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Abstract. Africa is one of the most data-scarce regions as
satellite observation at the Equator is limited by cloud cover
and there is a very limited number of ground-based measure-
ments. As a result, the use of simulations from models is
mandatory to fill this data gap. A comparison of satellite ob-
servation with model and available in situ observations will
be useful to estimate the performance of satellites in the re-
gion. In this study, GOSAT column-averaged carbon dioxide
dry-air mole fraction (XCO2) is compared with the NOAA
CT2016 and six flask observations over Africa using 5 years
of data covering the period from May 2009 to April 2014.
Ditto for OCO-2 XCO2 against NOAA CT16NRT17 and
eight flask observations over Africa using 2 years of data cov-
ering the period from January 2015 to December 2016. The
analysis shows that the XCO2 from GOSAT is higher than
XCO2 simulated by CT2016 by 0.28± 1.05 ppm, whereas
OCO-2 XCO2 is lower than CT16NRT17 by 0.34±0.9 ppm
on the African land mass on average. The mean correlations
of 0.83±1.12 and 0.60±1.41 and average root mean square
deviation (RMSD) of 2.30± 1.45 and 2.57± 0.89 ppm are
found between the model and the respective datasets from
GOSAT and OCO-2, implying the existence of a reason-
ably good agreement between CT and the two satellites over
Africa’s land region. However, significant variations were
observed in some regions. For example, OCO-2 XCO2 are
lower than that of CT16NRT17 by up to 3 ppm over some re-
gions in North Africa (e.g. Egypt, Libya, and Mali), whereas
it exceeds CT16NRT17 XCO2 by 2 ppm over Equatorial
Africa (10◦ S–10◦ N). This regional difference is also noted
in the comparison of model simulations and satellite obser-
vations with flask observations over the continent. For ex-

ample, CT shows a better sensitivity in capturing flask ob-
servations over sites located in North Africa. In contrast,
satellite observations have better sensitivity in capturing flask
observations in lower-altitude island sites. CT2016 shows a
high spatial mean of seasonal mean RMSD of 1.91 ppm dur-
ing DJF with respect to GOSAT, while CT16NRT17 shows
1.75 ppm during MAM with respect to OCO-2. On the other
hand, low RMSDs of 1.00 and 1.07 ppm during SON in
the model XCO2 with respect to GOSAT and OCO-2 are
respectively determined, indicating better agreement during
autumn. The model simulation and satellite observations ex-
hibit similar seasonal cycles of XCO2 with a small discrep-
ancy over Southern Africa (35–10◦ S) and during wet seasons
over all regions.

1 Introduction

Changes in atmospheric temperature, hydrology, sea ice, and
sea levels are attributed to climate forcing agents dominated
by CO2 (Santer et al., 2013; Stocker et al., 2013). However,
understanding the climate response to anthropogenic forc-
ing in a more traceable manner is still difficult due to a ma-
jor uncertainty in carbon-climate feedbacks (Friedlingstein
et al., 2006). Part of this uncertainty is due to a lack of suf-
ficient data on the regional and global carbon cycle. This is
compounded by inappropriate modelling practices to capture
spatiotemporal variability of the carbon cycle. These prob-
lems can be solved by strengthening carbon monitoring net-
works, setting up proper modelling and reducing uncertain-
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ties in satellite retrieval. Models with appropriate physical
and mathematical formulations and sufficiently constrained
by observations can be used to understand the spatiotempo-
ral nature of atmospheric CO2.

Towards this, a number of national and international ef-
forts have been initiated in the recent past by different
government and non-government agencies across the globe.
Among these efforts, ground-based observation of green-
house gas using the Total Carbon Column Observing Net-
work (TCCON) is a notable one since it provides accurate
and high-frequency measurements of column-integrated CO2
mixing ratios. For example, it has been established that TC-
CON has a precision of 0.25 % for measurements taken under
clear-sky conditions (Wunch et al., 2011). However, the num-
ber of TCCON sites is limited and can not establish an ac-
curate CO2 amount and flux on a subcontinental or regional
scale. Moreover, some studies show that the large uncertainty
is amplified due to the uneven global distribution of TC-
CON sites (Velazco et al., 2017). In addition, none of these
ground-based observation networks were found in Africa’s
land mass. However, there are a few TCCON sites around
the continent plus some flask observations in and around
Africa. For example, the TCCON station on Ascension Is-
land records direct solar absorption spectra of the atmo-
sphere in the near-infrared and retrieved accurate and precise
column-averaged abundances of atmospheric constituents in-
cluding CO2, CH4, N2O, HF, CO, H2O, and HDO (Feist
et al., 2014).

On the other hand, the CO2 concentrations retrieved from
the satellite-based CO2 absorption spectra have the advan-
tages of being unified, long-term, and global observations
as compared to ground-based measurements. It has been
established from theoretical studies that accurate and pre-
cise satellite-derived atmospheric CO2 can appreciably mini-
mize the uncertainties in estimated CO2 surface flux (Rayner
and O’Brien, 2001; Chevallier, 2007). Other studies have
revealed that significant improvement in the estimation of
weekly and monthly CO2 fluxes can be achieved subject to
a CO2 retrieval error of less than 4 ppm from satellite and
modelling schemes whereby CO2 concentration is an inde-
pendent parameter of the carbon cycle model (Houweling
et al., 2004; Hungershoefer et al., 2010). However, XCO2
shows temporal variability on different timescales: diurnal,
synoptic, seasonal, inter-annual, and long-term (Olsen and
Randerson, 2004; Keppel-Aleks et al., 2011). More recent
missions such as the Greenhouse gases Observing SATel-
lite (GOSAT) (Hamazaki et al., 2005), the Orbiting Carbon
Observatory-2 (OCO-2) (Boesch et al., 2011) and planned
missions such as the Active Sensing of CO2 Emissions over
Nights, Days, and Seasons (ASCENDS) (Dobler et al., 2013)
have been and are being developed specifically to resolve
surface sources and sinks of CO2 and provide information
on these different scales of temporal variability. For exam-
ple, GOSAT observations started in 2009 and provide XCO2
based on spectra in the Short-Wavelength InfraRed (SWIR)

region with a standard deviation of about 2 ppm with respect
to ground-based and in situ air-borne observations (Yokota
et al., 2009; NIES GOSAT Project, 2012). The bias and per-
formance of column-averaged carbon dioxide dry-air mole
fraction (XCO2) retrievals from an algorithm could change
in different regions with differing land surfaces and anthro-
pogenic emissions (Bie et al., 2018).

Moreover, the NOAA Carbon Tracker (CT) is an inte-
grated modelling system that assimilates CO2 from other
observations in order to complement satellite observations
in understanding CO2 surface sources and sinks as well as
its spatiotemporal variabilities. However, both satellite and
model data should be validated against other independent
satellite observations and/or in situ observations before us-
ing them to answer scientific questions. As a result, a lot
of validation and intercomparisons have been conducted in
previous studies. For example, Kulawik et al. (2016) found
root mean square deviations of 1.7 and 0.9 ppm in GOSAT
and CT2013b XCO2 relative to 17 TCCON sites across
the globe respectively. Other authors have undertaken val-
idation exercises and found a bias of −8.85± 4.75 ppm in
retrieving XCO2 from the GOSAT-observed spectrum by
the Japanese National Institute for Environmental Studies
(NIES) level 2 V02.xx XCO2 (Yoshida et al., 2013) with re-
spect to TCCON (Morino et al., 2011). In addition, Cheval-
lier (2015) shows retrieved XCO2 from the GOSAT-observed
spectrum by NASA Atmospheric CO2 Observations from
Space (ACOS) (O’Dell et al., 2012) suffers a systematic error
over African savanna. Lei et al. (2014) also showed a regional
difference of XCO2 between the ACOS and NIES datasets.
For example, a larger regional difference from 0.6 to 5.6 ppm
was obtained over China’s land region, while it is from 1.6 to
3.7 ppm over the global land region and from 1.4 to 2.7 ppm
over the US land region. These findings suggest that it is im-
portant to assess the accuracy and uncertainty of XCO2 from
satellite observations with respect to more accurate models
(e.g. NOAA Carbon Tracker) and ground-based observations
over other regions as well, as satellite retrievals are strongly
constrained by cloud cover, aerosol loading, and land use
change and Africa is a continent with wide extremes in sur-
face type (which ranges from desert, rainforest to savanna)
and aerosol loading. In addition, there is seasonal variation
of biomass burning in Africa: agricultural residues burned
in the field, savanna burning, and forest wildfires result in a
very seasonal aerosol loading in Africa. Africa is under the
influence of semi-permanent high-pressure cells which led
to the Sahara in the north and the Kalahari in the south. The
equatorial low-pressure cell which allows the formation of
the seasonally migrating Inter-Tropical Convergence Zone
(ITCZ) is part of the major large-scale atmospheric circu-
lation systems. These large-scale pressure systems, oceanic
circulations and their interaction with the atmosphere cou-
pled with diverse topographies of the region allow for the
formation of different climates (e.g. equatorial, tropical wet,
tropical dry, monsoon, semi desert (semi arid), desert (hy-

