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Abstract. An improved two-sphere integration (TSI) tech-
nique has been developed to quantify black carbon (BC) con-
centrations in the atmosphere and seasonal snow. The ma-
jor advantage of this system is that it combines two dis-
tinct integrated spheres to reduce the scattering effect due
to light-absorbing particles and thus provides accurate de-
terminations of total light absorption from BC collected on
Nuclepore filters. The TSI technique can be calibrated us-
ing a series of 15 filter samples of standard fullerene soot.
This technique quantifies the mass of BC by separating the
spectrally resolved total light absorption into BC and non-
BC fractions. To assess the accuracy of the improved sys-
tem, an empirical procedure for measuring BC concentra-
tions with a two-step thermal–optical method is also applied.
Laboratory results indicate that the BC concentrations deter-
mined using the TSI technique and theoretical calculations
are well correlated (R2

= 0.99), whereas the thermal–optical
method underestimates BC concentrations by 35 %–45 %
compared to that measured by the TSI technique. Assess-
ments of the two methods for atmospheric and snow samples
revealed excellent agreement, with least-squares regression
lines with slopes of 1.72 (r2

= 0.67) and 0.84 (r2
= 0.93),

respectively. However, the TSI technique is more accurate in
quantifications of BC concentrations in both the atmosphere
and seasonal snow, with an overall lower uncertainty. Us-
ing the improved TSI technique, we find that light absorp-
tion at a wavelength of 550 nm due to BC plays a dominant
role relative to non-BC light absorption in both the atmo-

sphere (62.76 %–91.84 % of total light absorption) and sea-
sonal snow (43.11 %–88.56 %) over northern China.

1 Introduction

Black carbon (BC) has long been recognized as the major
light-absorbing particle (LAP) in both natural and anthro-
pogenic emissions (Slater et al., 2002; Koch et al., 2009;
Zhang et al., 2009; Pan et al., 2010; McMeeking et al., 2011;
Pavese et al., 2012; Bond et al., 2013; IPCC, 2013). BC
can impact the regional and global climate in several ways,
including via the direct effects of scattering and absorbing
visible solar radiation (Jacobson, 2001; Menon et al., 2002;
Hansen et al., 2005; Ramanathan and Carmichael, 2008), the
semi-direct effects of changing the temperature structure and
relative humidity of the atmosphere by absorbing solar short-
wave radiation (Ban-Weiss et al., 2012), and indirect effects
on cloud formation and lifetime (Chuang et al., 2002; Baum-
gardner et al., 2004; Rosenfeld et al., 2008). Once deposited
onto snow or ice surfaces, BC absorbs more solar radiation
than pure snow or ice and reduces the snow albedo, thus ac-
celerating snowmelt (Xu et al., 2009a; Flanner et al., 2012;
Hadley and Kirchstetter, 2012; Carmagnola et al., 2013; Qian
et al., 2014; Zhao et al., 2014).

Optically classified BC is also often referred to as elemen-
tal carbon (EC), which is typically thermally detected. The
distinction between BC and EC has been debated since the
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1980s (Heintzenberg, 1989; Horvath, 1993a; Andreae and
Gelencser, 2006; Moosmuller et al., 2009). Given that BC
and EC are both soot particles with diameters of < 1 µm,
these terms have often been used interchangeably (Chow et
al., 2001, 2004; Ming et al., 2009; Thevenon et al., 2009;
Lim et al., 2014). BC is generally regarded as an ideal light-
absorbing particle of carbon and is typically measured using
optical attenuation methods (Clarke et al., 1967; Hansen et
al., 1984; Ogren and Charlson, 1983; Grenfell et al., 2011).
The term “EC” is often used interchangeably with “BC”
when referring to optical absorption measurements (Clarke
et al., 1967; Grenfell et al., 2011) and is only uniquely iden-
tified by thermal–optical methods (Xu et al., 2006; Cao et al.,
2007; Jimenez et al., 2009). Poor agreement remains between
measurements of BC and EC among available measure-
ment techniques. The general techniques used to quantify
the various fractions of BC mass concentrations are associ-
ated with the corresponding methods: thermal–optical meth-
ods, single-particle soot photometer (SP2) measurements,
and filter-based optical techniques. Besides the above tech-
niques, aerosol mass spectrometry, electron microscopy, and
Raman spectroscopy are also useful and accurate methods to
identify the various fractions of carbonaceous aerosols in the
atmosphere (Ivleva et al., 2007; Spencer et al., 2007; Cross
et al., 2010; Li et al., 2016; Petzold et al., 2013). Among
these methods, the thermal–optical approach is regarded as
the most effective and reliable for evaluating EC concen-
trations (Chylek et al., 1987; Cachier and Pertuisot, 1994;
Jenk et al., 2006; Legrand et al., 2007; Hadley et al., 2010).
However, the thermal–optical method can lead to large dis-
crepancies in determining EC concentrations as a result of
inference from positive artifacts caused by inadequately sep-
arated organics and mineral dust (Ballach et al., 2001; Wang
et al., 2012). Further discrepancies are caused by the use
of two main detection protocols (thermal–optical transmis-
sion, TOT; thermal–optical reflectance, TOR) to assess EC
and OC concentrations based on their unique thermal prop-
erties. These protocols yield different OC and EC concentra-
tions (Chow et al., 1993, 2001; Birch and Cary, 1996; Watson
and Chow, 2002). The integrating sphere–integrating sand-
wich spectrophotometer (ISSW) method was developed by
Grenfell et al. (2011) and has been used to analyze mass
concentrations of BC in snow (Doherty et al., 2010, 2014;
Wang et al., 2013). Doherty et al. (2010) noted that the to-
tal uncertainty in measuring BC in snow using the ISSW
method is up to 40 % relative to the gravimetric standards of
BC (fullerene soot). The total uncertainty associated with the
filter-based ISSW technique on BC concentration determina-
tion for ambient snow has previously been estimated as 40 %,
which is the sum, in quadrature, of 11 % for instrumental un-
certainty, 15 % for undercatch uncertainty (loss of insoluble
light-absorbing impurities), 17 % for BC mass absorption co-
efficient (MAC) uncertainty, and 30 % for uncertainty in the
absorption Ångström exponent (AAE) of non-BC material
(Doherty et al., 2010; Grenfell et al., 2011; Schwarz et al.,

