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Abstract. In many cities around the world people are ex-
posed to elevated levels of air pollution. Often local air
quality is not well known due to the sparseness of official
monitoring networks or unrealistic assumptions being made
in urban-air-quality models. Low-cost sensor technology,
which has become available in recent years, has the poten-
tial to provide complementary information. Unfortunately, an
integrated interpretation of urban air pollution based on dif-
ferent sources is not straightforward because of the localized
nature of air pollution and the large uncertainties associated
with measurements of low-cost sensors.

This study presents a practical approach to producing
high-spatiotemporal-resolution maps of urban air pollution
capable of assimilating air quality data from heterogeneous
data streams. It offers a two-step solution: (1) building
a versatile air quality model, driven by an open-source
atmospheric-dispersion model and emission proxies from
open-data sources, and (2) a practical spatial-interpolation
scheme, capable of assimilating observations with different
accuracies.

The methodology, called Retina, has been applied and
evaluated for nitrogen dioxide (NO2) in Amsterdam, the
Netherlands, during the summer of 2016. The assimilation of
reference measurements results in hourly maps with a typical
accuracy (defined as the ratio between the root mean square
error and the mean of the observations) of 39 % within 2 km
of an observation location and 53 % at larger distances. When
low-cost measurements of the Urban AirQ campaign are in-
cluded, the maps reveal more detailed concentration patterns
in areas which are undersampled by the official network. It is
shown that during the summer holiday period, NO2 concen-
trations drop about 10 %. The reduction is less in the historic
city centre, while strongest reductions are found around the

access ways to the tunnel connecting the northern and the
southern part of the city, which was closed for maintenance.
The changing concentration patterns indicate how traffic flow
is redirected to other main roads.

Overall, it is shown that Retina can be applied for an en-
hanced understanding of reference measurements and as a
framework to integrate low-cost measurements next to refer-
ence measurements in order to get better localized informa-
tion in urban areas.

1 Introduction

Due to growing urbanization in the last decades, more than
half of the world’s population lives in cities nowadays. Dense
traffic and other human activity, in combination with un-
favourable meteorological conditions, often cause unhealthy
air pollution concentrations. Over 80 % of the urban dwellers
are forced to breathe air which does not meet the standards
of the World Health Organization (WHO, 2016). In 2015, an
estimated 4.5 million people died prematurely from diseases
attributed to ambient air pollution (Lelieveld et al., 2018).
Good monitoring is important to better understand the local
dynamics of air pollution, to identify hot spots, and to im-
prove the ability to anticipate events. This is especially rel-
evant for nitrogen dioxide (NO2) concentrations, which can
vary considerably from street to street. NO2 is, apart from
being a toxic gas on its own, an important precursor of partic-
ulate matter, ozone, and other regional air pollutants. Obser-
vations from a single location are not necessarily representa-
tive for a larger area. Unfortunately, urban-air-quality refer-
ence networks are usually sparse or even absent due to their
high installation and maintenance costs. New low-cost sen-
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sor technology, available for several years now, has the po-
tential to extend an official monitoring network significantly,
even though the current generation of sensors has significant
lower accuracy (WMO, 2018).

However, exploiting these measurements (either official or
unofficial), apart from publishing the data as dots on a map,
is not straightforward. Here, the aim is to make better use of
the existing measurement networks to get the best description
of hourly urban air quality, and to create value from low-cost
measurements towards a Level 4 product, according to the
classification proposed by Schneider et al. (2019).

To obtain high-resolution information of air pollutants
with sharp concentration gradients, a very sparse observation
network needs to be accompanied by a valid high-resolution
air quality model, whereas a very dense network can do
with simple spatial interpolations. The situation in most large
cities is somewhere in between. There is often a reasonably
large reference network present (10+ stations), sometimes
complemented with an experimental network of low-cost air
quality sensors. Assumptions about underlying unresolved
structures in the concentration field are still needed, but this
can be done with a simplified air quality model, using the
available measurements to correct simulation biases where
needed.

A popular approach in detailed mapping of air quality is
land use regression modelling (LURM; see e.g. Beelen et
al., 2013). LURM uses multiple linear regression to couple
a broad variety of predictor variables (geospatial information
such as traffic, population, altitude, and land use classes) to
the observed concentrations. It is typically used in exposure
studies, which target long integration intervals by definition.
Problems of overfitting might arise when too many predic-
tor variables are used. Alternatively, Denby (2015) advocates
the use of less proxy data and a model based on more physi-
cal principles. In his approach, the emission proxies are first
(quasi) dispersed with a parameterized inverse-distance func-
tion, before being coupled to observed concentrations in a
regression analysis.

Mapping of air pollution for short timescales is challeng-
ing. Only a few scientific studies are published aiming at the
assimilation of near-real-time observations in hourly urban-
concentration maps. Tilloy et al. (2013) use the 3-hourly
output of a well-developed implementation of the AMDS-
Urban dispersion model in Clermont-Ferrand, France, to as-
similate in situ NO2 measurements at nine reference sites
in an optimal-interpolation scheme. With a leave-one-out
validation they show a strong reduction in the root mean
square error (RMSE) of the time series after assimilation.
Schneider et al. (2017) use universal kriging to combine
hourly NO2 observations of 24 low-cost sensors in Oslo,
Norway, with a time-invariant basemap. The basemap is cre-
ated from a yearly average concentration field calculated
with an Eulerian–Lagrangian dispersion model on a 1 km
grid, downscaled to 100 m resolution. Averaged over refer-
ence locations, their study shows that hourly values com-

pare well with official values, showing the potential of low-
cost sensor data for complementary air quality information
at these timescales.

This paper presents a more advanced yet practical ap-
proach to map hourly air pollutant concentrations, named
Retina. Its main system design considerations are

– an observation-driven nature

– an ability to assimilate observations of different accu-
racy

– a potential near-real-time application

– a versatility and portability to other domains

– an open-data base

– a reasonable usage of computer resources.

The method is applied to Amsterdam, where, like many
cities, NO2 emissions are dominated by transport and resi-
dential emissions and where local exceedances of limit val-
ues are regularly observed. Amsterdam is the most popu-
lous city in the Netherlands, with an estimated population
of 863 000. Located at 52◦22′ N 4◦54′ E, it has a maritime
climate with cool summers and moderate winters. Concen-
trations of NO2 within the city vary considerably, being
partly produced locally and partly transported from outside
the city. Measurements of 2016 show that, compared with re-
gional background values from the Copernicus Atmosphere
Monitoring Service (CAMS) ensemble (see Sect. 3.2.3), ur-
ban background concentrations are on average around 50 %
higher, while at road sides NO2 concentrations are about
100 % higher.

