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Abstract. The Community Long-term Infrared Microwave
Combined Atmospheric Product System (CLIMCAPS) re-
trieves vertical profiles of temperature, water vapor, green-
house and pollutant gases, and cloud properties from mea-
surements made by infrared and microwave instruments on
polar-orbiting satellites. These are AIRS/AMSU on Aqua
and CrIS/ATMS on Suomi NPP and NOAA?20; together they
span nearly 2 decades of daily observations (2002 to present)
that can help characterize diurnal and seasonal atmospheric
processes from different time periods or regions across the
globe. While the measurements are consistent, their informa-
tion content varies due to uncertainty stemming from (i) the
observing system (e.g., instrument type and noise, choice of
inversion method, algorithmic implementation, and assump-
tions) and (ii) localized conditions (e.g., presence of clouds,
rate of temperature change with pressure, amount of water
vapor, and surface type). CLIMCAPS quantifies, propagates,
and reports all known sources of uncertainty as thoroughly
as possible so that its retrieval products have value in cli-
mate science and applications. In this paper we characterize
the CLIMCAPS version 2.0 system and diagnose its observ-
ing capability (ability to retrieve information accurately and
consistently over time and space) for seven atmospheric vari-
ables — temperature, H,O, CO, O3, CO,, HNO3, and CH4 —
from two satellite platforms, Aqua and NOAA20. We illus-
trate how CLIMCAPS observing capability varies spatially,
from scene to scene, and latitudinally across the globe. We
conclude with a discussion of how CLIMCAPS uncertainty
metrics can be used in diagnosing its retrievals to promote
understanding of the observing system and the atmosphere it
measures.

1 Introduction

Instruments onboard satellites observe the global Earth at-
mosphere with unprecedented regularity in space and time.
For any given scene on Earth today there are multiple obser-
vations from a range of different instruments measuring any
number of atmospheric variables. While the record of hy-
perspectral infrared measurements spans nearly 2 decades,
differences in technology and instrumentation pose a signif-
icant challenge to data continuity (Smith et al., 2013). Two
space-based systems may observe the same atmospheric vari-
able but at different view angles, different times of day, and
different spatial or spectral resolutions, measuring different
aspects of the Earth’s atmosphere. The challenge in inter-
comparing different sources of remote observations is well
documented (Stubenrauch et al., 1999; Rodgers and Con-
nor, 2003; Wylie et al., 2005; von Clarmann and Grabowski,
2007; Smith et al., 2013, 2015; Hearty et al., 2014; Gaudel et
al., 2018). Straightforward side-by-side comparisons of dis-
parate data sets can fail to yield meaningful insights because
their differences cannot be explained by natural variability
or instrument capability alone. Uncertainty masks the mea-
sured signal. Only with rigorous quantification and deliber-
ate propagation of uncertainty through all data processing
steps can a degree of transparency in space-based observa-
tions be achieved so that the measured signal can be distin-
guished, uncertainty can be characterized, and data set differ-
ences can be understood (Pougatchev et al., 1996; Ceccherini
et al., 2003; Pougatchev, 2008; Ceccherini and Ridolfi, 2010;
Hulley et al., 2012; Xiong et al., 2013; Merchant et al., 2017,
2019).

Pougatchev (2008) classified uncertainty in remote obser-
vations into two primary sources, namely (i) “state noncoin-
cidence” or scene-dependent effects, such as spatial hetero-
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geneity and temporal variation, and (ii) “characteristic dif-
ferences” or observing system effects such as spectral res-
olution, footprint size, and retrieval algorithm design. Un-
certainty, irrespective of its source, can be random (unrepro-
ducible) or systematic (reproducible). Random uncertainty
can average out when data are aggregated, but systematic
uncertainty propagates through analysis steps and obscures
the measured signal in final results (Smith et al., 2015). It
is therefore imperative to characterize systematic uncertainty
as rigorously as possible.

In this paper we focus on satellite sounding systems that
retrieve atmospheric variables as vertical profiles from top-
of-atmosphere radiance measurements, more specifically on
the Community Long-term Infrared Microwave Combined
Atmospheric Product System (CLIMCAPS; Smith and Bar-
net, 2019). CLIMCAPS is the National Aeronautics and
Space Administration (NASA) system for sounder instru-
ments on the polar-orbiting satellites Aqua (2002—present),
Suomi NPP (2012—present), and NOAA20 (2017—-present)
that is the first of the Joint Polar Satellite System (JPSS) se-
ries of four satellites scheduled to maintain operational orbit
through 2040. CLIMCAPS implements Bayesian optimal es-
timation (OE) (Rodgers, 2000) as an inversion technique and
employs explicit background error quantification with uncer-
tainty propagation. Other sounding systems offer variations
of the OE approach in practice, depending on their respective
data product requirements (Susskind et al., 2003, 2014; Fu et
al., 2016; DeSouza-Machado et al., 2018; Irion et al., 2018).
We designed CLIMCAPS to achieve and maintain consis-
tent observing capability across different satellite platforms
so that we can generate a long-term, continuous record of
satellite soundings for a nearly 2-decade period of hyperspec-
tral infrared (IR) observations from space.

Smith and Barnet (2019) described how CLIMCAPS
quantifies and propagates scene-dependent uncertainty us-
ing error covariance matrices (ECMs) in a sequential re-
trieval approach that starts with retrieving clouds, followed
by temperature, water vapor, and the trace gas species O3z,
CO, CHy, CO,, N2O, SO;, and HNOs3. Averaging kernel
matrices (AKMs) characterize the degree to which each of
the retrieved variables depends on information contributed
by the measurements about the true state of that variable.
Averaging kernels have value in data intercomparison stud-
ies (Rodgers and Connor, 2003; Maddy and Barnet, 2008;
Maddy et al., 2009; Gaudel et al., 2018; Iturbide-Sanchez
et al., 2017) and form a critical component of data assimila-
tion models (Levelt et al., 1998; Clerbaux et al., 2001; Yudin,
2004; Segers et al., 2005; Pierce et al., 2009; Liu et al., 2012).

We present CLIMCAPS version 2.0 AKMs for a range of
different retrieval variables, different scenes across time and
space, and multiple satellite platforms and instrument types
with the goal of characterizing CLIMCAPS observing capa-
bility and promoting a better understanding of its retrieved
soundings and their value in applications.

Atmos. Meas. Tech., 13, 4437-4459, 2020

N. Smith and C. D. Barnet: CLIMCAPS system design and information content

Terminology and notation

We define an observing system, such as CLIMCAPS, as the
space-based instrument along with its inversion algorithm.
Observing system characteristics that affect product qual-
ity include spectral resolution, spatial footprint (“pixel” or
“field of view”) size, shape, arrangement, instrument noise,
view angles across satellite swath, which for CrIS is 2200 km
(£50°), and effects due to the regularization and stabilization
of its retrieval algorithm. With observing system capability,
we mean the potential a space-based system has for mea-
suring the atmospheric state at a specific scene given the in-
strument type, retrieval system design, and prevailing condi-
tions. Observing capability is akin to the signal-to-noise ratio
(SNR) and should ideally be high enough to add independent,
new information to background knowledge about the atmo-
spheric state at any given point in time and space. CLIM-
CAPS employs Bayesian inversion as a retrieval scheme and
generates AKMs to quantify the sensitivity of retrieved vari-
ables to the true state of those variables (Rodgers, 2000) as
a metric of uncertainty. CLIMCAPS product files available
through the NASA Earth Observing System Data and Infor-
mation System (EOSDIS; Ramapriyan et al., 2010) contain
AKMs for seven retrieval variables — temperature (7'), water
vapor (H>O), ozone (O3), carbon monoxide (CO), methane
(CHy), carbon dioxide (CO,), and nitric acid (HNO3) — at ev-
ery scene. We define a CLIMCAPS retrieval scene (or “field
of regard”) as the spatial and spectral aggregate of radiance
measurements that results from performing cloud clearing
(Chahine, 1982; Susskind et al., 1998; Smith and Barnet,
2019). Cloud clearing removes the radiative effect of clouds
from IR measurements by aggregating cloud-sensitive chan-
nels from nine neighboring CrIS (or AIRS) instrument foot-
prints. Cloud clearing requires no prior knowledge of scene-
specific cloud properties nor does it depend on radiative
transfer calculations through clouds. Instead, cloud clearing
is a robust linear method that uses the 3 x 3 spatial cluster of
instrument footprints as spectrally independent information
about scene cloudiness and, together with knowledge of the
cloud-free state retrieved from coincident microwave mea-
surements (ATMS or AMSU), derives a set of cloud-cleared
spectral channels for use in subsequent retrievals. In the case
in which no clouds are detected, the relevant channels are
simply averaged across the 3 x 3 array (nine footprints in to-
tal) with the assumption that it is a uniformly clear scene.
While CLIMCAPS aggregates spectral radiance before re-
trieval (known as an “average-then-retrieve” approach), the
retrieved soundings are still considered instantaneous obser-
vations because CLIMCAPS limits its radiance aggregation
to small spatial clusters (an aggregate scene of 3 x 3 CrIS
footprints has ~ 50 km diameter at nadir and ~ 150 km at the
edge of a scan) and performs no temporal averaging ahead of
inversion. We use the term measurement to refer to the mea-
sured spectrum (i.e., top-of-atmosphere radiance either for
a single footprint or cloud-cleared scene) and distinguish it

https://doi.org/10.5194/amt-13-4437-2020



N. Smith and C. D. Barnet: CLIMCAPS system design and information content

from retrieval, which is the inverse measurement or retrieved
pressure-dependent atmospheric variable at every scene (e.g.,
water vapor). We maintain consistency with the mathemat-
ical notations adopted by Rodgers (2000) for the sake of
simplicity and relevance to other OE systems (Bowman et
al., 2006; Ceccherini et al., 2009; Ceccherini and Ridolfi,
2010; Fu et al., 2016; DeSouza-Machado et al., 2018; Irion
et al., 2018); a measured spectrum is represented by the vec-
tor y with m spectral channels, and the retrieved parameter
is represented by vector x with n vertical pressure layers (for
trace gases) or n pressure levels (for temperature).

