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Abstract. The United States Environmental Protection
Agency (US EPA) list of hazardous air pollutants (HAPs) in-
cludes toxic metal suspected or associated with development
of cancer. Traditional techniques for detecting and quantify-
ing toxic metals in the atmosphere are either not real time,
hindering identification of sources, or limited by instrument
costs. Spark emission spectroscopy is a promising and cost-
effective technique that can be used for analyzing toxic met-
als in real time. Here, we have developed a cost-effective
spark emission spectroscopy system to quantify the concen-
tration of toxic metals targeted by the US EPA. Specifically,
Cr, Cu, Ni, and Pb solutions were diluted and deposited on
the ground electrode of the spark emission system. The least
absolute shrinkage and selection operator (LASSO) was opti-
mized and employed to detect useful features from the spark-
generated plasma emissions. The optimized model was able
to detect atomic emission lines along with other features to
build a regression model that predicts the concentration of
toxic metals from the observed spectra. The limits of detec-
tions (LODs) were estimated using the detected features and
compared to the traditional single-feature approach. LASSO
is capable of detecting highly sensitive features in the input
spectrum; however, for some toxic metals the single-feature
LOD marginally outperforms LASSO LOD. The combina-
tion of low-cost instruments with advanced machine learning
techniques for data analysis could pave the path forward for
data-driven solutions to costly measurements.

1 Introduction

The United States Environmental Protection Agency (US
EPA) lists a number of metals in their list of hazardous air
pollutants (HAPs). These metals are known or suspected to
cause cancer or other serious health effects (Buzea et al.,
2007; Pope et al., 2002). Table 1 lists the metals in the US
EPA’s HAP list. Table 2 lists other metals that are not on the
US EPA’s HAP list but have been implicated in a range of
adverse health effects and so are of concern to the California
Air Resources Board (CARB). It has been shown that pres-
ence of these metals is associated with various health con-
cerns such as diabetes (Zanobetti et al., 2009), cardiovascular
disease (Brook et al., 2004), and asthma (Gent et al., 2009).
Therefore, it is necessary to monitor and quantify their am-
bient concentration.

Various techniques over the years have been developed
and used to measure metal particles. X-ray fluorescence
(XRF) (Vincze et al., 2002; Van Meel et al., 2007) and induc-
tively coupled plasma mass spectrometry (ICP-MS) (Rov-
elli et al., 2018; Venecek et al., 2016) have been used tra-
ditionally to quantify metals in atmospheric particles. XRF
is excellent for measuring lighter elements and metals on fil-
ter substrates, but for field application it is expensive, has a
high limit of detection (LOD) for heavier elements, and in-
cludes radiation risk. ICP-MS requires collection of aerosol
on a substrate, such as a filter or impactor foil, extraction
of the metals or elements from the substrate using harsh
acidic chemicals, and then analyzing in the ICP-MS along
with standards that help the instrument quantitate. Moreover,
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Table 1. List of hazardous metals targeted by the US EPA.

US EPA metal HAPS

Antimony
Arsenic
Beryllium
Cadmium
Chromium
Cobalt
Lead
Manganese
Mercury
Nickel
Selenium

Table 2. List of other toxic metals.

Toxic metals

Copper
Iron
Zinc

ICP-MS is most suitable for heavier elements and metals so
has a high LOD for lighter toxic metals and is not available
in field-deployed, real-time applications. Additionally, these
instruments are expensive and hence are limited by cost and
complexity as well.