Retina uses a two-stage approach. It runs an urban-air-
quality model to account for hourly variability in meteoro-
logical conditions (described in Sect. 3), which is dynami-
cally calibrated with recent measurements (Sect. 4). In the
second stage it assimilates current measurements using sta-
tistical interpolation (Sect. 5). Section 6 presents the valida-
tion of the system, while Sect. 7 shows the added value when
assimilating additional low-cost sensor measurements. The
last section is reserved for discussion, conclusion, and out-
look.

2 Air quality measurements

The Public Health Service of Amsterdam (GGD) is the re-
sponsible authority for air quality measurements in the Ams-
terdam area. Within the domain used in this study their NO2
network consists of 15 reference stations: 5 stations classify
as road stations, 5 as urban-background stations, 2 as indus-
try, 2 as rural, and 1 as undecided (see Fig. 1). Alternatingly,
GGD operates a Teledyne API 200E and a Thermo Electron
42i NO/NOx analyser, both based on chemiluminescence. A
catalytic–reactive converter converts NO2 in the sample gas
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to NO, which, along with the NO present in the sample, is re-
ported as NOx . NO2 is calculated as the difference between
NOx and NO. The accuracy of both types of reference instru-
ments is estimated at 3.7 % (GGD, 2014), following the EN
14211 standard which includes all aspects of the measure-
ments method: uncertainties in calibration gas and zero gas,
interfering gases, repeatability of the measurement, deriva-
tion of NO2 from NOx and NO, and averaging effects.

Low-cost NO2 measurements are taken from the 2016 Ur-
ban AirQ campaign (Mijling et al., 2018). Sixteen low-cost
air quality sensor devices were built and distributed among
volunteers living close to roads with high traffic volume for
a 2-month measurement period, from 13 June to 16 August.
The devices are built around the NO2-B43F electrochemi-
cal cell by Alphasense Ltd (Alphasense, 2018). The sensor
generates an electrical current when the target gas diffuses
through a membrane where it is chemically reduced at the
working electrode. Better sensor performance at low-ppb lev-
els is obtained by using low-noise interface electronics. The
sensor devices were carefully calibrated using side-by-side
measurements next to a reference station, solving issues re-
lated to sensor drift and temperature dependence (Mijling et
al., 2018). After calibration, they are found to have a typical
accuracy of 30 %.

3 Setting up a versatile urban-air-quality model

One of the largest unknowns when modelling urban air qual-
ity is a detailed, up-to-date emission inventory capable of de-
scribing the local contribution. For cities such as Amsterdam
the local emissions are dominated by the transport and res-
idential sector. This is confirmed by the EDGAR (Emission
Database for Global Atmospheric Research) HTAP (Hemi-
spheric Transport of Air Pollution) v2 emission inventory
(Janssens-Maenhout et al., 2013), which estimates the con-
tribution of NOx emissions in a 20 km× 33 km (0.3◦) area
around the centre being 62 %, 20 %, 12 %, and 6 % for the
transport, residential, energy, and industry sectors respec-
tively. Especially the contribution of road transport is rele-
vant, as its emissions are close to the ground in densely pop-
ulated areas. Traffic information and population density will
be used as proxies for urban emission (see Sects. 3.2.1 and
3.2.2).

In contrast to the regional atmosphere, the urban atmo-
sphere is more dominated by dispersion processes, while
many chemical reactions are less important due to a rel-
atively short residence time (Harrison, 2018). For the dis-
persion of the emission sources, the open-source steady-
state plume model AERMOD (Cimorelli et al., 2004) is
used, developed by the American Meteorological Society
(AMS) and United States Environmental Protection Agency
(EPA). Based on the emission inventory and meteorology
(see Sect. 3.2.4), AERMOD calculates hourly concentrations
of air pollutants. The concentration distribution of emission

sources is assumed to be Gaussian both horizontally and ver-
tically when boundary layer conditions are stable. In a con-
vective boundary layer, the vertical distribution is described
by a bi-Gaussian probability density function. Note that any
other dispersion model can be used in the Retina methodol-
ogy, as long as it is capable of simulating concentrations from
individual emission sectors on an arbitrary receptor mesh.

3.1 AERMOD simulation settings

AERMOD version 16216r is used with simulation settings
summarized in Table 1, operating on a rectangular domain
of 18 km× 22 km covering the municipality of Amsterdam
for the most part. All coordinates are reprojected in a cus-
tom oblique stereographic projection (EPSG:9809) around
the city centre coordinate such that the coordinate system can
be considered equidistant at the urban scale. Instead of using
a regular grid, a road-following mesh (Lefebvre et al., 2011)
is used. This reduces the number of receptor points, while
maintaining an accurate description of strong gradients found
close to roads. Receptor locations are chosen at every 75 m
along the parallel curves with 25 m distance to the road and
at every 125 m along the parallel curves with 50 m distance
to the road. The open spaces between these points are filled
with a regular grid at 125 m resolution. Roads are modelled
as line sources, while residential emissions are described as
area sources. The dispersion is calculated for NOx to avoid a
detailed analysis of the rapid cycling between its constituents
NO and NO2. Afterwards, an NO2/NOx ratio is applied, de-
pending on the available ozone (O3) (see Sect. 3.1.1).

Memory usage of AERMOD for the Amsterdam domain is
proportional to the total number of emission source elements
(here 17 069 road fragments and 12 182 residential squares)
and the number of receptor points in the road-following mesh
(here 42 128). The calculation time for a single concentration
field is around 10 min but can be reduced to a fraction of this
by parallelizing the code.

Ozone chemistry and lifetime

Primary emissions of NO2 (e.g. directly from the tailpipe)
are only 5 %–10 % of the total emitted NOx (Sokhi et al.,
2007). At short timescales, secondary NO2 is formed by oxi-
dation of NO with O3, while this reaction is counterbalanced
by photolysis converting NO2 to NO. The reaction rate of
the first reaction is temperature dependent, while the latter
depends on the available sunlight. The NO2/NOx ratio has
therefore an intricate dependence on temperature, radiation,
and the proximity to the source (i.e. the travel time of the air
mass since emission).

A practical approach to estimate this ratio is the Ozone
Limiting Method (OLM), as described in EPA (2015). The
method uses ambient O3 to determine how much NO is con-
verted to NO2. The dispersed (locally produced) NOx con-
centration is divided into two components: the primary emit-
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Figure 1. Air quality reference network of Amsterdam. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. Distributed under
a Creative Commons BY-SA License.)