Atmos. Meas. Tech., 13, 4009–4033, 2020 https://doi.org/10.5194/amt-13-4009-2020



A. G. Mengistu and G. Mengistu Tsidu: Comparison of CO2 from CT model and satellites over Africa 4011

per arid), subtropical high climates). Geographically, the Sa-
hel, a narrow steppe, is located just south of the Sahara; the
central part of the continent constitutes the largest rainfor-
est next to the Amazon, whereas most southern areas con-
tain savanna plains. The continent gets rainfall from the mi-
grating ITCZ, the West African monsoon, the intrusion of
mid-latitude frontal systems, and travelling low-pressure sys-
tems (Hulme et al., 2001, and references therein). Since CO2
fluxes exhibit seasonal variability and Africa experiences dif-
ferent seasons as noted above, it is important to divide Africa
into three major regions, namely North Africa (10 to 35◦ N),
Equatorial Africa (10◦ S to 10◦ N), and Southern Africa (35
to 10◦ S), and to conduct the comparison of the two XCO2
datasets. Assessing the performance of satellites over the re-
gion can tell much about how these systematic errors vary
geographically over the continent.

Therefore, this paper aims to assess the performance of ob-
served XCO2 from GOSAT and OCO-2 satellites in captur-
ing simulated XCO2 from the NOAA Carbon Tracker model
over Africa. These satellite observations and Carbon Tracker
mixing ratios near the surface are also compared to available
in situ CO2 flask data from Assekrem, Algeria; Mt. Kenya;
Gobabeb, Namibia; and Cape Town; as well as to data off the
coast of Seychelles, Ascension Island, and at Izana, Tenerife.
Moreover, the consistency between the model and satellite
observations in capturing the amplitudes and phases of ob-
served seasonal cycles over different parts of the continent is
evaluated. The agreement of modelled spatiotemporal vari-
ability with the known seasonal climatology of the regions,
which determines carbon source and sink levels, is also as-
sessed.

2 Data and methodology

2.1 Carbon Tracker model and data

Carbon Tracker provides an analysis of atmospheric carbon
dioxide distributions and their surface fluxes (Peters et al.,
2007). It is a data assimilation system that combines ob-
served in situ carbon dioxide concentrations from 81 sites
around the world with model predictions of what concentra-
tions would be based on a preliminary set of assumptions
(“the first guess”) about sources and sinks for carbon diox-
ide. Carbon Tracker compares the model predictions with re-
ality and then systematically tweaks and evaluates the pre-
liminary assumptions until it finds the combination that best
matches the real-world data. It has modules for atmospheric
transport of carbon dioxide by weather systems, for photo-
synthesis and respiration, air–sea exchange, fossil fuel com-
bustion, and fires. Transport of atmospheric CO2 is simulated
by using the global two-way nested transport model (TM5).
TM5 is an offline atmospheric tracer transport model (Krol
et al., 2005) driven by meteorology from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) opera-

tional forecast model and from the ERA-Interim reanalysis
(Dee et al., 2011) to propagate surface emissions. TM5 is
based on a global 30

× 20 and at a 10
× 10 spatial grid over

North America. The model can be used in a wide range of
applications, which includes aerosol modelling, stratospheric
chemistry simulations, and hydroxyl-radical trend estimates.
A detailed description of the TM5 model can be found in the
works of Peters et al. (2004) and Krol et al. (2005).

CT data from the CT2015 release and onwards use air-
craft profiles from the stratosphere to the top of the atmo-
sphere (Inoue et al., 2013; Frankenberg et al., 2016), and co-
location errors are also quantified (Kulawik et al., 2016). The
older data versions have been used and also compared with
different datasets over other parts of the globe in previous
studies (Nayak et al., 2014; Kulawik et al., 2016). Most of
the studies confirm that CT XCO2 captures observations rea-
sonably well. In this study, we use Carbon Tracker release
version CT2016 (Peters et al., 2007), hereafter CT2016, and
a near-real-time version (CT-NRT.v2017). Both versions of
NOAA CT provide 3-hourly CO2 mole-fraction data for the
global atmosphere at 25 pressure levels at a 30

× 20 spatial
resolution for a period covering 2000 to 2016. The data can
be accessed freely in the public domain (ftp://aftp.cmdl.noaa.
gov/products/carbontracker, last access: 27 February 2018).

2.2 GOSAT measurements

GOSAT is the world’s first spacecraft particularly designed to
measure the concentrations of carbon dioxide and methane,
the two major greenhouse gases, from space. The spacecraft
was launched successfully on 23 January 2009 and has been
operating properly since then. GOSAT records reflected sun-
light using three near-infrared band sensors. The field of view
at nadir allows a circular footprint of about 10.5 km in di-
ameter (Kuze et al., 2009; Yokota et al., 2009; Crisp et al.,
2012). GOSAT consists of two instruments. The sensors for
the two instruments can be broadly labelled as thermal, near
infrared and imager. The first two sensors are used as part of a
Fourier transform spectrometer for carbon monitoring which
is referred to as TANSO-FTS, while the imager for cloud and
aerosol observations is referred to as TANSO-CAI. The de-
tails on spectral coverage, resolution, field of view, and dif-
ferent products of TANSO-FTS in the three SWIR bands can
be found in a number of previous studies (Kuze et al., 2009;
Saitoh et al., 2009; Yokota et al., 2009, 2011; Crisp et al.,
2012; Nayak et al., 2014; Deng et al., 2016a, and references
therein). In this study ACOS B3.5 Lite XCO2 from GOSAT
Level 2 (L2) retrieval based on the SWIR spectra of FTS ob-
servations and made available by Atmospheric CO2 Obser-
vations from Space (ACOS) of NASA is used. ACOS B3.5
Lite XCO2 has lower bias and better consistency than NIES
GOSAT SWIR L2 CO2 globally (Deng et al., 2016a). How-
ever, this version of ACOS XCO2 was found to suffer sys-
tematic retrieval error over the dark surfaces of high-latitude
lands and over African savanna (Chevallier, 2015). Cheval-
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lier (2015) shows systematic error in the African savanna
associated with underestimating the intensity of fire during
March at the end of the savanna burning season. Therefore,
our choice of the ACOS B3.5 Lite, hereafter GOSAT XCO2,
is motivated by these differences.

2.3 OCO-2 measurements

OCO-2 is the world’s second full-time dedicated CO2 mea-
surement satellite. It was successfully launched by the Na-
tional Aeronautics and Space Administration (NASA) on
2 July 2014 (Crisp et al., 2012). OCO-2 measures atmo-
spheric carbon dioxide with the accuracy, resolution, and
coverage required to detect CO2 source and sink on a global
and regional scale. OCO-2 has a three-band spectrometer,
which measures reflected sunlight in three separate bands.
The O2 A-band measures molecular absorption of oxygen
from reflected sunlight near 0.76 µm, while the CO2 bands
are located near 1.61 and 2.06 µm (Liang et al., 2017). In
this study, both the nadir and glint-mode measurements of
OCO-2 XCO2 V7 lite level 2 covering the period from Jan-
uary 2015 to December 2016, hereafter referred to as OCO-
2 XCO2, are used. Due to the scarcity of data, CT values
from the two releases CT2016 for the year 2015 and CT-
NRT.v2017 for the year 2016, hereafter CT16NRT17, are
employed in this study. The OCO-2 project team at the Jet
Propulsion Laboratory, California Institute of Technology,
produced the OCO-2 XCO2 data used in this study. The data
can be accessed from NASA Goddard Earth Science Data
and Information Service Center.

2.4 Flask observations

Measurements of CO2 from nine ground-based flask ob-
servations near and within Africa’s land mass were ac-
cessed from the NOAA/ESRL/GMD CCGG cooperative
air sampling network https://www.esrl.noaa.gov/gmd/ccgg/
flask.php (last access: 1 May 2019). Site description is given
in Table 1.