Spark-induced breakdown spectroscopy (SIBS) and laser-
induced breakdown spectroscopy (LIBS) have been em-
ployed in various applications from combustion (Kotzagianni
et al., 2016; Do and Carter, 2013; Kiefer et al., 2012), nano-
materials (De Giacomo et al., 2011; Hu et al., 2017; Davari
et al., 2017a; Matsumoto et al., 2015a, b, 2016), and en-
vironmental and bio-hazards (Diwakar and Kulkarni, 2012;
Diwakar et al., 2012; Zheng et al., 2018b), forensics (Mar-
tin et al., 2007), semiconductors and thin films (Hermann
et al., 2019; Davari et al., 2017b; Axente et al., 2014; Davari
et al., 2019), explosives (Gottfried et al., 2009), pharmaceuti-
cals (Mukherjee and Cheng, 2008a, b; St-Onge et al., 2002),
and biomedical engineering (Abbasi et al., 2018; Baudelet
et al., 2006; Davari et al., 2018). In particular, Fisher et al.
(2001) studied various toxic metals in aerosols by optimiz-
ing the spectrometer response with respect to gate delay.
Hunter et al. (2000) employed spark emission spectroscopy
for continuous monitoring of metallic elements in aerosols.
Yao et al. (2018) used spark emission spectroscopy to ob-
tain the carbon content of fly ashes. Diwakar and Kulka-
rni (2012) employed spark emission spectroscopy coupled
with a corona aerosol microconcentrator (CAM) to improve
the particle collection efficiency and detection limits of toxic
metals. Zheng et al. (2017) characterized the CAM perfor-
mance with respect to different experimental parameters and

obtained the optimized design parameters for their CAM sys-
tem.

Recently, machine learning and deep learning techniques
have been applied in different fields. These techniques in
general learn patterns that can be used to distinguish differ-
ent labels. Boucher et al. (2015) employed various linear and
nonlinear machine learning techniques on LIBS spectra ob-
tained from geological samples and concluded that a com-
bination of models yields a lower total error of prediction.
Chengxu et al. (2018) used convolutional neural networks to
detect potassium in LIBS spectra and improve the linearity
of their prediction model incorporating deep convolutional
layers. Zheng et al. (2018a) employed spark emission spec-
troscopy on metals and used partial least squares regression
to analyze their spectra set. They compared their multivari-
ate models to univariate models and showed in their study
that these two groups have similar performance.

While LIBS and SIBS address issues regarding the field
measurement and instrument complexity, they are still con-
sidered expensive. Current interest in low-cost sensors and
their ability to characterize local air pollution concentrations
motivated development of a low-cost system. We employed
two complementary approaches: (1) decreasing the cost of
the electronics associated with SIBS and (2) incorporating
advanced data analysis techniques to improve quantification
and the limit of detection. In recent years, numerous studies
have used artificial neural networks (Ferreira et al., 2008),
partial least squares regression, and least absolute shrinkage
and selection operator (LASSO) (Dyar et al., 2012) on emis-
sion spectra to improve the quantification and limit of the
detection of spectroscopic systems. In this study, we have
developed a low-cost spark emission spectroscopy system
to quantify toxic metals. To reduce the overall cost, inex-
pensive replacements for necessary components, such as the
spark generator and delay generator, have been developed in
the lab. To improve performance, advanced machine learn-
ing tools such as k-means clustering and LASSO have been
employed to improve the system performance. The resulting
instrument was evaluated against four toxic metals listed by
the US EPA.

2 Instrument development

2.1 Spark generation system

Setting up a spark emission spectroscopy system requires
expensive components. However, depending on the appli-
cation, some of the components can be replaced. Compo-
nents such as spark generator and delay generator can cost
up to USD 10 000 and 5000, respectively. According to our
application and needs, we developed these components for
less than USD 600 and 50, respectively. One costly compo-
nent that is required for developing a spark emission spec-
troscopy system is the spark generation system. Numer-
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ous papers have studied the fundamental principles of spark
emission spectroscopy (Walters, 1977; Sacks and Walters,
1970; Walters, 1969). The key idea is to discharge a capaci-
tor as quickly as possible to increase the power dissipated in
the spark gap. Figure 1 illustrates the schematic of the spark
generation system. The overall goal is to charge a capaci-
tor at high voltage and, once it has been charged sufficiently,
discharge the capacitor through the spark gap. An Arduino
board controls the timing between charging and discharging
the capacitor. A boost convertor converts 24 to 5000 V DC
and is connected to a mechanical relay with two switching
states controlled with the Arduino board. In the charge state,
the mechanical relay provides the conduction path between
the boost convertor and the capacitor. In this configuration,
the capacitor reaches full charge in 5 s. Once the capacitor is
fully charged, the Arduino board sends a signal to turn off
the boost convertor and sends another signal to the mechani-
cal relay to flip to the discharge state. At the discharge state,
the mechanical relay provides a conduction path between the
capacitor and the spark gap. Shepherd et al. (2000) showed
that the discharge process could be controlled by a resistor
after the spark gap. For low resistor values, the spark cur-
rent exhibited a periodic behavior as the capacitor discharges,
which can be associated with an under-damped discharging.
On the other hand, increasing the resistor value damped the
discharge process and dissipated a large portion of the capac-
itor energy through the resistor instead of the spark gap. We
found that a 10� resistor maximizes the power dissipation
in the spark gap, while minimizing oscillations. Figure 2 il-
lustrates the evolution of the generated spark as a function
of time. The voltage shows a sudden increase followed by an
exponential decrease fully discharging in less than 5 µs and
thus delivering sufficient energy to the arc and deposited an-
alyte.