Table 1. Overview of AERMOD simulation settings.

Road width 20 m

Emission height traffic 0.5 m

Emission height residential 10 m

Initial vertical extension of concentra-
tion layer (sigma Z0)

10 m

Receptor grid Road following

Receptor height 1.5 m

Urban surface roughness length 1 m

NO2/NOx ratio Ozone Limiting Method (OLM)
Primary emission ratio of 10 %

NOx lifetime 2 h

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL)
Addressing low-wind-speed conditions
(LOWWIND3)
Assuming flat terrain (FLAT)

ted NO2 (here assumed to be 10 %) and the remaining NOx ,
which is assumed to be all NO available for reaction with
ambient O3: NO+O3→ NO2+O2. If the mixing ratio of
ozone (O3) is larger than the 90 % of NOx , then all NO is
converted to NO2. Otherwise, the amount of NO converted is
equal to the available O3, i.e. (NO2)=0.1(NOx)+ (O3). The
reaction is assumed to be instantaneous and irreversible. The
resulting NO2 concentration is added to the NO2 background
concentration.

Removal processes of NOx are modelled with an expo-
nential decay. The chemical lifetime is in the order of a few
hours. Liu et al. (2016) find NOx lifetimes in a range of 1.8 to
7.5 h using satellite observations over cities in China and the
USA. Given the size of the domain and average wind speeds,
its exact value is not of great importance here. Based on re-
gression results a practical value of 2 h is chosen.
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Figure 2. Map of the emission proxies used for the dispersion
model. Red lines indicate the highways; green lines indicate the ur-
ban main roads. Grey colours indicate the population density. (Road
location data adopted from © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.)

3.2 Simulation input data

The dispersion simulation is driven by input data regarding
emissions, background concentrations, and meteorology, as
listed in Table 2. All data, except for the traffic counts of
inner-city traffic, are taken from open-data portals. The emis-
sion proxies are mapped in Fig. 2.

3.2.1 Traffic emissions

A recurrent problem when building urban-air-quality models
is finding sufficiently detailed traffic emission information.
Traffic emissions depend roughly on traffic flow and fleet
composition, including engine technology. For many cities,
unfortunately, this information is not available. Here a dis-
tinction is made between highways and primary roads, as
both have a distinct traffic volume and weekly cycle. Dif-
ferences in driving conditions and fleet composition are cap-
tured by assigning two different emission factors later on.

Road location data and road type definition data are taken
from OpenStreetMap (OSM, 2017), which is a crowdsourced
project to create a free editable map of the world. A dis-
tinction is made between urban roads (labelled in OSM as
“primary”, “secondary”, and “tertiary”) and highways (la-
belled as “motorway” and “trunk”), as they have distinct traf-
fic pulses, fleet compositions, and driving conditions. Road
segments labelled as “tunnel” are not taken into account.

When the traffic flow q (in vehicles per hour) is known,
the emission rate E for a road segment l can be written as

E = αvehql, (1)

Figure 3. Weekly cycle of highways and urban roads at counting
locations (thin lines), aggregated from hourly data from 2016. The
thick lines show the median of traffic flow for both road types. The
morning and evening rush hours on working days are clearly visi-
ble for highways. Urban traffic has, apart from lower volume, less
distinct peaks.

with emission factor αveh representing the (unknown) NOx
emission per unit length per vehicle. Hourly traffic flow data
are taken from 29 representative highway locations from
the National Data Warehouse for Traffic Information (NDW,
2019), which contains both real-time and historic traffic data.
For the urban traffic flow, data from 24 inductive-loop coun-
ters provided by the traffic research department of Amster-
dam municipality are used. Due to its large numbers, traf-
fic flow is relatively well predictable, especially when lower
volumes during holiday periods and occasional road closures
are neglected. For each counting site a traffic “climatology”
is constructed, parametrized by hour and weekday, based on
hourly data of 2016 (see Fig. 3).

Traffic counts correlate strongly between different high-
way locations, all showing a strong commuting and week-
end effect. Urban traffic typically shows, apart from lower
volumes, less reduction between morning and evening rush
hours, a less pronounced weekend effect, and higher traffic
intensities on Friday and Saturday night.

For locations x between the counting locations xi , the
traffic flow q(x) is spatially interpolated by inverse-distance
weighting (IDW):

q(x)=


∑
i

wi (x)qi∑
i

wi (x)
, if d(x,xi) 6= 0 for all i

qi if d(x,xi)= 0 for some i.
(2)

in which the weighting factors wi depend on the distance d
between x and the counting location xi :

wi =
1

d(x,xi)2
. (3)

Validation in the Supplement shows that for this counting
network IDW predicts the traffic volume within a 50 % error
margin at most locations. Better results are obtained when
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Table 2. Summary of simulation input data for Amsterdam.

Emission Highway locations OpenStreetMap (OSM, 2017): street segments labelled motorway and
trunk

Urban-road locations OpenStreetMap (OSM, 2017): street segments labelled primary,
secondary, and tertiary

Highway traffic flow National Data Warehouse for Traffic Information (NDW, 2019): weekly
cycle of vehicle counts at 29 selected locations (2016), interpolated to
street segments

Urban traffic flow Amsterdam municipality (personal communication): weekly cycle of
vehicle counts at 24 locations (2016), interpolated to street segments

Population data Statistics Netherlands (CBS, 2016): population density (2014) gridded
at 100 m resolution

Observation Background NO2 Copernicus Atmosphere Monitoring Service (CAMS, 2019): NO2 anal-
ysis from model ensemble; minimum value found in 3× 3 grid around
domain centre

Background O3 Copernicus Atmosphere Monitoring Service (CAMS, 2019): O3 analy-
sis from model ensemble; mean value found in 3×3 grid around domain
centre

Meteorology Meteorology (surface) Integrated Surface Database (ISD, 2019): hourly observations from
Schiphol airport weather station

Meteorology (upper air) Integrated Global Radiosonde Archive (IGRA, 2019): daily radio
sounding at De Bilt (Netherlands)

more counting locations are available or when they are se-
lected strategically around crossings and access roads. Model
simulations show that using inferior traffic data is partly com-
pensated by the calibration (Sect. 4), at the expense of less
pronounced concentration gradients.