This paper starts with Sect. 2 as an overview of the CLIM-
CAPS version 2.0 (v2) observing system and a discussion
of how its OE implementation deviates from the Rodgers
(2000) theoretical OE approach. We give a detailed expla-
nation of CLIMCAPS AKMs and how they can be employed
as uncertainty metrics and indicators of observing capabil-
ity. In Sect. 3 we present CLIMCAPS AKMs for its seven
retrieval variables, T, H,O, O3, CO, CHy, CO,, and HNOs.
We diagnose and interpret these AKMs to conclude in Sect. 4
with a preliminary assessment of the CLIMCAPS observing
capability and the degree of continuity in its sounding obser-
vations across satellite platforms.

2 Data and methods
2.1 CLIMCAPS observing system

CLIMCAPS is NASA’s sounding observing system for the
Atmospheric Infrared Sounder (AIRS; Aumann et al., 2003;
Chahine et al., 2006) and the Cross-track Infrared Sounder
(CrIS; Han et al., 2013; Strow et al.,, 2013). AIRS has
been on Aqua since 2002 together with the Advanced Mi-
crowave Sounding Unit (AMSU). CrIS and the Advanced
Technology Microwave Sounder (ATMS) have been on the
Suomi National Polar-orbiting Partnership (SNPP) since
2011 and National Oceanic and Atmospheric Administration
(NOAA20) satellites since 2017. We give a detailed tabula-
tion of the main instrument characteristics in Table 1 from
Smith and Barnet (2019). Hereafter we respectively refer to
these various systems as CLIMCAPS-Aqua, CLIMCAPS-
SNPP, and CLIMCAPS-NOAA20. Traditionally, observing
systems were optimized for a specific instrument suite on a
target satellite platform (Susskind et al., 2003). With CLIM-
CAPS, we instead focus our efforts on promoting continu-
ity in observing capability across different instrument suites
and satellite platforms so that a long-term record of satellite
soundings can be generated. This means we optimize our al-
gorithm design for consistency.

AIRS and CrIS are both new-generation hyperspectral in-
frared sounders that measure energy emitted at the top of the
Earth’s atmosphere in hundreds of narrow spectral channels.
With such a high spectral resolution, these instruments can
measure atmospheric conditions at multiple pressure layers
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so that vertical structure (e.g., temperature inversions and dry
layers) and atmospheric composition (e.g., stratospheric O3
or mid-tropospheric CO) can be retrieved and characterized.
Using the principles of information theory (Shannon, 1948),
Rodgers (2000) developed a method for quantifying the in-
formation content of a spectral measurement as either the
number of significant eigenvectors (k) from a radiance de-
composition or as degrees of freedom (DOFs) for the signal
calculated as the trace of the AKM diagonal vector. These in-
formation content metrics, DOF and the magnitude of k, re-
flect the number of independent pieces of information about
the vertical atmospheric state. We can calculate these met-
rics for simulated spectra to quantify instrument observing
capability in general given certain design criteria like spec-
tral resolution and noise. Or we can calculate them for real
spectral measurements to quantify satellite system observing
capability for specific atmospheric conditions.

In Fig. 1a, we depict the total information content for all
spectral channels from a global ensemble of simulated AIRS
and CrIS measurements. We contrast their information con-
tent with that from the European IASI instrument (Siméoni
et al., 1997; Aires et al., 2002; Chalon et al., 2017) in po-
lar orbit on the MetOp series since 2006. Despite instrument
differences such as spectral resolution, number of channels,
instrument calibration, and noise (Fig. 1b), CrIS, IASI, and
AIRS all have a total information content of k = 100 signifi-
cant eigenvectors. This means that on a global scale, all three
instruments have the ability to distinguish on the order of
~ 100 individual Earth system variables about the vertical
atmospheric state. These include thermodynamic variables,
such as temperature and moisture, along multiple layers from
the surface to the top of the atmosphere, trace gas species,
cloud, and surface parameters.

CLIMCAPS adopted the AIRS Science Team ver-
sion 5 (v5) algorithm as its baseline retrieval method, which
follows a sequential OE approach in solving the nonlin-
ear inversion of infrared radiances into multiple distinct
atmospheric variables (Maddy et al., 2009; Susskind et
al., 2003). The inversion of top-of-atmosphere radiances is
an ill-conditioned, under-determined, nonlinear problem that
requires some form of stabilization to find a solution. In
Bayesian (or probabilistic) OE systems, this is predomi-
nantly achieved with the introduction of an a priori (or back-
ground) estimate of the atmospheric state such that the solu-
tion is not an independent observation but instead represents
an improvement on the background state given the top-of-
atmosphere measurement of the true state (Rodgers, 1976,
1998, 2000).

The AIRS v5 system employed a linear regression as a
priori for T, H,O, and O3 in the OE inversion step, which
is generally referred to as a “physical” retrieval because it
requires radiative transfer calculations, not regression cor-
relation coefficients, to minimize the cost function at every
scene. CLIMCAPS does not calculate a regression a priori
for T, H,O, and O3 but instead uses a data assimilation prod-
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Figure 1. Information content analysis of four operational hyperspectral infrared instruments, AIRS (Atmospheric Infrared Sounder) in
orbit on Aqua since 2002, IASI (Infrared Atmospheric Sounding Interferometer) in orbit on multiple MetOp platforms since 2006, and
CrIS (Cross-track Infrared Sounder) in orbit on SNPP since 2011 and NOAA20 since 2017. We depict the SNPP CrIS in nominal-spectral-
resolution (NSR) mode, with spectral resolution in its mid-wave and shortwave bands reduced to 1.25 and 2.5 em, respectively. NOAA20
CrIS is in full-spectral-resolution (FSR) mode with all spectral bands sampled at 0.625 cm~ L. (a) Eigenvector decomposition of the radiance
covariance matrix as a measure of the information content in each instrument. The eigenvalues, A, from an eigenvector decomposition of
simulated radiances are plotted against the index number of each eigenvector, k. Information content is calculated as all eigenvalues A > 0.
The total number of channels, Ny, is listed in the figure legend. (b) Instrument noise, measured as the noise-equivalent delta temperature,

NEAT, for a scene with surface temperature equal to 250 K.

uct, specifically the Modern-Era Retrospective Analysis for
Research and Applications version 2.0 (MERRAZ2; Gelaro
et al., 2017; Molod et al., 2015). We argued in Smith and
Barnet (2019) that a linear regression a priori amplifies in-
strument effects in the OE retrieval and thus hampers data
continuity across platforms. Regression retrievals typically
employ all spectral channels (Blackwell, 2005; Goldberg et
al., 2003; Milstein and Blackwell, 2016; Smith et al., 2012)
to retrieve atmospheric state variables simultaneously. If a
regression retrieval is ingested as a priori then instrument ar-
tifacts can be propagated and even amplified in the retrieval
product because OE uses the same spectral channels (albeit
a subset) a second time. CLIMCAPS deliberately employs
an instrument-independent a priori, i.e., MERRAZ2, forits T,
H5O0, and O3 retrievals to minimize instrument artifacts and
promote data continuity across platforms. MERRA?2 assim-
ilates a small subset of IR channels (i.e., by selecting chan-
nels that are primarily sensitive to 7 but largely insensitive
to HyO, clouds, and trace gases) only sometimes (i.e., for
clear-sky scenes only) and weighs them based on the time of
measurement within the reanalysis window and with an as-
sumed representation error across all scenes. This gives us
confidence to argue that the IR channels used in CLIMCAPS
rarely duplicate the information content of the IR channels
used in MERRA?2 at a specific scene. We argue that the
IR information content from AIRS or CrIS in CLIMCAPS
is much higher than in MERRA2 because CLIMCAPS re-
trieves the atmospheric state along the line of sight from a
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greater selection of cloud-cleared IR channels (i.e., all scenes
except those with uniform cloud cover) and a full accounting
of trace gas absorption. We contrast the CLIMCAPS a priori
approach with those systems that employ a regression first
guess such as AIRS v6 (Susskind et al., 2014) that runs a
nonlinear regression using all IR channels to derive its a pri-
ori for T, H,O, and O3. Unlike AIRS v6, CLIMCAPS does
not use the information content of IR channels twice because
we designed it to minimize systematic instrument uncertainty
and an aliasing of its retrieval null space error as a result.
For the trace gas species, we adopted the same approach in
CLIMCAPS as that used in AIRS v6 for CO, CO,, HNOs3,
N>O, and SO, (AIRS Science Team/Joao Texeira, 2013). The
CO climatology has no intra-annual variation but does vary
seasonally and latitudinally, while the CO, climatology is a
static value across all latitudes that increases annually ac-
cording to a linear fit developed by Maddy (2007). The cli-
matologies for the remaining trace gas species, HNO3, N> O,
and SO,, are static over time and space. The CLIMCAPS
climatology for CHy is derived from a set of coefficients de-
veloped by Xiong et al. (2008, 2013) that is also used in the
NOAA Unique Combined Atmospheric Processing System
(NUCAPS).

