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Abstract. The atmospheric products of the Multi-Angle Im-
plementation of Atmospheric Correction (MAIAC) algo-
rithm include column water vapor (CWV) at a 1 km res-
olution, derived from daily overpasses of NASA’s Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instru-
ments aboard the Aqua and Terra satellites. We have re-
cently shown that machine learning using extreme gradi-
ent boosting (XGBoost) can improve the estimation of MA-
IAC aerosol optical depth (AOD). Although MAIAC CWV
is generally well validated (Pearson’s R > 0.97 versus CWV
from AERONET sun photometers), it has not yet been as-
sessed whether machine-learning approaches can further im-
prove CWV. Using a novel spatiotemporal cross-validation
approach to avoid overfitting, our XGBoost model, with nine
features derived from land use terms, date, and ancillary vari-
ables from the MAIAC retrieval, quantifies and can correct
a substantial portion of measurement error relative to collo-
cated measurements at AERONET sites (26.9 % and 16.5 %
decrease in root mean square error (RMSE) for Terra and
Aqua datasets, respectively) in the Northeastern USA, 2000–
2015. We use machine-learning interpretation tools to illus-
trate complex patterns of measurement error and describe
a positive bias in MAIAC Terra CWV worsening in recent
summertime conditions. We validate our predictive model
on MAIAC CWV estimates at independent stations from the
SuomiNet GPS network where our corrections decrease the

RMSE by 19.7 % and 9.5 % for Terra and Aqua MAIAC
CWV. Empirically correcting for measurement error with
machine-learning algorithms is a postprocessing opportunity
to improve satellite-derived CWV data for Earth science and
remote sensing applications.

1 Introduction

Water vapor represents a small but environmentally signifi-
cant constituent of the atmosphere. The integrated water va-
por from ground to space is defined as the column water va-
por (CWV), in units of centimeters (i.e. precipitable water
vapor; Gao and Goetz, 1990). CWV has important applica-
tions in many fields, such as atmospheric correction of re-
mote sensing images, Earth energy balance and global cli-
mate change, land surface temperature retrieval in thermal
remote sensing, and astronomy. Thus, high resolution CWV
values with global coverage have multiple uses in Earth sci-
ence and remote sensing. CWV has been measured by mul-
tiple technologies and monitoring networks, including sun
photometers, GPS sensors (e.g. SuomiNet), Aerosol Robotic
Network (AERONET) sun photometers, and satellite remote
sensing. The AERONET sun photometer network measures
CWV at approximately 400 stations worldwide, in channels
centered at 940 nm and provided to the user in Level 2, which
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is the highest data-quality level provided by AERONET
(Pérez-Ramírez et al., 2014). The AERONET CWV data
have been well validated with the U.S. Department of
Energy Atmospheric Radiation Measurement (ARM) pro-
gram radiosonde observations and other ground-based re-
trieval techniques, such as microwave radiometry (MWR)
and SuomiNet GPS receivers, and do not observe any de-
pendence of biases with the zenith angle (Pérez-Ramírez et
al., 2014). AERONET CWV has been used in studies that
examine aerosol optical, microphysical, and radiative prop-
erties in Africa (Adesina et al., 2014; Boiyo et al., 2019;
Kumar et al., 2013), the Brazilian tropics (Schafer et al.,
2008), and Beijing and Kanpur (Wang et al., 2011). Global
satellite-borne CWV is available at a high resolution (1 km),
from the Multi-Angle Implementation of Atmospheric Cor-
rection (MAIAC) algorithm derived from daily overpasses
of NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments aboard the Aqua and Terra satellites.
The MAIAC CWV is computed using MODIS near-infrared
(NIR) channels centered at 940 nm. This method applies two
ratios of channels to compute the water vapor transmittance
and then compute the amount of water vapor using lookup
tables (Lyapustin et al., 2014). The MAIAC CWV algo-
rithm was validated against ground measurements of CWV
from 265 AERONET stations worldwide, with a relatively
strong association (Pearson’s R > 0.95; root mean squared
error (RMSE) < 0.25 cm; average accuracy of ± 15 %; Mar-
tins et al., 2019). These datasets were collocated by averag-
ing MAIAC values within 9 pixels× 9 pixels and AERONET
values ±30 min of the satellite overpass in cloud-free con-
ditions. A significant upward trend (p < 0.05) for MAIAC
TERRA was found over most regions, although this was not
significant over Northeastern USA. Globally, the highest av-
erage correlation between MAIAC CWV retrievals from both
Aqua and Terra with AERONET CWV has been shown in
Asia and both the Northern and Southern regions of the USA.