3.2.2 Population data

Population density is considered to be a good proxy for resi-
dential emissions, e.g. from cooking and heating. Here, data
are taken from the gridded population database of 2014, com-
piled by the national Central Bureau for Statistics (CBS,
2019) at a 100 m resolution. Each grid cell is offered to the
dispersion model as a separate area source. To reflect the ob-
servation that residential emissions per capita are less when
people are living closer to each other (Makido et al., 2012),
the emission fluxes are taken proportional to the square root
of the population density p:

E = αpop
√
p. (4)

3.2.3 Background concentrations

As AERMOD only describes the local contribution to air
pollution, background concentrations must be added. These
are taken from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) European air quality ensemble (Marécal et
al., 2015). The CAMS ensemble consists of seven re-
gional models producing hourly air quality and atmospheric-

composition forecasts on a 0.1◦× 0.1◦ resolution. The analy-
sis of the ensemble is based on the assimilation of up-to-date
(UTD) air quality observations provided by the European En-
vironment Agency (EEA). Each model has its own data as-
similation system.

In the CAMS product the local contributions are already
present. To get a better estimate for regional background con-
centrations avoiding double counts, the lowest concentration
found in a 0.3◦× 0.3◦ area around the city for NO2 is taken,
together with the mean concentration found in this area for
O3.

3.2.4 Meteorological data

The dispersion of air pollution is strongly governed by local
meteorological parameters, especially the winds driving the
horizontal advection and the characterization of the boundary
layer which defines the vertical mixing. Meteorology also af-
fects the chemical lifetime of pollutants.

AERMET (EPA, 2019) is used as a meteorological prepro-
cessor for organizing available data into a format suitable for
use by the AERMOD model. AERMET requires both surface
and upper-air meteorological data but is designed to run with
a minimum of observed meteorological parameters. Vertical
profiles of wind speed, wind direction, turbulence, tempera-
ture, and temperature gradient are estimated using all avail-
able meteorological observations and extrapolated using sim-
ilarity (scaling) relationships where needed (EPA, 2018).
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Hourly surface data from the nearby Schiphol airport
weather station can be obtained from the Integrated Sur-
face Database (ISD; see Smith et al., 2011). Observations of
temperature, winds, cloud cover, relative humidity, pressure,
and precipitation are retrofitted to match the SAMSON (So-
lar and Meteorological Surface Observation Network) data
format (WebMet, 2019a), which is supported by AERMET.
Upper-air observations are taken from daily radiosonde ob-
servations in De Bilt (35 km from Amsterdam), archived in
the Integrated Global Radiosonde Archive (IGRA) (Durre et
al., 2006). Pressure, geopotential height, temperature, rela-
tive humidity, dew point temperature, and wind speed and
direction are converted to the TD6201 data format (WebMet,
2019b) for each reported level up to 300 hPa.

4 Calibrating the model

Using proxy data instead of real emission introduces the
problem of finding the emission factors which best relate the
activity data to their corresponding emissions. Instead of us-
ing theoretical values or values found in literature, effective
values are derived which best fit the hourly averaged NO2
observations of a network of N stations.

For a certain hour t , the emission of a source element i
belonging to source sector k can be written as

Eik(t)= αkPik(t), (5)

in which Pik represents the corresponding emission proxy.
The contribution of this source to the concentration at a re-
ceptor location j is

cijk(t)= fij (t)Eik(t), (6)

with fij describing the dispersion of a unit emission from i to
j , including the conversion from NOx to NO2 from the OLM.
Equation (6) is assumed to describe a linear relation between
emission and concentration, although strictly speaking the
variable NO2/NOx ratio introduces a weak nonlinearity. A
regression analysis is applied for a certain period, assuming
that for each t the total NO2 concentration cj at station j can
be described as a background field b and a local contribution
consisting of a linear combination of the dispersed fields of
K emission sectors:

cj (t)= b(t)+
∑K

k=1
ak
∑Sk

i
fij (t)Pik(t), (7)

where Sk represents the number of source elements for an
emission sector k. The second sum in this equation is calcu-
lated for every hour with the Gaussian dispersion model tak-
ing the meteorological conditions during t into account. Note
that both background concentrations b(t) and local concen-
trations cj (t) are taken from external data (see Sects. 3.2.3
and 2). Considering a period of T hours, Eq. (7) can be in-
terpreted as a matrix equation from which the emission fac-
tors ak can be solved using ordinary least squares. Given the

physical meaning of ak , only positive regression results are
allowed.

In this setup, the emissions are approximated by the three
sectors of highway traffic, urban traffic, and population den-
sity (K = 3). The resulting ak values do not necessarily rep-
resent real emission factors. Their values partly compensate
for unaccounted emission sectors and unrealistic modelling
(e.g. based on wrong traffic data or an incorrect chemical life-
time). In Retina ak is recalculated every 24 h, based on obser-
vations of the preceding week (T = 168). Doing so, the peri-
odic calibration adjusts itself to seasonal cycles and episodes
not captured by the climatologies (e.g. cold spells or holiday
periods). To avoid reducing the predictability of the regres-
sion model too much (ak dropping to zero), not all reference
stations are used for calibration but rather only stations clas-
sified as roadside or urban background. For the Amsterdam
network, N = 11. The residential emissions are represented
by the population density, which is a time-invariant proxy.
To allow for a diurnal cycle, the residential emission factor
is evaluated for 2 h bins. This brings the total number of fit-
ted emission factors to 14: 1 for highway traffic, 1 for urban
traffic, and 12 describing the daily residential emission cycle.

Figure 4 shows an example of the air quality simulation
after the emission factors have been determined. The stacked
colours in the time series of Fig. 4b show that the contribu-
tion from different emission sectors to local air pollution can
strongly vary from site to site.

Diurnal and seasonal analysis of calibration results

It is important to realize that the numerous modelling as-
sumptions prevent the calibration from realistically solving
the underdetermined inverse problem of finding the underly-
ing NOx emissions based on the observed NO2 concentra-
tions. Instead, it evaluates how much NOx must be injected
into the model to explain the observed spatial NO2 patterns
(unbiased with respect to the calibration locations). To study
the results of the regression analysis, a comparison was made
between a summer month (July 2016, mean temperature of
18.4 ◦C) and a winter month (January 2017, mean tempera-
ture of 1.6 ◦C). Figure 5 shows the diurnal emissions for a
0.2◦× 0.1◦ area, corresponding to the two grid cells of the
EDGAR inventory covering the city centre.

