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Abstract. We present an approach to analyse time series with
unequal spacing. The approach enables the identification of
significant periodic fluctuations and the derivation of time-
resolved periods and amplitudes of these fluctuations. It is
based on the classical Lomb–Scargle periodogram (LSP), a
method that can handle unequally spaced time series. Here,
we additionally use the idea of a moving window. The signif-
icance of the results is analysed with the typically used false
alarm probability (FAP). We derived the dependencies of the
FAP levels on different parameters that either can be changed
manually (length of the analysed time interval, frequency
range) or that change naturally (number of data gaps). By
means of these dependencies, we found a fast and easy way
to calculate FAP levels for different configurations of these
parameters without the need for a large number of simula-
tions. The general performance of the approach is tested with
different artificially generated time series and the results are
very promising. Finally, we present results for nightly mean
OH∗ temperatures that have been observed from Wuppertal
(51◦ N, 7◦ E; Germany).

1 Introduction

Many time series in atmospheric sciences are characterised
by an unequal spacing of the data points, e.g. due to data
gaps. OH or other airglow observations often have such data
gaps in the measured time series (e.g. Espy et al., 1997;
Das and Sinha, 2008; Reid et al., 2014). The OH∗ temper-

atures which have been observed from Wuppertal (51◦ N,
7◦ E) since the 1980s also exhibit an unequal spacing. The
time series of nightly mean OH∗ temperatures repeatedly has
data gaps mainly because of bad weather conditions during
some nights that prevent useful measurements (see e.g. Bit-
tner et al., 2000). Within a single night such data gaps can
also occur when clouds move through the line of sight. The
measurements before and after such a cloud contamination
are useful. Typical methods such as the fast Fourier transfor-
mation (FFT) rely on a discrete sampling with equal spac-
ing. Thus, a time series like that of OH∗ temperatures has
to be manipulated, e.g. with interpolation techniques before
the analysis (e.g. Espy et al., 1997; Bittner et al., 2000; Reid
et al., 2014). The Lomb–Scargle periodogram (LSP; Lomb,
1976; Scargle, 1982) is a method that can handle this draw-
back, as it can be used for time series with unequal spacing.
This method has been used in different studies analysing air-
glow observations (e.g. Espy et al., 1997; Takahashi et al.,
2002; Gao et al., 2010; Reid et al., 2014; Egito et al., 2018;
Franzen et al., 2018; Nyassor et al., 2018).

A second important point with respect to the analysis of
periodicities is the variation of these periodicities with time,
i.e. the period is not stable during the complete analysed time
interval or the amplitude varies. In such cases many meth-
ods as the FFT and the LSP will lead to results of a mean
state only. The wavelet transform is a method that is very
useful as it delivers time-resolved information on the peri-
odicities of the analysed time series and it is used in sev-
eral studies analysing the temporal evolution of periodic sig-
nals in airglow observations (e.g. Das and Sinha, 2008; Taka-

Published by Copernicus Publications on behalf of the European Geosciences Union.



468 C. Kalicinsky et al.: Moving Lomb–Scargle periodogram

hashi et al., 2013; Reid et al., 2014; Nyassor et al., 2018). In
the case of the Wuppertal OH∗ temperatures, Bittner et al.
(2000) used the wavelet transform to analyse the variabil-
ity of the nightly mean OH∗ temperatures after assimilation
of the data gaps in the time series by use of the maximum
entropy method (MEM). Similar to that, other studies also
report that the time series have to be interpolated before the
use of the wavelet transform (e.g. Das and Sinha, 2008; Reid
et al., 2014) or the sampling is at least almost evenly dis-
tributed (Nyassor et al., 2018). The goal of the presented
study is to avoid such an assimilation of the data gaps and still
derive time-resolved information on the periodicities. Thus,
we combined the LSP and the idea of a moving window to
identify and characterise periodicities in unequally spaced
time series even when the periodicities vary with time. Other
airglow studies also use some kind of windowed LSP but for
independent time windows following each other such as dif-
ferent parts of a night (Reid et al., 2014) or months of a year
(Egito et al., 2018). Some studies analysing radar observa-
tions of winds report a periodogram analysis with a mov-
ing window (Yoshida et al., 1999, but without significance
evaluation) or a LSP analysis for at least partly overlapping
windows (Luo et al., 2000). However, our study combines
the LSP with a moving window (moved with the minimum
possible time step); additionally, we derive a fast and easy
method to calculate the false alarm probabilities (FAPs) for
different situations (length of time series, frequency range,
data gaps) to identify significant results. The determination
of the FAP levels is typically done with Monte Carlo simu-
lations, which is very time-consuming (e.g. Cumming et al.,
1999; Zechmeister and Kürster, 2009). Thus, our new em-
pirically derived relationship to calculate the levels improves
the application of the method.