In spite of the strong performance of MAIAC CWV in
multiple locations, comparing it with collocated AERONET
CWV, there may be opportunities to characterize and cor-
rect complex interactions and challenging conditions that in-
crease satellite retrieval error. However, it has not yet been
assessed whether machine-learning approaches can improve
the estimation of satellite-borne CWV. We have recently
demonstrated that machine learning using extreme gradient
boosting (XGBoost; Chen and Guestrin, 2016) can improve
the estimation of MAIAC aerosol optical depth (AOD) pa-
rameters over AERONET stations (43 % decrease in cross-
validated RMSE; Just et al., 2018). For an introduction to
gradient-boosted regression trees, please see the work of
Elith et al. (2008). XGBoost involves fitting a large number
of tree-based models. Each subsequent tree is fit to the error
from the previous trees, and the predictions of all the trees
are added together. Each tree’s prediction is multiplied by
a shrinkage factor (or “learning rate”) η, a number between
0 and 1. By adding successive trees, XGBoost descends the

gradient of the loss function. The component trees use a re-
cursive binary partitioning of the predictors that accommo-
dates varying types and scales of predictor variables and is
robust to outliers (Elith et al., 2008). An advantage of flexible
algorithmic machine-learning approaches such as XGBoost
is that they can model complex phenomena (Chen and He,
2015), including interactions of multiple features (e.g., re-
trieval angles, seasonality, and surface characteristics). The
resulting prediction model can be used as an algorithm to
reduce the retrieval error. Machine-learning tools for model
interpretation can also help explain the contributions of these
features to retrieval error and guide feature selection to build
parsimonious models.

While the satellite data record continues to grow, the
ground monitoring networks that can be used for validation
and algorithmic measurement error correction of satellite re-
trieval products are still sparse. Collocated ground-satellite
datasets may thus have important nonindependent spatiotem-
poral structures if they rely on observations that occur in only
a few locations. Flexible machine-learning models would
overfit to the characteristics of these particular stations or
the days when AERONET data are available if cross valida-
tion assumed independence of observations. While machine-
learning applications in aerosol research have begun to adopt
group K-fold cross validation for assessing model fit across
fixed monitoring networks (Di et al., 2016), we propose
a novel cross-validation approach taking into consideration
data structure due to both fixed sites and the correlation of
observations from the same day.

The goals of this work are to (1) evaluate whether
machine-learning gradient boosting models can improve
satellite-based CWV retrievals and (2) understand the con-
tributions of different features as well as spatial and tempo-
ral structures of the ground station measurements to predict
error in the estimated CWV. The data and machine-learning
methods are described in Sect. 2, followed by a discussion of
the results in Sects. 3 and 4.

2 Description of the data

In order to assess the agreement of the MAIAC estimates of
CWV with those from AERONET, collocated datasets were
built using MAIAC data (Lyapustin and Wang, 2016) where
AOD was available (representing clear-sky conditions) from
both Terra and Aqua (separately) collocated to the nearest
1km×1km grid centroid and the closest observation in time
(no more than 60 min) with cloud-screened (version 2, Level
2.0; Smirnov et al., 2000; Aerosol Robotic Network, 2019)
measurements of CWV from the AERONET network of sun
photometers over Northeastern USA (including 13 states and
the District of Columbia from Maine to Virginia). The study
period included 10 247 observations (from 75 AERONET
stations) for Terra (2000–2015) and 8536 observations (from
71 stations) for Aqua (2002–2015). All analyses were per-
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Figure 1. Study region in Northeastern and Mid-Atlantic USA with 75 unique AERONET stations showing the number of days with obser-
vations from the collocated Terra dataset.

formed for Terra and Aqua datasets separately. AERONET
stations in the northeast are largely urban and coastal (Fig. 1).
We defined our target modeling parameter as the difference
between MAIAC and AERONET CWV (1CWV=MAIAC
CWV – AERONET CWV) such that any variation from zero
indicated a component of measurement error that we sought
to explain.

After exploratory scatterplots of 1CWV versus time
showed a temporal cluster of large outliers coming from a
single AERONET station (City College of New York), ob-
servations from this site between 17 June 2007 and 1 Jan-
uary 2009 were dropped from further analysis, including
99 observations collocated for Terra and 95 observations for
Aqua datasets. This particular period, which was flanked on
both sides with months without values at that station, showed
a clear deviation from the monitor’s typical trend across the
remainder of the study period.

The date range for the collocated Terra dataset was from
25 February 2000 to 27 December 2015, including observa-
tions from 3024 unique days (52 % of days during this inter-
val). The date range for the collocated Aqua dataset was from
4 July 2002 to 28 December 2015, including observations
from 2627 unique days (53 % of days during this interval).