Figure 1. Sampling locations. Sites 90–102 are located in northeast
China and were used for snow sample collection during January–
February 2014. Snow sampling site 103 is located in Lanzhou in
northwest China and was used for atmospheric sample collection
during 5–25 August 2015. Sites are numbered according to Wang et
al. (2013) and Ye et al. (2012).

2012). Finally, the SP2 technique is well suited to the quan-
tification of low BC concentrations with a small particle ra-
dius (< 500 nm). It is an optimized method for measuring BC
concentrations and size distributions, and the substantially
larger uncertainty of the SP2 instrument with respect to BC
concentration measurements can exceed 60 % in snow and
ice cores and 30 % for atmospheric sampling (Schwarz et al.,
2012). They noted that the relative transmission efficiencies
of polystyrene latex (PSL) sphere concentration standards in
liquid to the SP2 after aerosolization are remarkably reduced
to 20 % due to the larger diameter of BC particles (> 500 nm).
Therefore, the larger diameter of BC (> 500 nm) is hardly
captured by SP2 instruments with a collision-type nebulizer.
Moreover, the mixing status of BC in snow is more compli-
cated than the standard fullerene soot in the laboratory and
the typical BC in the atmosphere.

Although several field campaigns have collected atmo-
spheric, snow, and ice core samples to measure BC and
EC concentrations globally (Wolff and Cachier, 1998; von
Schneidemesser et al., 2009; Doherty et al., 2010, 2014;
Ming et al., 2010; Huang et al., 2011; Xu et al., 2012; Cong
et al., 2015), biases remain in determinations of BC concen-
trations, as is evident from a comparison among the results
obtained with the SP2, ISSW, and thermal–optical methods
(Schwarz et al., 2012; Lim et al., 2014). As a result, it is dif-
ficult to assess the effects of BC and EC on recent climate
change using different techniques, even in the same area.

Here we report the development of a new portable and ac-
curate spectrophotometric method based on the two-sphere
integration (TSI) technique that can be used to determine BC
concentrations in both the atmosphere and seasonal snow.
The improved TSI technique minimizes scattering effects re-
lated to BC and non-BC insoluble particles collected on Nu-
clepore filters and thus provides a simple and accurate means
to assess BC concentrations in the atmosphere and seasonal
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Figure 2. Schematic diagram of the improved two-sphere integrating spectrophotometer.

snow. To assess the accuracy of the new technique, a two-
step thermal–optical method is applied to determine BC con-
centrations on individual quartz-fiber filters. Finally, we in-
vestigate the spatial distribution of BC concentrations and
the relative light absorption of surface snow over northeast
China. We also analyze the diurnal variations of BC in the
atmosphere during day and night over Lanzhou in northwest
China.