The CLIMCAPS retrieval algorithm is outlined in Fig. 2,
and we highlight four major steps here. (1) Local angle cor-
rection removes satellite view angle differences among a spa-
tial cluster of 3 x 3 instrument footprints, also known as the
“field of regard” or retrieval scene. (2) MW-only retrieval
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retrieves vertical profiles of T, H>O, and liquid water path
(LIQ), as well as surface emissivity (¢) using spectral chan-
nels from the microwave measurements (AMSU on Aqua,
ATMS on SNPP and NOAA20). This results in an estimate of
cloud-free vertical atmospheric structure in all but precipitat-
ing scenes. (3) Cloud clearing removes the radiative effects
of clouds from hyperspectral IR channels in each field of re-
gard using MW-only retrievals of LIQ and ¢ from step (2),
profiles of 7T, H>O, and O3 from MERRAZ2, and climatolo-
gies of CO, CHy, CO,, HNO3, N0, and SO;. Cloud clear-
ing is described in detail elsewhere (Smith, 1968; Chahine,
1974, 1977, 1982; Susskind et al., 2003) and remains one of
the most robust approaches for the retrieval of atmospheric
parameters within complex cloudy conditions and up to 90 %
cloud cover. This step aggregates the cluster of 3 x 3 IR spec-
tra into a single cloud-cleared IR spectrum from which all
subsequent retrievals are done. In the case in which a scene
has no cloud cover or IR channels are insensitive to clouds,
the 3 x 3 cluster of IR channels is simply averaged. Note
that cloud clearing reduces the spatial resolution of CrIS or
AIRS footprints from ~ 15 km instrument resolution at nadir
to ~ 50km at nadir. (4) Stepwise OFE retrieval sequentially
retrieves surface temperature (75), €, reflectivity (p), T, H2O,
and O3, CO, CH4, CO;, HNO3, N>O, and SO,. It is impor-
tant to note that for cloud-cleared scenes, the profile retrievals
do not represent conditions within the cloud fields but rather
around or past the clouds. This is a subtle distinction, but it
is meaningful in scientific studies and applications.

Each retrieval step (Fig. 2) is performed on a subset of
channels with maximum sensitivity to the target variable and
minimum sensitivity to all other variables. We adopted the
channel selection method as described in Gambacorta and
Barnet (2013). The channel sets for cloud clearing and all
trace gases — O3, CO, CHy, CO,, HNO3, N;O, and SO; —
are selected from the IR measurements only, while the chan-
nel sets for surface parameters as well as atmospheric 7" and
H,O are selected from the IR and microwave measurements
(MW-+IR). The number of IR channels for each variable and
each instrument is listed in Table 1 and represents the size,
m, of the measurement vector, y, for each retrieval variable.
While m varies among instruments and retrieval variables,
the size, n, of the retrieval vector, x, remains constant at
100 vertical pressure levels (for temperature) and layers (for
trace gas column densities) for the sake of accurate radiative
transfer calculations. CLIMCAPS employs the stand-alone
radiative transfer algorithm (Strow et al., 2003), originally
developed for AIRS and later adopted for CrIS. Table 1 addi-
tionally lists two values: the maximum value (B, ) for each
retrieval damping factor (i.e., a static scalar threshold below
which spectral channels are damped according to their infor-
mation content) and the degrees of freedom (DOFs) for the
signal as the global average of CLIMCAPS cloud-cleared ra-
diance spectra with m channels. We discuss the damping fac-
tor in Sect. 2.2 below, but in short, it determines the degree
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to which CLIMCAPS retains information from the radiance
channels in the retrieved product.

2.2 CLIMCAPS averaging kernels

Rodgers (2000) defines averaging kernels as the sensitivity of
the retrieved variable, x, to the true state of the variable, x,
for a given moment in time and space. In its most basic form,
an n x n AKM can be calculated for each retrieved variable
as depicted in Eq. (1):

~1
AKM = [K's;'K+5;'] K'S 'K, (1)

where K is the m x n matrix of weighting functions (or Ja-

cobians) that characterizes measurement sensitivity to the a

priori target variable as (ny S, is a diagonal m x m matrix
a

of instrument noise, and S U the regularization term, which
in the Rodgers (2000) approach is defined by the inverse of
an n X n a priori error covariance matrix, S;. The value of
S. determines the amount of regularization applied to the re-
trieval step or the degree to which information content in the
spectral measurement contributes to the final result. S; has
to be chosen carefully so that the information content of the
retrieval (or regularized solution) can be optimized given the
information content available in the measurement (von Clar-
mann and Grabowski, 2007).

In a Bayesian OE system, the regularization term deter-
mines how much the retrieved variable resembles the a priori
variable. If S; is low, then regularization is high and the mea-
surement information content will be suppressed so that the
retrieval more closely resembles the a priori. In most OE ob-
serving systems, it is computationally prohibitive to dynam-
ically generate a scene-specific matrix, S,, especially when
data latency is a concern. Instead, a common approach is to
set S, to a static value that is calculated offline either as a
statistical covariance of a data ensemble or a simple ad hoc
assignment (Fu et al., 2016; Irion et al., 2018). S, is then ap-
plied to each retrieval scene irrespective of the measurement
information content for that scene. While this simplifies cal-
culation, it risks suppressing information content when it is
high or enhancing measurement uncertainty when informa-
tion content is low. The Rodgers (2000) AKM (Eq. 1) can be
described as a linear combination of measurement sensitivity
weighted by uncertainty about the a priori state variable (S;).

CLIMCAPS, in contrast, calculates an n x n AKM as in

Eq. (2):
—1
AKM = [KTS,;IK + x] K'S: 'K, )

with K the same as in Eq. (1), but S,, an m x m error co-
variance matrix that combines instrument noise with uncer-
tainty from scene-specific and observing system effects as
described by Smith and Barnet (2019). Moreover, the back-
ground error term, S, in Eq. (1), is replaced here with A, the
damping factor listed in Table 1. This damping factor differs
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Figure 2. High-level abstraction of the CLIMCAPS retrieval method highlighting its stepwise optimal estimation (OE) retrieval. Steps 1
through 4 are discussed in the text. Boxes in grey indicate steps in which the a priori variables are defined. MERRA2 (GMAO, 2015) is
the a priori for temperature (7'), water vapor (HyO), ozone (O3), skin temperature (75), and surface pressure (Ps). We use the AIRS v6
climatologies for carbon monoxide (CO), carbon dioxide (CO3), nitric acid (HNO3), nitrous oxide (N, O), and sulfur dioxide (SO;) (AIRS
Science Team/Joao Texeira, 2013); for methane (CHy) the linear fit developed by Xiong et al. (2013) is used. The CLIMCAPS a priori
for surface emissivity over land is based on the CAMEL database (Hook, 2019) and for ocean the Masuda model (Masuda et al., 1988) as
modified by Wu and Smith (1997). The OE retrieval steps are listed in the order in which they appear in the code with MW+IR, indicating
that the retrieval step depends on a subset of channels from both the microwave and infrared sounders, as well as infrared-only channels.

Temperature and cloud-cleared radiances are retrieved twice, with the second step distinguished by dashed lines. Constituent detection (CD)
flags indicate the presence of isoprene, ethane, propylene, and ammonia as calculated from single-field-of-view IR radiance channels.

1
MW+IR Cloud
Clearing 1

Reset T a-priori

Table 1. For each CLIMCAPS instrument and/or platform configuration, we list three parameters: the number of spectral channels (nch) used
in the retrieval of temperature, H,O, O3, CO, CHy, CO,, HNO3, N»>O, and SO;; the damping factors applied as a regularization parameter
(Bmax); and degrees of freedom as a metric for vertically integrated observing capability. CLIMCAPS version 2.0 is configured for retrievals
from (i) the Atmospheric Infrared Sounder (AIRS) on Aqua, (ii) the Cross-track Infrared Sounder in nominal-spectral-resolution mode (CrIS-
NSR) on the Suomi National Polar-orbiting Partnership (SNPP) satellite, (iii) the CrIS in full-spectral-resolution mode (CrIS-FSR) on SNPP,
and (iv) CrIS-FSR on NOAA?20, the first of four Joint Polar Satellite Systems. The DOF values represent the mean from all ascending orbits
(~13:30 local overpass time) on 1 July 2018 from retrievals that were flagged as successful and rounded off to one decimal place.

(@) (ii) (iii) (iv)
Aqua/AIRS SNPP/CrIS-NSR SNPP/CrIS-FSR NOAA20/CrIS FSR

nch  Bmax DOF | nch  Bpax DOF | nch  Bmax DOF | nch  Bmax DOF
Temperature 134 025 63 ] 86 0.2 35 | 120 0.2 3.0 | 120 0.2 3.0
Water vapor (HpO) 46 04 27| 62 0.4 22| 66 0.4 17| 66 0.4 1.7
Ozone (O3) 40 1.0 20| 53 1.0 23| 77 1.0 19| 77 1.0 1.9
Carbon monoxide (CO) 36 185 0.7 | 27  1.85 02 ] 35 185 08| 35 1585 0.8
Methane (CHy) 65 125 1.0 | 55 125 06| 8 125 07| 8 125 0.7
Carbon dioxide (CO,) 61 038 07| 53 038 09 | 54 038 0.8 | 54 028 0.8
Nitric acid (HNO3) 14 1.0 03| 28 1.0 03 | 30 1.0 0.1 ] 30 1.0 0.1
Nitrous oxide (N,O) 58 1.0 1.2 | 24 1.0 08 | 21 1.0 03| 21 1.0 0.3
Sulfur dioxide (SO7) 60 50 002 | 24 50 1x1073 | 31 50 6x1074 | 31 50 7x107%
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from S, in two important ways: (i) unlike S,, A has hori-
zontal variation because it is dynamically calculated for each
retrieval scene based on the measurement information con-
tent for a target variable, and (ii) unlike S,, A has no vertical
variation because it is a scalar value that assumes uniform
uncertainty about the prior state, which can be an oversimpli-
fication in some cases. In contrast to Eq. (1), a CLIMCAPS
AKM as in Eq. (2) can be described as the linear combi-
nation of measurement sensitivity weighted by known and
propagated sources of uncertainty as well as scene-specific
knowledge about measurement information content. While
this is different from a traditional OE approach, both Egs. (1)
and (2) generate results that are within the observing sys-
tem null space and thus part of the solution set of the ill-
determined inversion problem.

