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Abstract. Current cloud and aerosol identification methods
for multispectral radiometers, such as the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and Visible In-
frared Imaging Radiometer Suite (VIIRS), employ multi-
channel spectral tests on individual pixels (i.e., fields of
view). The use of the spatial information in cloud and aerosol
algorithms has been primarily through statistical parameters
such as nonuniformity tests of surrounding pixels with cloud
classification provided by the multispectral microphysical
retrievals such as phase and cloud top height. With these
methodologies there is uncertainty in identifying optically
thick aerosols, since aerosols and clouds have similar spec-
tral properties in coarse-spectral-resolution measurements.
Furthermore, identifying clouds regimes (e.g., stratiform, cu-
muliform) from just spectral measurements is difficult, since
low-altitude cloud regimes have similar spectral properties.
Recent advances in computer vision using deep neural net-
works provide a new opportunity to better leverage the co-
herent spatial information in multispectral imagery. Using a
combination of machine learning techniques combined with
a new methodology to create the necessary training data,
we demonstrate improvements in the discrimination between
cloud and severe aerosols and an expanded capability to clas-
sify cloud types. The labeled training dataset was created
from an adapted NASA Worldview platform that provides an
efficient user interface to assemble a human-labeled database
of cloud and aerosol types. The convolutional neural net-
work (CNN) labeling accuracy of aerosols and cloud types
was quantified using independent Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) and MODIS cloud and
aerosol products. By harnessing CNNs with a unique labeled

dataset, we demonstrate the improvement of the identifica-
tion of aerosols and distinct cloud types from MODIS and
VIIRS images compared to a per-pixel spectral and standard
deviation thresholding method. The paper concludes with
case studies that compare the CNN methodology results with
the MODIS cloud and aerosol products.

1 Introduction

A benefit of polar-orbiting satellite passive radiometer in-
struments, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS); Visible Infrared Imaging Radiome-
ter Suite (VIIRS); and constellation of geostationary sensors,
such as with the Advance Baseline Imager (ABI) and Ad-
vanced Himawari Imager (AHI), is their ability to resolve
the spatial and spectral properties of clouds and aerosol fea-
tures while providing global coverage. Consequently, the op-
tical property measurements of aerosol particles and clouds
from radiometer instruments dominate both the atmospheric
research and operational communities (Schueler et al., 2002;
Salomonson et al., 1989; Klaes et al., 2013; Parkinson, 2013;
Platnick et al., 2016; Levy et al., 2013; Al-Saadi et al., 2005).
For example, cloud and aerosol measurements on a global
scale are routinely employed in advance modeling systems
such as those contributing to the International Cooperative
for Aerosol Prediction multi-model ensemble (ICAP-MME;
Xian et al., 2018) and the NASA Goddard Earth Observing
System version 5 (GEOS-5) models (Molod et al., 2012).

Our work in this paper is motivated by two related atmo-
spheric research needs:
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1. Current data assimilation and climate applications de-
pend on the accurate identification of optically thick
aerosols from radiometer images on global scales;
Figs. 1 and 2 illustrate the difficulty in identifying opti-
cally thick aerosols and cloud types, which is due to the
low spectral contrast between optically thick aerosols
and water clouds in individual fields of view (FOVs).

2. Climatological research can benefit from the iden-
tification of major cloud regimes, as illustrated in
Fig. 2, since meteorological conditions and major cloud
regimes are related due to the strong correlations be-
tween cloud types and atmospheric dynamics (Levy
et al., 2013; Tselioudis et al., 2013; Evan et al., 2006;
Jakob et al., 2005; Holz, 2002); very little work has been
done on cloud-type identification from radiometer im-
ages.