2.2 Delay generator

The delay generator is another costly component typically
used in time-resolved spectroscopy. Electronics advances
have paved the way for developing a cost-effective delay
generator. The delay generator suppresses initial noise in the
emission spectrum so needs to cover a range between 1 and
20 µs with resolution less than 0.2 µs. We designed a custom-
built delay generator in order to lower the overall cost of
the instrument. Figure 3 illustrates the schematic of the cir-
cuit. Upon generation of the spark-induced plasma, a pair of
lenses collects and focuses the plasma emission into a photo-
diode. The pulse generated by the photodiode is passed into
a voltage comparator (LM 311-N) to generate a transistor–
transistor logic (TTL) signal. The output TTL signal from
the comparator is sent to a pulse width modulator (PWM)
controller (LTC6992), which adds delay to the TTL signal.
An Arduino board adjusts a digital resistor (AD5241), which
in turn determines the delay value. Figure 4 shows the delay
generator performance. The y axis illustrates the delay values

requested of the delay generator, while the x axis shows the
measured values. The red dashed line shows the desired 1 : 1
line, while the circles show the measured performance. The
performance is linear over the relevant delay range with only
a slight deviation from the 1 : 1 line. Considering the spark-
generated plasma’s short lifetime, our measurements require
short delay values (< 5 µs) where the built-in delay generator
shows excellent performance and accuracy.

2.3 Spectra collection

Four toxic metals with different concentrations were used
to test the developed spark emission spectrometer system
performance. Cr, Cu, Ni, and Pd (1000 µg mL−1) were pur-
chased from AccuStandard and diluted to specific concentra-
tions. For each concentration more than 10 spectra have been
collected and used for model development. A micropipette
was used to deposit diluted solutions on a 1 mm diameter
Tungsten ground electrode of the spark system for emission
analysis. The total mass can be calculated from the deposited
volume and solution concentration. Upon evaporation of the
droplets, the capacitor was discharged to ablate the deposited
material and obtain spectra. A pair of lenses (75 mm focal
length and 25.4 mm diameter; Thorlab) focused the emission
into an optical fiber connected to a spectrometer (Ocean Op-
tics).

3 Results and discussions

To address shot-to-shot variations in the spark-generated
plasma and nullify possible faults caused by the low-cost
components, an unsupervised learning technique, k-means
clustering, classifies the collected spectra. Following this
procedure, it is possible to identify and remove outliers and
hence improve the accuracy of the analysis. Figure 5 illus-
trates the elbow plot that is used to optimize the number of
spectral classes. The standard approach is to set the optimum
number of clusters to the value where the within-cluster sum
of squares (WCSS) error plateaus. The WCSS error plateaus
once we have two or more centroids, and, therefore, the num-
ber of centroids is set to two. Figure 6 illustrates the perfor-
mance of the model for 300 spectra obtained from the back-
ground (Tungsten ground electrode ablation). The results
show clearly two clusters with different emission response.
The lower left cluster containing < 10 % of the spectra rep-
resents low-signal outliers, which were eliminated from fur-
ther analysis. For each toxic metal, 0.1, 1, 10, and 100 ng
of mass were deposited on the ground electrode. For each
concentration, 10 spectra were collected using a 2 µs delay
between the observed and recorded emissions. After ablating
the deposited mass and recording the spectrum, feature scal-
ing has been used as a preprocessing step to improve the op-
timization process for our machine learning model. Plasma
temperature can be obtained as follows:
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Figure 1. Schematic of the developed spark emission spectroscopy.