2 Experimental procedures

2.1 Sampling sites and snow sample filtration

During the study period, less snow fell in 2014 than in 2010,
and no seasonal snow was present in the western part of In-
ner Mongolia. Therefore, we collected 94 snow samples at 14
sites in January and February of 2014 across north China fol-
lowing the sampling route of Huang et al. (2011). The sites
are numbered in chronological order from 90 to 103, fol-
lowing previous snow surveys (Ye et al., 2012; Wang et al.,
2013). Figure 1 shows the locations of the snow field cam-
paigns across northern China. The sampling locations were
selected to be at least 50 km from any settlement and 1 km
from the nearest road. Snow samples were kept frozen be-
fore being filtered. We set up a temporary laboratory along

the sampling route. Owing to BC in snow often being hy-
drophobic, long-time melting could cause more BC loss to
the container walls instead of being collected on the filter
(Ogren et al., 1983). In order to minimize the loss of insolu-
ble LAPs (ILAPs), we quickly melted the snow samples in
a microwave within a very short time. Therefore, the loss
of insoluble LAPs is very limited and can be neglectable.
At present, this method is a widely performed snow-melting
procedure (Dothery et al., 2010, 2014; Wang et al., 2013).
Subsequently, we simultaneously filtered the snow samples
using quartz-fiber filters with 1 µm pores and Nuclepore fil-
ters with 0.4 µm pores. Then, we refiltered the snow sam-
ples for the quartz-fiber filters using Nuclepore filters with
0.4 µm pores to account for the loss of BC mass in the 1 µm
pore quartz-fiber filters. Finally, we stored the original and
refiltered snow samples in clean high-density polyethylene
bottles in a freezer at −30 ◦C for subsequent analysis. For
details of the sampling and filtration procedures, see Wang et
al. (2013).

To evaluate the accuracy of the TSI technique in measur-
ing BC concentrations, the atmospheric samples were contin-
uously collected on Nuclepore and quartz-fiber filters with
high-volume samplers during the periods 09:00 to 17:00
(daytime; local time) and 23:00 to 07:00 (nighttime) at site
103 in Lanzhou from 5 to 25 August 2015. The pumps were
operated at a flow rate of 10 L min−1. In total, 40 atmo-

www.atmos-meas-tech.net/13/39/2020/ Atmos. Meas. Tech., 13, 39–52, 2020



42 X. Wang et al.: Development of an improved two-sphere integration technique

spheric samples were collected during this experiment and
used to assess the accuracy of the atmospheric BC concen-
tration measurements of the improved TSI technique.

2.2 Two-sphere integration technique

Light transmission techniques are the most commonly
used methods for determining light-absorbing impurities in
aerosol filter samples of the atmosphere and snow–ice. Since
the 1970s, a series of optical attenuation techniques have
been developed for estimating BC concentrations using light
transmission changes through filters based on Beer’s law.
An integrating sphere (IS) technique was first proposed for
measuring BC by Fischer (1970). The integrating sphere was
coated with diffusely reflecting white paint through a small
hole, and the reduction in signal after measuring the sample
filters represented the absorption of BC. Subsequently, a new
integrating plate (IP) instrument was developed to measure
scavenging BC on filters based on the IS technique, which
uses a light-diffusing support to provide a nearly Lamber-
tian light source for light transmission using 0.4 µm Nucle-
pore filters (Clarke et al., 1967; Horvath, 1993b). However,
the multiple scattering of solar radiation affects the accu-
racy of the IP technique (Clarke et al., 1967; Hitzenberger,
1993; Petzold et al., 1997; Bond et al., 1999). A new inte-
grating sandwich configuration of the ISSW instrument was
designed to measure the absorption of light-absorbing impu-
rities based on the ISSW principle of Grenfell et al. (2011).
The ISSW instrument can isolate the absorption properties of
light-absorbing impurities deposited on polycarbonate Nu-
clepore filters. By assuming the mass absorption efficiency
and non-BC Ångström exponent at 550 nm, this technique
is currently capable of reliably measuring BC and non-BC
light absorption (Wang et al., 2013; Dang and Hegg, 2014;
Doherty et al., 2014). However, Schwarz et al. (2012) found
that the total instrumental uncertainty associated with ISSW
BC concentration determinations for ambient snow is 11 %,
and this uncertainty is partially due to the scattering effects
of insoluble impurities deposited on the filters (Doherty et
al., 2010; Grenfell et al., 2011).

The improved TSI spectrophotometer developed in this
study is small, lightweight, and portable, and it can accu-
rately quantify BC concentrations using a technique based
on the integrating sphere and integrating plate transmission
techniques (Fig. 2). The major improvement of this spec-
trophotometer is that we replaced the integrating sandwich
of the ISSW instrument developed by Grenfell et al. (2011)
with a new integrating sphere. In addition, an iron hoop is ap-
plied to the top integrating sphere surrounding the sapphire
windows to reduce light scattering due to insoluble particles
on the filters. Therefore, the total relative light absorption due
to all insoluble impurities on the filter can be estimated from
the visible to near-infrared wavelengths. The total light atten-
uation can be calculated from the light transmitted by a snow
or atmospheric sample, S(λ), compared with that transmitted

Figure 3. Calibration curve for standard fullerene soot at a wave-
length of 550 nm. The solid line is a best-fit curve for the filter mea-
surements. S0 and S are the detected signals for the blank and sam-
ple filters, respectively, and − ln (S/S0) is the relative attenuation.

