The positive flagged residuals are denoted as
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rflag,pos and the negative flagged residuals as rflag,neg. Start-
ing from ti , consecutive (for all the rflag,pos(ti)) or preceding
(for all the rflag,neg(ti)) measurements are also flagged until
RH drops below MRH(ti). In general, high relative humid-
ity leads to decreased IR and, concurrently, increased CO2
values for the LP8 sensor. Concurrently, the sign of r(ti) de-
termines the direction of backward or forward flagging of
temporally adjacent measurements.

In addition, two more quantities are determined based on
rflag,pos: RHQ75 is the 75 % quantile of the RH values, and
TDPQ25 is the 25 % quantile of the difference between T and
the dew point (Td).

Measurements are also flagged if (i) |γ (ti)|>5 ·
IRnoise ∩RH(ti)>85%, (ii) |1IR,M(t)|>5 ·1IRlarge,
(iii) RH > RHQ75 or (iv) T –Td < TDPQ25. Under (i), the first
criterion is already fulfilled if two of seven |γ (ti)| adjacent
to ti indicate increased noise.

3.5 Drift correction

IR measurements from LP8 sensors and the corresponding
calibrated molar fractions CO2,CAL, corresponding to χCO2

in Eqs. (4) and (5), are not stable in time. For sensors de-
ployed in the field, this drift has to be corrected in order to
compute unbiased CO2 molar fractions. Since usually no ref-
erence measurement is available at the location of the LP8
sensor to determine the drift, a method was developed that
makes use of specific weather conditions during which hori-
zontal gradients in CO2 are small and links the measurements
of the LP8 sensor to those of the closest accurate instrument.
The criterion of small horizontal gradients and a well-mixed
planetary boundary layer is best met during situations of high
wind speeds.

The drift correction algorithm involves two consecutive
steps: first, the identification of time periods Pslow when the
sensor behaviour is slowly evolving and the drift can be
corrected and of periods Pfast when the behaviour changes
abruptly and, second, the determination of the drift and its
correction.

For the first task, the identification of Pslow, the calibrated
measurements CO2,CAL from the afternoon are analysed be-
cause CO2 molar fractions are most comparable from day to
day in the afternoon when the planetary boundary layer is
usually well mixed (Fig. S1).

The algorithm computes for each sensor and day td
the following quantities from the calibrated measurements
CO2,CAL (time in Switzerland refers to CET or CEST):

– Qprev7d (td ) – 20 % quantile of CO2,CAL(τ ) where τε
[t − 7 d. . . t − 1 d] ∩τε (13:00–17:00 UTC)

– Qnext7d (td ) – 20 % quantile of CO2,CAL(τ ) where τε
[t + 1 d. . . t + 7 d] ∩τε (13:00–17:00 UTC)

– Qprev15d (td ) – 20 % quantile of CO2,CAL(τ ) where τε
[t − 15 d. . . t − 1 d] ∩τε (13:00–17:00 UTC)

– Qnext15d (td ) – 20 % quantile of CO2,CAL(τ ) where τε
[t + 1 d. . . t + 15 d] ∩τε (13:00–17:00 UTC)

– Q15 d (td ) – 20 % quantile of CO2,CAL(τ )where τ ε [t−
7 d. . . t + 7 d] ∩τε (13:00–17:00 UTC)

– b15d (td ) – slope of CO2,CAL(τ ) where τ ε [t − 7 d. . .
t + 7 d] ∩τε (13:00–17:00 UTC).

Further, an empiric threshold 1QTRSH is computed
as median (Qn7d−Qp7d)+ 5 ·MAD(Qn7d−Qp7d). Sen-
sor behaviour is considered unsteady (Pfast) if |Qnext7d(td )
– Qprev7d(td )|>1QTRSH or if |b15 d (td )|> 3 ppm d−1

∩|Qnext15d(td ) – Qprev15d(td )|> 40 ppm. Drift correction is
applied separately to the measurements of each sensor de-
ployment and continuous time period Pslow. An example of
the working principle of the algorithm is shown in Fig. 5.