2.5 Methods

The GOSAT and CT model XCO2 time series used in
this investigation span 5 years, ranging from May 2009 to
April 2014. Atmospheric CO2 concentrations of NOAA Car-
bon Tracker have global coverage with a 30

× 20 longitude–
latitude resolution which covers 426 grid boxes in our
study area. Satellite observations, however, are different from
model assimilation and have gaps for various reasons (e.g.
cloud and the observational mode of the satellite). As a re-
sult, there is no one-to-one spatiotemporal match between
the two datasets. For example, CO2 products from the two
datasets are not directly comparable since CT is a 3-hourly
smooth and regular grid dataset, whereas GOSAT XCO2 is
irregularly distributed in space and time. Thus, the CT CO2
is extracted on the time and location of GOSAT-XCO2 data.

Using the grid point of CT as a reference bin, the correspond-
ing GOSAT XCO2 found within a rectangle of 30

× 30 with
centre at the reference bin and with a temporal mismatch of
a maximum of 3 h is extracted. Moreover, CT has higher ver-
tical resolutions than GOSAT. As a result, the two can not
be directly compared. It is customary to smooth the high-
resolution data (in this case CT) with averaging kernels and
a priori profiles of the low-resolution satellite measurements
(in this case GOSAT). Besides, due to a difference between
CT and GOSAT on the number of vertical levels, CT CO2
is interpolated to vertical levels of GOSAT. The CT XCO2
(XCO2

model) used in the comparison is computed from the
interpolated CT CO2 (CO2

interp), pressure weighting func-
tion (w), XCO2 a priori (XCO2a), column averaging kernel
of the satellite retrievals (A) and a priori profile (CO2a) of
the retrievals as per the procedure discussed by Rodgers and
Connor (2003), Connor et al. (2008), O’Dell et al. (2012),
Chevallier (2015), and Jing et al. (2018) and given as

XCO2
model
=XCO2a+

∑
i

wT
i Ai× (COinterp

2 −CO2a)i, (1)

where i is the index of the satellite retrieval vertical level and
T is the matrix transpose. To compare the CT simulations
and the satellite observations with the flask observations, the
vertical profiles of the satellite and CT were extracted at the
corresponding pressure level and location within a box of
1.50.

Correlation coefficients (R), bias and root mean square de-
viation (RMSD) are used to assess the level of agreement be-
tween the two datasets. The mean bias determines the aver-
age deviations in XCO2 between Carbon Tracker simulation
and satellite observations. In this work the bias at the j th grid
point is computed as

Biasj =
1
n

n∑
i=1

(Si −Oi), (2)

where Si and Oi are CT and GOSAT XCO2 values over the
j th pixel at the ith time respectively. To quantify the extent
to which XCO2 of CT and GOSAT agree, the pattern corre-
lations at the j th grid point are computed as

Rj =

1
n

∑n
i=1(Si − S)(Oi −O)√

1
n

∑n
i=1(Si − S)2

√
1
n

∑n
i=1(Oi −O)2

, (3)

where S and O are the mean values of Si and Oi over the
j th pixel. The RMSD which shows the standard error of the
model with respect to the observation at the j th grid point is
computed as

RMSDj =

√√√√1
n

n∑
i=1

((Si − S)− (Oi −O))2
; (4)

this is the centered pattern root mean squared (rms) differ-
ence which is obtained from the rms error after the difference
in the mean has been removed (Taylor, 2001).
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Table 1. Information on flask observation sites near and within Africa’s land mass.

Code Name Country Latitude Longitude Altitude Air pressure at
(◦ N) (◦ E) (m a.s.l.) T = 25 ◦C (Pa)

ASC Ascension Island Ascension Island −7.967 −14.400 85.00 100 342.02
ASK Assekrem Algeria 23.262 5.632 2710.00 73 571.64
CPT Cape Point South Africa −34.352 18.489 230.00 98 682.99
IZO Izana, Canary Islands Spain 28.309 −16.499 2372.90 76 650.84
LMP Lampedusa Italy 35.520 12.620 45.00 100 803.63
MKN* Mt. Kenya Kenya −0.062 37.297 3644.00 65 579.92
NMB Gobabeb Namibia −23.580 15.030 456.00 96 141.54
SEY Mahe Island Seychelles −4.682 55.532 2.00 101 301.78
WIS Weizmann, Ketura Israel 29.965 35.060 151.00 99 584.09

∗ Indicates discontinued site or project.

Comparison with in situ flask observation is achieved in
a way that the Carbon Tracker and satellite observations are
taken at a corresponding pressure level of the in situ flask
observation (as mentioned in Table 1) in order to correspond
to flux towers’ surface observation. Furthermore, the datasets
are resampled to fit the flask observations in a 30X30 window
centered on the flux towers, and the available months were
averaged.

3 Results and discussions

3.1 Comparison of XCO2 mean climatology from
NOAA CT2016 and GOSAT

The column-averaged mole fraction of CO2 obtained from
the NOAA Carbon Tracker model and GOSAT observation
was compared. The results are based on 426 grid boxes uni-
formly distributed to cover the whole of Africa’s land region.
The analysis was based on 5 years of daily data starting from
May 2009 to April 2014.

Figure 1 shows the temporal average of CT2016 (Fig. 1a)
and GOSAT (Fig. 1b) XCO2 distribution. The major com-
mon spatial feature in the mean map of XCO2 from GOSAT
and CT2016 reanalysis is dipole structure characterized by
high XCO2 northward of the Equator and low XCO2 south-
ward of the Equator, with the exception of some part of Equa-
torial Guinea and the Republic of Congo for CT (Fig. 1a)
and part of the Democratic Republic of Congo for GOSAT
(Fig. 1b); these are characterized by spatially anomalous
high XCO2. The Southern Africa region is characterized by
weaker anthropogenic CO2 emission and higher CO2 uptake
by the vegetation than North Africa (Ciais et al., 2011). This
contributed to the observed dipole distribution. Another im-
portant pattern is the anomalous peak over the annual av-
erage location of the ITCZ (Fig. 1b) which appears to fade
over eastern Africa. This is in agreement with the fact that
carbon stocks and net primary production per unit land area
are high over Equatorial Africa and decrease northward and

southward of the Equator over arid environments (Williams
et al., 2007). However, Fig. 1b shows that GOSAT observa-
tions have some limitations in simulating this spatial pattern
in comparison to CT.

Figure 1c shows the mean difference (CT2016−GOSAT)
XCO2 which ranges from −4 to 2 ppm. The highest dif-
ference between the CT2016 and GOSAT XCO2 (as high
as −4 ppm) is observed over the northern part of Equato-
rial Africa (e.g. southern Guinea, southern Ghana, southern
Nigeria, south-east of central Africa, western Ethiopia and
South Sudan.), which is also known for near-year-round rain-
fall and relatively dense vegetation. The regions are known
for their rainforest (Malhi et al., 2013). The likely expla-
nation could be that the XCO2 mean (over 5 years) may
be slightly positively biased due to fewer GOSAT observa-
tions as shown in Fig. 1d. The satellite retrievals have noise
which can be smoothed out when a large number of datasets
is averaged. The strategy and methods for cloud screening in
GOSAT retrievals could lead to a smaller number of obser-
vations in the equatorial region (Crisp et al., 2012; O’Dell
et al., 2012; Yoshida et al., 2013; Chevallier, 2015; Deng
et al., 2016b). The number of datasets used for comparison
range from 14 to 4288 from grid box to grid box, with a
spatial mean of 1109 data over the continent. Figure 1c also
shows CT2016 simulations are overall lower than the values
of GOSAT observation over most regions, with exceptions
in Gabon, Congo, southern Kenya and southern Tanzania,
where CT2016 simulations are higher than GOSAT observa-
tions by more than 1 ppm. The spatial distribution of global
atmospheric CO2 is not uniform because of the irregularly
distributed sources of CO2 emissions, such as large power
plant and forest fire and biospheric assimilation as clearly
noted above.

Figure 2a shows differences between CT2016 and GOSAT
XCO2, which ranges from −4 to 3 ppm. Out of 100 % oc-
currence, more than 90 % of observed differences are within
±2 ppm. The mean difference between CT2016 and GOSAT
means is about −0.27 ppm, with the standard deviation of
0.98 ppm indicating better regional consistency and low po-
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Figure 1. Distribution of 5-year averages of CT2016 (a) and GOSAT (b) XCO2 and their difference (c) gridded in 30
×20 bins over Africa’s

Land mass; and the total number of datasets at each grid from the GOSAT observations (d).

tential outliers. Moreover, a negative mean of the difference
implies that XCO2 simulated from CT2016 is lower than that
of GOSAT retrievals over Africa’s land mass.