3 Statistical methods

We examined the use of XGBoost (Chen and Guestrin, 2016)
for improving satellite-based MAIAC CWV retrievals and
decreasing estimation error, as this method had previously
outperformed two related supervised learning approaches us-
ing regression trees, namely gradient boosting and random
forests, in a similar application (Just et al., 2018). The XG-
Boost algorithm is a popular implementation of boosted re-
gression trees (Friedman, 2001). For an introduction to re-
gression trees, see Strobl et al. (2009). A regression tree is a
model that specifies recursive binary splits of predictors and
assigns a constant value to all cases that end up in the same
terminal node (namely, their mean on the dependent vari-
able). The algorithm chooses the splits across all predictors
that minimize the variance of the residuals. The maximum
number of splits within each tree (also known as the maxi-
mum depth) can be set as a hyperparameter. A set of multi-
ple trees can be used for prediction by combining the outputs
of the individual trees for each case. Such a set of trees can
accommodate complex relationships including nonlinearities
and interactions while being robust to outliers. Boosting is
a method of fitting a series of models iteratively, with each
model fit on the residuals of the previous models. While each
tree may individually perform relatively poorly at predicting
the outcome (and thus is known as a “weak learner”), the
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combination of many trees can collectively describe complex
relationships and account for the impact of many predictors.
Further, because boosting includes sequentially learning by
combining many iteratively fit trees that address the error in
previous trees, this technique performs well, achieving low
testing error. The XGBoost package is a scalable gradient
boosting implementation with additional features including
penalties to avoid overfitting and optimized computational
speed (Chen and Guestrin, 2016).

We end up with more parsimonious XGBoost models,
i.e., fewer trees, by adopting the concept of “dropout” from
deep learning, in which individual learners are randomly
dropped during training. Specifically, we used Dropouts meet
Multiple Additive Regression Trees (DART; Rashmi and
Gilad-Bachrach, 2015). Dropping trees helps to avoid the di-
minishing contributions and overspecialization of later trees
in XGBoost. This is particularly important in our application
given the low number of AERONET stations and relatively
small size of the collocated datasets for machine-learning al-
gorithms. XGBoost has several hyperparameters related to
the desired size and complexity of the model that need to
be set in training for each dataset. We had a priori selected
to tune our XGBoost models with DART using six hyperpa-
rameters (Supplement Table S2), while using default values
for other potential hyperparameters based on previous mod-
eling experience. Our tuning and evaluation approach used
two-level (nested) cross validation. Within each training fold
for our outer cross validation, we further randomly split the
training data in half and performed a 2-fold cross validation
to compare the performance of XGBoost models using 50
random sets of potential hyperparameters selected with Latin
hypercube sampling (Stein, 1987) to be well spaced across
the range of potential hyperparameter values. While this is
more similar to a random search than a grid search, it is ex-
pected to more efficiently find well-performing sets of hy-
perparameters than random search does, because it decreases
the likelihood of checking combinations that are trivially dif-
ferent or leaving unexplored regions in the six-dimensional
space, which has too many combinations to effectively cover
with a grid search. We selected the set of hyperparameters
that minimized the RMSE within the withheld portion of the
training data before refitting with all training data.

Prior to feature selection, initial analyses included 25 can-
didate features such as MAIAC variables including an un-
certainty parameter related to blue band surface reflectance,
relative azimuth angle, and AOD; time trend (integer date);
elevation (United States Geological Survey, 2018); several
land use terms from the National Land Cover Database
2011 (Multi-Resolution Land Cover Consortium, 2017) ag-
gregated to the proportions within 1km× 1km grid cells as
well as the proportion of water within 5–15 km buffers; and
distance to major water bodies (the Great Lakes and the At-
lantic Ocean). Feature engineering calculated candidate fea-
tures based on spatial patterns in nonmissing MAIAC data
including the number of contiguous nonmissing grid cells

(clump size) and the number of nonmissing observations in
focal windows of side lengths from 30 to 510 km. Details
on the data sources and feature engineering for all candidate
features are included in the Supplement. No external meteo-
rology or assimilated data were included.

The contributions of each feature to cross-validated pre-
dictions were estimated from Shapley Additive Explanations
(SHAP) values (Lundberg et al., 2018). These SHAP val-
ues form an additive feature attribution measure to interpret
complex machine-learning models. SHAP values estimate
the contributions of each feature to each individual predic-
tion (for1CWV, this is in units of centimeters). Specifically,
the SHAP value for a given predictor and a given observa-
tion is the difference in the output, i.e., a predicted 1CWV,
depending on if the model is fit with or without the predic-
tor. For each observation, the sum of all SHAP values, plus
the bias term (the overall mean of 1CWV), equals the pre-
diction from the XGBoost model. The resulting matrix of
SHAP values can be summarized to understand how a predic-
tor contributes to the predictions. The mean absolute SHAP
value across all observations summarizes the global feature
importance, and more local model interpretation is possible
through exploratory data visualizations such as scatterplots
of individual predictors versus their SHAP values.