Ideally, the emissions would be around the val-
ues found in the EDGAR inventory (6.23 and 7.18×
10−10 kg NOx m−2 s−1 for summer and winter respectively)
and a corresponding ratio between residential and transport
emissions (8 % and 48 % for summer and winter respec-
tively). Unlike traffic, however, the diurnal cycle for the resi-
dential contribution is not prescribed but is shaped in the re-
gression analysis. The seasonal analysis shows that its fitted
diurnal cycle not only describes changing residential emis-
sions but also compensates for changing NO2/NOx ratios
over the day (not included in the OLM) due to changing pho-
tochemistry and temperature. In daylight, the destruction of

https://doi.org/10.5194/amt-13-4601-2020 Atmos. Meas. Tech., 13, 4601–4617, 2020



4608 B. Mijling: High-resolution mapping of urban air quality

Figure 4. (a) Dispersion maps of NO2 concentrations for each emission sector on 8 July 2016 at 09:00. The lower-right panel shows the
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km h−1. The grey dots
indicate an urban-background location, a street location, and a highway location. (b) Comparison of observed and simulated NO2 time series
(date format of day-month-year) for the urban-background location, the street location, and the highway location. The colours indicate the
simulated contribution of the three source sectors and the background.

NO2 by photolysis (NO2+hv→ NO+O3) is strong, reduc-
ing the NO2/NOx ratio. At low temperatures, the formation
of NO2 from NO (NO+O3→ NO2+O2) is slow, also re-
ducing the NO2/NOx ratio. Also, due to collinearity, part of
the traffic emissions will be explained by population density.
Therefore, the found emission factors (and the corresponding
sectoral emissions) should be considered as “effective” rather

than real, i.e. as factors which best describe the observations
under the given model assumptions.

5 Assimilation of observations

As the air quality network is spatially undersampling the ur-
ban area, the observations need to be combined with addi-
tional model information to preserve the fine local structures
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Figure 5. Diurnal emission cycles after calibration of emission factors in different seasons.

in air pollutant concentrations. The interpolation technique
of choice here is optimal interpolation (OI) (Daley, 1991),
having the desired property that the Bayesian approach al-
lows for assimilation of heterogeneous measurements with
different error bars. At an observation location the model
value is corrected towards the observation, with the innova-
tion depending on the balance between the observation er-
ror and the simulation error. The error covariances determine
how the simulation in the surroundings of this location is
adjusted. Note that OI is essentially the same assimilation
scheme as kriging-based approaches. The main advantage
here is that one has detailed manual control over the error
covariance matrix, which allows for a more comprehensive
specification of the area of influence for each contributing
observation. Outside the representativity range (i.e. the cor-
relation length) of the observations, the analysis relaxes to
the model values.

Consider a state vector x representing air pollutant con-
centrations on the (road-following) receptor mesh (n≈
40000). Define xb as the background, i.e. the model simu-
lation. Observation vector z contains m measurements, typi-
cally 10–100. Following the convention by Ide et al. (1997),
the OI algorithm can now be written as:

xa = xb+K
(
z−H

(
xb
))

(8)

K= PbHT
(

HPbHT
+R

)−1
(9)

Pa = (I−KH)Pb. (10)

Matrix R is the m×m observation error covariance matrix.
As all observations are independent (the measurement errors
are uncorrelated), R is a diagonal matrix with the measure-
ment variances on its diagonal.

Pb is the n× n model error covariance matrix, describing
how model errors are spatially correlated. The calculation of
Pb is not straightforward; in Sect. 5.1 an approximation is
derived.

Operator H is the forward model, which maps the model
state to the observed variables and locations. The matrix cal-
culations can be simplified by reserving the first m elements

of the state vector for the observation locations and the other
n−m elements for the road-following mesh. The Gaussian
dispersion model is evaluated “in situ” at the observation lo-
cations. Avoiding reprojection or interpolation means that
there are no representation errors associated with H . The
simulations at the observation locations zb can then be writ-
ten as a matrix multiplication

zb =H
(
xb
)
=Hxb, (11)

in which H is an m× n matrix for which its first m columns
form a unity matrix, while its remaining elements are 0.

Equation (8) describes the analysis xa , i.e. how the obser-
vations z are combined (assimilated) with the model xb. It
is a balance between the model covariance and the observa-
tion covariances, described by the gain matrix K in Eq. (9).
K determines how strong the analysis must incline towards
the observations or remain at the simulated values to obtain
the lowest analysis error variance, Pa in Eq. (10).

Note that Eqs. (8)–(10) are analogous to the first step in
Kalman filtering. The second step of the filter, propagating
the analysis to the next time step, cannot be made here as the
plume model solves a stationary state which is independent
of the initial air pollutant concentration field. Also note that
since an approximated model error covariance matrix will
be used, generally these equations do not lead to an optimal
analysis; hence this approach is more correctly referred to as
statistical interpolation.

Let vector c represent the observed NO2 mass concentra-
tions, as described in Sect. 2. The distribution of the air pol-
lutant concentrations resembles better the lognormal distri-
bution than the Gaussian distribution, as can be seen from
the Q–Q plots in Fig. 6. The analysis is done in log space
(zj = lncj ), stabilizing the results by reducing the impact of
less frequent measurements of high concentrations. Once re-
turning from the log domain, Eq. (8) can be rewritten as
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Figure 6. (a) Distribution of the NO2 observations at reference sta-
tion Oude Schans in July 2016 compared to a standard normal distri-
bution. (b) The logarithm of the observed values correspond better
to a Gaussian distribution, shown by the quantile value pairs being
almost on a straight line.

ca = exp
(
xa
)
= cbexp(K1z) ,

with innovation vector 1z= z− zb. (12)

By doing the analysis in the log domain the assimilation
updates correspond to multiplication instead of addition:
exp(K1z) represents the local multiplication factor with
which the simulated concentration cb is corrected. This
means that the shape of the model field (e.g. strong gradi-
ents found close to busy roads) is locally preserved. Note that
the error in zj corresponds to the relative error in cj : dz=
d(lnc)/dc = dc/c. The observation error covariance matrix
is therefore R= diag(σ 2

1 , σ
2
2 , . . ., σ

2
m), with σj being the rel-

ative error corresponding to observation j .

Modelling the model error covariance matrix

For an optimal result in the data assimilation a realistic rep-
resentation of the model covariance matrix Pb is essential.
The model covariances influence the spatial representativity
of the observations: when model errors correlate over larger
distances, the assimilated observation will change the analy-
sis over a longer range.