CLIMCAPS adopted the AIRS v5 (Susskind et al., 2003,
2014) implementation of Eq. (2) (Maddy et al., 2009; Maddy
and Barnet, 2008). Instead of an array size of n = 100,
CLIMCAPS calculates AKMs on a reduced set of pressure
layers as defined by a series of overlapping trapezoidal func-
tions. The thickness of each trapezoid layer is empirically de-
termined from calculations of the vertical resolution of simu-
lated measurements for each variable; e.g., CLIMCAPS has
31 trapezoid state functions for temperature and 9 for CO.
These trapezoid state functions were selected by the AIRS
Science Team, with approximately two trapezoids per re-
trievable layer quantity. CLIMCAPS employs these vertical
trapezoid functions for a number of reasons: (i) they reduce
the dimensionality of the Jacobian matrix to speed up al-
gorithm processing time; (ii) compared to the 100 pressure
layers needed for accurate radiative transfer calculation, the
trapezoidal layers more closely resemble the true instrument
vertical resolution calculated from simulated spectra for stan-
dard atmospheric state climatologies; and (iii) they act as
a smoothing constraint and thus reduce the need for addi-
tional a priori stabilization factors. As mentioned, we use
the Rodgers (2000) OE notation in this paper, but in prac-
tice the Jacobians in Eq. (2) are linearly transformed to the
coarser trapezoidal grids using a transformation matrix W
as follows: K = KW, making it a m x 7 matrix, with 71 the
number of trapezoid layers (see Maddy and Barnet, 2008, for
more details).

Averaging kernels are unitless and typically range in value
between 0.0 and 1.0, although they can sometimes have neg-
ative values for which the noise exceeds the signal (see Fig. 3
in Sect. 3 below). AKMs quantify CLIMCAPS observing ca-
pability at any given point in time and space because they
account for all known sources of scene-specific and observ-
ing system uncertainty. They characterize a system’s ability
to observe a target variable at a specific scene. An alterna-
tive interpretation is that they quantify the degree to which
the a priori variable compensates for the lack of observ-
ing capability at any specified scene (1.0 — AKM). While
CLIMCAPS AKMs do not measure retrieval accuracy (ap-
proximation to the truth), they do characterize retrieval un-
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certainty and information content. CLIMCAPS retrievals are
not in situ measurements of the vertical atmospheric state,
but under-determined nonlinear inverse measurements with
a dependence on prior knowledge of the atmospheric state.
In scientific analyses and operational applications, it is im-
perative that sounding observations are correctly interpreted
lest their uncertainty be mistaken for measurement. CLIM-
CAPS AKMs characterize and quantify the weighted contri-
bution from the measurement (0.0 + AKM) and the a priori
(1.0 — AKM). An averaging kernel value of zero means that
the measurement has no observing capability at that pres-
sure layer and the solution will be the a priori. An averag-
ing kernel value of unity means the measurement has 100 %
observing capability and the solution will have no depen-
dence on the a priori. In practice, however, averaging ker-
nels range in value between these two endpoints such that
0.0 < AKM < 1.0.

What can we learn about CLIMCAPS observing capabil-
ity by diagnosing its AKMs? And how should we interpret
differences between its retrievals from different parts of the
globe or from different sounding systems? We can address
these questions with a discussion of how each of the vari-
ables in Eq. (2) affects the AKMs. These are the Jacobians
(K) that determine the structure of an AKM and the mea-
surement error covariance matrix (S,,) with a regularization
parameter (A) that determines its magnitude.

CLIMCAPS Jacobians are finite-differencing (or brute-
force) weighting functions that quantify the sensitivity of the
calculated radiances to the a priori retrieval variable. They
are m X n matrices, with m equal to the number of spec-
tral channels in the retrieval subset (Table 1); out of 2211
CrIS channels, CLIMCAPS has m = 120 selected for T and
m = 66 for H>O. Jacobians are sensitive to the background
state variables used in the forward radiative transfer calcu-
lation. This is the only parameter in Eq. (2) that ingests a
priori information. If an a priori is biased with respect to the
true background state, the same bias will propagate into the
Jacobians. For example, if the CO a priori is a climatology
of a typical source site, then the Jacobian will indicate high
measurement sensitivity because high concentrations of mid-
tropospheric CO result in strong absorption lines in the cal-
culated radiance and thus yield large weighting functions. If
such weighting functions are applied to a retrieval for which
the scene-specific CO concentrations are low, then the av-
eraging kernels will mistakenly indicate high observing ca-
pability to CO at that scene, which risks representing the un-
certainty as a signal unless the averaging kernels are adjusted
according to known sources of uncertainty.

Clouds are one of the primary sources of scene-specific
uncertainty. While CLIMCAPS requires no knowledge about
the a priori state of clouds, it calculates radiance uncertainty
due to clouds in the cloud clearing step (Table 1). Cloud
clearing uncertainty, together with uncertainty from other
state variables, is propagated into the measurement error co-
variance matrix, S,,, according to the method described in
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Table 2. Example of eigenvalues and damping factors for a hypo-
thetical temperature retrieval.

Bmax = 0.5 — Ac = 4.0

i Ai A)  Percent

damped
1 18.719 0.0 0.0% Not damped
2 8.321 00 0.0% Not damped
3 4.934 0.0 0.0% Not damped
4 3.127 041 11.58% Damped
5 1312 098 4273% Damped
6 0.68 0.97 5877% Damped
7 0.29 0.79 73.07%  Damped
22 04x1077 41x107% 100.0% Switched off
23 0.1x1077 20x10™% 100.0% Switched off

Smith and Barnet (2019). If a scene has high uncertainty
due to clouds, S,, will increase and AKM will decrease
to reflect a reduced observing capability. Scene-dependent
cloud effects are therefore not explicitly accounted for in
AKMs through radiative transfer calculation, but their scene-
dependent uncertainty is derived and propagated into one of
the error terms.

CLIMCAPS  performs singular value decomposition
(SVD) of the matrix KTS K to derive a set of scene-
specific eigenvectors for use in the retrieval. We refer to this

7 X 1 eigenvector matrix as K, with ei genvalues, A;, on its di-
agonal. SVD benefits the retrieval in that it minimizes (max-
imizes) the a priori contribution when measurement infor-
mation content is high (low) such that the retrieval product
deviates from its a priori only when the radiance measure-
ment has information content. According to Eq. (2), the reg-
ularization term is derived from the eigenvalues and deter-
mines the degree to which these eigenvectors are damped in
the solution according to the critical threshold, A., which is
derived from Bpy,x (Table 1) such that A, = (Bmax)’z. Bmax
is a scalar value, empirically determined offline, and defines
the maximum allowable noise that can propagate into the re-
trieval. We illustrate how this works in practice with the ex-
ample discussed below.

In Table 2, the K matrix for temperature has five signif-
icant eigenvalues (i.e., where A; > 1.0), which means that
the observing system has five independent pieces of infor-
mation and can solve for temperature at five distinct pres-
sure levels. For a Bpax = 0.5, A = 4.0. All eigenvectors with
Ai > A will contribute to the retrieval undamped. In Table 1,
we see that the first three eigenvectors will thus contribute
100 % of their information to the retrieval. Those eigenvec-
tors with A > XA; > 0.05 will be fractionally damped as fol-
lows: 1.0— W _);M),Where A = /Ac/A; —Aj. Accordingly,
the fourth eigenvector (Table 2) will be 11.58 % damped, the
fifth 42.73 %, and so on. Those eigenvectors with A; < 0.05
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will be switched off so that they make no contribution to
the retrieval because they are regarded as sources of noise.
An observing system can be over-damped in which case
it does not let enough functions contribute 100 % of their
information. Such a system would suppress the amount of
information contributed by the measurements and force a
strong dependence on the a priori. Alternatively, a system
can be under-damped in which case too many functions con-
tribute to the retrieval undamped such that the measurements
contribute not only information (eigenvectors with A; > 1.0)
but also noise (eigenvectors with %; < 1.0). CLIMCAPS-
Aqua has Bpax = 0.25 and CLIMCAPS-NOAA20 Bpax =
0.20 (Table 1), which translates to A = 16.0 and A, = 25.0,
respectively. In our example given in Table 2, CLIMCAPS-
Aqua will leave only the first eigenvector undamped, while
CLIMCAPS-NOAAZ20 will not let a single eigenvector con-
tribute 100 % of its information but damp all of them.

We adopt this type of regularization in CLIMCAPS be-
cause we do not know with absolute certainty that we fully
accounted for all sources of uncertainty in the S, matrix.
With this approach, we can account for those sources of
uncertainty not explicitly characterized in previous retrieval
steps (Fig. 1). In an ideal system in which all sources of un-
certainty are fully characterized, all eigenvectors with A; >
1.0 should typically contribute to the retrieval undamped.

3 Results and discussion

In this section, we use AKMs to diagnose CLIMCAPS
observing capability (or sensitivity to the true state) for
CLIMCAPS-Aqua and CLIMCAPS-NOAA20 using two
global days of retrievals, 1 July and 15 December 2018.
AKMs quantify the potential each measurement has to re-
solve the atmospheric state given observing system charac-
teristics and prevailing conditions at the retrieval scene. So
far, we have referred to the AKM associated with each re-
trieval. Here we take a look at the individual averaging ker-
nels (or rows) of each AKM and specifically distinguish the
diagonal of the AKM (or AKD) as a vector representation of
the maximum sensitivity at each pressure level.

3.1 Diagnosing CLIMCAPS observing capability

Figure 3 depicts the averaging kernels for 7 and H>O from
CLIMCAPS-NOAA20 for five different retrieval scenes
within a few hundred miles of each other south of South
Africa where the Atlantic and Indian oceans converge. The
peak of each kernel depicts the atmospheric pressure level at
which observing capability is strongest. The spread of an av-
eraging kernel, quantified as the full-width at half-maximum
(FWHM), can be interpreted as the vertical resolution of in-
formation content at its peak pressure. Accordingly, we see
here that CLIMCAPS has higher vertical resolution (smaller
FWHM) for T in the lower troposphere (Fig. 3; top row)
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compared to the stratosphere but in turn a stronger observ-
ing capability for T in the stratosphere (larger peak values).
The vertical resolution for H>O (Fig. 3; bottom row) is fairly
consistent throughout the troposphere, but we see how ob-
serving capability varies strongly from scene to scene. Note
how the kernels fall below zero at times. For scenes 1 and 3
(47.8° 85, 29.4°E and 41.7° S, 22.6° E, respectively) the ker-
nels for both 7 and H,O are generally low in the troposphere
compared to other scenes. This means the observing capa-
bility of CLIMCAPS-NOAAZ20 is weak and only a small
amount of measured information will be added to the a priori
at those scenes. Scene 4 (36.6° S, 29.9° E), on the other hand,
has higher kernel peaks and CLIMCAPS-NOAA?20 thus has
a stronger capability to retrieve atmospheric structure in the
troposphere and add new information to prior state variables
at that scene.