Because a more parsimonious set of features can ease fu-
ture efforts to build large spatiotemporal datasets for algorith-
mic correction, an initial feature selection approach was per-
formed prior to evaluating overall model performance. Fea-
ture selection was performed in a randomly selected 20 %
subset of the data to avoid overfitting prior to later model
evaluation steps. Within this subset, we evaluated both the
mean absolute SHAP values as a measure of global feature
importance, within a full model with all 25 candidate fea-
tures, and a recursive stepwise procedure. We adopted 5-fold
cross validation split by MAIAC stations to alleviate overfit-
ting to spatial features of the relatively low number of unique
stations. In each round of cross validation, backwards fea-
ture selection was applied to rank and remove the features
by increasing importance. Starting with the XGBoost model
containing all 25 candidate features, the overall RMSE was
calculated from the out-of-sample predictions after cross val-
idation. Then the feature importance was ranked by mean ab-
solute SHAP values for all the features in the model from low
to high. This step was repeated removing the least important
feature at each step. After plotting the overall RMSE from the
cross-validated predictions against the number of features,
we selected the model with the lowest RMSE for Aqua and
Terra separately. We then pooled the set of top-ranked fea-
tures from both satellites to facilitate comparisons between
the Aqua and Terra models examined in the full dataset.

Using the selected features, grouped 10-by-10-fold cross
validation randomly splitting the data by both station and day
was performed on the whole dataset. In each training itera-
tion, all observations from 1 fold of stations and from 1 fold
of days were withheld with the remaining dataset contain-
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Figure 2. Example of training (blue) and testing (brown) datasets of 1 fold in 10-by-10-fold cross validation. Prediction models are only
evaluated on days and at stations that were not used in model training to avoid overfitting.

ing roughly 0.9× 0.9= 81% of the training data (a similar
share of training data to that in 5-fold cross validation). How-
ever, for each combination of withheld data, predictions for
evaluating model performance and the corresponding SHAP
values were only made at the intersection of withheld days
and monitors (∼ 1 % of the data). Thus predictions for each
observation were made on a model trained without any ob-
servations from the same day or station (see Fig. 2). For com-
parison, we also evaluated model performance using grouped
5-fold cross validation separately splitting the data by station
or by day. Hyperparameter tuning of the XGBoost model was
performed separately in each round of cross validation.

While we used an aggregated measure of the mean abso-
lute SHAP value for each feature as a measure of feature im-
portance in our variable selection, we also plotted the out-of-
sample SHAP in order to aid model interpretability. In par-
ticular, we plotted frequencies of SHAP values by variable
and in bivariate scatterplots versus observed values.

Finally, we conducted an additional external validation
of our final model by comparing both the original MA-
IAC CWV and our corrected CWV with an independent
dataset of CWV measured by GPS-based stations in the
SuomiNet dataset (Ware et al., 2000), within our Northeast-
ern USA study region – many of which are quite distant from
the AERONET sites. All SuomiNet stations use precision
survey-quality dual-frequency GPS receivers and antennas.
The water-lag-derived CWV measurements from GPS-based
stations are generally considered to have excellent precision
(5 %–10 %), exceeding those from sun photometers (Pérez-
Ramírez et al., 2014).

4 Results

4.1 Descriptive analysis of CWV and 1CWV

The overall agreement of the original MAIAC CWV and
AERONET CWV was quite good with a Pearson’s correla-
tion of 0.976 and 0.984 for Terra and Aqua, respectively, in

agreement with the global MAIAC CWV validation (Martins
et al., 2019). However, outlying values and a positive bias in
Terra-derived MAIAC CWV particularly indicate a potential
for improvement in MAIAC CWV relative to AERONET.
The target parameter of 1CWV (based on the difference be-
tween MAIAC and AERONET) was approximately symmet-
rically distributed and had a mean of 0.043 and −0.054 cm,
and a standard deviation of 0.25 and 0.18 cm for the collo-
cated Terra and Aqua datasets, respectively (Table 1). De-
scriptive scatterplots of the1CWV versus individual predic-
tors showed some clear patterns prior to modeling (Figs. 3
and S1 in the Supplement). For example, there is a clear
seasonal pattern with a larger SD of 1CWV in the sum-
mer (0.32 and 0.25 cm for Terra and Aqua) when the SD
of AERONET CWV is also highest (0.90 cm). This seasonal
pattern and the positive bias for Terra (MAIAC CWV overes-
timates AERONET CWV) is seen to grow larger in more re-
cent years (e.g., 2010–2015). This trend is related to the trend
in MODIS Terra calibration, as previously reported (Martins
et al., 2017).