The actual drift correction is based on wind measurements
from MeteoSwiss sites (Fig. S2) and CO2 measurements
from the high-precision instruments deployed in the network
(both 10 min averages). The drift correction algorithm is ap-
plied to the calibrated measurements CO2,CAL from the sen-
sors deployed in the Carbosense network.

First, all the MeteoSwiss sites within a distance of 40 km
from a sensor are selected. Time periods are identified when
all the selected sites report for at least 90 min

i. wind speed > 2 m s−1 or

ii. wind speed > 0.75 m s−1
∩ median (wind speed at se-

lected sites) > 3 m s−1.

Time periods lasting longer than 4 h are split into shorter in-
tervals with a duration of about 2 h each. Second, the most
closely located CO2 reference is chosen (Fig. 1). Its data are
checked for completeness (number of measurements n≥ 6)
and variability (SD≤ 4 ppm) within each windy period. Sim-
ilarly, the sensor data are checked for completeness (n≥ 6∩
SHT21 RH < RHtrsh) and variability (SD ≤ 15 ppm). Third,
the CO2 offset 1CO2(t) between the sensor’s and the ref-
erence’s median is computed for each windy period, and a
continuous CO2 offset time series is derived by linear inter-
polation between these periods. Drift-corrected sensor mea-
surements are derived by adding the linearly interpolated
1CO2(t) to the measurements CO2,CAL (Fig. 6).

For the data set presented in this study, we use only the
high-precision measurements from the sites DUE, PAY and
GIMM for the adjustment of the LP8 sensors. This procedure
allows for quantifying the accuracy of the concept by means
of the remaining reference sites. In fact, measurements from
GIMM are only used to adjust LP8 sensors deployed at PAY.
Thereby, co-located sensor and reference measurements are
independent in this data set (see Sect. 4.2). Obviously, three
reference sites are not sufficient to accurately adjust all the
LP8 sensors deployed in Switzerland as weather conditions
often differ from region to region. Drift correction for a fi-
nal and optimized LP8 data set will rely on measurements
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Figure 4. (a) Differences in consecutive log(IR) values versus differences in LP8 temperatures. Positive outliers are coloured in red; negative
outliers are coloured in green. The orange line depicts the quadratic fit of 1 log(IR) ∼1LP8_T. (b) Histogram of the residuals of 1 log(IR)
with relation to the fitted curve. The vertical red lines depict ±3· MAD. Positive outliers are in red; negative outliers are in green. Results
from sensor unit 1010 deployed in Leibstadt are depicted.

from all the reference sites and also from the HPP instru-
ments (Fig. 1).

The assumption of spatially homogeneous CO2 mole frac-
tions during strong wind events was tested by treating mea-
surements from reference instruments in the same way as
those from the LP8 sensors. Whenever an LP8 sensor was
corrected at sites BRM, LAEG, HAE and RIG relative to
DUE or at site PAY relative to GIMM, the 10 min CO2 mo-
lar fractions measured by the Picarro instruments at the two
sites were compared. Not considered are RH and the mea-
surement completeness of the LP8 sensor. Figure 7 shows
CO2 differences in measurements from sites LAEG (dis-
tance d = 19 km; height difference 1h= 423 m), RIG (d =
39 km; 1h= 598 m), BRM (d = 41 km; 1h= 366 m) and
HAE (d = 61 km; 1h=−2 m) with respect to DUE as well
as CO2 differences at PAY (d = 35 km; 1h= 57 m) with re-
spect to GIMM. All these sites are located in or adjacent
to the Swiss Plateau (Figs. 1 and 7f) and therefore have
mostly similar weather conditions. The CO2 differences are
depicted in two histograms placed on top of each other. The
histograms in light grey shows all 10 min CO2 differences,
while the histograms in dark grey only present those differ-
ences during windy conditions. The concept works well for
background sites (LAEG, RIG, BRM) but has limitations for
sites that are locally impacted by emissions (HAE is located
next to a motorway). For all the site pairs, the differences in
the CO2 measurements show a small bias (−2.1 to 0.8 ppm)
and a scatter component (2.2–2.8 ppm at background sites,
6.0 ppm at the traffic site HAE). The root mean square error
(RMSE) of the differences amounts to 2.3 to 3.6 ppm (back-