Figure 4. Comparison of the theoretical and measured BC mass
determined by the TSI and two-step techniques in the laboratory.
The solid and dot–dashed lines represent best-fit lines for the TSI
and two-step techniques, respectively. The dashed line is a 1 : 1 line.

by a blank filter, S0(λ). Then, the relative attenuation (Atn)
through the filter can be expressed as follows:

Atn= ln[S(λ)/S0(λ)]. (1)

The total absorption Ångström exponent Åtot (λ0) of all the
ILAPs on the filters can be calculated from the following for-
mula:

Åtot (λ0)=−
ln[τtot(λ1)/τtot(λ2)]

ln(λ1/λ2)
. (2)

Ånon-BC is calculated as a linear combination of the contribu-
tions to light absorption made by OC and Fe:

Ånon-BC = ÅOC× fOC+ÅFe× fFe. (3)
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Table 1. Series of 15 standard filters loaded with fullerene soot and a comparison of BC concentrations between theoretical calculations and
the TSI and two-step thermal–optical methods in the laboratory.

Filter Standard BC concentration Filter Standard BC concentration Filter Calculated BC TSI BC Two-step BC
(µg cm−2) (µg cm−2) (µg) (µg) (µg)

1 0.63 9 2.82 1 3.68 3.92 2.28
2 0.70 10 3.65 2 10.58 11.39 5.86
3 0.78 11 5.53 3 17.48 17.49 11.39
4 0.86 12 6.35 4 24.38 24.94 15.67
5 0.93 13 12.5 5 31.28 32.52 18.07
6 1.33 14 19.00 6 38.18 39.14 24.29
7 2.12 15 38.6 7 45.08 49.18 28.61
8 2.49 – – – – –

The total absorption Ångström exponent of all ILAPs on a
filter (Åtot) can be described as a linear combination of ÅBC
and Ånon-BC weighted by the light absorption fraction:

Åtot (λ0)= ÅBC× fBC (λ0)+Ånon-BC× fnon-BC (λ0) . (4)

Using the mass absorption efficiency and absorption
Ångström exponents for BC, OC, and Fe described by Wang
et al. (2013), we can further estimate the following param-
eters: equivalent BC (Cequiv

BC ), maximum BC (Cmax
BC ), esti-

mated BC (Cest
BC), fraction of light absorption by non-BC

ILAPs (insoluble light-absorbing particles) (f est
non-BC), ab-

sorption Ångström exponent of non-BC ILAPs (Ånon-BC),
and total absorption Ångström exponent (Åtot). These param-
eters are defined as follows.

1. Cequiv
BC (ng g−1): equivalent BC is the amount of BC that

would be needed to produce the total light absorption by
all insoluble particles in snow for wavelengths of 300–
750 nm.

2. Cmax
BC (ng g−1): maximum BC is the maximum possible

BC mixing ratio in snow, assuming that all light absorp-
tion is due to BC at wavelengths of 650–700 nm.

3. Cest
BC (ng g−1): estimated BC is the estimated true mass

of BC in snow derived by separating the spectrally re-
solved total light absorption and non-BC fractions.

4. f est
non-BC (%): the fraction of light absorption by non-BC

light-absorbing particles is the integrated absorption
due to non-BC light-absorbing particles. This value is
weighted by the downwelling solar flux at wavelengths
of 300–750 nm.

5. Ånon-BC: the non-BC absorption Ångström exponent is
derived from the light absorption by non-BC compo-
nents for wavelengths of 450–600 nm.

6. Åtot: the absorption Ångström exponent is calculated for
all insoluble particles deposited on the filter between
450 and 600 nm.

Furthermore, combined with the mass loading of Fe deter-
mined by chemical analysis (Wang et al., 2013), the mass
loading of OC (LOC) was also estimated assuming that the
MAC for OC is 0.3 m2 g−1 at the wavelength of 550 nm us-
ing the following equation:

τtot (λ)−MACBC (λ)×L
est
BC−MACFe×LFe

=MACOC×LOC. (5)

All relevant equations and associated derivations are de-
scribed by Grenfell et al. (2011) and Doherty et al. (2010,
2014). Note that the calculation of non-BC light absorption
due to insoluble impurities assumes that the iron in snow is
predominantly from mineral dust (Wang et al., 2013).