4.2 Feature selection and model performance

Variable selection using feature importance from SHAP was
run in a 20 % subset for both Terra and Aqua datasets. Using
both global feature importance from a full model and a step-
wise backward selection calculating RMSE at each step after
ranking variable importance by mean absolute SHAP, we se-
lected six features for the Terra model and selected seven fea-
tures for the Aqua model. The four features shared by both
models were time trend (date represented as an integer), MA-
IAC CWV, blue band uncertainty, and MAIAC AOD. The
other variables selected for Terra were elevation and distance
to major water body and for Aqua were the proportion of for-
est in a 1 km× 1 km square, relative azimuth angle, and the
proportion of developed area in a 1 km× 1 km square. Pool-
ing these features from both satellites brought the original
set of 25 features down to a more parsimonious set of 9 with
little loss of model performance (results not shown).
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Table 1. Descriptive statistics of MAIAC, AERONET CWV, and the 1CWV for Terra and Aqua by season.

Terra Spring Summer Fall Winter Total
mean±SD (cm) (N = 2265) (N = 3150) (N = 3101) (N = 1632) (N = 10148)

MAIAC CWV 1.18± 0.82 2.71± 0.94 1.39± 0.82 0.56± 0.30 1.62± 1.12
AERONET CWV 1.20± 0.80 2.54± 0.90 1.40± 0.79 0.60± 0.34 1.58± 1.04
1CWV −0.014± 0.192 0.172± 0.322 −0.009± 0.202 −0.032± 0.095 0.043± 0.249

Aqua Spring Summer Fall Winter Total
mean±SD (cm) (N = 1921) (N = 2276) (N = 2715) (N = 1529) (N = 8441)

MAIAC CWV 1.12± 0.74 2.49± 0.84 1.33± 0.73 0.55± 0.27 1.45± 0.98
AERONET CWV 1.16± 0.78 2.52± 0.90 1.42± 0.78 0.60± 0.33 1.51± 1.01
1CWV −0.049± 0.150 −0.027± 0.253 −0.086± 0.159 −0.047± 0.101 −0.054± 0.181

Note that means and standard deviations (units of centimeters) are shown for 3-month seasons (spring: MAM; summer: JJA; fall: SON; winter: DJF)
across all the years and the total.

Figure 3. Scatterplots of 1CWV versus time trend and MAIAC CWV in Terra (a) and Aqua (b). Observations in the summer months
(June–August) are colored in blue.

Using the reduced feature set, we implemented the cross
validation in the full dataset to evaluate model perfor-
mance. In the collocated Terra dataset, the predicted 1CWV
evaluated with the grouped monitor-by-day cross valida-
tion (10× 10-fold) explained 45.0 % (R2) of the variance
in 1CWV and reduced the RMSE from 0.252 cm (the root
mean squared difference between MAIAC and AERONET
CWV) to 0.184 cm, a 26.9 % decrease in RMSE. In the col-
located Aqua dataset, the predicted1CWV explained 24.1 %

of the variance in 1CWV (R2) and reduced the RMSE from
0.189 to 0.158 cm, a 16.5 % decrease in RMSE.

The evaluation of model performance was substantively
different depending on how the cross-validation strategy re-
flected the data structure. Ignoring the nonindependence of
the training data by site and withholding unique days for
grouped 5-fold cross validation (training on 80 % of the
data), RMSE for Terra was 0.146 and for Aqua was 0.145
(Table 2), a much better performance (smaller RMSE) that
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Table 2. Predictive performance in the testing dataset comparing three cross-validation strategies.

Terra dataset Aqua dataset

Overall variation SD 0.25 cm SD 0.19 cm
Split by day (5-fold) RMSE 0.15 (57.8 %), R2

= 65.6 % RMSE 0.14 (76.3 %), R2
= 36.5 %

Split by station (5-fold) RMSE 0.18 (71.4 %), R2
= 47.5 % RMSE 0.16 (83.8 %), R2

= 23.5 %
Split by station and day (10× 10-fold) RMSE 0.18 (73.1 %), R2

= 45.0 % RMSE 0.16 (83.5 %), R2
= 24.1 %

Note that the relative percentage of the RMSE compared to overall variation (SD) is listed beside the RMSE.

Figure 4. The difference between MAIAC and AERONET CWV values (1CWV) was reduced in cross validation of collocated (a) Terra
and (b) Aqua data. The corrected values of 1CWV are shown with blue points; segments connect back to the measurement error from the
raw 1CWV. The dotted lines show 1 standard deviation from the mean (the dashed line near zero).

indicates overfitting to the particular sites in the training
dataset. Similarly, the RMSE from cross validation split by
station (and not by day) was also slightly lower than the
RMSE from station-by-day cross validation, suggesting a
much smaller degree of overfitting also to the specific dates
in the training set.