ground site) and 6.2 ppm (traffic site). The situation for HAE
can be improved if the effect of local emissions is reduced
and only measurements between 22:00 and 04:00 UTC (LT
=UTC+01:00 or 02:00) and/or wind directions upward of
the motorway are selected (Fig. S5). Obviously, that coin-
cides with a reduction in the number of adjustment periods.
For three sites in the city of Zurich that are located next to
a busy road, sensor corrections are performed only during
windy conditions at night-time in order to reduce the effect
of local traffic emissions.

3.6 Consistency check

There are instances when the LP8 sensor drift cannot be cor-
rected as frequently as required. This can be caused by an ex-
tended meteorological situation with low wind speeds or by
sensor-related issues (e.g. unstable behaviour, simultaneous
wind and high relative humidity). Consequently, the differ-
ence between the computed and the true CO2 molar fraction
may increase over time. In addition, the outlier detection al-
gorithm can be less effective during prolonged time periods
with no dry conditions.

In order to identify such periods of suspicious or less ac-
curate data, the measurements of individual sensors were
checked for consistency with the more accurate measure-
ments from HPP and Picarro instruments in a similar geo-
graphic setting. Although the true CO2 mole fractions at a
given site are unknown, CO2 time series of sites within a par-
ticular region are expected to exhibit similarities, e.g. similar
daily CO2 minima in the afternoon when the boundary layer
is usually well mixed.
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Figure 5. (a) Time series of Qd , Qprev7d, Qnext7d and Q15 d for sensor unit 1012 deployed at Hallau (HLL). The vertical red lines depict
days when |Qnext7d-Qprev7d| is larger than the threshold. Shaded periods indicate time periods with increased |b15d |. For comparison, the
Q15 d values for the reference sites DUE, PAY, RIG and HAE are shown. (b) Time series of Qnext7d−Qprev7d and Qnext1d−Qprev1d for
the same sensor. The horizontal lines depict the threshold 1QTRSH.

Figure 6. Time series of 1CO2 for all the sensors deployed in the
Canton of Zurich (Fig. 1). The red dots depict the dates of the sensor
adjustments.

For this purpose, all the locations of the Carbosense net-
work were divided into three groups based on their region
and the surrounding topography.

All the sites in the Canton of Ticino (Fig. 1) are part of
group one as only two HPPs operate in this region. The
sites in the other regions of Switzerland are divided into two
groups depending on whether they are located on a hilltop
(group 3) or not (group 2). A hilltop location is defined by
the following criteria: (i) the difference in altitude, i.e. the to-
pography in a 2.5 km perimeter including the actual altitude
of the mounted sensor, is larger than 300 m and (ii) more than
90 % of the topography in a 2.5 km perimeter is at a lower al-
titude than it is at the sensor location. The second criterion is
omitted if the difference in altitude exceeds 400 m.

The CO2 molar fraction of the reference instruments and
the HPPs are analysed group by group. The 10 % quantile of
the preceding 24 h is computed for each instrument and HPP
every sixth hour (CO2,Q10%). Afterwards, a band is derived
(CO2,limits = median (CO2,Q10%) ±2.0 · range (CO2,Q10%))
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Figure 7. CO2 differences in measurements at (a) LAEG, (b) RIG, (c) BRM and (d) HAE with respect to DUE, and CO2 differences in
measurements at (e) PAY with respect to GIMM. DIST denotes the distance between the two sites (km); H1 and H2 denote the altitudes
of the two sites (m). Q005 WP, Q050 WP, Q095 WP denote the 5 %, 50 % and 95 % quantile of the CO2 differences in windy conditions,
respectively. MAD WP and SD WP denote the median absolute deviation and standard deviation of the CO2 differences in windy conditions.
RMSE WP denotes the RMSE of the CO2 molar fraction of the two sites in windy conditions. (f) Map of the locations of the reference
sites, their 40 km perimeters and the names of geographic regions. SP: Swiss Plateau; ZH: Canton of Zurich. Geographic data used for
creating the base map originate from http://www.diva-gis.org (last access: 29 October 2019) and https://www.swisstopo.admin.ch (last access:
29 October 2019).