Figure 2. Spark voltage evolution in time.

Iem =
hc

λki
NkAki, (1)

Nk =N
gke
−
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U(T )
. (2)

Combining Eqs. (1) and (2) and taking log from both sides
gives

ln
(
Iemλki

gkAki

)
=−

Ek

kBT
+ ln

(
hcN

U(T )

)
, (3)

where kB is the Boltzmann constant, Aki is the transition
probability between two energy states (i) and (k), and Nk
is the population density at energy state k (Ek). λki indicates

the wavelength associated with the transition, and gk repre-
sents the degeneracy of energy state k. The slope of Eq. (3)
is used to estimate the plasma temperature based on a se-
ries of Tungsten lines for the recorded cleaned spectra set
at 2 µs. Figure 7 illustrates the Boltzmann plot (Hahn and
Omenetto, 2010, 2012) constructed by Tungsten lines. Based
on the slope of the fit, the plasma temperature is estimated
as 4013± 579 K. Upon identifying and removing the outlier
spectra, the cleaned spectra set is normalized using the Tung-
sten peak at W I (400.87 nm) and fed into the LASSO algo-
rithm for model development and prediction.

LASSO

The cleaned scaled spectra set has been used to detect and
quantify concentrations of the toxic metals. Simple linear re-
gression obtains the slope and intercept of a linear line by
minimizing the mean squared error between the predictions
and known values. LASSO detects and employs more fea-
tures to perform predictions by optimizing the following loss
function:

J (θ)=
1
m

m∑
i=1

(
y(i)−hθ (x(i))

)2
+ c

k∑
j=1

∣∣θj ∣∣ , (4)

where x(i) ∈ R2048 and hθ (x(i)) represent the normalized
spectrum and the LASSO concentration prediction based on
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Figure 3. Schematic of the built-in delay generator.

Figure 4. The expected delay set by the Arduino board as a function
of the measured delay.

Figure 5. The elbow plot suggests two centroids for clustering the
spectra set.

spectrum (i) (x(i)), respectively, and where y(i) is the known
concentration corresponding to spectrum (i). m refers to the
total number of spectra, and the LASSO coefficients are indi-
cated by θj . k indicates the total number of features (spectral
lines) used to build the model. The first term in Eq. (4) is
the mean squared error and is common with simple linear re-
gression, while the second term is a regularization term that
minimizes the magnitude of θj . The L1 norm essentially sets
most of the features in the spectrum to zero and maintains
only a few features to build the linear model and perform
predictions. The regularization constant (c) determines the
number of features to be used in the model, and therefore
the model loss needs to be optimized with respect to the reg-
ularization constant. To obtain the optimized regularization

Figure 6. K-means clustering for detecting outliers before pass-
ing the spectra set to the LASSO model. Two clusters were plotted
for the normalized intensities of two arbitrary wavelengths at λ1
(208.365 nm) and λ2 (208.759 nm).

Figure 7. Boltzmann plot for various Tungsten lines in order to es-
timate plasma temperature.

constant, we plotted the loss values for the Ni spectra train-
ing and testing sets as a function of the number of features
for various c values based on leave-one-out cross validation
(Fig. 8). As expected, the train loss monotonically decreases
as the number of features increases, while the loss for the test
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Figure 8. The train and test losses for Ni as a function of the number
of features.