After applying the XGBoost model, the measurement er-
ror of 1CWV was corrected to be closer to zero, particu-
larly for the largest-magnitude 1CWV values. For Terra and
Aqua, respectively, 87 % and 93 % of the 1CWV observa-
tions beyond 1 standard deviation (outside of the dotted lines
in Fig. 4, making up 24 % of the collocated observations
in Terra and 19 % in Aqua) had lower measurement error
(|1CWV|) by an average magnitude of 41 % smaller in Terra
and 53 % smaller in Aqua after XGBoost correction.

We describe the variation in hyperparameters from XG-
Boost models across the 100 runs of the site-by-day 10×10-
fold cross validation. Greater variation in the selected hy-
perparameter values across folds with very similar training
datasets may indicate a lower impact on model performance
(Table S2).

4.3 Variable importance assessment

Although the final model had already been restricted to in-
clude only the top variables from our variable selection ap-
proach, we further interpreted variable importance and the
contribution of these variables with SHAP values estimated
in the grouped cross validation (at monitors and on days not
included in the training data for each fold). SHAP values de-
scribe the additive contribution to the prediction from every
variable for each observation.

The SHAP overview plot illustrated different patterns of
feature importance in Terra and Aqua (Fig. 5). The rank of
the mean absolute SHAP values suggested that the top key
contributing variables to predicting the magnitude of1CWV
in the Terra dataset were time trend (even though all of the
data in the testing set were from days not included in the
training data, there was still clear seasonality when plotting
the SHAP estimates), the magnitude of the MAIAC CWV
itself, the blue band uncertainty estimate from MAIAC, the
MAIAC AOD, the distance to the nearest major water body,
and the elevation. For the Aqua dataset, the blue band un-
certainty ranked at the top, followed by the MAIAC AOD,
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Figure 5. Sina plots show the distribution of feature contributions to predictions of CWV measurement error using SHAP values of each
feature for every observation. The x axis is set between −1 and 1 to facilitate comparison across subpanels showing models for Terra and
Aqua datasets. Features were ordered on the y axis by their mean absolute SHAP values over all observations (bold on the right of the
variable names, units are the same as 1CWV predictions in centimeters). The color is scaled to the feature value (purple high, yellow low).

Table 3. Hyperparameters for the Fully Trained XGBoost Model.

Selected values

eta 0.44
max_depth 9
gamma 0.099
lambda 38
alpha 0.0023
rate_drop 0
one_drop (fixed a priori) True
nrounds (fixed a priori) 100

the MAIAC CWV, the proportion of developed area in a
1 km× 1 km square, time trend, the proportion of forest cov-
erage in a 1 km× 1 km square, and the relative azimuth an-
gle. The SHAP values ranged from −0.52 to 0.82 cm for
Aqua and from −0.55 to 0.30 cm for Terra, aligning with the
higher overall error in the Terra dataset.

For Terra, predicted1CWV values became larger in more
recent years (Fig. 6a). This suggests the observed positive
bias has been getting stronger since ∼ 2010. This trend was
not observed in Aqua, for which the time trend was a much
weaker predictor. Similarly, a higher MAIAC CWV was also
more likely to generate higher 1CWV in Terra (a positive
bias), and the influence was becoming stronger along the
time trend (Fig. 6b). In contrast, in Aqua the model sug-

gested that MAIAC CWV conservatively underestimated ex-
treme values in both seasons, although the overall impact was
weaker (SHAP values closer to zero) and more stationary
across time compared to Terra.

The impact of the rest of the features was similar for both
Terra and Aqua (Fig. 7). Some outlying large AOD values
had negative effects on the 1CWV. Larger blue band uncer-
tainty, higher elevation, or a relative azimuth angle around
45 and 145◦ increased the error. The SHAP estimates of
global feature importance and individual datum contributions
clearly diagnose two main factors: (1) changing calibration
of MODIS Terra NIR bands at 940 nm over time, resulting
in a trend of CWV bias from Terra, and (2) growing under-
estimation of CWV with increase in AOD. MAIAC CWV
retrieval neglects the effect of aerosol scattering, which in-
creases the measured radiances and the band ratios, resulting
in underestimation of CWV.