The main intention of the paper is to describe the approach
from a user perspective and to illustrate the capabilities of
the approach with examples of artificial data sets as well as
observations. The paper is structured as follows. In Sect. 2
the classical LSP and the new approach are explained. The
evaluation of the significance of obtained results is made in
Sect. 3. Finally, the method is applied to artificial data and
observations of OH∗ temperatures in Sect. 4. A short sum-
mary is given in Sect. 5.

2 Methodology

2.1 Classical Lomb–Scargle periodogram

The Lomb–Scargle periodogram (LSP) was developed by
Lomb (1976) and Scargle (1982). The periodogram is de-

fined as

PX(ω)=
1
2

[∑
jXj cosω(tj − τ)

]2

∑
j cos2ω(tj − τ)

+

[∑
jXj sinω(tj − τ)

]2

∑
j sin2ω(tj − τ)

 , (1)

where Xj represents the measurements at the times tj , ω is
the angular frequency (ω = 2πf ), and the time offset τ is
defined as

tan(2ωτ)=

(∑
j sin2ωtj

)
(∑

j cos2ωtj
) . (2)

An advantage compared to other methods such as the FFT
is that the LSP can handle unequally spaced time series. A
prerequisite is that the time series has zero mean before the
calculation of the periodogram powers. With the given defi-
nition, the LSP has two useful properties: (1) it is invariant to
a shift of the origin of time, and (2) it is equivalent to the least
squares fitting of sinusoids (e.g. Horne and Baliunas, 1986).
Scargle (1982) showed that the definition of the periodogram
is the same (except for a factor of 1/2) as the reduction in
sum of squares (sum of squares of data minus sum of squares
of residual) when using least squares fitting of sinusoids (see
Scargle, 1982, Appendix C). Thus, the maximum power in
the periodogram occurs at that frequency that leads to a min-
imum of the sum of squares of the residuals when a sinusoid
with this frequency is fitted to the time series.

2.2 Moving LSP

The approach used in the following analyses is based on the
classical LSP, but the whole time series is analysed sequen-
tially. The procedure is as follows.

A window size (time interval), which is typically much
smaller than the length of the whole time series, is defined.
Then the procedure starts at the beginning of the time series:

1. calculate LSP for the data points within the window
(time interval),

2. move the window by one time step (minimum possible
sampling step),

3. move to step one until the end of the times series is
reached.

By executing this procedure, one single LSP is calculated
for each possible part of the time series with the length of the
window (time interval). By contrast to the LSP for the whole
time series at once, this procedure delivers time-resolved in-
formation on the periodicities and amplitudes.
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2.3 Normalisation of the LSP

There are different ways to normalise the periodogram: sam-
ple variance (or sum of squares), known variance of data,
and variance of the residuals (see e.g. Cumming et al., 1999;
Zechmeister and Kürster, 2009). Here we use the normalisa-
tion by the sample variance and sum of squares, respectively.
These two only differ by a constant factor that relies on the
number of data points N . The periodogram power can vary
between 0 and (N − 1)/2 when using the normalisation by
the sample variance and between 0 and 1 when using the
normalisation by sum of squares (when the factor 1/2 is also
considered; compare Sect. 2.1) (e.g. Cumming et al., 1999;
Zechmeister and Kürster, 2009). As the height of a peak in
the case of the normalisation by the variance depends on the
number of data points N , the peak heights for the same si-
nusoid differ for different numbers of data points. Since the
data gaps in the time series of nightly mean OH∗ tempera-
tures are randomly distributed, the number of data points in
different possible windows of same size can vary. In order to
make the peak heights in these different windows compara-
ble, we prefer the normalisation by the sum of squares. This
type of normalisation has another useful property. Because
of the equivalence to the reduction in sum of squares when
fitting a sinusoid, the normalisation by the sum of squares
leads to a normalised power that gives the contribution of the
sinusoid to the total sum of squares, and therefore to the total
variance. In this way it is a measure of the explained variance.
Here non-correlation between different sinusoids and/or a si-
nusoid and the residual is assumed. This is, at least approxi-
mately (increasing with number of data points), the case for
sinusoids with different periods and, thus, the variances of
the individual parts (sinusoids) of the time series add up.