2.3 Calibration of the TSI spectrophotometer

In this study, a series of 15 Nuclepore filters with a pore size
of 0.2 µm (lot no. 7012284, 25 mm, Whatman) loaded with
fullerene soot (stock no. 40971, lot no. L20W054, Alfa Ae-
sar, Ward Hill, MA, USA) is used to calibrate the spectropho-
tometer over the range 0.63–38.6 µg, which typically covers
> 75 % of ambient accumulation-mode mass (left panel in Ta-
ble 1; Schwarz et al., 2012). Fullerene soot is commonly used
for calibrating the light transmission and thermal–optical
techniques for measuring BC concentrations (Baumgardner
et al., 2012). Standard fullerene soot particles are fractal-
like aggregates of spherical primary particles with a diam-
eter of∼ 50 nm, with a mean density of 1.05 g cm−3 (Moteki
et al., 2009). Multiple filters with various loadings are re-
quired, as the system response deviates from Beer’s law ex-
ponential behavior; related equations can be found in Gren-
fell et al. (2011). Note that uncertainties in mass absorption
efficiencies, which range from 2 to 25 m2 g−1, can lead to
uncertainty in this technique. Here, we use a mass absorp-
tion efficiency of 6.22 m2 g−1 at 525 nm, which is consistent
with Doherty et al. (2010) and Grenfell et al. (2011). Figure 3
shows the best-fit curve (solid line) of the loading of the fil-
ters at 550 nm. When the filter loading was 0–40 µg cm−2,
all measured results were close to the best-fit curve, indicat-
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Figure 5. Mass loss of standard fullerene soot on 1.0 µm quartz-
fiber filters determined by refiltration using 0.4 µm Nuclepore fil-
ters.

Figure 6. Comparison of BC concentrations in snow samples over
northeast China during January–February 2014 determined by the
TSI and two-step thermal optical methods. A 1 : 1 line (dashed) is
shown.

ing that the TSI spectrophotometer is stable and accurate in
terms of BC mass measurements.

2.4 Thermal–optical measurements of EC
concentration

There are several types of thermal–optical methods that can
be used to quantify EC and OC concentrations, including
two-step temperatures in oxidizing and non-oxidizing at-
mospheres (Cachier et al., 1989; Xu et al., 2006, 2009b),
thermal–optical reflectance (Chow et al., 1993, 2001; Chen et
al., 2004), and thermal–optical transmittance (Sharma et al.,
2002; Yang and Yu, 2002; Chow et al., 2004). Using an opti-
mized two-step method, Cachier et al. (1989) first confirmed

that soot carbon not only comprises EC, but is also mixed
with highly condensed organic material. An optimized two-
step thermal–optical system has been developed to detect EC
and OC concentrations in ice cores (Xu et al., 2006). Here,
we use the optimized two-step method based on the thermal–
optical technique to measure EC concentrations. In this ex-
periment, quartz-fiber filters were first preheated in a muffle
furnace at 350 ◦C to remove organic carbon prior to sam-
pling. All filters were punched to yield appropriately sized
samples for analysis. Snow samples were analyzed for EC
and OC concentrations using a thermal–optical carbon an-
alyzer (Desert Research Institute, model 2001A), following
the thermal–optical reflectance (TOR) protocol of the Inter-
agency Monitoring of Protected Visual Environments (IM-
PROVE_A). We developed a new method, referred to as the
two-step method, to measure the concentrations of BC col-
lected by the quartz-fiber filters. The two-step method is an
updated measurement procedure that first extracts an OC
fraction below 550 ◦C in a He atmosphere. The volatilized
OC is oxidized to CO2, reduced to CH4, and detected by a
flame ionization system. Next, two EC fractions (EC1 and
EC2) are extracted above 550 ◦C in an atmosphere of 2 %
O2 and 98 % He. Detailed procedures can be found in Xu et
al. (2006) and Chow et al. (2004). The analytical uncertainty
of this method is 15 % for BC and 16 % for OC measured via
four parallel ice samples cut lengthways in an ice core with
high dust loading (Xu et al., 2009a).

3 Results

3.1 Comparison with theoretical calculations

To further assess the accuracy of the TSI system, we use
standard fullerene soot and quantify BC concentrations us-
ing theoretical calculations for comparison with BC values
measured by a laboratory-based TSI spectrophotometer. To
ensure the stability and accuracy of the improved TSI spec-
trophotometer, two individual sets of standard BC filters
were used: 0.4 µm Nuclepore and 1 µm quartz-fiber filters.
All filters were preheated in a muffle furnace at 350 ◦C to re-
move organic carbon prior to sampling. A measured amount
of BC was mixed into a known volume of ultrapure water.
The mixture was then agitated by ultrasound for ∼ 10 min,
and the same volumes of liquid were then filtered through
the two types of filters. Using the calculated BC mass, seven
filters with gradually increasing BC concentrations were ob-
tained for both the 0.4 µm Nuclepore and 1 µm quartz-fiber
filters. Next, all the filters were placed in a dryer for 24 h and
then measured using the TSI spectrophotometer. Using the
BC mass and the volume of the ultrapure water used for fil-
tration, we can estimate the theoretical BC concentration for
each filter. The mass for each filter is listed in Table 1 (right
panel).
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Figure 7. As for Fig. 6, but for atmospheric samples collected at
Lanzhou in northwest China during 5–25 August 2015. A 1 : 1 line
(dashed) and a linear regression fit passing through the origin (solid
curve) are also shown.