Tilloy et al. (2013) choose to model the covariances de-
pending on the road network. Error correlations are assumed
to be high on the same road or on connected roads. For back-
ground locations, the correlation decreases fast in the vicin-
ity of a road, while the error correlation between two back-
ground locations remains significant across a larger distance.
The error covariances are kept constant in time and taken in-
dependent of traffic conditions.

However, Pb changes from hour to hour, mainly because
varying meteorology changes the atmospheric-dispersion
properties. Here, the model error covariance is estimated for
each hour based on the spatial coherence of the simulated
concentration field. The covariance between two grid loca-
tions xi and xj can be expressed as their correlation ρ and

their standard deviations σ :

P bij = σiρ(xixj )σj . (13)

The model error σ can only be evaluated at locations of the
reference network using time series analysis. These model
errors are spatially interpolated to other grid locations using
IDW, analogous to Eqs. (2)–(3). The correlation of model er-
rors between different locations is parametrized with a down-
wind correlation length Ldw and a crosswind correlation
length Lcw. The extent of the correlation lengths reflects the
turbulent diffusion and transport of the Gaussian-dispersed
plumes for a specific hour.

From spatial analysis of the simulation data a heuristic
model is derived which describes the dependence of the cor-
relation on distance:

ρ(d)= exp
(
−
√
d
)
, (14)

with d being the scaled distance between xi and xj (ex-
pressed as xdw and xcw along the downwind and crosswind
axes),

d =

√(
xdw

Ldw

)2

+

(
xcw

Ldw

)2

, (15)

such that all points on an ellipse with semi-major axis Ldw
and semi-minor axis Lcw have the same correlations.

To fit the parameters Ldw and Lcw for a certain hour, 1000
sample locations are selected from the road-following mesh.
To represent both polluted and less polluted areas, the loca-
tions are selected such that their concentrations are homoge-
neously distributed over the value range, excluding the first
and last five percentiles. For this sample, correlation lengths
Ldw and Lcw are fitted using Eqs. (14) and (15).

Figure 7 shows the results of this analysis for two different
hours. For fields with low gradients (e.g. when traffic contri-
bution is low at night), large values ofL can occur. To prevent
assimilation instabilities, the fitted values of L are limited to
a maximum of 10 km. During the 2016 summer months, the
longest correlation lengths are found for fields with low gra-
dients. Average midnight values, when traffic contribution is
low, are about 8 km. Correlation lengths are shortest during
the morning rush hour (∼ 1 km), increasing to 3 km during
the late morning and afternoon. There is a wind dependency,
as stronger winds stretch the pollution plumes, increasing
correlation lengths. From the fit results the average ratio be-
tween Lcw and Ldw is found to be 68 %.

Once the covariance parameters are known, the covariance
matrix elements are calculated with Eq. (13). Note that for
the calculation of the gain matrix K there is no need to cal-
culate the full Pb matrix. Instead, PbHT is calculated, which
due to the structure of H this matrix product corresponds to
the first m columns of the n× n matrix Pb.
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Figure 7. Left panels show simulated NO2 concentration fields at 2 different hours. The middle panels show the spatial correlations along the
downwind and crosswind axes based on a sample of n= 1000. The right panels show the spatial correlations of the sample and the resulting
modelled spatial correlation model.

6 Validation of simulation and assimilation

To assess the data quality across the domain, a leave-one-out
analysis is performed at all locations of the reference network
for the period 1 June–31 August 2016. The results are sum-
marized in Table 3. Figure 8 illustrates two examples; plots
for all validation locations can be found in the Supplement.
For the observation-free simulation (i.e. the model forecast)
an average RMSE is found of 13.6 µg m−3 with a correla-
tion of 0.57. When assimilating observations, the average
RMSE drops to 10.4 µg m−3, while the correlation increases
to 0.78. Strong systematic underestimations of the simula-
tion (characterized by a large negative bias) are observed at
street locations NL49002 and NL49007 and industrial loca-
tions NL49546 and NL49704. These are most likely caused
by unrealistic assumptions of local emissions of either traf-
fic or industry. The strong positive bias found at NL49014,
located in a city park separated from the nearby main road
by a block of four-storey buildings, might be explained by an
incorrect simulation of air pollutants in the direct vicinity of
these buildings.

The CAMS regional ensemble analysis compares well
with the average of the urban-background stations; the very
low bias (−0.1 µg m−3) corresponds with the fact that data of
these stations are used in its analysis. (Note that the CAMS
values used here correspond to the Amsterdam grid cell, not
the 3× 3 minimum values used as background for the mod-
elling.) On the other hand, it shows strong underestimations
at street locations, as expected. It is here where the Retina
simulation outperforms the low-resolution results of CAMS.

From Table 3 it can be seen that the relative error in the
model forecast (defined as the ratio between the RMSE and
the mean of the observations) is around 58 % on average.
When assimilating, the error becomes dependent on the dis-
tance to the nearest observation locations. For sites having
the nearest assimilated observation within 2 km distance, the
average RMSE drops from 16.8 to 11.9 µg m−3, correspond-
ing to an average relative error of 39 %. For sites where the
nearest assimilated observation is further away than 2 km, the
average RMSE drops from 10.8 to 9.1 µg m−3, corresponding
to an average relative error of 53 %.
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Table 3. Validation results at reference locations on 1 June–31 August 2016.

ID Name Type na Mean obs. CAMS ensemble Model forecast Assimilated observations

RMSEb Bias Corr RMSEb Bias Corr RMSEb Bias Corr Distc

NL49002 Amsterdam –
Haarlemmerweg

Street 2145 42.2 31.4 −25.6 0.49 22.6 −14.3 0.55 18.6 −14.5 0.83 0.99

NL49007 Amsterdam –
Einsteinweg

Street 2145 38.1 29.2 −21.4 0.42 19.6 −6.9 0.57 16.5 −6.2 0.72 1.26

NL49012 Amsterdam –
Van Diemenstraat

Street 2145 29.1 20.2 −12.5 0.53 15.7 −2.7 0.57 9.7 −0.5 0.87 0.99

NL49017 Amsterdam –
Stadhouderskade

Street 2140 30.1 17.9 −13.5 0.45 14.3 1.9 0.50 9.0 −2.7 0.78 1.60

NL49020 Amsterdam –
Jan van
Galenstraat

Street 2131 34.8 24.0 −18.2 0.59 16.6 −4.7 0.58 11.1 −5.3 0.86 1.26

NL49003 Amsterdam –
Nieuwendammerdijk

Urban
backgr.