Alternatively, one can determine the amplitude of the si-
nusoid at each frequency. This is also based on the equiva-
lence of the periodogram power and the reduction in sum of
squares. Furthermore, the variance of a sinusoid is given by
A2/2, where A is the amplitude (e.g. Horne and Baliunas,
1986; Smith, 1997). With these two relationships, the ampli-
tude can be calculated as

A(ω)=

√
4PX(ω)
N − 1

. (3)

In total the LSP delivers information on the periodicities
together with a measure of the explained variance when a si-
nusoid is fitted to the data and the corresponding amplitude
of the sinusoid. An example periodogram is shown in Fig. 1.
The time series that is analysed is a combination of two sinu-
soids with different periods and amplitudes. The first one has
a period of 10 d and an amplitude of 1 K, whereas the second
sinusoid has a period of 35 d and an amplitude of 0.5 K. The
total length of the time series is 60 d and the time series has
equal spacing. Thus, the variance of the second sinusoid is
only one-quarter of the variance of the first one. This can be
seen in the normalised power (black curve in Fig. 1) where

Figure 1. Example LSP for a time series composed of two sinu-
soids. The first one has a period of 10 d and an amplitude of 1 K
and the second has a period of 35 d and an amplitude of 0.5 K. The
normalised power is shown as a black curve and the amplitude as a
red curve with a second axis to the right.

at 10 d a value of about 0.8 is reached and at 35 d a value of
about 0.2 is reached. Because of the different amplitudes, the
sinusoids contribute 80 % and 20 % to the total variance of
the time series. And also the amplitudes themselves are well
determined by using Eq. (3) (see red curve in Fig. 1).

3 Significance evaluation

3.1 False alarm probability

An important quantity with respect to the LSP is the so-called
false alarm probability (FAP). It gives the probability that a
peak with a height above a certain level can occur just by
chance, e.g. due to noise. The distribution of the periodogram
powers and thus the description of the false alarm probabil-
ity depends on the type of normalisation (see e.g. Cumming
et al., 1999; Zechmeister and Kürster, 2009). In the case of
the normalisation by the sample variance, the periodogram
powers follow a beta distribution (Schwarzenberg-Czerny,
1998). As the variance and the sum of squares differ by a con-
stant factor only, the type of distribution is the same. Here-
after, we only describe the situation for the normalisation by
sum of squares. At a single frequency the probability that a
peak height z exceeds a value of z0 is given by

Prob(z > z0)= (1− z0)
N−3

2 , (4)

where N is the number of data points (Zechmeister and
Kürster, 2009). Since periods in a frequency range are anal-
ysed, one is interested in the probability that one peak some-
where in the periodogram covering a frequency range1f ex-
ceeds a certain value by chance, which is given by the FAP.
The probability that all peaks in this frequency range are be-
low or equal to a certain value is given by (1−Prob(z >
z0))

Ni , where Ni is the number of independent frequencies
(number of frequencies where potentially peaks can occur).
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Then the FAP is

FAP= 1−
(
1−Prob(z > z0)

)Ni , (5)

where Ni gives the number of independent frequencies (see
e.g. Horne and Baliunas, 1986; Cumming et al., 1999; Zech-
meister and Kürster, 2009, for some discussion on FAP).
There is no analytical way to describe the number of inde-
pendent frequencies, but a good way to determine Ni is the
use of Monte Carlo simulations (see e.g. Cumming et al.,
1999).

The procedure to determine Ni using simulations is as
follows. As already pointed out by Scargle (1982) the cu-
mulative distribution function (CDF) can be used to deter-
mine the FAP. We use a large number of samples of ran-
dom values taken from a Gaussian distribution. Then we
calculate the LSP for each sample and determine the height
of the maximum peak within the analysed frequency range.
From these maximum peak heights, we calculate the em-
pirical CDF which gives the probability that the maximum
peak and thus all other peaks in a periodogram have a height
equal to or below a certain value. The CDF is then given
by (1−Prob(z > z0))

Ni , and consequently the FAP is then
1−CDF. In the last step we determine Ni by fitting Eq. (5).