that indicates plausible daily minimum CO2 molar frac-
tions. The preceding 24 h of measurements from a sensor are
flagged in case the sensor’s daily CO2 minimum is outside
the computed band.

4 Results

4.1 Sensor calibration

The employed sensor model that is based on the Beer–
Lambert law and is extended by an empirical parametriza-
tion that can relate the sensor IR measurements and the am-
bient CO2 molar fraction in all relevant CO2, temperature
and pressure conditions (Fig. 8a, b, d, e). The sensor’s fac-

tory calibration is intended for using the sensor in a narrower
temperature range, like that encountered indoors, and does
not include pressure information. Measurements based on
the factory calibration are not as accurate as they can be un-
der outdoor conditions when using an extended model such
as those described by Eqs. (4) and (5) (Fig. 8c). The 1 / IR
terms in Eq. (4) require that the sensor’s IR measurement
does not heavily drift or jump because in this case the er-
ror cannot be compensated for by a simple offset. The data
quality of sensors whose IR values significantly jumped dur-
ing deployment (∼ 300 ppm in CO2) is usually better when
the simplified sensor model (Eq. 5) without 1/IR-terms is ap-
plied (see Fig. 12). Equation (5) provides a less optimal fit
under particular operating conditions (e.g. for high CO2 mo-
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Figure 8. (a) Calibrated sensor measurements (Eq. 4) versus measurements from Picarro instruments exemplarily shown for sensor 1060.
The data set contains measurements from the climate and pressure chambers and ambient measurements. The band between the dashed red
lines denotes a range of ±20 ppm. (b) Same as in (a) but for Eq. (5). (c) Same as in (a) but for factory-calibrated sensor measurements.
Measurements outside the sensor specifications are depicted in grey and included for the RMSE and correlation. (d) CO2–LP8 T plot and
(e) CO2–P plot depicting the environmental conditions covered during calibration. Same data set as in (a). (f) LP8 IR measurements versus
CO2 from the Picarro instruments. Same data set as in (a).

lar fractions; compare with Fig. 8a and b). However, this is
of minor importance for most locations. The CO2 molar frac-
tion at locations which are not impacted by nearby emissions
is usually within 380–550 ppm. Temperature effects cause by
far the largest deviation of the sensor response from the ideal
gas law (Fig. 8c, d, f). Pressure effects are of a much smaller
magnitude (∼ 0.1 ppm hPa−1).

As shown in Fig. 9, the RMSE of the LP8 CO2 measure-
ments with respect to the Picarro during chamber and ambi-
ent calibration is between 6.8 and 12.5 ppm when applying
Eq. (4) and between 8.0 and 13.9 ppm when applying Eq. (5)
for the deployed sensors. Data filtering during calibration is
chosen to be very selective in order to optimally determine
the sensor model parameters.

4.2 Drift correction and outlier detection

The performances of the outlier detection and drift correction
algorithms are presented together as both processing steps
have to be applied to obtain accurate CO2 measurements. The
results shown in this section refer to sensor measurements in
the period 1 July 2017 to 1 September 2019.

Several sensor units are operated at sites equipped with
a CO2 reference instrument (HAE - five sensor units; PAY
– five sensor units; RIG – five sensor units; LAEG – two
sensor units; BRM – one sensor unit) in order to test different
calibration and processing options. Drift correction for the
sensors at PAY relies on the CO2 measurements from GIMM
and for the sensors at RIG, HAE, LAEG and BRM on the
CO2 measurements from DUE (Fig. 7). Thus, the sensor and
reference instrument measurements are independent at these
sites.