Figure 4 presents the averaging kernels for seven
CLIMCAPS-NOAA20 retrieval parameters. They are (left
to right) 7, H,O, O3, CO, CH4, CO,, and HNO3. These
kernels represent the average for all northern midlatitude
scenes (30—60° N, 180° W-180°E) on 1 July 2018, hence
their smooth appearance compared to those in Fig. 3 for in-
dividual scenes. We see how retrieval sensitivity to the true
state depends strongly on the target variable. CLIMCAPS re-
trieves each state variable using a subset of spectral channels
(Table 1) selected to have a high degree of sensitivity for the
target variable and low sensitivity to all other atmospheric
state variables radiatively active in the same spectral region
(Gambacorta and Barnet, 2013). The CLIMCAPS sequential
OE approach, with channel selection and uncertainty prop-
agation, minimizes spectral correlation in the retrieved vari-
ables (Smith and Barnet, 2019). This means that any corre-
lation that does exist can mostly be attributed to geophysi-
cal, not observing system, effects. On average, CLIMCAPS-
NOAAZ20 has distinct stratospheric and tropospheric sensi-
tivity to the true states of 7', O3z, and CO;. For H,0, CO,
and CH4, CLIMCAPS-NOAA20 observing capability is lim-
ited to the mid-troposphere (200-700 hPa). Unlike CO and
CHy, the kernels for HyO have peaks at multiple layers and
varying degrees of vertical resolution (FWHM). On average
in the summertime northern midlatitude zone, CLIMCAPS-
NOAAZ20 has barely any sensitivity to HNO3 and very little
to CO; below 500 hPa.

To simplify comparison across multiple latitudinal zones
and retrieval systems, we use averaging kernel matrix diago-
nal vectors (in short, AKDs from here on) to summarize the
maximum sensitivity at each pressure layer. The trace of the
AKM (sum of AKD) defines the degrees of freedom (DOFs)
for the signal or the CLIMCAPS information content about
the vertical state of a target variable. DOF can be smaller
than the number of significant eigenvectors due to damping
(Eq. 2) and can be interpreted as the SNR of a retrieval sys-
tem.

In Fig. 5, we contrast the AKDs for five latitudinal
zones — south polar (90 to 60°S), southern midlatitude
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(60 to 30°S), tropics (30°S to 30°N), northern midlati-
tude (30 to 60°N), and north polar (60 to 90°N) — on
15 December 2018 for CLIMCAPS-NOAA20 (top panel)
and CLIMCAPS-Aqua (bottom panel). We observe dis-
tinct latitudinal variation in CLIMCAPS-NOAA20 for H,O,
O3, and CO,. In contrast, CLIMCAPS-Aqua informa-
tion content has latitudinal variability for 7', H,O, Og,
and HNOs3. For CO and CHy, CLIMCAPS-NOAA20 and
CLIMCAPS-Aqua information content is similar in mag-
nitude and structure with mid-tropospheric peaks at 500
and 400hPa, respectively. Notice the marked differences
in T and HyO AKDs between CLIMCAPS-Aqua and
CLIMCAPS-NOAA20 (Fig. 5, two left panels). Compared
to CLIMCAPS-NOAA20, CLIMCAPS-Aqua has higher ob-
serving capability for atmospheric structure in the mid-
troposphere; its T and H,O retrievals have smaller depen-
dence on the a priori with a larger contribution of information
by the AIRS/AMSU spectral channels. Both observing sys-
tems use the same a priori, namely MERRA2, and they mea-
sure conditions on the same day. While Aqua and NOAA20
both have 13:30 local overpass times, their orbits are not
aligned and they view the same scene at different view an-
gles almost an hour apart. Cloud structure and amount can
change significantly in that time. But even if the cloud fields
remained unchanged over a few hours, measurement uncer-
tainty due to clouds can be different at nadir (looking down at
clouds) than at the edge of a scan (looking at clouds with an
angle). Smith et al. (2015) discussed how observing capabil-
ity changes due to instrument effects — spectrometers (AIRS)
versus interferometers (CrIS) — in cloudy scenes. While the
information content for an ensemble of simulated AIRS and
CrIS measurements is similar (Fig. 1), differences in their
spectral resolution, detector arrays, and algorithm channel
sets introduce variation in the information content of their
measurements at a specific same scene. CLIMCAPS-Aqua
uses 134 and 46 channels for 7 and H>O, while CLIMCAPS-
NOAAZ20 uses 120 and 66 for the same variables, respec-
tively. Moreover, the damping factor for CLIMCAPS-Aqua
T is lower than that for CLIMCAPS-NOAA?20.

We designed and implemented CLIMCAPS to be simi-
lar for all instruments and platforms with the goal that its
sounding record can be continuous over decades despite
changes in technology. Global ensembles of 7 and H,O
retrievals from both systems — CLIMCAPS-NOAA20 and
CLIMCAPS-Aqua — display similar root mean square statis-
tics (not shown) when compared to ECMWF (European Cen-
tre for Medium-Range Weather Forecasts) reanalysis fields.
We have found that CLIMCAPS-NOAA?20 and CLIMCAPS-
Aqua have similar observing capabilities for the trace gases,
but compared to CLIMCAPS-Aqua, CLIMCAPS-NOAA20
appears over-damped; its 7 and H,O retrievals have low
sensitivity to the true state. This is reflected in the CLIM-
CAPS regularization threshold for 7' from CrIS/ATMS on
SNPP and NOAA20 that is lower than that for AIRS/AMSU
on Aqua (Table 1). This threshold was first developed for
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Figure 3. Scene dependence of CLIMCAPS-NOAA20 averaging kernels for coincident (top row) temperature (7') and (bottom row) water
vapor (HpO) retrievals at five scenes (left to right) on 1 July 2018. The latitude—longitude coordinates are listed at the top of each figure.
Averaging kernels (Eq. 2) quantify and characterize the signal-to-noise ratio of an observing system and are affected by the scene-dependent
effects (e.g., temperature lapse rate, amount of gas molecules, surface emissivity, and cloud uncertainty) as much as the measurement
characteristics (e.g., spectral resolution, instrument calibration, and noise). CLIMCAPS retrieves T and H, O sequentially each with a unique
subset of channels, which means that the variations in these averaging kernels are independent of each other.

nominal-spectral-resolution CrIS (measurements available
at launch in 2011) and never updated when full-spectral-
resolution CrIS measurements became available 2 years later.
In the future, we will experiment with these threshold val-
ues to test if we can achieve consistency in averaging ker-
nels across CLIMCAPS-Aqua, CLIMCAPS-NOAA20, and
CLIMCAPS-SNPP. We are interested in addressing the ques-
tion of whether we can achieve continuity in information
content despite instrument differences. The disparity in infor-
mation content we currently observe between CLIMCAPS-
Aqua and CLIMCAPS-NOAA20 (Fig. 5) tells us that the
two systems apply different weighting to the radiance mea-
surements and thus vary in their dependence on the a pri-
ori. This can introduce inconsistencies in the data record and
hamper continuity. In using averaging kernels as a metric,
we can evaluate information content under similar condi-
tions across CLIMCAPS-Aqua, CLIMCAPS-NOAAZ20, and
CLIMCAPS-SNPP and thus test for continuity in their ob-
serving capability.

Atmos. Meas. Tech., 13, 4437-4459, 2020

Figure 6 maps CLIMCAPS-NOAA20 DOF for T, H>O,
CO, and O3 on 15 December 2018. CLIMCAPS AKMs are
independent of the final retrieved variable and thus indepen-
dent of whether the solution converges or not. We therefore
do not apply a quality control filter that introduces data gaps
other than those introduced by orbital tracks at low latitudes.
Note how the spatial patterns of DOF for the four variables
are largely independent of each other. This stems from the
fact that CLIMCAPS uses channel subsets and uncertainty
propagation to minimize spectral correlation across retrieval
variables (Smith and Barnet, 2019). Where DOF patterns do
have distinct features, such as the low O3 DOF feature over
Canada (Fig. 6d), we can understand it by evaluating the
physical state to determine if it is due to conditions such
as low O3 concentrations, low lapse rates, or stratospheric
warming. All retrieval variables and their uncertainty metrics
are coincident in space and time in the CLIMCAPS product
files to facilitate these types of analyses.
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Figure 4. The mean of a set of averaging kernels for seven CLIMCAPS-NOAA20 ascending orbit retrieval variables across the northern
midlatitude zone (30 to 60° N) for a global day of daytime (ascending orbit) observations from NOAA20 on 1 July 2018. From left to right is
air temperature (7'), water vapor (H>O), ozone (O3), carbon monoxide (CO), methane (CHy4), carbon dioxide (CO,), and nitric acid (HNO3).
CLIMCAPS calculates 31 averaging kernels for T, 22 for H>O, 10 for O3, CO, and HNO3, 11 for CHy, and 9 for CO,. The averaging
kernels for 7, H,O, and CO are defined on layers from the top of the atmosphere to the sea surface, with those for O3 extending down to
822 hPa, CH4 down to 800 hPa, CO, down to 700 hPa, and HNO3 down to 450 hPa.
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Figure 5. Averaging kernel diagonal vectors for seven retrieval variables — (left to right) 7', H,O, O3, CO, CHy, CO,, and HNO3 — from
(top) CLIMCAPS-NOAA20 and (bottom) CLIMCAPS-Aqua ascending orbits on 15 December 2018. For each observing system, the mean
of the diagonal vector is calculated across five latitudinal zones — south polar (90 to 60° S), southern midlatitude (60 to 30° S), tropics (30° S
to 30° N), northern midlatitude (30 to 60° N), and north polar (60 to 90° N).
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Figure 6. Spatial variation in the degrees of freedom (DOFs) for the signal for four retrievals from CLIMCAPS-NOAA?20 ascending orbit
on 15 December 2018: (a) temperature (T), (b) water vapor (HyO), (¢) carbon monoxide (CO), and (d) ozone (O3). Note how the spatial
patterns in DOFs for each retrieval variable are largely independent of the others.