An example for the results of this procedure is shown in
Fig. 2. The example shows the FAP derived from 10 000 sam-
ples of Gaussian noise, where each sample has 60 data points
and a sampling of 1 d−1; thus, the complete time interval
length is 60 d. The frequency range used for the analysis is
1f = 1/2–1/60 d−1. The frequency sampling during these
simulations (and all other simulations) is fixed with respect
to the length of the time interval, thus the duration of obser-
vations T and the frequency range. We evaluated the LSP at
Nfreq equally spaced frequencies in the frequency range 1f ,
where Nfreq = 4T1f , which was shown to be an adequate
sampling to observe all possible peaks by Cumming et al.
(1999). The blue circles show the results for Prob(z > z0) at a
single frequency. The theoretical curve of Eq. (4) is shown in
magenta. The determined probability and the theoretical one
match very well. The results for the FAP (1-CDF) are shown
as black circles. The red curve is determined by fitting Eq. (5)
to these data points. The number of independent frequencies
Ni in this case is about 72. From this curve, different FAP
levels can be determined. In the following we typically use a
FAP level of 5 %, which means that in only 5 % of the noise
samples the maximum peak in the complete frequency range
exceeded the corresponding peak height value. In Fig. 2 the
dashed horizontal line marks a FAP of 5 % and the intersec-
tion with the red curve gives the height of about 0.225 that
corresponds to this level.

3.2 Dependency of Ni and FAP

The number of independent frequencies Ni and the false
alarm probability depend on different factors: the length of
the analysed time interval T , the data gaps within the time in-

Figure 2. False alarm probability (FAP) and Prob(z > z0) at a
single frequency derived from 10 000 noise samples with 60 data
points each. The data sampling was 1 d−1 and the analysed fre-
quency range 1f = 1/2–1/60 d−1. The derived Prob(z > z0) is
shown with blue circles and the theoretical curve (Eq. 4) is depicted
in magenta. The determined FAP is shown by the black circles and
the fit to these data points using Eq. (5) is displayed as red curve.
The dashed horizontal line marks a FAP of 5 %.

terval, and the analysed frequency range 1f . Since different
situations with respect to data gaps can occur during the anal-
ysis of the OH∗ temperatures and, additionally, the length of
the window (time interval) and the frequency range can be
chosen, one would have to perform simulations for all situ-
ations. As these simulations are much more time-consuming
than the calculation of the LSP itself, we want to avoid these
numerous simulations. Thus, we examined the different de-
pendencies to find a faster and easier way to determine Ni
and thus the FAP levels. The sampling of the time series used
for these analyses was chosen to be 1 d−1, which is the same
as for the nightly mean OH∗ temperatures without data gaps.
For the different analyses, we varied only one parameter and
kept the other two fixed. In all cases 10 000 noise samples
were used to determine one Ni value.

Firstly, we analysed the dependency of Ni on the length
of the time interval T . Here the frequency range was kept
constant and the time series had no data gaps. As this is the
case and the sampling is 1 d−1, the length of the time interval
is equal to the number of data points N , i.e. a time interval
of 60 d has 60 data points. The frequency range was fixed to
1f = 1/2–1/60 d−1 for the first analysis. Since the width of
a peak is inversely proportional to the length of the analysed
time interval (see e.g. Cumming et al., 1999; Zechmeister
and Kürster, 2009), the number of independent frequencies
Ni for a fixed frequency range should linearly increase with
increasing time interval length. Figure 3 shows the results for
Ni for different time interval lengths T between 30 and 90 d
(typical values used for the analysis of nightly mean OH∗

temperatures) as blue full circles. Obviously, the dependency
is linear. A linear fit including an additional intercept leads to
an intercept of about zero. Thus, we calculated a fit line that
has to intersect the point (0,0) and only determined the slope
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of this line, which is 1.208 (±0.004) d−1. The fit is shown as
a blue line in Fig. 3a. Since the number of data points N
increases with increasing length of the time interval T , the
probability that the power at a single frequency exceeds a
certain value by chance decreases (compare Eq. 4). As this
effect is larger than the opposite effect of the increase in Ni,
the FAP levels also decrease. Figure 3b shows the levels of a
FAP of 5 % for the different time interval lengths as blue full
circles.