Because of selection criteria which permit a difference
of 3◦ long and wide, the two datasets are not exactly at
the same point. The impact of the relative distance between
them should be assessed before performing any statistical
comparison. Figure 2b depicted the colour-coded scatter plot
of CT2016 model simulation versus GOSAT to determine
whether the discrepancy between the datasets arises from
the spatial mismatch. The colour code indicates the relative
distance between the model and observation datasets. For
these datasets the 50th percentile has a relative distance of
1.190, which means 50 % of the data have a relative dis-
tance of shorter than 1.190. The maximum relative distance
between them is 2.120. However, there is no indication that
this has been the case since the scatter is not a function of
the relative distance between the datasets. For example, data
points with blue colour with the lowest location difference
are scattered everywhere instead of along the 1 : 1 line. Fur-
thermore, we found the bias of −0.26 ppm, correlation co-
efficient of 0.86 and RMSD of 2.19 ppm for datasets which
have a relative distance shorter than 1.190. On the other hand,
the bias, correlation coefficient, and RMSD are −0.33, 0.86
and 2.22 ppm for those which are above 1.190. These statis-
tics confirm that there is no strong discrepancy due to our
selection criteria.

Figure 3 shows a statistical comparison of XCO2 from the
CT2016 and GOSAT over Africa. The number of data used

Figure 2. Histogram of the difference of CT2016 relative to
GOSAT (a) and colour code scatter diagram of XCO2 concentra-
tion as derived from CT2016 and GOSAT (b). Colour indicates the
relative distance in unit of degrees as shown in the colour bar be-
tween datasets.

in this comparison are shown in Fig. 1d. As is depicted in
Fig. 3a, the bias ranges from −4 to 2 ppm with a mean bias
of −0.28± 1.05 ppm (see Table 2). A larger negative bias of
about −2 ppm was found along the annual mean position of
the ITCZ, the main climatic mechanisms controlling rainfall
in Africa. Systematic errors due to the ITCZ and the East
African Monsoon need to be addressed well in satellite re-
trievals and modelling works. The correlation varies from
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Figure 3. Spatial patterns of bias (a), correlation (b), RMSD (c) of the two datasets, and mean posteriori estimate of XCO2 uncertainty from
GOSAT (d).

0.4 over some isolated pockets in Congo, Tanzania, Mozam-
bique, Uganda, and western Ethiopia to 0.9 over the northern
part of Africa above 13◦ N, eastern Ethiopia and the Kala-
hari. Figure 3b depicts the correlation coefficient between
GOSAT and Carbon Tracker XCO2. The region with poor
correlation also exhibits high RMSD as shown in Fig. 3c. To
understand whether this discrepancy originates from model
weakness alone or terrible satellite visibility when the ITCZ
is present and clouds are extremely thick and widely present,
we have looked at the GOSAT posterior estimates of XCO2
error (Fig. 3d), which are high over regions where the bias
and RMSD between GOSAT and Carbon Tracker XCO2
is high. GOSAT’s posterior estimate of XCO2 error is a
combination of instrument noise, smoothing error and in-
terference error (Connor et al., 2008; O’Dell et al., 2012).
This posterior estimate of XCO2 error does not include for-
ward model error, which may lead to underestimation of the
true error of satellite XCO2 by a factor of 2 (O’Dell et al.,
2012). Therefore, part of the discrepancy is clearly linked
to satellite retrieval uncertainty, which might have been am-
plified due to the small number of data points used to cal-
culate the mean error of GOSAT XCO2 measurements (see
Fig. 1d). In general, the two datasets are characterized by a
high spatial mean correlation of 0.83± 1.20, a global offset
of −0.28± 1.05 ppm, which is the average bias, a regional
precision of 2.30± 1.46 ppm, which is average RMSD, and
a relative accuracy of 1.05 ppm, which is the standard devia-
tion in the bias as depicted in Table 2.

3.2 Comparison of monthly average time series of
NOAA CT2016 and GOSAT XCO2

Figures 4–6 show monthly mean XCO2 from CT2016 and
GOSAT averaged over North Africa, Equatorial Africa, and
Southern Africa respectively. Figures 4a–6a depict the ex-
istence of an overall very good agreement for the monthly
averages with respect to amplitudes and phases of XCO2.
However, XCO2 from the two datasets slightly disagree in
capturing the seasonal cycle over Southern Africa.

Figure 4a shows that XCO2 concentration reaches maxi-
mum in April and minimum in September over North Africa.
Consistent with this evidence, other authors (e.g. Zhou et al.,
2008) have indicated the presence of strong absorption of
CO2 by vegetation during August in the Northern Hemi-
sphere. This is the most likely the cause of the minimum
concentration observed during September over North Africa.
Both datasets show a concentration of XCO2 increases from
October to April and decreases from May to September (see
also Table 4). Moreover, the two datasets show a monthly
mean regional mean bias of −0.36 ppm with a correlation of
1.0 and a small root mean square deviation of 0.36 ppm (see
Table 3).

Figure 5a shows that XCO2 concentration reaches max-
ima (392.99 ppm) for CT2016 in March and (393.53 ppm)
for GOSAT in January and minima (389.56 ppm for CT2016
and 389.32 ppm for GOSAT) in October over Equatorial
Africa. The largest monthly mean difference of −1.34 ppm
and the smallest of −0.05 ppm between the two datasets
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Table 2. Summary of the statistical relation between CT2016 and GOSAT observation. The statistical tools shown are the mean correlation
coefficient (R), the spatial average of bias (Bias), the spatial average root mean square deviation (RMSD), the standard deviation in bias (SD
of bias), GOSAT posteriori estimate of XCO2 error (GOSAT err), the standard deviation in CT2016 XCO2 (CT2016 SD) and the standard
deviation in GOSAT XCO2 (GOSAT SD). The number of data used in the statistics is 472 792 over 426 pixels covering the study period; the
distribution at each grid point is shown in Fig. 1d. Negative bias indicates that CT2016 XCO2 is lower than GOSAT XCO2 values.

Statistical tool R Bias RMSD SD of bias GOSAT err CT2016 SD GOSAT SD
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

Values 0.83 −0.284 2.30 1.05 0.91 0.90 1.55

Table 3. Summary of statistical relation between CT2016 and GOSAT observation. The statistical analysis was made using monthly averaged
time series of 60 months (i.e. months from May 2009 to April 2014).

Statistics R Bias (ppm) RMSD (ppm) Number of data

Africa 0.997 −0.254 0.265 698 505
North Africa 0.996 −0.361 0.345 424 070
Equatorial Africa 0.977 −0.172 0.708 101 660
Southern Africa 0.964 0.006 0.841 172 775

were observed in December and in April respectively (Ta-
ble 4). Moreover, both datasets show that concentration of
CO2 increases from October to March, while it decreases
from June to October. This similarity in the seasonal vari-
ability of the two datasets shows that they are in good agree-
ment in terms of amplitude and phase. In addition, the two
datasets show a monthly average regional average bias of
−0.17 ppm, correlation of 0.98 and a small root mean square
deviation of 0.71 ppm over Equatorial Africa (see Table 3).
Figure 6a shows maximum XCO2 concentration in April
(391.04 ppm) for CT2016 and in October (391.28 ppm) for
GOSAT and minimum in May (389.30 ppm) for CT2016 and
(388.46 ppm) for GOSAT over Southern Africa. The largest
monthly mean difference of 1.53 and 0.03 ppm between the
two datasets is observed in April and in July (Table 4) respec-
tively. Both datasets show a concentration of CO2 increases
from May to July, while it decreases from October to Novem-
ber. However, the XCO2 from CT2016 shows a gradually
increasing trend from January to April. Conversely, GOSAT
XCO2 shows decreasing values. This is most likely the result
of the fact that CT2016 simulation is more sensitive to the
growing size of the sink following the rainy season. More-
over, the two datasets show a monthly mean regional mean
bias of 0.07 ppm, correlation of 0.97 and RMSD of 0.87 ppm
over Southern Africa (see Table 3).

Figures 4b–6b show regional averaged bias in the monthly
mean XCO2 from CT2016 and GOSAT. Figure 4b shows
the presence of seasonally varying negative bias over North
Africa. A high (<−0.5 ppm) negative bias in dry seasons
(April to June) and low (=− 0.1 ppm) negative bias in wet
seasons (August to September) are observed. Moreover, the
strength of the bias increases from February to June. Con-
versely, the bias decreases from June to September. Simi-
larly, Figs. 5b and 6b show seasonally fluctuating bias. For

example, Fig. 6b shows a positive bias from February to July
and negative bias from August to December over Southern
Africa.