Atmos. Meas. Tech., 13, 3815–3834, 2020 https://doi.org/10.5194/amt-13-3815-2020



M. Müller et al.: Integration and calibration of NDIR CO2 low-cost sensors 3827

Figure 9. RMSE values of sensor calibration (a) using Eq. (4) and (b) using Eq. (5). Three histograms are overlaid: all calibrated sensors,
sensors deployed in the Carbosense network (DEPL) and sensors at locations with a reference instrument (REF). The indicated quantiles
refer to the set of deployed sensors.

A slightly modified data processing scheme was applied
to the data from the 141 sensor units that were operated at
DUE beyond 1 December 2017. This additional data treat-
ment provides the opportunity to assess the data quality for a
larger set of sensors. The calibration data set for these sensors
contains all data before 1 December 2017 and is applied to
the measurements thereafter. The sensor data are processed
as described in Sect. 3, but drift is corrected by referring to
measurements from sites LAEG and BRM instead of DUE
(site LAEG, being located closer to DUE, is used when both
instruments provide data). The accuracy of the CO2 molar
fraction from these sensors located at DUE can therefore be
compared to that from sensors deployed in the Carbosense
network. Among the sensors at DUE there are also those
with a performance that is not sufficient for deployment, and
therefore they are held back at DUE.

The comparison of the median difference between CO2
measurements from the sensors and from the reference in-
struments reveals that sensor drift can be adjusted over the
long term when the sensor measurements can regularly be
referred to CO2 predictions (Fig. 10). The frequency of the
required adjustments depends on the individual sensor as the
change in sensor behaviour and the corresponding drift do
not evolve constantly.

By means of the sensors which operate co-located with
reference instruments the effect of different processing op-
tions can be assessed. This includes the employed sensor
model (Eq. 4 or 5), the applied outlier detection (no outlier
detection, outlier detection based on RHtrsh or the algorithm
presented in Sect. 3.4) and the use of additional consistency
checks. The sensor and reference measurements are com-
pared for weekly periods by means of the root mean square
error (RMSE) and the correlation (Fig. 11a and b). In addi-
tion, the fraction of valid measurements with respect to the

total number of measurements in the database is indicated
(Fig. 11c). It shows the effect of data filtering on the number
of usable measurements. Scatter plots of the comparisons be-
tween the LP8 measurements and the measurements from the
reference instruments at HAE, PAY, RIG, LAEG and BRM
are shown in Figs. S6 to S9.

The median of the weekly RMSE of the sensor measure-
ments with respect to the reference measurements at BRM,
HAE, LAEG, PAY and RIG amounts to 10 ppm (25 % and
75 % quantiles – 6.8 and 14.3 ppm, respectively). The accu-
racy of the measurements is not constant over time but has a
dependency on the effectiveness of the outlier detection and
drift correction algorithms and thereby also on the prevail-
ing weather conditions. The two described outlier detection
algorithms differ in terms of the resulting RMSE values. Rig-
orous data filtering using RHtrsh leads to the best RMSE val-
ues. The outlier detection algorithm performs slightly worse
in terms of the RMSE. Overall, it classifies a slightly larger
number of measurements as valid than the filtering using
RHtrsh. Differences in performance between the sensor mod-
els described by Eqs. (4) and (5) are small for this set of sen-
sors. The accuracy of the measurements can be further im-
proved when they are validated against measurements from
high-precision instruments operated in the Carbosense net-
work. This is shown for the combination of the outlier de-
tection algorithm and the consistency check. Correlation be-
tween sensor and reference is about 0.9 on average. At sites
RIG, LAEG and BRM the correlation coefficients are smaller
due to smaller CO2 variations encountered at these locations
(Fig. S1).