In a second analysis we varied the frequency range and
repeated the analysis that was done before. The frequency
ranges lay between 1/2–1/5 and 1/2–1/90 d−1. A smaller
frequency range should include a smaller number of inde-
pendent frequencies. As the decrease in Ni for a reduction
of 1f depends on the width of the peaks, and therefore on
the length of the time interval T , the decrease in Ni for the
same reduction of 1f has to be larger for larger T . This can
be seen in Fig. 3a, where example results for the frequency
ranges 1/2–1/5 and 1/2–1/10 d−1 are shown in black and
red, respectively. For the smallest frequency range, the lowest
values can be seen and the largest decrease in Ni is observed
for the longest time interval T . Because of this dependency of
the decrease in Ni on the time interval length, the fit lines are
not shifted by a constant value, but the slopes of the fit lines
change. Thus, the slopes depend on frequency range1f . Fig-
ure 3c shows the dependency of the slopes on the frequency
range 1f . Obviously, for the analysed frequency ranges this
dependency can be described by a straight line. A fit to the
data leads to the results for the slope of 2.92 (±0.02) d d−1

and for the intercept of −0.203 (±0.008) d−1. The fit line is
shown as black line. With the knowledge of these parameters
the number of independent frequenciesNi can be determined
for each combination within the analysed parameter range by

Ni =
(

2.92dd−1
·1f − 0.203d−1

)
· T . (6)

In the last analysis we evaluated the dependency of Ni on the
number of data gaps in a fixed time interval. The frequency
ranges for this analysis were 1f = 1/2–1/5, 1/2–1/10, and
1/2–1/60 d−1. We took a time interval of 60 d and introduced
1 to 29 randomly distributed data gaps. We only removed
data points inside the complete time interval, i.e. both end
points were always there and the time interval length was
always 60 d. Since the spectral width of the peaks depends
on the length of the time interval, which is fixed, and not on
the number of data points, the number of independent fre-
quencies Ni is supposed to be almost the same for different
numbers of data gaps. Figure 4a shows Ni as a function of
the number of data gaps for different frequency ranges. In
all cases only a slight decrease in Ni with increasing num-
ber of gaps can be seen. The decrease is slightly larger for
those frequency ranges that lead to larger Ni values. But the
relative decrease is very similar for all shown situations. The
decrease in all cases is only of the order of a few percent
for 50 % data gaps. This decrease is caused by an on aver-

Figure 3. (a, b) Dependency of Ni and the FAP level of 5 % on the
length of the time interval T and the frequency range. The analysed
frequency ranges are 1/2–1/5, 1/2–1/10, and 1/2–1/60 d−1, and
the time series of the simulations have no data gaps. (c) Dependency
of the slopes (lines from panel a) and additionally for the frequency
ranges (1/2–1/30 and 1/2–1/90 d−1) on the frequency range 1f .
The error bars show 2 times the standard error of the slopes.

age very small decrease in the resolution caused by a small
increase in the peak width. Although the number of inde-
pendent frequencies is nearly constant, this does not mean
that the FAP levels stay the same. Since the number of data
points N decreases with increasing number of data gaps, the
probability that the power at a single frequency exceeds a
certain value increases (compare Eq. 4). Thus, the FAP for
a certain peak height also increases. This increase is shown
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Figure 4. Dependency of Ni and the FAP level of 5 % on the num-
ber of data gaps in a fixed time interval of length T . The analysed
frequency ranges are 1/2–1/5, 1/2–1/10, and 1/2–1/60 d−1, and
the time interval length is 60 d.

in Fig. 4b. The effect of the decrease in Ni on the FAP lev-
els of 5 % is typically of the order of a few per mil (‰).
Thus, a non-consideration of this decrease in Ni would lead
to a very small change in the FAP levels. Furthermore, the
change when considering the decrease would be negative,
i.e. the FAP for the same height z would get smaller. Con-
sequently, the FAP levels of 5 % also have smaller values.
Thus, a non-consideration would not change the judgement
if a signal is significant or not in a false way. When a sig-
nal exceeds a higher value it will certainly exceed a smaller
value, too. Nonetheless, in the FAP levels shown later on, the
effect of the data gaps on the Ni values is considered.

4 Data evaluation

4.1 Artificial data

In order to study the performance of the approach we anal-
ysed different time series of artificial data. In this section
we present selected examples of these time series. The to-
tal length of the time series was always 1 year (365 d) and
the sampling was 1 d−1, which is the same as for the nightly
mean OH∗ temperatures without data gaps.