4.4 Prediction with new data

To predict into a new dataset, we refit our XGBoost mod-
els by again running our nested random hyperparameter tun-
ing using DART tree dropout, this time on the entire training
dataset. For both models fit to the Aqua and Terra datasets,
the optimal set of hyperparameters (selected from the same
set of 50 candidates) was the same, including both L1 and
L2 regularization (alpha and lambda), the deepest trees we
permitted (maximum depth of 9), and no more dropout (rate
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Figure 6. SHAP values showing the contribution of the time trend to predictions for Terra (a) and Aqua (b). The color represents the MAIAC
CWV for each observation (purple high, yellow low). The LOESS (locally estimated scatterplot smoothing) curve is overlaid in red. Terra (c)
and Aqua (d) SHAP values showing the contribution of the MAIAC CWV to predictions of CWV measurement error shown across the time
period of the study. Note distinct y-axis scales for Terra and Aqua datasets. The color represents the MAIAC CWV for each observation
(purple high, yellow low).

drop of 0) than the minimal random selection of one tree per
model that had been fixed a priori (with the one drop option;
Table 3).

The resulting trained algorithm can generate ∼ 3 million
MAIAC CWV measurement error estimates per minute (on
four cores) in new locations using the XGBoost predict func-
tion, and these can be subtracted from the MAIAC CWV
value to generate a corrected CWV estimate for downstream
use.

4.5 Validation with SuomiNet GPS CWV

As an external validation, we applied our XGBoost models to
MAIAC data in 1km× 1km grid cells containing SuomiNet
GPS stations (COSMIC Program Office, 2018). We removed

about 20 observations (0.1 % of the merged datasets) with
outlying CWV values above 9 cm which were almost all from
SuomiNet site P776 in year 2011. The resulting validation
dataset with collocated Terra or Aqua MAIAC CWV and
SuomiNet CWV included 17 469 and 16 466 observations,
respectively, from 57 SuomiNet stations (from years 2005 to
2015). SuomiNet CWV in the Terra collocated dataset had a
mean of 1.57± 1.04 cm, while the Aqua collocated dataset
had a mean of 1.50± 1.01 cm. The SuomiNet CWV had a
more right-skewed distribution than MAIAC CWV.

After applying our correction, the MAIAC CWV had a
lower RMSE versus SuomiNet CWV compared with the raw
MAIAC CWV in 53 out of 57 sites for Terra and 56 out of
57 sites for Aqua. The RMSE for agreement with SuomiNet
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Figure 7. Descriptive scatterplots of the features versus their SHAP scores approximating their contribution to the predictions for 1CWV
(cm) on the y axis. Subplots are ordered by overall variable importance (mean absolute SHAP score; see Fig. 5) by satellite.

CWV in the full validation dataset improved by 19.7 % from
0.28 to 0.22 cm for Terra and by 9.5 % from 0.25 to 0.23 cm
for Aqua. The Pearson’s correlations of MAIAC CWV with
SuomiNet CWV were improved by 1 percentage point from
0.969 to 0.978 for the Terra collocated dataset and by 0.4 per-
centage points from 0.974 to 0.978 for the Aqua dataset. Plot-
ting the RMSE after correction at SuomiNet locations (grid
cells where we make predictions), we observed higher RMSE
(worse performance) near Lake Ontario and on the Atlantic
coastline (Fig. 8a). Most sites show improved RMSE after
correction except four sites for Terra and one site for Aqua
(Fig. 8b).

Another goal of addressing measurement error in satel-
lite retrievals is to improve the comparability of different
instruments. Given changing atmospheric conditions within

the same day between overpass times (Terra in late morn-
ing and Aqua in early afternoon), we use the corresponding
two SuomiNet CWV measurements to estimate the expected
agreement. When restricting to days with both Terra and
Aqua CWV observations collocated with SuomiNet observa-
tions, we had 9940 station days with all four measurements.
Raw MAIAC CWV had a Pearson correlation of 0.975 be-
tween Terra and Aqua, and after applying our correction
this increased to 0.977, although this was still slightly below
that of the two corresponding within-day SuomiNet CWV
measurements with a correlation of 0.982. We demonstrate
that our algorithmic correction slightly improves on the al-
ready excellent agreement of MAIAC CWV from Terra ver-
sus Aqua, but is still not quite as close as comparing pairs of
within-day measurements from the same ground instruments.
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Figure 8. (a) RMSE between algorithmically corrected Terra MAIAC CWV and GPS-based CWV for each SuomiNet station shown as
crosses. AERONET sites used to train the model are shown as points. (b) The difference in RMSE versus GPS CWV using the corrected
MAIAC CWV relative to using the original MAIAC CWV by SuomiNet station. The four sites (out of 57 total) which have a higher (worse)
RMSE after correction are shown with red × symbols.