The extended sensor model described in Eq. (4) is applica-
ble for a wider range of environmental conditions (CO2, T ,
P ) than the reduced version (Eq. 5). However, when the IR
signal shows large changes (> |300| ppm expressed in molar
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Figure 10. Weekly median deviation of sensors operated at HAE, PAY, RIG, LAEG, BRM and DUE before (particular colours correspond
to individual sensors as indicated in the legend) and after (grey) drift correction. Note the different scales on the y axis.

Figure 11. (a) Weekly RMSE values for all the sensors deployed at HAE, PAY, RIG, LAEG, BRM and DUE. For each site four versions are
presented for the drift-adjusted measurements: (i) no filtering applied, (ii) outlier detection based on sensor-specific RHtrsh value, (iii) outlier
detection algorithm and (iv) outlier detection algorithm plus consistency check. When two bars have the same colour, the left bar refers to
Eq. (4) and the right bar to Eq. (5). (b) Same as in (a) for the weekly correlation. (c) Same as in (a) for the weekly fraction of used data.
Here, the fraction refers to the number of measurements transmitted to the database.
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fraction) as in the case of sensor unit (SU) 1314 deployed at
HAE, the application of the simplified sensor model provides
more accurate results (Fig. 12).

4.3 Differences between co-located sensors

Co-located sensor units are an additional option to assess the
sensor performance. They reveal how similarly two sensors
behave when they encounter comparable environmental con-
ditions. There are 12 locations where two sensor units oper-
ate in parallel but where no reference instrument is available
(Figs. 13 and S6). The horizontal distance between the sensor
unit pairs does not exceed 45 m. There are no close emission
sources for cases with distance 6= 0. The indicated RMSE
refers to the difference in simultaneous measurements. The
sensor pairs exhibit fairly good correlations at most loca-
tions. For the sensor pairs operated at Hallau (HLL) and Bir-
mensdorf (BSCR) there is better agreement when processing
the measurements using the sensor model given by Eq. (5) in-
stead of the model given by Eq. (4). The IR measurement of
sensor unit 1012 changed significantly in January 2018; those
of sensor unit 1120 changed significantly in March 2018.
The difference between the processing models is small for
the other sensor pairs.

Eight sensor units were deployed in the Carbosense net-
work, and they were brought back to site DUE to review
their performance due to sensor malfunctioning (e.g. LP8
sensor dropped out of the board) or suspicious CO2 mea-
surements. For completeness, the comparison between the
measurements from these sensors and from the Picarro in-
strument is shown in the Supplement.

4.4 Overall data coverage

The Carbosense network consists of 230 LP8 sensors as of
1 September 2019. In total, there were 262 deployments in
the period 1 July 2017 to 1 September 2019. Over 75 % of
the deployments lasted longer than 1 year, and five lasted
less than 30 d.

The data transmission over Swisscom’s Low Power Net-
work (LPN) works reliably. The 25 %, 50 % and 75 % quan-
tiles of the fraction of transmitted data for individual deploy-
ments at MeteoSwiss and NABEL locations and at locations
within the city of Zurich amount to 88 %, 95 % and 98 %,
respectively (Fig. 14a). Performance is even better at Swiss-
com’s transmitter locations (25 % quantile – 98 %). How-
ever, these are usually equipped with an LPN gateway and
built at elevated locations. We cannot assess to which part
of the data transmission process the data loss is attributed
(transmission module used in the sensor unit, LPN infras-
tructure, LPN network coverage). The transmission module
(Microchip RN2483) of several sensor units was found to
have a reduced reliability at high temperatures (above about
30 ◦C).