Figures 4c–6c show the histogram of difference. The mean
difference between CT2016 simulation and GOSAT obser-
vation of XCO2 is −0.36 ppm with a standard deviation of
0.35 ppm over North Africa (see Fig. 4c); Fig. 5c presents a
mean difference of −0.17 ppm with a standard deviation of
0.71 ppm over Equatorial Africa and Fig. 6c reveals a mean
difference of 0.01 ppm and a standard deviation of 0.85 ppm,
which indicates that XCO2 from CT2016 was slightly higher
than that of GOSAT over Southern Africa on average. In
addition, the low standard deviation of monthly mean dif-
ference over North Africa typically indicates good regional
consistency between CT2016 and GOSAT. This is mainly
because North Africa is dominated by the Sahara, which is
a vegetation-free area, and the systematic bias due to the
local atmosphere–biosphere interaction is minimum. How-
ever, the spatial mean of monthly mean bias is slightly higher
(−0.36 ppm) over North Africa than over Equatorial Africa
(−0.17 ppm) and Southern Africa (0.01 ppm). This is possi-
bly due to the presence of strong local emissions from Egypt,
Algeria and Libya as well as due to long-range transport
from the Northern Hemisphere as reported in other studies
(Williams et al., 2007; Carré et al., 2010).

Figures 4d–6d display the annual growth rate of XCO2,
which ranges from 1.5 to 2.7 ppm yr−1. Moreover, the two
datasets are consistent in determining the annual growth
rate. The results are found to be in good agreement with
the observed variability in the global annual growth rate
from surface measurements (http://www.esrl.noaa.gov/gmd/
ccgg/trends/global.html, last access: 20 March 2018) which
is 1.67, 2.39, 1.70, 2.40, and 2.51 ppm yr−1 globally dur-
ing 2009–2013 respectively and 1.89, 2.42, 1.86,2.63, and
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Figure 4. The monthly mean time series of CT2016 and GOSAT from May 2009 to April 2014 averaged over North Africa (a), bias associated
with the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean from the mean of
the next year (d). The error bars in (a) show the GOSAT a posteriori XCO2 uncertainty.

Figure 5. The same as Fig. 4 but over Equatorial Africa.
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Figure 6. The same as Fig. 4 but over Southern Africa.

Table 4. Five-year monthly averaged XCO2 concentration in ppm obtained from CT2016 (CT) and GOSAT (GO) and their difference
CT−GO (D) in ppm over Africa (A), North Africa (NA), Equatorial Africa (EA) and Southern Africa (SA).

Month A CT A GO A D NA CT NA GO NA D EA CT EA GO EA D SA CT SA GO SA D

January 391.81 392.17 −0.36 392.43 392.61 −0.18 392.22 393.53 −1.31 390.28 390.49 −0.21
February 392.48 392.58 −0.1 393.27 393.5 −0.23 392.72 393.21 −0.49 390.52 390.06 0.46
March 393.25 393.28 −0.03 394.02 394.29 −0.27 392.99 393.19 −0.2 390.82 389.81 1.01
April 393.81 393.91 −0.1 394.79 395.35 −0.56 392.87 392.92 −0.05 391.04 389.51 1.53
May 391.65 391.85 −0.21 392.92 393.73 −0.81 390.47 389.93 0.54 389.3 388.46 0.84
June 391.49 391.94 −0.45 392.43 393.33 −0.9 391.12 390.89 0.23 389.95 389.85 0.11
July 390.92 391.1 −0.18 391.09 391.5 −0.41 391.44 391.03 0.41 390.43 390.4 0.03
August 389.89 389.96 −0.07 389.4 389.44 −0.04 390.92 390.72 0.21 390.37 390.61 −0.25
September 389.26 389.4 −0.14 388.65 388.75 −0.1 390.02 389.67 0.35 390.39 391.01 −0.61
October 389.19 389.71 −0.51 388.85 389.26 −0.41 389.56 389.32 0.24 389.95 391.28 −1.32
November 389.97 390.43 −0.46 390.06 390.32 −0.26 389.86 390.52 −0.66 389.8 390.76 −0.96
December 391.09 391.53 −0.45 391.42 391.6 −0.18 391.23 392.57 −1.34 389.98 390.52 −0.54

2.06 ppm yr−1 for Mauna Loa during 2009–2013 respec-
tively, with error bars of 0.05–0.09 ppm yr−1 for global
datasets and 0.11 ppm yr−1 for Mauna Loa datasets (Kulawik
et al., 2016). The growth rate may not be conclusive due
to the short length of the datasets used. However, it reflects
how the CT and GOSAT observations perform with respect
to each other.

3.3 Comparison of seasonal climatology

The seasonal cycle has important implications for flux
estimates (Keppel-Aleks et al., 2012). It is important to
analyse whether there are seasonally dependent biases
that are affecting the seasonal cycle and whether the
datasets are capturing the same seasonal cycle. The four
seasons considered here are December/January/February
(DJF), March/April/May (MAM), June/July/August (JJA),
and September/October/November (SON). DJF corresponds
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Figure 7. Seasonal climatology of XCO2 for NOAA CT2016 (left panels) and GOSAT (middle panels) and their difference (right panels).

to northern winter/southern summer, MAM to northern
spring/southern autumn, JJA to northern summer/southern
winter, and SON to northern autumn/southern spring respec-
tively. Figure 7 shows the seasonal distributions of CT2016
(left panels) and GOSAT (middle panels) XCO2 and their
difference (CT2016−GOSAT, right panels). The distribution
clearly shows that XCO2 concentration is maximum dur-
ing MAM and minimum during SON over the North Africa.
On the other hand, maxima are found during SON and min-
ima during DJF over Southern Africa. These features are in
good agreement with the rainfall climatology of the Northern
Hemisphere and Southern Hemisphere. Moreover, Table 5
shows seasonally varying biases. Seasonal biases affect the
seasonal cycle and amplitudes, which are important for bio-
spheric flux attribution (Lindqvist et al., 2015).

The right panels in Fig. 7 show that the seasonal mean dif-
ference (CT2016−GOSAT) ranges from −4 to 6 ppm, with
a maximum difference of 6 ppm over the Gulf of Guinea
and Congo during JJA. However, such a maximum differ-
ence was also observed over Southern Africa during DJF.
A minimum of −4 ppm over the annual mean ITCZ region
was observed during DJF and MAM. Moreover, the differ-
ence is above 1 ppm over Southern Africa during DJF and
MAM (wet season of the region). This implies high spatial
variability of the seasonal mean difference during different
seasons (see also Table 5). It also suggests that the discrep-

ancy between the CT2016 and GOSAT becomes significant
when vegetation cover is weak during DJF and MAM (dry
seasons) over North Africa.

During SON the seasonal difference in most of Africa’s
land region ranges from −2 to 1 ppm. The result implies
that CT2016 simulates lower values of XCO2 than that of
GOSAT observation, indicating that there is a better spatial
consistency during this season. Furthermore, during these
seasons both North and Southern Africa have a moderate
vegetation cover following their respective summer seasons.
The two datasets show lower regional variation (i.e. only
from −2 to 2 ppm) over most of Africa’s land mass. How-
ever, Equatorial Africa exhibits a mean difference lower than
−2 ppm during DJF and MAM. This indicates that the model
tends to simulate lower than GOSAT XCO2 over the re-
gion. Figure 7 (right panels) reveals XCO2 from CT2016 is
lower than GOSAT XCO2 over North Africa. The underes-
timation of observed XCO2 by the NOAA CT2016 model
is likely related to the skill of driving ERA-Interim data as
noted from previous studies. For example, Mengistu Tsidu
(2012) has shown that the ERA-Interim data have a wet bias
over Ethiopian highlands. Mengistu Tsidu et al. (2015) have
also shown that ERA-Interim precipitable water is higher
than measurements from radio-sonde, FTIR and GPS obser-
vations. Therefore, such wet bias in the driving ERA-Interim
global circulation model (GCM) might have forced NOAA
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Figure 8. Histogram of difference for the seasonal XCO2 climatology for the DJF (a), MAM (b), JJA (c) and SON (d) seasons.

Table 5. Summary of statistical relation between CT2016 and GOSAT XCO2: bias, correlation (R), root mean square deviation (RMSD),
standard deviation of XCO2 from CT2016 simulation (CT2016 SD), standard deviation of XCO2 from GOSAT observation (GOSAT SD),
aggregate number of coincident observations (number of data) and number of grids over the region (grid). Negative bias means CT2016 is
lower than GOSAT. The statistics are on the basis of spatial averages of seasonal averages of bias, correlation, RMSD and standard deviations.