The analysis of a single sinusoid is a very trivial problem
and the approach delivers the expected results (not shown).
As the approach shall be used in the case of non-stable pe-
riodicities, we focus here on such problems. The first exam-
ple shows a time series of a periodic signal with a period
that increases with time from approximately 8 to 16 d and
an amplitude of 1 K. The time series is shown in Fig. 5a
as a black curve. (The components signal (blue) and noise
(green) are shown additionally in separate panels.) The re-
sults of the analysis are shown in Fig. 5b and c for the nor-
malised power and the amplitude, respectively. The y axes of
these two figures give the frequency and period, respectively,
and the x axes show the centre days of the sequentially anal-
ysed time intervals. The normalised power and the amplitude
are shown colour coded and the white contour lines mark the
FAP level of 5 % (Ni was determined using Eq. 6). The re-
sults clearly show the change in the period with time and the
normalised power is close to one. The small deviation from
a value of one can be explained by the change in the period,
which occurs on a smaller timescale than the interval size
of 60 d. Thus, a sinusoid with a fixed period is not able to
explain the complete variance in each of the analysed time
intervals. The results for the amplitude show values close to
1 K, and thus also the expectation. The analysis was repeated
for the same periodic signal with additional noise added to
the time series and also data gaps that have been incorpo-
rated. The standard deviation of the noise was 0.5 times the
standard deviation of the signal and thus the variance of the
noise is one-quarter of that of the signal. Additionally, about
30 % of the data points have been randomly removed. The
signal with gaps (blue curve), the noise (green curve), and the
complete time series (sum of both; black curve) are shown
in Fig. 5d. The corresponding results are shown in Fig. 5e
and f. The displayed FAP level of 5 % was determined for
each LSP individually with respect to the varying length of
the time interval (when end points are missing) and the num-
ber of data points inside these time intervals. Additionally,
the small decrease in Ni due to the data gaps was considered
(see Sect. 3.2). The change in the period is still captured very
well. In the case of noise and data gaps, the normalised power
reduces to a value of about 0.8 as a part of the variance can
be explained by the contribution of the noise (ratio 4 to 1 for
signal to noise). The amplitude shows some fluctuations, but
these fluctuations go around a value of 1 K. Additionally, the
noisy behaviour at smaller periods is much better visible for
the amplitudes compared to the powers, because the square
root of the powers enters the calculation of the amplitudes
(compare Eq. 3) and therefore differences with respect to the
maximum amplitude get smaller. In total, the results clearly
capture the main features of the time series with respect to
period, amplitude, and explained variance.

We additionally present two further examples. The time
series and the results of the analyses are shown in Fig. 6.
The first time series is composed of a periodic signal with a
period of 25 d, and an amplitude that varies between 0 and
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Figure 5. (a) Time series of a periodic signal with increasing period. The upper panel shows the signal, the middle panel the noise, and
the lower panel the sum of both. (b, c) Results for the normalised power and amplitude. The results are displayed at the centre day of the
corresponding time window. The length of the time window was 60 d. The white contours mark the significant results. (d–f) Same as for
(a–c) with additional noise added to the time series and data gaps.

1 K (Fig. 6a blue curve in upper panel), and additional noise
(Fig. 6a green curve in middle panel). The standard devia-
tion of the noise was again 0.5 times the standard deviation
of the signal and about 30 % of the data points have been re-
moved. The complete time series is shown as a black curve
in the lower panel of Fig. 6a. The results for the normalised
power and the amplitude are shown in Fig. 6b and c, respec-
tively. The normalised power shows an increasing value to
the centre of the complete time interval. This behaviour is
caused by the contribution of the noise to the total time se-
ries, which is much larger when the amplitude is small and
decreases with increasing amplitude of the signal. The result
for the amplitude nicely reflects the increase in the amplitude
to the centre and the following decrease to the end of the time
series. As the variation of the amplitude occurs on a smaller
timescale than the chosen time interval for the analysis some
kind of averaging occurs. Thus, the theoretical maximum of