A small number (∼ 1 %) of the transmitted LP8 measure-
ments had a nonzero status flag, for instance, when tempera-
ture was below −8.5 ◦C (LP8-specific threshold) or the sen-
sor was malfunctioning. For a minor fraction of measure-
ments a drift adjustment could not be performed as the sen-
sor was assessed to be in an unstable phase. The outlier de-
tection algorithm flags 23 % of the measurements that were
drift corrected. In combination with the consistency check,
29 % of the measurements are flagged. There is considerable
variability in these fractions related to the individual sensor
performance and the location. A clear relationship is evident
between the fraction of outliers and the humidity conditions
encountered at the deployment location (Fig. 14b). Overall,
the median of usable measurements from all individual de-
ployments amounts to 67 %. There is a diurnal variation in
the fraction of flagged measurements closely related to the
diurnal variation in relative humidity (Fig. 15a). The outlier
detection algorithm has the advantage of retaining a larger
number of measurements in conditions of high relative hu-
midity compared to the method using RHtrsh (Fig. 15b).

4.5 Computation of the water volume fraction

The conversion of wet CO2 to dry CO2 requires the water
molar fraction χH2O. This value is computed for the sensor
units based on the SHT21 T and RH measurements and the
pressure that is interpolated for the specific location. The un-
certainty in the estimation of χH2O and the corresponding
uncertainty in the dry-air mole fraction of CO2 can be as-
sessed for a total of 55 sensor units operated at MeteoSwiss
SwissMetNet sites that are equipped with more accurate me-
teorological instruments. At those sites, χH2O has been com-
puted from the sensor units and from reference T , RH and
p measurements (Figs. S3 and S4). The agreement is best
(±0.07 %) when global radiance is low (< 50 W m−2). In this
case T and RH measured inside the box are representative for
the outside conditions. Deviation is slightly worse (±0.15 %)
for higher global radiance. For the majority of the measure-
ments, the conversion of wet-CO2 to dry-CO2 molar frac-
tion is associated with an error below 1.2 ppm (assessment
of deviation for an error ε = 0.2% and χCO2,wet = 600 is
as follows: χCO2,dry = χCO2,wet/(1−ε/100)= 600ppm/(1−
0.2/100))= 601.2 ppm).

5 Discussion and conclusions

Calibration, drift correction and outlier detection are crucial
elements for the operation of the LP8 sensors in a sensor
network. Due to the number of employed sensors and the
slight differences in their individual response characteristics
the processing scheme has to be optimized in terms of accu-
racy, yield of usable measurements and processing efficiency.
As the processing scheme consists of several independent el-
ements, each of them can be further improved in the future.
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Figure 12. Comparison of sensor and reference CO2 measurements for SU 1314 deployed at HAE and SU 1100 and SU 1139 deployed at
PAY. The sensor measurements depicted in panels (a–c) are based on the sensor model given by Eq. (4), and in panels (d–f) they are based
on the sensor model given by Eq. (5). The sensor measurements are drift corrected, and the outlier detection algorithm was applied. Points
in grey are outliers.

The sensor calibration reveals the dependencies of the sen-
sor signal on CO2, temperature and pressure. The mathemat-
ical sensor model has to account for a varying sensor re-
sponse over time. Our approach is to use an extended model
as long as the sensor behaviour does not drift significantly.
After large jumps in the IR signal, sensor measurements can
be processed based on a simpler sensor model to optimize
the measurement accuracy until the sensor is replaced. More-
over, the analysis of the data during calibration also shows
the impact of environmental conditions, such as increased
relative humidity (> 85 %), that are not captured by the cal-
ibration model. It demonstrates the need for dedicated mea-
surement filtering.

We present two methods for the detection of outliers. The
application of the two methods for individual sensors leads
to a different number of flagged measurements and concur-
rently to different RMSE values. Flagging the measurements
based on a conservative RH threshold results in the most ac-

curate results. The presented outlier detection algorithm that
relies on no reference measurements is similarly powerful.
The possibility of learning individual sensor characteristics
in the field is an important feature to reduce calibration time.