What both these research needs have in common is that a
practitioner uses contextual differences, such as spatial and
spectral properties (e.g., patterns and “color”), to identify op-
tically thick aerosols and cloud types from imagery. For ex-
ample, from Figs. 1 and 2, a practitioner would use spatial
texture to make distinctions between optically thick aerosols
and closed-stratiform and cirrus clouds. Although practition-
ers can visually make these distinctions, current operational
NASA cloud and aerosol products are not able to reliably
identify optically thick aerosols and cloud types. Specifically,
illustrated by Figs. 1 and 2, (1) NASA cloud products mis-
take optically thick aerosols for clouds, (2) the aerosol opti-
cal depth (AOD) retrieved by the NASA aerosol products of
optically thick aerosols are labeled as “bad” by the quality
control flags, and (3) from the NASA cloud optical proper-
ties product it is unclear how to distinguish different cloud
types other than making a distinction between water and ice
clouds. Consequently, in a climatological research project in-
volving aerosols, most large-impact optically thick aerosols
will be excluded in the research study if the project relies on
the MODIS level-2 cloud and aerosol products; this problem
stresses the importance of the reliable identification of opti-
cally thick aerosols.

The underutilization of spatial information in radiome-
ter images is a major reason why NASA operational cloud
and aerosol products struggle to identify optically thick
aerosols and restrain the identification of different cloud
types; most NASA products operate on primarily spec-
tral information of individual pixels and some simple spa-
tial analysis such as standard deviation of image patches.
This paper demonstrates that convolutional neural networks
(CNNs) can increase the accuracy in identifying optically
thick aerosols and provide the ability to identify different
cloud types (Simonyan and Zisserman, 2014; LeCun et al.,
1989; Krizhevsky et al., 2012; Szegedy et al., 2017; LeCun
et al., 1998; LeCun, 1989).

Recent applications of statistical and machine learning
(ML) methods in atmospheric remote sensing have demon-

Figure 1. These images show an example where the MODIS spec-
tral and standard deviation thresholding (SSDT) techniques mis-
classify a thick smoke plume as a cloud; the smoke plume originated
from Oregon, and measurements were taken on 12 December 2017
with MODIS-Aqua. According to the MODIS cloud top pressure
(MYD06) and mask (MYD35) products, the whole smoke plume
is labeled as a cloud. The MYD04 aerosol product associates the
optically thick part of the smoke plume with “bad” quality control
flags, since the SSDT technique employed by the MYD04 product
is tuned to aggressively ignore any observations that have a close
resemblance to a cloud. The new methodology uses a convolutional
neural network to extract spatial texture features which enables the
method to make an accurate distinction between aerosols that have
smooth surfaces and clouds that have nonsmooth surfaces.

strated improvements upon current methodologies in atmo-
spheric science. For example, neural networks have been em-
ployed to (1) approximate computationally demanding ra-
diative transfer models to decrease computation time (Bouk-
abara et al., 2019; Blackwell, 2005; Takenaka et al., 2011),
(2) infer tropical cyclone intensity from microwave imagery
(Wimmers et al., 2019), (3) infer cloud vertical structures
and cirrus or high-altitude cloud optical depths from MODIS
imagery (Leinonen et al., 2019; Minnis et al., 2016), and
(4) predict the formation of large hailstones from land-based
radar imagery (Gagne et al., 2019). Specific to cloud and
volcanic ash detection from radiometer images, Bayesian
inference has been employed where the posterior distribu-
tion functions were empirically generated using hand-labeled
(Pavolonis et al., 2015) or coincident Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) observations (Hei-
dinger et al., 2016, 2012) or from a scientific product (Mer-
chant et al., 2005).

Inspired by the recent successful applications of ML in
atmospheric remote sensing, we hypothesize that a method-
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Figure 2. These images show the different texture smoothness properties of the stratiform, cumuliform and cirrus/high-altitude cloud at
different spectral channels and how the proposed methodology (i.e., the new method) was able to leverage the smoothness properties to make
a distinction between different cloud types. Stratiform clouds are smoother than cumuliform clouds, and both stratiform and cumuliform
clouds are smoother than cirrus/high-altitude clouds at 11 µm brightness temperature. From the MYD06 cloud-phase product it is unclear
how to set different cloud types apart other than cirrus/high-altitude clouds.

ology can be developed that accurately identifies optically
thick aerosols and cloud types by better utilizing the coherent
spatial information in moderate-resolution multispectral im-
agery via recent advances in CNN architectures. Leveraging
these recent advances we explore the following questions:

1. Can the application of CNNs with training data
developed from a human-classified dataset improve
the distinction between cloud and optically thick
aerosol events and provide additional characterization
of clouds, leveraging the contextual information to re-
trieve cloud type?