2145 16.6 8.6 0.1 0.60 10.5 2.0 0.47 7.5 0.8 0.71 3.28

NL49014 Amsterdam –
Vondelpark

Urban
backgr.

2115 17.3 9.0 −0.7 0.52 14.9 7.9 0.44 9.9 6.5 0.75 1.73

NL49019 Amsterdam –
Oude Schans

Urban
backgr.

2124 20.7 10.3 −4.1 0.59 13.8 5.8 0.50 8.7 4.6 0.81 1.60

NL49021 Amsterdam –
Kantershof

Urban
backgr.

2082 14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 4.4 0.73 7.33

NL49022 Amsterdam –
Sportpark
Ookmeer

Urban
backgr.

2124 14.3 8.4 2.4 0.65 9.2 3.4 0.66 8.0 3.7 0.80 3.89

NL49565 Oude Meer –
Aalsmeerderdijk

Rural 2127 17.3 9.1 −0.6 0.57 9.0 −2.4 0.59 8.0 −3.0 0.73 5.94

NL49703 Amsterdam –
Spaarnwoude

Rural 2125 13.0 8.7 3.7 0.61 8.1 2.1 0.60 7.5 2.4 0.71 4.47

NL49546 Zaanstad –
Hemkade

Industry 2145 22.9 14.3 −6.2 0.63 15.0 −8.1 0.66 13.0 −8.3 0.83 3.26

NL49704 Zaanstad –
Hoogtij

Industry 2120 19.6 12.7 −3.0 0.66 13.4 −6.0 0.72 12.1 −6.4 0.84 3.72

NL49561 Badhoevedorp –
Sloterweg

Undecided 2145 20.5 10.6 −3.9 0.64 10.8 −2.9 0.61 8.9 −4.2 0.79 3.96

Average of street locations 34.9 24.5 −18.2 0.50 17.8 −5.3 0.55 13.0 −5.8 0.81

Average of urban-background locations 16.8 8.8 −0.1 0.60 11.8 4.9 0.53 8.4 4.0 0.76

Average of all locations 23.4 14.8 −6.8 0.57 13.6 −1.3 0.57 10.4 −1.9 0.78

a Number of samples.
b In units of µg m−3.
c The distance to the nearest observation site (in km).

7 Added value of low-cost sensors

The previous analysis is purely based on high-quality refer-
ence measurements. In this section it is explored whether the
statistical-interpolation scheme can be used to derive useful
information from low-cost measurements, despite their lower
accuracy.

This is done by testing different assimilation configura-
tions during the Urban AirQ campaign, from 15 June to 15
August 2016 (see Sect. 2). The campaign targeted a central
area with 4 reference stations and 14 low-cost sensors (see

Fig. 10a). Validation is done for five different assimilation
scenarios (ASs):

– AS1 – assimilation of all reference measurements
(leave-one-out)

– AS2 – assimilation of measurements from three central
reference sites (leave-one-out)

– AS3 – assimilation of low-cost data only

– AS4 – assimilation of measurements from three central
reference sites (leave-one-out) and all low-cost data
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Figure 8. Validation of hourly time series for the period 1 June to 31 August 2016, for a well-performing street location (above) and a less
performing urban-background location (below). Statistics of the n data pairs are given in correlation (ρ), coefficient of determination (R2),
and RMSE. The right-hand panels compare the error distributions: the observation minus forecast (OmF) against the observation minus
analysis (OmA).

– AS5 – assimilation of all reference measurements
(leave-one-out) and all low-cost data.

The results are summarized in Fig. 9. As expected, results
deteriorate when the number of reference locations in the as-
similation is reduced from 14 (AS1) to 3 (AS2). The correla-
tion decreases at all four validation locations. At NL49012,
the RMSE increases significantly due to a positive jump in
the bias. The lower analysis with respect to the observa-
tions is due to the absence of assimilation of high values
at nearby street location NL49002, which enlarges the influ-
ence of lower observations found at urban-background loca-
tion NL49019. At NL49019, located in the middle of three
assimilation locations, the RMSE does not change signifi-
cantly. Apparently, the effect of assimilation of observations
farther than the surrounding locations is small.

When only observations of 14 low-cost sensors are as-
similated (AS3), instead of observations at 3 reference sites
(AS2), there is a notable improvement visible in bias and
RMSE at location NL49019. Here, the low-cost sensors are
relatively nearby, the closest being sensor SD04 at 120 m dis-
tance. At the other validation locations, the low-cost sensor
assimilation results in a similar RMSE (i.e. within 1 µg m−3)
and a comparable bias but a slightly lower correlation.

The results can be further improved if both reference
and low-cost sensor data are included (AS4 and AS5). At
NL49019, the RMSE drops to 5.1 µg m−3 (compared to
7.8 µg m−3 when no low-cost data are included) while the
correlation increases to 0.89. Again, there is no significant
difference between including the three surrounding reference

locations and including all reference locations. Also at street
location NL49017 and urban-background location NL49003,
the inclusion of low-cost sensor data improves RMSE and
correlation compared to assimilations with reference data
only (AS4 vs. AS2 and AS5 vs. AS1). At location NL49012,
the bias reduces considerably only when all reference data
are included in the assimilation (AS1 and AS5).

The different assimilation scenarios show that low-cost
sensor data assimilation improve the results locally, even in
absence of reference data. Generally, the best results are ob-
tained when both reference data and low-cost data are in-
cluded. Assimilation can reduce local model biases. How-
ever, unrealistically modelled covariances can lead locally to
the introduction of an additional bias.

Next, a monthly averaged concentration map of Ams-
terdam is constructed with all reference data and all low-
cost sensor data from the first half of the Urban AirQ (see
Fig. 10b). The addition of the low-cost data lowers the assim-
ilation results by several micrograms per cubic metre in the
undersampled area west of Oude Schans (NL49019), while
the NO2 increases by several micrograms per cubic metre
around the traffic arteries found south and east of this loca-
tion (Fig. 10c). A large fraction of traffic on these roads uses
the IJtunnel to cross the river. On a monthly basis, this tunnel
is used by approximately 1 million vehicles.

The second half of the Urban AirQ campaign coincides
with the start of the summer holiday period and the closure
of the IJtunnel for maintenance. Comparison of the NO2 con-
centration maps of both periods reveal interesting features
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Figure 9. Validation of the model forecast and five different assimilation scenarios at four central reference sites, for the period 15 June to
15 August 2016.