Assuming a mass absorption cross section (MAC) of BC
of 6.22 m2 g−1 at 525 nm, the BC concentrations measured
using the TSI spectrophotometer were in good agreement
with the theoretical BC values, with a slope of 1.07 (Fig. 4).
The BC mass loaded on the Nuclepore filters was approx-
imately equal to that measured by the improved TSI spec-
trometer, which indicates that the TSI system developed here
can accurately measure BC concentrations with the assumed
mass absorption efficiency. In contrast, the standard BC mass
on the quartz-fiber filters was underestimated by 35 %–45 %
using the two-step thermal–optical technique compared with
the theoretical value. During the filtration process, we found
that the time required to filter liquid snow samples on the
0.4 µm Nuclepore filters was much longer than was the case
for the 1 µm quartz-fiber filters. Therefore, we first filtered
the melted snow samples on the quartz-fiber filters and then
refiltered the snow samples using the 0.4 µm Nuclepore fil-
ters. Using this process, BC mass losses can be obtained us-
ing the TSI technique, assuming that optical BC is equivalent
to thermal EC.

As shown in Fig. 5, the fraction of BC mass collected dur-
ing the second filtration (0.4 µm filter) ranges from 12 % to
21 % of the total collected mass (filter directly with 0.4 µm
filters), as might be expected for the small particles of stan-
dard fullerene soot (< 50 nm). This under-sampled fraction
decreases with increasing BC mass on the filters, possibly
owing to blocking of the filter pores. As a result, the under-
sampled fraction of the thermal–optical method was larger
than that of the TSI technique, leading to a lower filtration
efficiency. Note that these sampling efficiencies are strongly
related to the BC size distribution. Therefore, the improved
TSI technique developed here is more stable and accurate
for measuring pure BC masses, and the data obtained us-

Table 2. Statistics of BC and EC concentrations measured using the
TSI and two-step thermal–optical methods for snow samples during
the experiments over northern China.

Site Filter TSI BC Two-step EC

ng g−1 ng g−1

90 Q-351L 349.95 550.19

91 Q-352L 171.46 120.87
Q-352R 152.94 177.48

92 Q-354L 53.10 139.78
Q-354R 57.82 176.41

93 Q-356L 71.71 95.27
Q-356R 73.85 185.45

94 Q-358L 274.62 1040.20

95 Q-359L 87.84 107.51
Q-359R 67.92 95.01

96 Q-363L 319.71 215.42
Q-363R 192.60 271.42

97 Q-366L 204.47 216.04
Q-366R 306.75 889.54

98 Q-369L 1605.95 130.36
Q-369R 1321.69 6004.33

99 Q-376L 873.58 555.39
Q-376R 534.70 536.11

100 Q-380R 519.47 476.14

101 Q-384R 3843.15 4626.72

102 Q-388L 915.59 1083.24
Q-388R 2151.18 2187.90

103 Q-397L 156.76 522.07
Q-397R 190.24 726.08

ing this method can be used as the standard BC mass. After
correcting for systematic biases, the results of both methods
were closer to the theoretical BC calculations. Note, how-
ever, that the size distribution of the laboratory BC standard
was much smaller than those of the atmospheric and sea-
sonal snow samples (Schwarz et al., 2012). Therefore, un-
derestimates caused by the filtration efficiency for ambient
BC should be lower than that for the standard BC.

3.2 Comparison of BC concentrations in seasonal snow
and the atmosphere

Recent studies have indicated that mineral dust can affect
the accurate detection of BC concentrations using the ISSW
and thermal–optical methods (Wang et al., 2012; Zhou et al.,
2017). To eliminate the large uncertainty and bias due to dust
particles, we only used snow samples collected in industrial
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Table 3. Statistics of BC and EC concentrations in atmospheric samples measured using the TSI and two-step thermal–optical methods.

Day Night

Date TSI BC Two-step EC Date TSI BC Two-step EC
µg m−3 µg m−3 µg m−3 µg m−3

2015.8.6 2.41 2.67 2015.8.5–8.6 3.67 3.05
2015.8.7 1.36 1.75 2015.8.6-8.7 2.00 1.84
2015.8.8 1.89 2.07 2015.8.7–8.8 1.55 1.54
2015.8.9 2.01 2.21 2015.8.8–8.9 1.77 1.32
2015.8.10 2.24 2.17 2015.8.9–8.10 2.07 1.83
2015.8.11 2.80 2.40 2015.8.10–8.11 4.81 3.54
2015.8.12 2.11 1.69 2015.8.11–8.12 3.11 1.98
2015.8.13 0.78 0.45 2015.8.13–8.14 2.27 1.46
2015.8.14 1.80 1.78 2015.8.14–8.15 6.21 3.25
2015.8.15 2.58 2.32 2015.8.15–8.16 2.32 1.77
2015.8.16 3.61 3.21 2015.8.16–8.17 2.10 1.63
2015.8.17 2.76 2.04 2015.8.17–8.18 2.43 2.22
2015.8.18 1.42 1.15 2015.8.18–8.19 5.66 2.68
2015.8.19 1.86 1.74 2015.8.19–8.20 7.75 3.21
2015.8.20 2.54 2.64 2015.8.20–8.21 2.59 2.48
2015.8.21 2.14 2.58 2015.8.21–8.22 6.46 3.40
2015.8.22 3.29 2.78 2015.8.22–8.23 3.50 2.35
2015.8.23 2.27 2.45 2015.8.23–8.24 4.65 2.58
2015.8.24 2.15 2.02 2015.8.24–8.25 5.65 4.13
2015.8.25 2.67 2.34 2015.8.25–8.26 6.10 4.19