2. When identifying aerosols and cloud types by dividing
up an image into smaller patches and extracting spatial
information from the patches, what is the optimal patch
size (number of pixels) that provides the best identifica-
tion accuracy of the aerosols and cloud types?

3. How does the performance of the aerosol and cloud-
type identification compare to lidar observations such
as those of CALIOP?

We specifically consider a human-labeled dataset instead of
using an active instrument such as CALIOP and the Cloud
Profiling Radar (CPR) to produce a labeled dataset, since the
cloud and aerosol products of these instruments have limita-
tions; for example, the CPR only accurate detects precipitat-
ing clouds, and both CALIOP and the CPR are nadir-viewing
instruments with which only a fraction of MODIS–VIIRS
pixels can be labeled (Kim et al., 2013; Stephens et al., 2002).

To address the proposed questions above we developed a
methodology in which we adopted a CNN to exploit both
the spatial and spectral information provided by MODIS–
VIIRS observations to make a distinction between basic
categories of aerosol and cloud fields: clear-air, optically
thick aerosol features, cumuliform cloud, transitional cloud,
closed-stratiform cloud and cirrus/high-altitude cloud. To
conceptually demonstrate the new capabilities, Figs. 1 and
2 show the results of the methodology which has identified
(1) an optically thick aloft smoke plume and (2) cloud clas-
sification based on the contextual information. The capabil-
ity to globally detect and monitor these cloud and aerosol
types provides important new information about the atmo-
sphere since these cloud types are strongly correlated with
atmospheric dynamics (Tselioudis et al., 2013). This paper
does not address identifying clouds by their specific forcing
or physics; this is a topic of a subsequent paper; here, we are
only interested in differentiating spatial cloud patterns and
major aerosol events.

The work that we present in this paper has been primar-
ily developed for daytime deep-ocean observations, since
the identification of aerosols and cloud types over land and
during the nighttime is a separate and challenging research
project.

The outline of the paper is as follows. In Sect. 2 we de-
scribe the proposed methodology to identify aerosols and
cloud types via a CNN; technical details of the methodology
are in Appendices A and B. Included in Sect. 2 we (1) discuss
why CNNs are capable of extracting spatial texture features
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Table 1. Commonly used acronyms that are used throughout this
paper.

Acronym Elaboration

AOD Aerosol optical depth
CNN Convolutional neural network
P-CNN Pretrained CNN
F-CNN Fine-tuned CNN
FE Feature extractor
OD Optical depth

from images, (2) explain why we use a pretrained CNN rather
than training a CNN from radiometer images and (3) explain
why the pretrained CNN extracts useful spatial texture fea-
tures from radiometer images. In Sect. 3 we share test results
of the proposed methodology using case studies. The paper
is concluded in Sect. 4 with a discussion of future work. Ap-
pendix C gives an overview of the satellite instruments that
are used in this paper.

Table 1 shows commonly used acronyms that are used
throughout this paper which the reader can reference for the
sake of convenience.

2 Methodology

The advantage of the proposed methodology is that it pro-
vides an approach to leveraging the contextual spatial in-
formation in radiometry imagery to (1) identify cloud types
and (2) separate clouds from optically thick aerosol fea-
tures. In comparison the MODIS–VIIRS cloud and aerosol
algorithms employ per-pixel spectral and standard deviation
(SD) thresholding techniques which correctly identify clouds
overall; the simple spatial statistics, however, of the MODIS–
VIIRS algorithms on different spectral images do not provide
enough independent information to uniquely separate opti-
cally thick aerosol events from cloud (Platnick et al., 2016;
Levy et al., 2013).

A small subset of a MODIS or VIIRS image, which we
call a patch, is labeled as clear-air, optically thick aerosol,
low-level to midlevel cumuliform cloud, transitional/mixed
cloud (transitional between the two or mixed types), closed-
stratiform cloud or cirrus/high-altitude cloud by the follow-
ing two steps:

1. The contextual spatial and spectral information are ex-
tracted via a feature extractor (FE) algorithm.

2. With a multinomial classifier (i.e., multiclass classifier),
which takes as input the extracted features, the patch
is assigned probability values of being a specific cloud
type or aerosol.

The cloud type or aerosol with the largest probability is the
label assigned to the patch.