The response of the LP8 sensors is not stable over time,
and frequent adjustments are required. The performed cor-
rection during windy periods works well for the regions in
and adjacent to the Swiss Plateau (Fig. 7). The method relies
on a dense network of meteorological observations and high-
precision CO2 measurements. Moreover, it strongly depends
on the prevailing meteorology, and, therefore, it is prone to a
shortage of suitable adjustment periods. This situation could
possibly be enhanced by using the results of an operational
atmospheric transport model. Two aspects are expected to be
improved by using such a model: (i) the identification of time
periods when the CO2 molar fraction in the atmosphere is
homogeneous and sensors and reference instruments can be
related and (ii) the determination of the vertical CO2 gradi-
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Figure 13. Comparison of LP8 measurements (drift corrected, outlier detection algorithm) from co-located sensors (distance between sensors
< 45 m). Points in grey are flagged as outliers. The header of the individual figures indicates the sensor pairs by the location name and the
sensor unit ID as well as the sensor model.
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Figure 14. (a) Analysis of measurement yield in the Carbosense network. Grey: Difference between expected and actual number of mea-
surements in the database. Red: Measurements transmitted to the database with nonzero LP8 status (e.g. temperature below −8.5 ◦C, sensor
malfunctioning). Cyan: Measurements with no drift adjustment (e.g. periods with unstable sensor behaviour). Orange: Measurements flagged
by outlier detection. Light green: measurements that did not pass the consistency check. Dark green: Usable measurements. (b) Distribution
of the measured relative humidity. The 10 %, 50 % and 90 % quantiles of RH. Ordering as in (a).

Figure 15. Analysis of the results of measurement filtering referring to time of day (a) and relative humidity (b). Filtering is based on (i) a
sensor-specific RHtrsh value, (ii) the outlier detection algorithm (OutDet) and (iii) the outlier detection algorithm plus a consistency check
(OutDet/CC). For the calculation of the fraction of flagged measurements, the number of measurements and flags of all deployments are
summed. The numbers of measurements are depicted as red dots.

ent. Such an atmospheric transport model is currently under
development at Empa, and its applicability for the sensor net-
work will be investigated.

The data processing for sensors in the Swiss Plateau and
especially in the region of Zurich (Fig. 1) where the Car-
bosense network is most dense is operational. For these re-
gions, the analysis of measurements from reference sites
shows that drift correction within selected time periods
works well. Results from atmospheric transport models will

be required to achieve a similar level of data quality for the
sensors located in the Swiss Alps.

The LP8 sensor measures the CO2 molar fraction with
an accuracy of about 10 ppm on average if the sensors are
calibrated, continuously monitored and drift corrected dur-
ing operation and if the measurements are filtered. The re-
sulting accuracy is not constant because it depends not only
on the sensor characteristics but also on the performance
of the drift correction and outlier detection algorithms and
thereby on the prevailing weather conditions. The LP8 sen-
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Figure 16. Comparison between LP8 and reference measurements. The LP8 measurements are outlier screened, drift corrected and checked
for consistency. (a) Site HAE is located next to a motorway; (b) site PAY is located in a rural landscape; (c) site RIG is an elevated background
site. Points in grey are outliers.

sors are well capable of resolving differences in the CO2 mo-
lar fraction exceeding 30 ppm (3 ·σ if the RMSE value com-
puted in Sect. 4.3 is taken for σ ). CO2 variations encoun-
tered at locations in Switzerland usually exceed this thresh-
old (see Fig. S1). Exceptions are high-altitude locations such
as Jungfraujoch (3580 m a.s.l.; Sturm et al., 2013). Near-
surface CO2 signals depend on anthropogenic emissions, the
activity of the biosphere (uptake, respiration) and meteorol-
ogy (boundary layer height, transport of CO2). LP8 sensors
can resolve the site-specific CO2 signals for a wide range
of locations, from elevated background sites to sites next to
motorways (Fig. 16). The sensors are not capable of detect-
ing small-scale signals and long-term trends under outdoor
conditions.

Data availability. Periodic data releases on the ICOS Carbon Por-
tal are in preparation. Temperature and RH measurements from the
sensor units of the period 1 July 2017 to 1 October 2019 are al-
ready available at https://doi.org/10.18160/RW69-MP2Y (EMPA et
al., 2019)

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-13-3815-2020-supplement.
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