Figure 10. (a) Observation sites during the Urban AirQ campaign. (b) The 30 d average of NO2 concentrations in the centre of Amsterdam,
after assimilation of both reference measurements (black dots) and low-cost measurements (white dots). (c) Changes in spatial pattern when
low-cost measurements are included in the analysis. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. Distributed under a
Creative Commons BY-SA License.)

(Fig. 11). Based on averaged NO2 measurements at rural sta-
tions NL49565 and NL49703, the NO2 reduction due to me-
teorological variability is estimated to be 7 %. The overall
drop in NO2 concentrations in the central area, however, is
around 10 % due to reduced traffic during the summer break.
A notable exception is the historic city centre, where the NO2
reduction is only a few percent, probably related to the steady
economic activity driven by tourism. The strongest NO2 re-
ductions, around 15 %, are found around the access ways
of the IJtunnel. A few main roads (e.g. De Ruijterkade/Piet
Heinkade and Ceintuurbaan) show less NO2 reduction than

average, apparently due to redirected traffic avoiding the tun-
nel.

8 Discussion and conclusions

As air pollution gradients can be strong in the urban environ-
ment, it is essential to combine (sparse) measurements with
an air quality model when aiming at street-level resolution.
Retina is a practical approach to interpolating hourly urban-
air-quality measurements. The first step consists of a simula-
tion by a dispersion model which is driven by meteorologi-
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Figure 11. Reduction of NO2 during the holiday period. Largest
reduction of concentrations is found in the vicinity of access ways to
the IJtunnel, which was closed for maintenance. Concentrations in
the historic centre remain unchanged. (Basemap source: © Mapbox
© OpenStreetMap contributors 2019. Distributed under a Creative
Commons BY-SA License.)

cal data and proxies for traffic and residential emissions. The
model is daily calibrated with historic measurements. In the
second step, observations of different accuracy are assimi-
lated using a statistical-interpolation scheme.

Validation analysis confirms that the European CAMS en-
semble is a good predictor for hourly NO2 concentrations
found in the urban background. However, the CAMS data for
NO2 can be misleading when interpreted at the local scale, as
the predicted diurnal cycle often deviates substantially from
that observed at urban-air-quality stations. Local effects can
be better resolved when CAMS data are used for background
concentrations in a dispersion model which is driven by prox-
ies for traffic and residential emissions.

The Retina simulation setup shows that such a system can
be built from open software and open data. Applied to sum-
mer 2016 in Amsterdam, it reduces the relative error at street
locations from 70 % to 51 %, mainly by reducing the negative
bias from 18.2 to 5.3 µg m−3. At urban-background locations
the dispersion model often introduces a positive bias, espe-
cially when traffic sources are nearby.

The mapping results improve considerably with the sec-
ond Retina step when available observations are assimilated
by the statistical-interpolation scheme. When assimilating
measurements of the reference network, the relative error in
NO2 concentrations drops to 44 % on average. The local error
depends on the distance to the nearest observations: approx-
imately 39 % within 2 km of an observation site, increasing

to 53 % for larger distances. The typical correlation increases
from 0.6 to 0.8.

The Bayesian assimilation scheme also allows us to im-
prove the results by including low-cost sensor data, in order
to get improved localized information. However, biases must
be removed beforehand with careful calibration, as most
low-cost air quality sensors suffer from issues like cross-
sensitivity or signal drift (see e.g. Mijling et al., 2018). The
assimilation of low-cost sensor data from the Urban AirQ
campaign reveals a more detailed structure in concentration
patterns in an area which is undersampled by the official net-
work. The additional measurements correct for wrong as-
sumptions in traffic emissions used in the a priori interpo-
lation and give better insight into how traffic rerouting (for
instance due to closure of an arterial road) affects local air
quality.

Retina has been built on open data to facilitate a flexi-
ble application to other cities. The meteorology needed for
AERMOD is taken from global data sets of ISD and IGRA.
Road network information can also be obtained globally
from OpenStreetMap. Traffic data tend to be hard to obtain.
When no local data are available on diurnal and weekly traf-
fic flow its patterns should be estimated. In the absence of lo-
cal census data, population density data can be taken from the
Global Human Settlement database (Schiavina et al., 2019),
which has global coverage on a 250 m resolution. For ap-
plication within Europe, the necessary background pollutant
concentrations can be obtained from CAMS. For applications
outside Europe other data sets have to be found.

In general, degraded input data and imperfections in the
dispersion modelling will deteriorate the system’s capabil-
ity to resolve local structures; it will lower the effective spa-
tial resolution of the simulations. In its extreme it will only
describe the blurry urban-background pollution contribution
added to the rural background. Oppositely, with improved in-
put data and atmospheric modelling, the effective resolution
will improve, reducing local biases. This is the focus of fu-
ture research.

Significant inaccuracies due to local emissions which are
not described adequately by the proxies (e.g. from industry,
port, and airport activity) can be reduced by including these
sources explicitly in the dispersion modelling. Small-scale
structures provoked by the local built-up area will be bet-
ter described by introducing the street canyon effect. The
model will also benefit from a more detailed traffic emis-
sion model, based on more counting locations and aggre-
gated from shorter time intervals. Ideally, such an emission
model takes local differences in fleet composition also into
account. Finally, simulations will gain accuracy with a more
realistic NOx chemistry, concerning the NOx chemical life-
time (influencing the plume length) and the NO2/NOx ratio.

Overall, the error of the assimilation results depends on
the accuracy of the air quality model, the number of assim-
ilated observations, the quality of observations, and the dis-
tance to the observation location. A reasonable approxima-
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tion of the model covariance matrix is found by assuming the
model covariance to be isotropic and by fitting correlation
lengths along the downwind and crosswind axes for every
hour. Finding a more realistic description of the model co-
variance matrix will better suppress the introduction of bias
by the assimilation and will be subject to future research.

For near-real-time monitoring and forecasting of air qual-
ity the CAMS ensemble analysis must be changed for the
ensemble forecast. Instead of observation-based meteorol-
ogy one should use data from local or global numerical
weather prediction models, e.g. from the National Centers
for Environmental Prediction (the Global Forecast System,
GFS; open data) or the European Centre for Medium-Range
Weather Forecasts (ECMWF; not open data).

Apart from assessment of historic data such as in this
study, Retina has been applied successfully for near-real-time
monitoring and forecasting of NO2 in the cities of Amster-
dam, Barcelona, and Madrid. Future work includes the im-
plementation of other cities inside and outside of Europe and
the application of Retina to other pollutants such as particu-
late matter.
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