areas over northeastern China, where the light absorption was
dominated by fine-mode ILAPs (e.g., BC and OC; Wang et
al., 2013). Hence, most of the snow samples did not contain
very large coarse-mode particles, such as mineral and local
soil dust.

During the snow field campaign, two series of snow sam-
ples were filtered through the Nuclepore and quartz-fiber
filters and measured using the TSI and two-step thermal–
optical methods (Fig. 6). Result shows that most of the BC
values measured by the TSI and two-step thermal–optical
methods are close to the 1 : 1 line in a comparison plot and
are generally in good agreement (slope of 1.11, R2

= 0.93,
n= 22). However, some BC values in seasonal snow mea-
sured by the two-step thermal–optical method are much
larger than those measured by the TSI technique. Conse-
quently, for each sample the mean ratio of BC concentrations
measured by the two-step method and the TSI spectropho-
tometer varies from 0.64 to 3.97, with an overall mean of
1.57. This discrepancy arises from two factors. First, Wang
et al. (2017) found that snow grain sizes varied considerably
(from 0.07 to 1.3 mm) during this snow field campaign. This
range is much larger than that recorded in previous studies,
owing to snow melting by solar radiation and ILAPs (Hadley
and Kirchstetter, 2012; Painter et al., 2013; Yasunari et al.,
2013; Pedersen et al., 2015). These results agree well with
those of Schwarz et al. (2012), who found that the sizes of
BC particles in snow are much larger than those in typical
ambient air. Therefore, the sampling efficiency of the quartz-

fiber filters could have been significantly higher than ex-
pected. The other factor is that the insoluble light-absorbing
impurities in seasonal snow over northeast China contained
not only BC, but also insoluble organic carbon. This result
is consistent with a previous study by Chow et al. (2004),
who reported that the charring observed when employing
the two-step thermal–optical method at higher temperatures
(> 550 ◦C) was incomplete and that certain organic com-
pounds are not completely pyrolyzed below 550 ◦C. There-
fore, incomplete charring of absorbed organic compounds by
the two-step processes may lead to incompletely pyrolyzed
OC on the filters, artificially contributing to the BC concen-
tration. This may explain why the BC concentration mea-
sured using the thermal–optical method was higher than that
measured using the TSI spectrophotometer.

A comparison of BC concentrations in the atmosphere
measured by the ISSW and thermal–optical methods reveals
that they are vastly different than that for the snow sam-
ples (Fig. 7). Results are in excellent agreement for BC con-
centrations of < 3 µg m−3. However, biases increased grad-
ually with increasing BC concentrations, leading to two-
step-to-TSI ratios as low as 0.5. The BC concentrations
of > 3 µg m−3 obtained using the two-step thermal–optical
method are much lower than those measured using the im-
proved TSI technique, possibly due to the small particle sizes
in the atmosphere, which lead to a lower filtration efficiency.
Overall, we conclude that the improved TSI method is more
stable and suitable for measuring BC concentrations in both
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Figure 8. Spatial distributions of light absorption at 550 nm due to BC and non-BC fractions in surface snow across northern China during
January–February 2014.

the atmosphere and snow samples compared with the two-
step thermal–optical method.

3.3 Spatial distribution of BC and non-BC light
absorption measured by the TSI spectrophotometer

The above results show that the improved TSI method mea-
sures BC concentrations in the atmosphere and snow–ice
with higher accuracy than two-step thermal optical methods.
In this section we investigate the spatial distribution of BC
concentrations and their relative light absorption due to BC
and non-BC snow impurities in seasonal snow over northeast
China during January–February 2014. All BC mass concen-
trations in surface snow measured by the TSI and thermal–
optical methods during the snow field campaigns are listed
in Table 2. There was less snowfall in January 2014 than
in 2010, and seasonal snow did not cover all of central In-
ner Mongolia during this time. Thus, we only collected snow
samples at site 90. Given that this region is windy, the sur-
face snow collected included drifted and aged snow. The sur-

face BC concentration was 350 ng g−1 in the central Inner
Mongolia region. The lowest BC concentrations in surface
snow, 55 and 28 ng g−1, were found on the border of north-
east China (sites 91–97). We note that there were consider-
able variations in BC concentrations in these regions. The
median BC concentration was 1100 ng g−1 with a range of
520–3900 ng g−1 for surface snow in northeast industrial re-
gions. On 10 February 2014, fresh snow samples were col-
lected in Lanzhou at a mean snow depth of 6–8 cm. The mean
BC concentration in these fresh snow samples from Lanzhou
was ∼ 170 ng g−1.