1.0 K is not reached and the maximum value that is observed
is about 0.9 K. In total, the main features of the signal are
captured very well by the analysis and the correct period and
the variation of the amplitude with time are detected. The
last example shows the sum of the two former ones. Thus,
the complete time series (Fig. 6d black curve in lower panel)
is composed of a sinusoid with an amplitude of 1 K and an
increasing period (Fig. 6d blue curve in upper panel), a peri-
odic signal with a period of 25 d and an amplitude that varies
between 0 and 1 K (Fig. 6d red curve in second panel), and
noise (Fig. 6d green curve in third panel). The standard devi-
ation of the noise and the number of data gaps are the same as
before. The results for the normalised power and amplitude
are presented in Fig. 6e and f, respectively. The first signal
can significantly be detected during the whole time and the
increase in the period from about 8 to 16 d is captured very
well. As the amplitude of the second signal increases to the
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Figure 6. (a) Time series of a periodic signal with varying amplitude and additional noise and data gaps. The upper panel shows the signal, the
middle panel the noise and the lower panel the sum of both. (b, c) Results for the normalised power and amplitude. The results are displayed
at the centre day of the corresponding time window. The length of the time window was 60 d. The white contours mark the significant results.
(d) Time series of a periodic signal with increasing amplitude plus a periodic signal with varying amplitude and additional noise and data
gaps. The upper two panels show the two signals, the third panel the noise, and the lower panel the sum of all. (e, f) Same as for (b, c).

centre of the complete time interval, this signal can only be
significantly detected in the middle of the complete time in-
terval. The normalised power reflects the different contribu-
tions of the two signals to the complete time series very well.
In the middle of the complete time series, each single signal
contributes to almost the same amount, as the amplitude is
about 1 K in both cases. The remaining part of the total vari-
ance can be explained by the noise (variance of noise is 0.25
times variance of sum of signals). At the beginning and the
end, only the first signal and additionally the noise contribute
to the complete time series. The results for the amplitude also
show the main features of the two signals. For the first sig-
nal, the amplitude stays at around 1 K during the whole time
and the amplitude modulation of the second signal is also
captured. Compared to the former example, the result for the

amplitude is noisier because of the larger absolute noise in
the last example.

In summary, the applied method is able to detect periodic
signals that vary with time, i.e. the amplitude or the period
changes with time. In cases where changes occur on much
smaller timescales than the used time window, the results
show some kind of averaging. Then the maximum values of
the amplitude or the explained variance cannot be obtained
and a mean value in the analysed time window is derived.
The method is also very useful when noise is added to the
time series and additionally data gaps are introduced. Al-
though about 30 % of the data points have been removed,
the results are very good and still reflect the behaviour of the
signals. Thus, the presented method is well suited to anal-
yse time-varying periodicities even in the case of unequally
spaced time series.
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4.2 Measurement data

The OH∗ temperatures are derived from measurements by
a GRIPS (GRound-based Infrared P-branch Spectrometer)
instrument operated in Wuppertal (51◦ N, 7◦ E; Germany).
This GRIPS instrument measures three emission lines of the
OH∗(3,1) band, the P1(2), P1(3), and P1(4) lines. The rela-
tive intensities of these lines are used to derive rotational tem-
peratures (Bittner et al., 2000, and references therein). The
OH layer from which the emissions originate is located in
the mesopause region. The mean altitude is about 87 km and
the layer has a full width at half maximum (FWHM) of about
9 km (e.g. Baker and Stair Jr., 1998; Oberheide et al., 2006).
Measurements are carried out every night, except for nights
with bad weather conditions. The OH∗ temperatures have
been continuously observed from Wuppertal since mid-1987
and a GRIPS instrument is still in operation to continue the
observations. Until mid-2011 the measurements have been
carried out by the GRIPS-II instrument (see Bittner et al.,
2000, 2002, for an instrument description), and after that the
GRIPS-N instrument (follow-up of GRIPS-II) is used to con-
tinue the observations (Kalicinsky et al., 2016).

Figure 7 shows the nightly mean OH∗ temperatures for
the year 1989 as an example. This year was chosen because
Bittner et al. (2000) analysed the same year with a differ-
ent technique (wavelet transform); thus, the results of our ap-
proach can be compared to their results. The temperatures
show the typical seasonal behaviour with a temperature min-
imum in summer and a maximum in winter. This behaviour
can be described with three main components: an annual,
a semi-annual, and a ter-annual cycle (Bittner et al., 2000).
The red curve in the figure shows a least squares fit to the
data that considers these three components. Such fits are typ-
ically used to determine the annual average OH∗ tempera-
tures since a simple arithmetic mean is not advisable because
of the data gaps (e.g. Bittner et al., 2002; Offermann et al.,
2010; Perminov et al., 2014; Kalicinsky et al., 2016). The
lower panel of Fig. 7 shows the residual temperatures, i.e.
the OH∗ temperatures minus the determined fit curve. Bittner
et al. (2000) already showed that such residual temperatures
include statistically significant periodic fluctuations. We now
analyse the residual temperatures with respect to such fluctu-
ations using the moving LSP approach.