While CLIMCAPS observing capabilities for these vari-
ables are largely independent of each other, their spatial pat-
terns do all display a sensitivity to clouds in the lower lati-
tudes. We see similar patterns in cloud cover from satellite
imagery of the same day (not shown). AKMs do not directly
ingest any information about the background atmospheric
state or the a priori retrieval variable. Nor do the AKMs in-
gest any cloud variables in radiative transfer calculations for
deriving the K matrix. Any knowledge about clouds that does
exist in the AKMs (and derived DOF) is from the cloud un-
certainty that is quantified during the cloud clearing step and
propagated through to the S,;, matrix. If cloud uncertainty is
high, S,, will increase and DOF will decrease according to
Eq. (2). This is why we see lower values for DOF in cloudy
and overcast scenes.

Figure 7 illustrates the degree to which AKDs vary across
a northern midlatitude zone (30 to 60° N) for seven retrieval
variables; from left to right they are 7', H,O, O3, CO, CHy,
CO3, and HNOs3. The solid lines represent their mean AKDs,
with the error bars quantifying their variation about the mean.

Atmos. Meas. Tech., 13, 4437-4459, 2020

The degree to which the AKDs vary across space, pres-
sure, variables, and instruments in Fig. 7 is also the degree
to which CLIMCAPS observing capability varies. Overall,
CLIMCAPS-Aqua variation for 7 and H»O is significantly
higher than that for CLIMCAPS-NOAA?20. Given that T
is retrieved from CO;-sensitive infrared channels, note how
CLIMCAPS-NOAA20 AKD for T has insignificant vertical
variation across this latitudinal zone, with an absence of a
distinct peak in the troposphere, but its AKD for CO, not
only has high variability but also a distinct peak in the up-
per troposphere. CLIMCAPS-Aqua, on the other hand, has
T AKDs with high variability and a distinct tropospheric
peak, but its CO, AKDs have no distinct peak and low ver-
tical variability. This suggests that observing capability for
CO;, is enhanced (depressed) when observing capability for
T is depressed (enhanced). Two other variables that are spec-
trally correlated are HoO and CHy4. The channels sensitive to
CHy absorption are also sensitive to HyO. CLIMCAPS min-
imizes their correlation in the final retrieval products through
channel selection for spectral purity coupled with a sequen-
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tial propagation of scene-dependent uncertainty, but a de-
gree of correlation persists as seen in Fig. 7. We see this in
CLIMCAPS-NOAA20 observing capability that is lower for
both H,O and CHy, while in CLIMCAPS-Aqua it is higher
for both variables.

3.2 Averaging kernels in data intercomparison studies

Data assimilation models typically use infrared radiance
channels to assimilate 7 and H,O, but for trace gases they
use the retrieved profiles (Levelt et al., 1998; Clerbaux et
al., 2001; Yudin, 2004; Segers et al., 2005; Pierce et al., 2009;
Liu et al., 2012). Top-of-atmosphere radiances are highly
correlated, highly mixed signals of atmospheric variables. A
single channel in the ~ 2100 cm™" spectral range may con-
tain information about CO, but it also contains information
about N»>O, T, surface emissivity, surface temperature, and
H,O. If a model wants to assimilate CO spectral channels
then it would have to account for all interfering species in
addition to the uncertainty of CO, lest it introduce bias in
its characterization of CO processes. This has proven pro-
hibitively difficult in the case of trace gases for which the
target variable has a weak spectral signal with interference
from variables with much stronger signals. Instead, mod-
ellers rely on retrieval algorithms to decompose the infrared
channels into distinct trace gas species. Maddy and Barnet
(2008) gave a detailed description of how AKDs can be used
together with the retrieved profiles to remove a priori infor-
mation from the retrieval and thus facilitate their assimilation
at a minimum cost to the model. Today, the Maddy—Barnet
method is well established and widely used as the standard
method for data assimilation of retrieved trace gas profiles
(Pierce et al., 2009).

In this section, we turn our attention to the value of AKMs
in data intercomparison studies, specifically the intercompar-
ison of different remote sounding products, all with their own
sets of AKMs. What can we learn about a retrieval product
from its AKMs, and how can this facilitate understanding and
interpretation?

Figure 8 illustrates CLIMCAPS-NOAA20 O3 retrieval di-
agnostics at three different scenes in the Northern Hemi-
sphere on 1 July 2018. For each scene, the diagnostics are
(1) the O3 averaging kernels and (ii) the departure from the
a priori (retrieval minus a priori). The former characterizes
CLIMCAPS observing capability for O3 at that scene, and
the latter quantifies the changes made to the a priori given
the measurement information content in the CLIMCAPS
channel subset. Recall that CLIMCAPS employs MERRA2
as a priori for 7, H>O, and O3 (Smith and Barnet, 2019).
MERRA?2 assimilates partial column ozone from a series
of solar backscatter ultraviolet (SBUV) instruments between
1980 and September 2004. After September 2004, SBUV
data are replaced by total ozone retrievals from the Ozone
Monitoring Instrument (OMI) and stratospheric ozone pro-
files from MLS (Levelt et al., 1998) onboard the NASA Aura

https://doi.org/10.5194/amt-13-4437-2020

satellite. Wargan et al. (2017) validated MERRA2 ozone
against ozonesondes and found them to give an accurate rep-
resentation of cross-tropopause gradients and variability on
daily and interannual timescales. MERRA?2 does not assimi-
late any infrared channels or retrievals from CrIS or AIRS for
its O3 product. Figure 8 illustrates that CLIMCAPS has ob-
serving capability for stratospheric and tropospheric ozone,
which means it has the potential to add new information to
the MERRAZ2 a priori fields in two distinct parts of the atmo-
sphere. While CLIMCAPS-NOAA?20 observing capability is
similar at all three scenes, we see that the retrieval deviation
from the a priori (black line) varies significantly from scene
to scene. In scene (a), CLIMCAPS-NOAA20 increased the
stratospheric concentrations while decreasing tropospheric
O3. In scene (b), CLIMCAPS-NOAA20 mainly reproduced
MERRA?2 tropospheric O3 while increasing it slightly in
the lower stratosphere. In scene (c), CLIMCAPS-NOAA20
added no new information to MERRAZ2 stratospheric O3, but
it increased its upper tropospheric concentrations.

What does it mean when the AKMs show strong observing
capability but the retrieval hardly deviates from the a priori?
We interpret this as the CLIMCAPS CrIS IR channel set for
O3 largely confirming the MERRA?2 Os profile at that scene.
Aside from water vapor, ozone is the only trace gas variable
in CLIMCAPS that uses an a priori with space—time struc-
ture. All other gases — CO, CO,, CH4, N2O, and HNO3 —
use climatologies with limited to no spatial variation as dis-
cussed in Sect. 2.1. Any space—time structure thus visible in
the retrievals of these gas species originates from the infor-
mation content in the IR channels only.

For the same day, Fig. 9 illustrates CLIMCAPS-NOAA20
temperature retrieval diagnostics for three cloudy scenes in
the Southern Hemisphere. Again, we note how the system
has similar observing capabilities at each scene, but the re-
trieval departure from MERRA?2 varies significantly. Note
how CLIMCAPS-NOAAZ20 increases MERRA?2 temperature
at all scenes in the lower stratosphere and troposphere but
decreases MERRA?2 temperature in the upper stratosphere.
MERRA? does assimilate CrIS and AIRS IR radiance chan-
nels that are sensitive to temperature. We argue, however,
that on a scene-by-scene basis it is highly improbable that
CLIMCAPS uses IR measurements twice (first as assimi-
lated information in MERRA2, second as a measurement
vector in OE retrievals) due to the strong spectral and spa-
tial filters adopted in data assimilation systems. Even when
a MERRA?2 grid cell does contain IR information at a tar-
get CLIMCAPS footprint, we consider the impact of the
assimilated IR channels on the OE retrieval to be negligi-
ble. CLIMCAPS aggregates an array of 3 x 3 fields of view
(~ 14km) during cloud clearing (step 3 in Fig. 2) and re-
trieves all subsequent variables from the cloud-cleared ra-
diance that represents the clear portion of partly cloudy at-
mospheres on a larger field of regard (~ 50 km). MERRA2,
on the other hand, assimilates single-field-of-view radiances
for clear-sky atmospheres. MERRA?2 assimilates measure-
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Figure 8. An evaluation of ozone (O3) retrievals from CLIMCAPS-NOAA?20 ascending orbit on 1 July 2018 for three scenes at (a) 76.0° N,
91.8°W; (b) 77.9°N, 91.8° W; and (c) 78.9° N, 91.8° W. For each scene, the averaging kernels are displayed on the left and the retrieval
departure from a priori on the right. CLIMCAPS uses MERRA?2 as a priori for O3. Scenes with averaging kernels similar in structure can have
an a priori departure that varies in structure. All three scenes presented here passed CLIMCAPS quality control and are labeled “successful”.
For each scene, CLIMCAPS additionally derives uncertainty metrics about the presence of clouds and we list them here. Scene (a) has a
cloud fraction (CF) of 1 %, cloud-top pressure (CTP) of 425 hPa, cloud clearing uncertainty (CCypc) of 0.29, and cloud clearing error (CCerr)

of 0.5. Scene (b) has CF =1 %, CTP = 273 hPa, CCypc = 0.29, and CCgrr = 0.5. Scene (c¢) has CF =3 %, CTP = 375hPa, CCypc = 0.33,
and CCerr = 0.76.
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ments from many sources, so the contribution made by a
single source at a target site is low, especially considering
that each source is weighed according to a static, predeter-
mined representation error. CLIMCAPS, on the other hand,
uses cloud-cleared IR radiances as one of its primary sources
of information that it weighs based on scene-specific infor-
mation content analysis.