The relative light absorption due to BC and non-BC frac-
tions in seasonal snow measured using the improved TSI
technique across northern China is shown in Fig. 8. A similar
pattern for the light absorption of BC (∼ 70 %) and non-BC
(∼ 30 %) from insoluble light-absorbing impurities in sur-
face snow indicates a similar pollution emission source over
northeast China. However, the light absorption due to BC
in seasonal snow plays a dominant role (43.11 %–88.56 %,

www.atmos-meas-tech.net/13/39/2020/ Atmos. Meas. Tech., 13, 39–52, 2020



48 X. Wang et al.: Development of an improved two-sphere integration technique

Figure 9. Variations in 8 h (a) BC concentration and (b) BC and
non-BC light absorption measured by the TSI spectrophotometer at
550 nm at Lanzhou during 5–25 August 2015 (day: 09:00 to 17:00;
night: 23:00 to 07:00).

with a mean of 73.10 %). The largest BC light absorption
was at site 102. This site is located in the central part of Jilin
province, which is polluted by heavy industrial activity. For
one sample, the light absorption of non-BC impurities in sea-
sonal snow reached 56.89 %, which is the only time it ex-
ceeded BC light absorption. Biomass burning and fossil fuel
are likely the major emission sources during the winter in
Lanzhou, unlike the case over northeast China. These results
are consistent with those of Wang et al. (2013), who found
that snow particle light absorption was dominated by BC in
northeast China in 2010.

Finally, we investigate atmospheric BC mass concentra-
tions and their relative light absorption measured by the TSI
spectrophotometer in Lanzhou during 5–25 August 2015.
During this experiment, there were no noticeable trends of
BC concentrations in Lanzhou. However, a notable feature
in Fig. 9 is that the BC mass concentrations at night are gen-
erally much higher than during the day (Table 3). The unique
topography of Lanzhou likely plays an important role in this
phenomenon. Lanzhou is situated in a valley basin with low
rainfall, high evaporation, low wind speeds, and a high calm-
wind frequency, which often leads to a thick inversion layer
in which air pollutants accumulate during the night. The light
absorption due to BC in the atmosphere ranges from 62.76 %
to 91.84 %, with a mean of 75.43 %.

4 Conclusions

We developed an improved two-sphere integration (TSI)
spectrophotometer to quantify BC concentrations in snow
and atmospheric samples over northern China. The TSI tech-
nique significantly reduces scattering effects caused by in-
soluble impurities deposited on filters. Therefore, the sys-
tem more accurately measures light absorption due to BC
and non-BC impurities. A system calibration using theoreti-
cal calculations for standard fullerene soot revealed that the
TSI system can be used to assess BC concentrations with
low uncertainty. A laboratory comparison revealed that the
thermal–optical method can lead to a significant underesti-
mate (35 %–45 %) of BC concentrations for small-diameter
particles (∼ 50 nm) due to the low filtration efficiency of
1 µm quartz-fiber filters.

To further assess the accuracy of the improved TSI system,
two field campaigns were carried out to collect seasonal snow
and atmospheric samples during January–February 2014 and
5–25 August 2015 across northern China, respectively. Al-
though the BC concentrations measured by the TSI and
thermal–optical methods are well correlated for both the
snow and atmospheric samples, we find that some BC val-
ues in seasonal snow measured by the two-step thermal–
optical method were significantly overestimated compared
with those measured by the TSI technique, by a factor of
1.57. Overall, the improved TSI optical system developed
here is applicable to quantifications of BC concentrations in
the atmosphere and snow–ice.

The spatial distribution of BC concentrations in seasonal
snow over northern China during January–February 2014
ranged from 60 to 3800 ng g−1, with a mean value of
700 ng g−1, and ranged from 0.78 to 7.75 µg m−3 in the at-
mosphere during 5–25 August 2015 in Lanzhou. The spatial
distribution of BC concentrations shows that large BC val-
ues are found mainly in the center of industrial regions near
the central part, whereas lower values are found in north-
east China. Light absorption is dominated by BC (∼ 40 % to
90 %) in seasonal snow over northeast China, and this plays
a dominant role in accelerating snowmelt. Atmospheric sam-
ples collected in Lanzhou show significant changes in BC
concentrations between day and night. Frequent, stable at-
mospheric boundary layers at night during summer, caused
by the valley–basin topography of Lanzhou, are largely re-
sponsible for air pollutant accumulation during the night.

Data availability. The data and code used in this paper
are available upon request from the corresponding author
(wxin@lzu.edu.cn). The data used for analysis are also available
via a Zenodo archive, which can be found in the references
(https://doi.org/10.5281/zenodo.3597866; Wang et al., 2020).
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