Region Statistics Bias (ppm) R RMSD (ppm) CT2016 SD (ppm) SD in GOSAT (ppm) number of data grid

Africa DJF 0.06 0.73 1.91 1.15 2.57 135 865 409
MAM 0.04 0.92 1.62 1.98 3.25 95 942 410
JJA 0.22 0.65 1.59 1.12 2.08 116 360 400
SON −0.37 0.76 1 0.94 1.52 124 233 408

North DJF −0.25 0.36 1.08 0.67 1.12 103 913 204
Africa MAM −0.72 0.44 1.11 0.62 1.24 65 115 204

JJA −0.42 0.73 1.17 0.9 1.66 60 854 204
SON −0.35 0.66 0.53 0.52 0.71 91 778 204

Equatorial DJF −0.52 0.68 2.47 1.06 3.07 22 639 121
Africa MAM 0.18 0.9 1.88 1.94 3.46 8300 115

JJA 1.51 0.59 2.02 1.46 2.52 12 714 104
SON 0.25 0.7 1.3 1.16 1.83 10 213 113

Southern DJF 1.61 0.42 1.72 0.88 1.9 9313 84
Africa MAM 1.56 0.67 0.97 0.82 1.31 22 527 91

JJA 0.18 0.81 0.78 0.93 1.31 42 792 92
SON −1.16 0.77 0.81 0.84 1.26 22 242 91

CT2016 to generate dense vegetation which serves as a CO2
sink.

Figure 8 shows the mean difference between CT2016 and
GOSAT XCO2 seasonal means which ranges from −0.37 to
0.04 ppm with a standard deviation within a range of 1.00
to 1.91 ppm over the continent. The highest mean difference

of XCO2 (−0.37 ppm) occurs during SON and the lowest
(0.04 ppm) occurs during MAM. Table 5 presents the sum-
mary of statistical values for the spatial mean of each season
means. The comparison between the two datasets also shows
there is a strong correlation (> 0.5) during each season over
the continent. However, there are moderate correlations (0.3
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Figure 9. CO2 time series for the coincident period for CT2016 (red), GOSAT (green) and flask (black). The standard deviation in computing
the monthly mean is indicated by the vertical error bar.

to 0.5) during DJF and MAM over North Africa and during
DJF over Southern Africa. The low correlation over North
Africa may be linked to a weak absorption by vegetation
and a strong emission from human activities during winter
as reported elsewhere (Liu et al., 2009; Kong et al., 2010).
Moreover, Table 5 shows that the seasonal biases are neg-
ative over North Africa, while they are mostly positive over
Equatorial and Southern Africa. Negative biases are observed
during DJF and SON over Equatorial and Southern Africa re-
spectively, implying that XCO2 from CT2016 are lower than
from GOSAT during dry seasons.

3.4 Comparison of GOSAT and CT2016 with flask
observations

Comparison of GOSAT and CT2016 with flask observation
is carried out over six available ground-based flask observa-
tions. For the comparison, the volume mixing ratio of CO2
from GOSAT and CT2016 at the pressure level that corre-
sponds to surface flask observations (see Table 1) was con-
sidered.

Monthly mean CO2 from flask observations at IZO and
ASK in North Africa shows an excellent agreement with both
CT2016 and GOSAT CO2. Moreover, CT2016 has a better
sensitivity in capturing the amplitudes than GOSAT, where
observations from GOSAT mostly underestimate higher val-
ues of flask CO2 (Fig. 9). However, this agreement has dete-

riorated over sites in Equatorial Africa (ASC and MKN) and
Southern Africa (MNB). Over MKN, CT2016 shows better
correlation (0.43) than GOSAT observation (0.08). In addi-
tion, monthly amplitudes from CT2016 were closer to the
flask observations, suggesting that satellite retrievals need
much attention over the region. On the other hand, GOSAT
observations were found to be in better agreement with flask
observations over ASC. Zhang et al. (2015) also show that
GOSAT data were correlated well with ground observation
and found to be more centralized, having high system stabil-
ity, especially over the ocean.

CT2016 has a better sensitivity over IZO, ASK and NMB.
Moreover, CT2016 compared better with flask observations
than GOSAT over these sites; almost all flask observations
are within the standard deviations of the monthly mean of
CT2016. However, GOSAT observations were found to be in
better agreement with flask observations than CT2016 was
over WIS and ASC. On the other hand, both CT2016 and
GOSAT have low sensitivity to flask observation over MKN
(see Fig. 10). Similar to our previous discussion on sites in
North Africa (IZO, ASK and WIS), CT2016 underestimates
XCO2 during August, September, and October (wet season)
compered to GOSAT observation and overestimates XCO2
during January to June. However, the CT2016 and the flask
observations exhibit better agreement, indicating a bias in
GOSAT observation during the wet season.
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Table 6. Summary of statistical relations of CT2016 and GOSAT observation with respect to flask observations. The statistical analysis was
made using monthly averages covering the period from May 2009 to April 2014).

Code CT R GOSAT R CT bias GOSAT bias CT RMSD GOSAT RMSD number of data
(ppm) (ppm) (ppm) (ppm)

ASC 0.58 0.93 1.05 1.84 4.46 1.07 39
ASK 0.90 0.90 −0.63 −0.76 1.97 2.23 60
NMB 0.75 0.91 1.40 1.13 3.12 1.56 60
IZO 0.99 0.97 0.24 −0.36 0.70 1.40 60
MKN 0.40 0.04 1.83 2.88 1.48 1.64 17
WIS 0.93 0.83 −1.57 −2.61 1.95 3.31 60

Figure 10. De-trended seasonal cycle of XCO2 during 2009–2014 from CT2016 (red), GOSAT (green) and flask (black) observations. The
standard deviation of the monthly variables is indicated by error bars.

3.5 Comparison of mean XCO2 from NOAA
CT16NRT17 and OCO-2

The strong El Niño event that occurred during 2015–2016
provides an opportunity to compare the performance of
CT16NRT17 during strong El Niño events. Because of the
decline in terrestrial productivity and enhancement of soil
respiration, the concentration of CO2 increases during El
Niño events (Jones et al., 2001). In this section we compare
mean XCO2 of NOAA CT16NRT17 and NASA’s OCO-2
covering the period from January 2015 to December 2016.

The comparison was made based on the selection crite-
ria discussed in Sect. 2.5. Figure 11 shows the mean distri-
bution of XCO2 from CT16NRT17 (Fig. 11a) and OCO-2
(Fig. 11b) over Africa’s land mass. CT16NRT17 shows high

(> 400 ppm) XCO2 values over North Africa, while these
high XCO2 values are observed over Equatorial Africa in the
case of OCO-2 observation. The two datasets show a dis-
crepancy over Equatorial Africa, where CT16NRT17 simu-
lates low XCO2 values (< 401 ppm), while OCO-2 observes
high values of XCO2 (> 401 ppm). Both datasets show
moderate XCO2 values which range from 397 to 400 ppm
over Southern Africa. The XCO2 distribution from OCO-
2 is consistent with the maximum CO2 concentration re-
ported in a past study by Williams et al. (2007), implying
that the CT16NRT17 likely underestimates XCO2 values
over Equatorial Africa. It is also possible that the discrep-
ancy is a compounded effect of OCO-2 XCO2 positive bias
over the region (O’Dell et al., 2012; Chevallier, 2015). Fig-
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Figure 11. Distribution of 2-year average XCO2 of CT16NRT17 (a) and OCO-2 (b) XCO2 and their difference (c) gridded in 30
× 20 bins;

and (d) the total number of datasets at each grid.

ure 11c shows the mean difference between the 2-year mean
of XCO2 from CT16NRT17 and OCO-2, which is in the
range from −2 to 2 ppm. However, high (<−2 ppm) neg-
ative mean difference between the two datasets over rain-
forest regions (Gulf of Guinea and Congo basin) and the
ITCZ over eastern Africa (South Sudan and south-eastern
Sudan) is observed, implying that CT16NRT17 simulates
lower XCO2 values than that of OCO-2 observation over
regions where vegetation uptake is strong. Conversely, high
(> 1) positive mean difference over the Sahara, Somalia and
Tanzania implies CT16NRT17 simulates higher XCO2 val-
ues than OCO-2 observation where the vegetation uptake
is weak. Moreover, a positive (> 2) mean difference over
Egypt, Libya, Sudan, Chad, Niger, Mali and Mauritania is
likely due to overestimates of XCO2 emission from local
sources by CT16NRT17. Overall, the two datasets show a
fairly reasonable agreement with a correlation of 0.60 and an
offset of 0.36 ppm, a regional precision of 2.51 ppm and a
regional accuracy of 1.21 ppm.