Figure 9. (a) LASSO predictions based on leave-one-out cross val-
idation for Ni; (b) the averaged predictions for each concentration.

set initially decreases and then starts increasing. This implies
that after incorporating a certain number of features into the
model, the model starts memorizing rather than generalizing,
which is known as overfitting. Therefore, we set the regular-
ization constant to the value that minimizes the loss for the
test set. Figure 9 illustrates the optimized LASSO model pre-
dictions obtained by cross validation. For each concentration,
the cross validation predictions were averaged and plotted
along with the standard deviations. The predicted values vary
linearly with the actuals. Figure 10 shows the wavelengths
chosen by LASSO and the mean spectrum for 10 ng. LASSO
chose a few Ni emission peaks along with other features to
build the model. The same optimization process was applied
to other toxic metals, specifically Cr, Cu, and Pb. Figure 11 il-
lustrates the resulting predictions and demonstrates the value
of LASSO for predicting deposited mass from the spectra.
To obtain the LOD, the following function of the LASSO
coefficients θj was used:

LOD= 3
σB

S
= 3σB ‖θB‖ , (5)

where σB is the standard deviation of the background and
‖θB‖is the Euclidean norm of LASSO coefficients. Table 3
reports the LODs of the studied toxic metals.

Multivariate regression models such as LASSO might be
more powerful in detection and quantification over univari-
ate models; however, there is no guarantee that multivari-
ate models outperform simple linear regression (Castro and
Pereira-Filho, 2016; Braga et al., 2010). To evaluate LASSO
performance, we compared LASSO with univariate meth-
ods, by calculating the LODs using simple univariate linear
regression based on the features selected by LASSO. Fig-
ure 12 illustrates the LODs obtained using this univariate

Figure 10. Ni 10 ng spectrum (black line) and selected features by
LASSO (red line).

Figure 11. The optimized LASSO models predictions for Cr, Cu,
Ni, and Pb.

technique (circles) compared to LASSO LOD (dashed line)
for Ni. Considering only the sensitivity (LOD) is necessary
but not sufficient for evaluating model performance since low
R2 values are also problematic. Therefore, in order to incor-
porate both R2 and LOD for model assessment, we defined a
score as

score=
(

LOD
R2

)2

. (6)

Based on this definition, a model that has low LOD and
high R2 is desirable. The LASSO score outperforms sin-
gle feature linear regression for Pb, but the two methods
were comparable for Cu, Ni, and Cr (Fig. 13). Other stud-
ies have reported that univariate techniques performed bet-
ter than multivariate ones (Castro and Pereira-Filho, 2016;
Braga et al., 2010). In LASSO, this may be related to the
cost function defined for the regression (Eq. 4). LASSO is
a special case of elastic net family where both L1 and L2
norms are combined and used in the cost function. Consid-
ering the cost function in Eq. (4), the model goal is to min-
imize the prediction error and coefficient values (minimiz-
ing L1). This does not necessarily optimize LOD. There-
fore, cost function minimization does not correspond to LOD
minimization. Considering Fig. 12, using features defined by
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Table 3. Detection limits for various toxic metals based on the LASSO and univariate models.

Toxic LASSO R2 MAELASSO Univariate R2 MAEUnivariate Regularization
metal cons.

Cr 3.55 0.99 6.71 3.28 0.98 3.83 0.0008
Cu 12.09 0.92 49.67 0.68 0.11 143.27 0.0006
Ni 9.60 0.98 6.67 2.32 0.88 68.63 0.0009
Pb 54.40 0.90 36.67 8.37 0.45 124.42 0.0018

Figure 12. (a) The univariate LODs based on LASSO selected fea-
tures and (b) LASSO and univariate models scores.

Figure 13. Model scores defined by Eq. (3) for Cr, Cu, Ni, and Pb.
Circles indicate univariate models scores and dashed lines corre-
spond to LASSO scores.

LASSO in a univariate model may yield better LOD than
that obtained by LASSO alone. This might be an advanta-
geous approach if the physical intuition of the features is not
as important as the detection of toxic metals.

4 Conclusion

A cost-effective spark emission spectroscopy instrument was
designed and developed to quantify toxic metals targeted by
the US EPA and the California Air Resources Board. Costly
components such as the spark generation system and delay
generator were developed to lower the overall cost. An unsu-
pervised learning technique was employed to detect outlier
spectra. The cleaned spectra set was fed into LASSO for pre-

dicting the concentration of deposited samples on the ground
electrode of the spark system from spectra obtained from the
plasma. A combination of LASSO feature detection with uni-
variate regression might improve the detection limits. Our
results illustrate the promising realm of cost-effective sen-
sors combined with advanced machine learning techniques
to provide data-driven solutions to the traditional challeng-
ing problems.
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