5 Discussion

The Northeastern USA exhibits large seasonal variation in
CWV. While satellite retrievals using the MAIAC algorithm
are overall excellent at estimating CWV, they also have sea-
sonality in their measurement error versus ground measure-
ments from AERONET sun photometers. We show this mea-
surement error has notable heteroscedasticity (larger errors
with greater CWV) and has been worsening, with time, for
data derived from Terra. Satellite retrievals using MODIS
and similar platforms have considerable strengths for mea-
surement of CWV based on their global daily coverage and
reconstruction of longer-term records during the satellite era.
Our analysis demonstrates that gradient boosting with XG-
Boost and features including satellite retrieval quality assur-
ance, aerosol optical depth estimates, land use terms, and
time trends can substantially refine satellite-derived retrievals
of 1km×1km resolution CWV compared with sun photome-
ter measurements of CWV on test days and at sites that were
withheld from training data. Even with this rigorous cross
validation, our model explains 45.0 % of the measurement er-
ror in Terra CWV (R2) and 24.1 % of the measurement error
in Aqua CWV. This is an impressive proportion of the differ-
ence in MAIAC and AERONET CWV to explain given that
the MAIAC CWV is already quite accurate with a 1CWV
standard deviation of only 0.252 and 0.189 cm for Terra and
Aqua, respectively, in spite of comparing a 1km×1km satel-
lite retrieval with point measurements from the AERONET
sun photometers.

Strategies for model training and cross validation of pow-
erful algorithmic predictive methods need to reflect the struc-
ture of the underlying data and the intended use of predic-
tion models – otherwise overfitting may lead to an inaccu-

rate assessment of model performance. Given the sparsity of
the collocated AERONET data, we decided to assess perfor-
mance in cross validation that mimicked the desire to pre-
dict in new places (without AERONET stations) and on dates
without AERONET data (e.g., when sun photometers are out
of service for recalibration).

While our XGBoost models are complex ensembles of 100
boosted regression trees, we use the powerful new SHAP
method for interpretation of the importance of each variable
and their contributions to individual predictions. Contextual-
izing the magnitude of the SHAP value (for each variable)
and examining the SHAP-based contribution in visualiza-
tions along with the feature value distribution can also hint at
where retrieval algorithms can be modified for better results.
For example, although the measurement error was lower for
Aqua, scatterplots for the top two variables by SHAP sug-
gest that MAIAC may underestimate CWV when the blue
band uncertainty is very low and may underestimate CWV
at higher AOD values. For Terra, the date as an integer is
the most important feature, even though our cross-validation
approach meant that all SHAP values were estimated for pre-
dictions made on dates that did not occur in the training data.
Based on the SHAP plots, the date predictor describes sea-
sonal and long-term trends related to an emerging positive
bias for Terra that is worse in the summertime.

Demonstrating that there is an improvement in the agree-
ment of corrected MAIAC CWV with the SuomiNet mea-
surements is a strong validation for several reasons. First,
the SuomiNet stations offer a well-validated measurement
of CWV that relies on a different principle (tropospheric
delay) from the sun photometry of the AERONET and the
MODIS satellite retrieval of the MAIAC algorithm. The sec-
ond strength of this validation is that the SuomiNet valida-
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tion occurred at locations that are unique (not included in the
training data from AERONET sites), including many that are
far away from the largely coastal AERONET stations in the
Northeastern USA. Although Terra CWV also had a larger
measurement error versus SuomiNet CWV measurements
than Aqua CWV, after our correction using XGBoost, the
updated MAIAC CWV for Terra and Aqua both had lower
RMSE values of 0.221 and 0.226 cm versus SuomiNet sta-
tions – suggesting that we may have achieved parity and per-
haps reached the limits of this approach to correct for the
sources of measurement error we considered in comparing
this satellite retrieval product with point measurements from
ground stations.

Strengths of our empirical machine-learning approach in-
clude a fast algorithm that uses only a few variables, pri-
marily those already included in the MAIAC retrieval suite
and derived land use terms, to correct measurement error in
CWV. Limitations of using MODIS-derived CWV from MA-
IAC include the availability of few measurements per day
(versus geostationary satellites) and restriction to cloud-free
and daytime values. Our measurement error model has not
yet been evaluated for how well it would have worked in a
region with substantially fewer AERONET stations or very
different climate conditions.

6 Conclusions

Empirically correcting for measurement error with machine-
learning algorithms is a relatively easy postprocessing op-
portunity to improve satellite-derived CWV data quality
for Earth science and remote sensing applications. Further-
more, the use of machine-learning interpretation tools points
to potential sources of measurement error (e.g., a positive
bias in CWV retrievals from Terra that has become worse
in more recent years) that can help when refining satel-
lite retrieval strategies. We demonstrate that a parsimonious
nine-predictor XGBoost model for updating satellite-based
column water vapor from the MAIAC retrieval based on
AERONET values can decrease measurement error as val-
idated at an independent network of ground sensors across
the Northeastern USA.
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