When we generate these diagnostic metrics — AKMs and a
priori departure — for CLIMCAPS-NOAAZ20 retrievals for all
scenes from a global day of retrievals, four scenarios emerge:
(1) high observing capability with small a priori departure,
(2) high observing capability with large a priori departure,
(3) low observing capability with small a priori departure,
and (4) low observing capability with large a priori depar-
ture. We illustrate this in Fig. 10 for CLIMCAPS-NOAA20
retrievals of H>O on 1 July 2018. For the sake of simplicity,
we plot only the AKDs (blue line). The empirically derived
threshold for each metric is 0.1 for AKD and 0.2 for a pri-
ori departure. Scenario 1 (Fig. 10a) occurs in ~ 17 % of all
CLIMCAPS-NOAAZ20 retrieval cases, scenario 2 (Fig. 10b)
occurs in 79.5 % of all cases, scenario 3 (Fig. 10c) in 1.2 %
of all cases and scenario 4 (Fig. 10d) in 2.1 % of all cases.
We calculated these statistics for all retrieval scenes, irre-
spective of whether the retrievals converged to a solution or
not because AKMs are independent of the retrieved variable.
CLIMCAPS-20 retrievals flagged as “failed” occur most of-
ten in scenarios 3 and 4, wherein the observing capability is
low. These results are summarized in Table 3.

Data validation studies typically compare remote observa-
tions against dedicated aircraft and/or in situ measurements
to derive a statistical estimate of overall product accuracy
(Nalli et al., 2018a, b). While validation studies are critically
important to determine mission objectives, they typically do
not provide information on the accuracy of individual sound-
ings from day to day or scene to scene. In science and op-
erational applications, researchers regularly query individual
soundings in their study of atmospheric processes and want
to know how well a remote sounding represents the true at-
mospheric state at a specific scene. Radiosondes are launched
daily but from a sparse network of sites; they are thus insuffi-
cient in determining site-specific accuracy for the thousands
of satellite soundings each day. In Fig. 10, we introduce the
four scenarios that emerge when pairing two CLIMCAPS
metrics — a priori departure and the magnitude of AKDs —
to propose them as a means to help facilitate product inter-
pretation and characterization in the absence of “truth” data.
They can help distinguish those cases in which a CLIMCAPS
retrieval either departed from or stuck to its a priori due to
higher sensitivity to the true state (large AKDs). A data user
can have confidence that such cases are good representations
of the true state. Alternatively, those cases with small a pri-
ori departures and small AKDs (scenario 3) should be in-
terpreted with caution because the measurements lack the
means (information content) with which to confirm or im-
prove upon the a priori towards a better representation of the
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true state. Lastly, those retrievals with large a priori depar-
tures and low AKDs (scenario 4) should be rejected as a mis-
representation of the true state because the retrieval is mostly
likely dominated by noise, not signal. The a priori may itself
be close to the truth, but we cannot confirm this due to the
system’s inability to observe conditions at that scene.

CLIMCAPS has a series of quality control thresholds at
various retrieval steps to test 7 and HO retrievals but has
no such tests for trace gas variables specifically. As a post-
processing step within data applications, the quality control
tests are assembled into a data filter that removes unsuccess-
ful T and H,O retrievals or those with high uncertainty. Cur-
rently, the same filters are applied to all retrieved variables,
with no distinction made between different variables at a
target scene. We propose a method with which to diagnose
CLIMCAPS retrievals on a case-by-case basis, one retrieval
variable at a time. Instead of applying a blanket data filter,
we illustrate how four diagnostic scenarios (Fig. 10, Table 3)
can help a data user to characterize retrieval quality along its
vertical axis, from the boundary layer to the top of the atmo-
sphere. In Figs. 11 and 12 we build on this to illustrate how
these scenarios also apply to CLIMCAPS retrievals horizon-
tally, i.e., spatially across a swath of observations.

Figures 11 and 12 each have four panels: (a) a priori de-
partures at 500 hPa, calculated as percent difference between
CLIMCAPS retrieval and its MERRA?2 a priori; (b) CLIM-
CAPS H,O AKDs at 500 hPa as a metric of information con-
tent; (c) cloud clearing uncertainty quantified as the “ampli-
fication factor” of instrument random noise (Chahine, 1977);
and (d) cloud fraction retrievals for each CrIS footprint (or
field of view). Figure 11 is a daytime scene (~ 13:30 local
overpass time) over the Caribbean Ocean, including parts of
northern Columbia and Venezuela, while Fig. 12 is a night-
time scene (~ 01:30 local overpass time) over the southeast
continental United States. Note how CLIMCAPS retrieval
departures do not appear to be spatially random but are in-
stead clustered into distinct features. This means that CLIM-
CAPS adds new spectral information to its MERRA?2 a priori
under specific conditions, which we can diagnose to deter-
mine information content and quality. Comparing panel (a)
with (¢) and (d), we see that there is no direct correlation
between retrieval departure (difference between retrieval and
a priori) and the presence of or uncertainty due to clouds.
This means that CLIMCAPS does have the ability to sepa-
rate spectral information about H>O from clouds and add this
to its a priori where necessary. In Figs. 11 and 12 we high-
light specific features for discussion — solid lines indicate re-
trievals that passed all quality control tests and are labeled
“good”, while dashed lines indicate retrievals that failed at
least one quality control test and are labeled “bad”.

In Fig. 10 we use empirically defined thresholds to cate-
gorize retrievals into one of four scenarios: 0.1 for AKD and
0.2 for retrieval departure. Figures 11 and 12 demonstrate
how they manifest spatially for specific features. Scenario 1,
with a small a priori departure and high information content,
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Figure 9. An evaluation of temperature (T) retrievals from CLIMCAPS-NOAA20 ascending orbit on 1 July 2018 for three scenes at
(a) 17.8°8S, 1.0°W; (b) 17.5°S, 0.25°E; and (c) 20.4° S, 12.2° W. For each scene, the averaging kernels are displayed on the left and
the retrieval departure from a priori on the right. CLIMCAPS uses MERRA?2 as its a priori for 7. Scenes with averaging kernels sim-
ilar in structure can have an a priori departure that varies in structure. Similar to Fig. 7, we list the cloud uncertainty metrics for each
scene: (i) CF=7%, CTP = 175hPa, CCypc = 0.18, and CCer = 1.3; (ii) CF =8 %, CTP = 158 hPa, CCypc = 0.15, and CCerr = 1.34;
(iii) CF = 0 %, CCyunc = 0.12, and CCerr = 0.7.

Table 3. A tabulated summary of the four CLIMCAPS retrieval scenarios.

Scenarios Small a priori departure ~ Large a priori departure

High observing capability (AKDs) ()17 % 2)79.5%

Low observing capability (AKDs) 3)12% “4)2.1%
is featured in (i) in Fig. 11 (shape 1), where the region has Fig. 12 (shape 3), where information content is below the 0.1
low cloud clover (< 20 % cloud fraction) and very low cloud threshold and retrieval departure below 20 %. These are re-
clearing uncertainty, as well as (ii) in Fig. 12 (shape 1) with trievals that also failed CLIMCAPS quality tests (indicated
varying cloud cover that exceeds 60 % at times but main- by the dashed lines) but for reasons other than cloud uncer-
tains a relatively low cloud clearing uncertainty. In both of tainty (which is low) and cloud cover (cloud clearing has high
these cases, retrievals passed CLIMCAPS quality control and accuracy in partly cloudy scenes such as these). Scenario 4,
maintained high information content and low cloud uncer- with large a priori departure and low information content, is

tainty, so they can be used in applications with confidence featured in (i) in Fig. 11 (shape 4) and (ii) in Fig. 12 (shape 4),
and be interpreted as a confirmation of the MERRA?2 val- where CLIMCAPS reduces MERRA?2 H;O values at 500 hPa
ues for mid-tropospheric moisture. Scenario 2, with a large by more than 50 % and information content is less than the
a priori departure and high information content, is featured 0.1 threshold. A very high cloud clearing uncertainty (> 8
in (i) in Fig. 11 (shape 2), where CLIMCAPS retrievals in- amplification of noise) and nearly solid cloud deck (> 80 %
crease MERRA2 H»,O values at 500 hPa by as much as 30 % cloud fraction) help explain why these retrievals failed qual-
and despite significant cloud cover maintain low cloud un- ity control tests and should not be trusted in applications. Re-
certainty, as well as (ii) in Fig. 12 (shape 2, centered at trievals with information content less than 0.1 give us no in-
35°N, 97.5° W), where CLIMCAPS increases MERRA?2 by formation on the quality of MERRA? values (we cannot con-
10 % over a large region and by as much as 40 % at a lo- firm or deny that they correspond to top-of-atmosphere mea-
calized site at which cloud cover and uncertainty are both sured radiances and therefore know nothing about their accu-
low. It is also featured in (iii) in Fig. 12 (shape 2 centered racy); they only highlight that observing capability was low
at 29°N, 98° W), where CLIMCAPS decreases MERRA?2 at that scene. We can diagnose this lack of observing capabil-

mid-tropospheric moisture by 20 %. In these cases, retrievals ity, which in itself yields information about the atmospheric
passed quality control and maintained high information con- state such as cloud cover and uncertainty, but we cannot use
tent in scenes with low cloud cover, so they can be used with the retrievals with any confidence in applications or scientific
confidence and interpreted as a legitimate departure from analyses. On any given global day, a significant majority of

MERRAZ?2 and a more accurate representation of the true state the CLIMCAPS retrievals fall into scenarios 1 and 2, which
compared to MERRA?2 alone. Scenario 3, with small a priori means that we can use them with confidence and interpret
departure and low information content, is featured in (i) in their departure from MERRA2 (or lack thereof) with con-
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Figure 10. Towards a generalized diagnostic analysis of CLIMCAPS-NOAAZ20 retrievals on 1 July 2018. We can broadly identify four
different scenarios for CLIMCAPS water vapor (H,O) retrievals by pairing the averaging kernel matrix diagonal (AKD; blue line) and
retrieval departure (black line) calculated as percent difference: (a priori minus retrieval) / (a priori). AKD is a metric for observing capability.
The CLIMCAPS H;O a priori is MERRAZ2, so the retrieval departure signifies a disagreement with measured radiances at a target scene.
CLIMCAPS scenario (a) has strong observing capability and a small retrieval departure. Scenario (b) has strong observing capability and
large retrieval departure. Scenario (c) has low observing capability and small departure. Scenario (d) has low observing capability and large
departure. We empirically define the threshold for observing capability as 0.1 and for percent difference (a priori departure) as 20 %.

fidence. Note that the spatial patterns depicted in panels (a)
and (b) of Figs. 11 and 12 are unique to each retrieval variable
and vary with pressure layers according to the AKD shape
and vertical profile differences between the retrieval and a
priori.