Figure 12a shows the histogram of 2-year mean differ-
ence, which is characterized by a positive mean of 0.34 ppm
and a standard deviation of 1.21 ppm. This suggests that
CT16NRT17 simulates high XCO2 as compared to observa-
tions from OCO-2 over Africa’s land mass.

Because of the presence of spatial and temporal mismatch
of some level between CT16NRT17 and OCO-2 datasets, it is
important to assess the effect of relative distance between the
datasets. Figure 12b shows a colour-coded distribution of the
two datasets. In the figure colour codes indicate the relative

Figure 12. Histogram of the difference of CT16NRT17 relative to
OCO-2 (a) and colour code scatter diagram of XCO2 concentra-
tion as derived from CT16NRT17 and OCO-2 (b). Colour indicates
the relative distance in unit of degrees as shown in the colour bar
between datasets.

distance. The random scatter of blue dots implies that the sta-
tistical discrepancies do not arise from the relative distance
between the two datasets. More specifically, a statistical com-
parison of datasets lower and higher than the 50th percentile
(1.20) shows bias of 0.58 and 0.57 ppm, correlation of 0.57
and 0.57 and RMSD of 2.65 and 2.67 ppm respectively.
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Table 7. Summary of the statistical relation between CT16NRT17 and OCO-2 observation. The statistical tools shown are the mean correla-
tion coefficient (R), the average of bias (Bias), the average root mean square deviation (RMSD), the standard deviation in bias (SD of bias),
mean posteriori estimate of XCO2 error from OCO-2 (OCO-2 err), the standard deviation in CT16NRT17 XCO2 (CT16NRT17 SD) and the
standard deviation in OCO-2 XCO2 (OCO-2 SD). Positive bias indicates that CT16NRT17 is higher than OCO-2. The number of data used
in the statistics is 1 659 411 over 426 pixels covering the study period; the distribution at each grid point is shown in Fig. 11d.

Statistical tool R Bias RMSD SD of bias OCO-2 err CT16NRT17 SD OCO-2 SD
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

Values 0.6 0.34 2.57 1.21 0.55 0.55 1.28

Figure 13. The bias (a), correlation (b), RMSD (c) of model and OCO-2 XCO2 and mean posteriori estimate of XCO2 error from OCO-2 (d).

Table 8. Annual growth rate (AGR) of XCO2 over Africa’s land
mass from CT16NRT17 and OCO-2. The results are obtained as
the mean annual difference of 2015 and 2016 values.

Region AGR of CT AGR Of OCO-2
(ppm yr−1) (ppm yr−1)

North Africa 3.10 3.33
Equatorial Africa 3.14 3.42
Southern Africa 3.20 3.16

Figure 13 shows the comparison of mean XCO2 from
CT16NRT17 and OCO-2 covering the period from Jan-
uary 2015 to December 2016. The number of data used are
displayed in Fig. 11d. Figure 13a depicts the bias which
ranges from−2 to 2 ppm with a mean bias of 0.34 ppm. How-
ever, higher biases (<−2 ppm) are observed over Equatorial
Africa along the annual average location of the ITCZ. Fig-
ure 13b shows the correlation map with values from 0.2 to

0.8 over Africa’s land mass. Good correlations of above 0.6
are seen over many regions of the continent, while weak cor-
relation of less than 0.2 and higher root mean square error
(> 3 ppm) are observed over small pockets of the Equatorial
and eastern Africa regions (see Fig. 13c). These regions also
show a higher (> 0.65 ppm) error in satellite retrieval (see
Fig. 13d). In addition, Fig. 11d shows the number of obser-
vations are small (< 1000) over these regions. This may con-
tribute to the observed discrepancy over these regions. How-
ever, weak correlations are also observed over a wider area
in North Africa such as Mauritania, Mali, Algeria and some
regions of Niger, where satellite errors are low and sufficient
data are obtained. Poor correlation and higher RMSD values
are observed over south-western Ethiopia.

3.6 Comparison of monthly average time series of
NOAA CT16NRT17 and OCO-2 XCO2

Figures14–16 show a 2-year monthly average time series
comparison of XCO2 from CT16NRT17 and OCO-2 over
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Figure 14. The monthly mean time series of CT16NRT17 and OCO-2 from January 2015 to December 2016 averaged over North Africa (a),
bias associated with the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean
from the mean of the next year (d). The error bars in (a) show the OCO-2 a posteriori XCO2 uncertainty.

Figure 15. The same as in Fig. 14 but over Equatorial Africa.
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Figure 16. The same as in Fig. 14 but over Southern Africa.

North Africa, Equatorial Africa and Southern Africa re-
spectively. Figure 14a shows the existence of good agree-
ment between the two datasets in describing patterns over
North Africa. Moreover, both datasets show a decreas-
ing trend of XCO2 from May to September but an in-
creasing trend from October to April. On the other hand,
consistent with the climate condition and associated CO2
exchange, the monthly mean XCO2 shows a maximum
value of 403.37 ppm for CT16NRT17 and 402.06 ppm for
OCO-2 during May. Conversely, minimum concentrations of
398.77 ppm from CT16NRT17 simulation and 398.27 ppm
from OCO-2 observation are found in September. In addi-
tion, both CT16NRT17 and OCO-2 show maximum XCO2
values (402.15 ppm for CT16NRT17 and 402.03 ppm for
OCO-2) in December. These peak values in December are
not surprising, because the 2015–2016 El Niño started in
March 2015 and reached its peak in December 2015, which
added extra CO2 to the atmosphere (Chatterjee et al., 2017).
Figure 14a also shows that XCO2 from CT16NRT17 simu-
lation is higher than OCO-2 observation over North Africa.

Figure 14b shows the monthly mean difference between
CT16NRT17 and OCO-2 which ranges from −0.5 to 2 ppm.
OCO-2 XCO2 observations are lower than CT16NRT17 by
2 ppm during March and April 2015. Starting from Au-

gust 2015, the difference between the two datasets is mini-
mum; On the other hand, a maximum difference exceeding
1.5 ppm was observed during MAM which can be mentioned
as a burning season of North Africa, as the area north of the
Equator was burned mostly from March to June (Hao and
Liu, 1994). The observed lower XCO2 values from OCO-2
observations than that of CT16NRT17 simulation will be a
consequence of much respiration which exceeded photosyn-
thesis when vegetation uptake is weak following the strong
El Niño and dry season over North Africa. Furthermore, in-
tense burning of the forest during this season which will fur-
ther be intensified by the strong El Niño may cause unpre-
dicted aerosol loading, and thereby this inaccurate estima-
tion of aerosol loading could be suggested as the most likely
source for the observed discrepancy. Moreover, Fig. 14c dis-
plays a monthly mean regional mean bias of 0.87 ppm, cor-
relation of 0.95 and root mean square deviation of 0.72 ppm
between CT16NRT17 and OCO-2 XCO2. This implies that
CT16NRT17 is in good agreement with OCO-2. However,
small discrepancies arose, most likely due to a strong anthro-
pogenic emission from Nigeria, Egypt and Algeria.

Figures 15a–16a show monthly mean time series of XCO2
from the model and OCO-2 instrument over Equatorial
Africa and Southern Africa, which are also in good agree-
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Figure 17. Seasonal mean of CO2 for NOAA CT16NRT17 (left panels) and OCO-2 (middle panels) and their difference (right panels).

ment in terms of pattern. However, the figures show that
CT16NRT17 simulations are lower than those of OCO-2 dur-
ing October, November and December, whereas it is oppo-
site during April, May and June over Equatorial Africa and
Southern Africa. Figures 15b and 16b depict a seasonal bias
in the monthly time series over Equatorial Africa and South-
ern Africa respectively. Positive biases are observed during
dry seasons, while negative biases are during wet seasons.
Moreover, the datasets have monthly averaged regional mean
biases of 0.13 and 0.11 ppm, correlation of 0.90 and 0.94,
and RMSD of 0.84 and 0.73 ppm over Equatorial Africa
and Southern Africa respectively. This shows the existence
of better agreement between CT16NRT17 and OCO-2 over
these regions in terms of monthly average regional mean val-
ues. Figures 14d–16d show both CT16NRT17 and OCO-2
are in good agreement in estimating the annual growth rate.
Patra et al. (2017) found a global mean of more than 3 Gt of
CO2 added to the atmosphere due to the strong El Niño event
that occurred during 2015–2016. In agreement with this, both
CT16NRT17 and OCO-2 show an annual growth rate that
ranges from 3.10 to 3.42 ppm yr−1 of XCO2 over Africa’s
land mass (see also Table 8). However, over all regions of
Africa’s land mass CT16NRT17 shows a lower XCO2 an-
nual growth rate than those of OCO-2.