The results for the normalised power and the amplitude
are shown in Fig. 8. Different events with significant periodic
fluctuations can be detected when using the moving LSP ap-
proach. The largest event is detected at the beginning of the
year. The determined period is about 40 d and the amplitude
6 to 7 K. This behaviour can also be seen in the residual tem-
peratures just by eye (compare Fig. 7). It seems that the fluc-
tuations continue with a slightly larger period and smaller
amplitude, but the result cannot be judged as significant af-
ter a centre day of the interval of about 70 d. As can be seen
in the residual temperatures, the number of observations be-
tween day 75 and 125 is very low and a lot of data gaps are

Figure 7. Nightly mean OH∗ temperatures observed from Wupper-
tal in the year 1989. The red curve shows the fit of the seasonal cycle
including an annual, semi-annual, and ter-annual components. The
residual temperatures (measurements minus fit) are shown in the
lower panel.

present. The FAP levels for time windows including a large
number of data gaps increase then and thus the results are not
significant, although it is likely that the signal is still there
and real. Additionally, the data gaps are responsible for the
vertical structure that can be clearly observed in the ampli-
tudes in this time region, because the gaps interrupt the conti-
nuity. Around a centre day of 250, a second significant result
for a fluctuation with a period of about 50 d is detected, but
the amplitude is smaller with 4 to 5 K. At the end of the year
additional significant events with smaller periods of about
10 and 16 d can be seen. All of these significant fluctuations
agree well with the findings of Bittner et al. (2000), where
the authors analysed the same observations using a wavelet
transform and assimilation technique based on the maximum
entropy method to get rid of the data gaps. Our new method
now enables a safe detection of such significant fluctuations
without the need for processing the data before the analysis.

5 Summary and conclusions

We present an approach to analyse time series with unequal
spacing with respect to significant period fluctuations. The
approach is also able to derive time-resolved information on
the periods and amplitudes of the detected fluctuations. It is
based on the classical Lomb–Scargle periodogram (LSP), a
method that can handle unequally spaced time series. Addi-
tionally, it uses the idea of a moving window to enable the
determination of time-resolved periods and amplitudes. The
significance of the results is analysed with the typically used
false alarm probability (FAP). As the determination of the
FAP levels needs many simulations, we derived the depen-
dencies of the FAP levels on the length of the analysed time
interval T , the frequency range 1f , and the number of data
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Figure 8. Results for the normalised power and amplitude for the analysis of the temperature residual of the GRIPS observations in 1989.
The results are displayed at the centre day of the corresponding time window. The length of the time window was 60 d. The white contours
mark the significant results.

gaps to find a fast and easy way to calculate the FAP levels in
the used parameter range. Thus, we can avoid a large number
of simulations. In the analysed parameter range, the number
of independent frequencies Ni shows a linear dependency on
the length of the time interval T , because the peak width is in-
versely proportional to T . Furthermore, the slope of the line
that describes this dependency is different for different fre-
quency ranges, where a smaller frequency range 1f reduces
the slope. We used these two relationships to quickly calcu-
late the FAP levels. The number of data gaps has only a very
minor effect, because the peak width depends on the length
of the time interval and not on the number of data points.

The approach was tested with different artificially gener-
ated time series. These time series include variations of the
period and amplitude with time, and, additionally, noise is
added and data gaps have been introduced. In all cases, the
approach shows very good results and thus the approach is
a suitable method for the time-resolved detection of periodic
fluctuations, even in the case of unequal spacing. Finally, we
analysed the nightly mean OH∗ temperatures that have been
observed from Wuppertal (51◦ N, 7◦ E; Germany) in the year
1989. The results show several significant events with fluc-
tuations that have periods in the range between 10 and 50 d
and amplitudes between 3 and 7 K. These significant results
agree very well with the results of a former study carried out
by Bittner et al. (2000) without the need for processing the
data before the analysis.

Data availability. The nightly mean OH∗ temperatures can be ob-
tained by request to the corresponding author or to Peter Knieling
(knieling@uni-wuppertal.de).
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