4 Summary and conclusion

In this paper we described our implementation of the
Rodgers (2000) Bayesian OE inversion method for CLIM-
CAPS v2 with a specific focus on averaging kernels. We
contrasted the Rodgers method for averaging kernels (Eq. 1)
with our CLIMCAPS implementation (Eq. 2) and described

https://doi.org/10.5194/amt-13-4437-2020

the impact our approach has on retrieved products. CLIM-
CAPS is the NASA system for generating a continuous
record of satellite soundings from two different instrument
suites on multiple satellite platforms: AIRS/AMSU on Aqua
and CrIS/ATMS on SNPP and NOAA20. CLIMCAPS prod-
ucts are publicly available through the NASA EOSDIS
Earthdata portal, and each product file contains the full av-
eraging kernel matrix (AKM) for seven retrieval variables
at every scene — T, H,O, CO, CHy, CO;, O3, and HNO3.
CLIMCAPS AKMs vary in shape and magnitude across
(1) retrieval variables according to top-of-atmosphere spec-
tral sensitivity and instrument spectral resolution, (ii) satel-
lite platforms according to instrument characteristics and re-
trieval algorithm assumptions, and (iii) retrieval scenes ac-

Atmos. Meas. Tech., 13, 4437-4459, 2020
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Figure 11. Diagnostic evaluation of CLIMCAPS-NOAA?20 retrievals of HyO for ascending Granule 89 (~ 13:30 local overpass time) on
1 July 2018 over the Caribbean Sea as well as northern Colombia and Venezuela. (a) H,O retrieval difference as percent departure from a
priori, MERRAZ2, at 500 hPa. (b) Averaging kernel matrix diagonal vector at ~ 500 hPa (AKD). (¢) Cloud clearing (CC) amplification factor,
a metric of uncertainty about clouds in the radiance signal. (d) Cloud fraction (%) retrieved for each CrIS field of view. Shapes with solid
lines indicate scenes in which CLIMCAPS retrievals passed all quality control tests, and shapes with dashed lines indicate scenes in which
CLIMCAPS retrievals failed at least one quality control test and are flagged as “bad”. We label each shape according to the scenario as
depicted in Table 3. Shape 2 (scenario 2) has large a priori departure and large information content. Shape 4 (scenario 4) has large a priori
departure and low information content. Shape 1 (scenario 1) has small a priori departure and high information content. Panels (¢, d) provide
additional diagnostic information about cloud cover and uncertainty.

cording to instrument effects such as view angle and environ-
mental conditions like temperature lapse rates, uncertainty in
interfering and background variables, and a priori assump-
tions about the target variable. At any given scene, the AKM
for one variable is largely independent from that of another
due to the CLIMCAPS sequential retrieval approach (Ta-
ble 1; Smith and Barnet, 2019) and infrared channel selection
to minimize spectral interference. For the first time, we com-
pare the observing capability from CLIMCAPS-Aqua with
CLIMCAPS-NOAA20 to diagnose and characterize conti-
nuity in information content across satellite platforms and
instrument technology. In summary, we can state the follow-

ing.

— The observing capability for T and H»O is different be-
tween CLIMCAPS-Aqua and CLIMCAPS-NOAA?20.

Atmos. Meas. Tech., 13, 4437-4459, 2020

This may be due to differences in how we regularize the
OE solution for each satellite suite of instruments, but
it may also reflect fundamental instrument differences;
AIRS on Aqua is a grating spectrometer and CrIS on
NOAA20 a Michelson interferometer. In the future, we
will investigate this question.

CLIMCAPS-NOAAZ20 has a higher observing capabil-
ity for CO; in the mid-troposphere than CLIMCAPS-
Aqua.

CLIMCAPS has peak observing capability for CO and
CHy4 in the mid-troposphere, with CO at ~ 500 hPa and
CHy at ~ 300-400 hPa.

https://doi.org/10.5194/amt-13-4437-2020
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Figure 12. Same as Fig. 11 but for descending Granule 40 (~ 01:30 local overpass time) on 1 July 2018 over the southern United States.
(a) HyO retrieval difference as percent departure from a priori, MERRA2, at 500 hPa. (b) Averaging kernel matrix diagonal vector at
~ 500hPa (AKD). (c¢) Cloud clearing (CC) amplification factor, a metric of uncertainty about clouds in the radiance signal. (d) Cloud
fraction (%) retrieved for each CrIS field of view. We highlight features for which CLIMCAPS retrievals depart from MERRA?2 (a priori) to
demonstrate the diagnostic scenarios introduced in Fig. 10. Regions with solid lines indicate scenes in which CLIMCAPS retrievals passed
all quality control tests, and regions with dashed lines indicate scenes in which CLIMCAPS retrievals failed at least one quality control
test and are flagged as “bad”. We label each shape according to the scenario as depicted in Table 3. Shape 4 (scenario 4) has large a priori
departure and low information content. Shape 3 (scenario 3) has small a priori departure and low information content. Shape 1 (scenario 1)
has small a priori departure and high information content. Shape 2 (scenario 2) has large a priori departure and high information content.
Panels (¢, d) provide additional diagnostic information about cloud cover and uncertainty.

— CLIMCAPS information contents for 7', HO, CO, and peak at 200 hPa in the tropics. Tropical CHs has much

O3 are largely independent of each other, with different
spatial patterns in their derived DOF (trace of AKM).

— CLIMCAPS-NOAAZ20 has latitudinal variation in ob-
serving capability for HyO, O3, CO, CHy, and COs.
For H,O, CLIMCAPS-NOAA20 observing capability
peaks in the tropics (30° S to 30° N) at 300 hPa, while
it peaks lower down at 450hPa outside the tropics.
CLIMCAPS-NOAA20 has the highest latitudinal vari-
ability for O3, with the strongest peaks in the tropics
in both the stratosphere and troposphere. CLIMCAPS-
NOAAZ20 has almost no vertical stratification in ob-
serving capability in the polar regions (> 60°N and
< 60° S). The midlatitude regions have O3 AKM peaks
in the stratosphere only. CO, AKMs have the strongest

https://doi.org/10.5194/amt-13-4437-2020

lower vertical resolution (as seen in its broad averag-
ing kernel functions) with no distinct peak at 400 hPa as
seen in other latitudinal zones.

CLIMCAPS-Aqua has latitudinal variation in its ob-
serving capability for T, H,O, O3, CHy, and HNO3.
It is lowest in the boundary layer for all variables.
It has the highest vertical resolution (sharpest peak)
for T at 700 hPa in the north polar region (> 60° N).
CLIMCAPS-Aqua has lower observability for tropo-
spheric O3 in the tropics. HNO3 AKMs have distinct lat-
itudinal variation, with the highest observability in the
stratosphere (< 100 hPa) for all zones but the strongest
in the north polar regions (> 60° N), followed by mid-
latitudes, south polar, and the tropics in that order.

Atmos. Meas. Tech., 13, 4437-4459, 2020
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— CLIMCAPS, whether from NOAA20 or Aqua, has sen-
sitivity to O3 and CO; in two broad layers, one in
the mid-troposphere and another in the stratosphere
(< 50hPa). It also has sensitivity to CO and CHy4 in
one broad mid-tropospheric layer, HNO3 in one broad
stratospheric layer, and multiple narrow tropospheric
layers for H,O and T, with additional layers in the
stratosphere for 7.

We identified four scenarios with which to diagnose
CLIMCAPS retrievals vertically along a pressure gradient
on a scene-by-scene basis. These scenarios are (1) high ob-
serving capability (large AKD) and small a priori depar-
ture, (2) high observing capability (large AKD) with large
a priori departure, (3) low observing capability (small AKD)
with small a priori departure, and (4) low observing capabil-
ity (small AKD) with large a priori departure. CLIMCAPS
has additional uncertainty metrics for evaluating retrievals,
such as cloud clearing amplification factor, radiance resid-
ual, cloud fraction and cloud-top height, DOF, retrieval co-
variance error, convergence strength, and whether a range
of quality control thresholds were exceeded. As a long-term
record of temperature, moisture, and trace gases that is con-
tinuous and consistent across instruments and satellite plat-
forms, CLIMCAPS v2 products can be useful in characteriz-
ing diurnal and seasonal atmospheric processes from differ-
ent time periods and regions across the globe.

Data availability. As of August 2020, CLIMCAPS version 2 data
products are publicly available for the full record of CrIS/ATMS
from Suomi NPP and NOAA20 from the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC; https:
/learthdata.nasa.gov/, last access: August 2020). CLIMCAPS ver-
sion 2 data products for the AIRS/AMSU record will be available
later in 2020.
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