3.7 Comparison of seasonal means of NOAA
CT16NRT17 and OCO-2 XCO2

Figure 17 depicts seasonal means of XCO2 over Africa’s
land mass from CT16NRT17 (left panels), OCO-2 (middle
panels) and their difference (right panels) covering the period
of January 2015 to December 2016. The white space seen
over some regions (e.g. Mali during JJA) is due to insufficient
coincident satellite data according to the selection criteria
during these seasons. XCO2 increases from winter to spring
and then decreases from spring peak to summer minimum
over the whole continent. The decrease from spring maxi-
mum to summer continued into autumn over the northern half
of Africa in contrast to the southern half of Africa, which
exhibits an increase in XCO2. The decrease from spring to
autumn (northward of the Equator) and until summer (south-
ward of the Equator) is likely to be a consequence of the land
vegetation awakening from dormancy of winter and partly
spring. Conversely, the decomposition of died and decayed
vegetation which began in autumn and continued through-
out winter adds extra CO2, leading to a maximum concentra-
tion during spring (Idso et al., 1999). In agreement with this,
both CT16NRT17 and OCO-2 show maximum XCO2 dur-
ing MAM over North Africa and during SON over Southern
Africa. Conversely, minimum concentrations are observed
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Figure 18. Histogram of difference for the seasonal CO2 climatology for the DJF (a), MAM (b), JJA (c) and SON (d) seasons.

during SON over North Africa and during DJF over Southern
Africa.

Figure 17 (right panels) shows the seasonal mean differ-
ence of CT16NRT17 and OCO-2. A higher mean difference
greater than 1 ppm is observed over North Africa during
DJF and MAM, when the vegetation cover over the region
decreases and also in the presence of an intensive burning
of the northern savanna during this season (Hao and Liu,
1994). This indicates that XCO2 values from CT16NRT17
are higher than that of OCO-2 when vegetation uptake is
weak and there is more fire. On the other hand, higher nega-
tive mean differences of less than −2 ppm are observed over
Equatorial Africa during DJF and SON over Southern Africa.
This difference between the CT and OCO-2 arises likely due
to grass fires from the dry savanna. Consistent with the re-
port by Liang et al. (2017), low seasonal variability is ob-
served between CT16NRT17 and OCO-2 in the range from
−4 to 4 ppm, with greater amplitude over North and Equato-
rial Africa than over Southern Africa (see Fig. 17, right pan-
els). During dry seasons OCO-2 overestimates values over
the North Africa, but it underestimates them for Southern
Africa.

Figure 18 shows the histogram of seasonal mean differ-
ence of CT16NRT17 and OCO-2. The smaller standard de-
viations of 1.49 and 1.07 are observed during JJA and SON.
On the other hand, higher standard deviations of 1.69 and
1.75 ppm are observed during DJF and MAM respectively.
These results indicate that CT16NRT17 and OCO-2 show a
better consistency during wet seasons, and this consistency

decreases as the vegetation cover decreases over most regions
of Africa’s land mass during dry seasons.

3.8 Comparison of OCO-2 and CT16NRT17 with flask
observations

Monthly CT16NRT17 XCO2 has a better sensitivity over
IZO and ASK both in terms of temporal pattern (phase)
and amplitude than OCO-2 (see Fig. 19), where observa-
tions from OCO-2 mostly underestimate XCO2 at the two
flask sites. Over LMP and WIS, both CT16NRT17 and OCO-
2 have moderate sensitivity in capturing the seasonal cycle.
On the other hand, OCO-2 has a better sensitivity over ASC
and SEY. In addition, XCO2 from both CT16NRT17 and
OCO-2 is found to have poor correlations with flask obser-
vations over NMB and CPT. However, OCO-2 has closer
sensitivity in capturing amplitudes than CT16NRT, where
CT16NRT17 overestimates XCO2 at these flask sites. In gen-
eral, CT has a better performance over sites located at high
altitude (IZO, ASK) where satellite observations underesti-
mate XCO2. Conversely, satellite observations have better
performance over low-altitude island sites (ASC and SEY)
as revealed by better agreement with flask XCO2 observa-
tions.

4 Conclusions

In this study, the GOSAT and OCO-2 XCO2 observation
values are compared with NOAA CT XCO2 and available
ground-based flask observations over Africa’s land mass.
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Figure 19. CO2 from CT16NRT17, OCO-2 and flask observations.

Table 9. Summary of the statistical relation of CT16NRT17 and OCO-2 observations with respect to flask observations. The statistical
analysis were made using monthly averages covering the period from May 2009 to April 2014).

code CT R OCO-2 R CT bias OCO-2 bias CT RMSD OCO-2 RMSD number of data
(ppm) (ppm) (ppm) (ppm)

ASC −0.14 0.97 3.93 −0.48 7.63 1.10 22
ASK 0.97 0.93 −0.47 −2.60 0.80 1.88 24
CPT 0.91 0.98 0.62 0.90 0.80 0.53 24
NMB 0.28 0.42 2.14 0.09 3.27 2.02 24
IZO 0.93 0.97 0.46 −2.16 1.10 1.33 24
LMP 0.02 −0.09 −4.20 −4.08 3.82 3.61 18
SEY 0.68 0.71 −0.98 −0.98 2.23 1.47 22
WIS 0.73 0.68 −1.64 −4.84 2.90 3.25 24

Comparison between GOSAT and CT2016 was made using
5 years of datasets covering the period from May 2009 to
April 2014. Comparison of OCO-2 with CT16NRT17 and
eight flask observations was also made using 2 years of data
during the strong El Niño event from January 2015 to De-
cember 2016. This provides an opportunity to assess the
performance of OCO-2 Observation during strong El Niño
events. Comparison of Carbon Tracker with the two satel-
lites reveals biases of −0.28± 1.05 and 0.34 ppm, correla-
tions of 0.83± 1.2 and 0.60 and root mean square devia-
tions of 2.30± 1.46 and 2.57 ppm with respect to GOSAT
and OCO-2 respectively.

The monthly average time series of CT2016 over North
Africa, Equatorial Africa and Southern Africa are separately
compared with XCO2 from the two satellites. CT2016 agrees
well with measurements from the two instruments in terms
of pattern and amplitude. However, this agreement deterio-
rates over Equatorial and Southern Africa in terms of am-
plitude. It is also found that there is a seasonally depen-
dent bias between them which is negative during dry sea-
sons, while it is positive during wet seasons. This indicates
results of CT2016 are mostly lower than the GOSAT obser-
vation during dry seasons. High spatial mean of a seasonal
mean RMSD of 1.91 during DJF and 1.75 ppm during MAM
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and low RMSD of 1.00 and 1.07 ppm during SON in the
model XCO2 with respect to GOSAT and OCO-2 are ob-
served respectively, thereby indicating better agreement be-
tween CT and the satellites during autumn. CT2016 has the
ability to capture monthly time series and seasonal cycles.
However, XCO2 from CT2016 is lower than GOSAT obser-
vations over North Africa during all seasons, whereas XCO2
from CT2016 is higher than that of GOSAT over Equatorial
and Southern Africa, with the exceptions of DJF over Equa-
torial Africa and SON over Southern Africa. In addition,
CT2016 simulates lower XCO2 than the observations over
some regions (e.g. Congo, South Sudan and south-western
Ethiopia) and during the summer season over the whole con-
tinent following large vegetation uptake. In contrast, XCO2
from CT16NRT17 is higher than that of OCO-2 over North
Africa, whereas it is lower than that of OCO-2 during DJF
and SON over Equatorial and Southern Africa respectively.
Comparison of satellite and CT with ground-based flask ob-
servation shows CT has a better performance over sites lo-
cated at high altitude (IZO, ASK), as determined from good
agreement with flask XCO2 observations where satellite ob-
servations underestimates XCO2. Conversely, satellite obser-
vations have better performance over low-altitude sites (ASC
and SEY).

In general, XCO2 from NOAA CT shows a very small bias
with respect to GOSAT and OCO-2 observation over Africa’s
land mass. Moreover, there is a good agreement between CT
simulation and observations in terms of spatial distribution,
monthly average time series and seasonal climatology. How-
ever, there are some discrepancies between the model and the
two XCO2 datasets from GOSAT and OCO-2, implying that
the accuracy of the model data needs further improvements
for the rainforest regions (e.g. Congo) through assimilation
of in situ observations and tuning of the model through pro-
cess studies.
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