In this paper we define a method as a feature extrac-
tor (FE) algorithm with a multinomial classifier (Krishna-
puram et al., 2005); our method employs a CNN as an
FE algorithm, which simultaneously extracts spatial infor-
mation from the 0.642 and 0.555 µm solar reflectances and
the 11 µm brightness temperature (BT) measurements where
each of the bands jointly provide key information to identify
aerosols and distinct cloud types. The multinomial classifier
has tuning parameters that are used when assigning proba-
bility values to extracted features of different cloud types
and aerosols (Krishnapuram et al., 2005); these tuning pa-
rameters are estimated using a training dataset. Hence, a fo-
cus of the proposed methodology is the creation of a train-
ing dataset that enables a CNN to extract spatial features
of aerosols and cloud types. We adapted the NASA World-
view web framework that enables an atmospheric scientist to
hand-label aerosols and cloud types (NASA, 2020); Fig. 4
shows an example of the adapted user interface.

Cloud types and aerosols in a whole MODIS or VIIRS
image are identified by (1) dividing the image into patches
and (2) the method (FE and classifier) being applied to each
patch to produce a label of clear-air, optically thick aerosol,
low-level to midlevel cumuliform cloud, transitional/mixed
cloud (transitional between the two or mixed types), closed-
stratiform cloud or cirrus/high-altitude cloud. The size of the
patches, from which the spatial features are extracted, deter-
mines the labeling image resolution; we show in the results
how labeling accuracy is a function of the patch size. In this
paper we consider patch sizes of 25 and 100 pixels where
1 pixel equals approximately 1 km.

Since it is not clear which FE algorithm will yield spatial
textual features that optimize the classification performance
for identifying cloud types and aerosols, we consider three
different FE algorithms: (1) pretrained CNN, (2) fine-tuned
CNN and (3) traditional mean–standard deviation (MeanStd)
FE algorithm as a control. We employ a pretrained CNN
since a CNN requires a large training dataset (e.g., a mil-
lion images) to estimate its parameters (Simonyan and Zis-
serman, 2014), whereas the pretrained CNN has its parame-
ters pre-estimated from a different image classification prob-
lem (e.g., general internet images). A fine-tuned CNN has
its parameters estimated from radiometer images where the
initial values of the CNN parameters are from a pretrained
CNN. The main purpose of the MeanStd FE is to set a base-
line result.

The next subsection introduces the algorithms that esti-
mate the parameters of the methods and apply the methods to
radiometer images. In Sect. 2.2 we discuss how the labeled
dataset, which is subdivided into a training and test dataset,
is created; from the test dataset a test (generalization) error is
computed with which we rank the different methods (Fried-
man et al., 2001). Section 2.3 gives a short overview of CNNs
and elaborates on the pretrained and fine-tuned CNNs. Ap-
pendix B provide details of the pretrained CNN, fine-tuned
CNN and MeanStd FE algorithms.

Atmos. Meas. Tech., 13, 5459–5480, 2020 https://doi.org/10.5194/amt-13-5459-2020



W. J. Marais et al.: Leveraging spatial textures to identify aerosols and distinct cloud types 5463

2.1 Algorithms that train and apply methods

Two algorithms are used to (1) estimate the multinomial
classifier parameters (i.e., training phase) of each method
(i.e., multinomial classifier with an FE algorithm) and (2) ap-
ply each method to a MODIS or VIIRS image to label the
pixels in the image as aerosol and cloud type. The first algo-
rithm estimates a method’s parameters from the labeled train-
ing datasets of patches, and the test error is computed from
the labeled test datasets of patches; Fig. 3a gives a pictorial
overview and Algorithm 1 in Appendix A1 gives a detailed
outline of the first algorithm. The second algorithm applies
a method (trained via Algorithm 1) on a MODIS or VIIRS
image by dividing the input image into patches and applying
the method on each patch; Fig. 3b gives a pictorial overview
and Algorithm 2 in Appendix A2 gives a detailed outline of
the second algorithm.

2.1.1 Algorithm 1 – estimate method parameters –
training phase

Algorithm 1 takes as input the labeled training and test
datasets of patches with the given FE algorithm, and the out-
put is a trained multinomial classifier and test error (Krishna-
puram et al., 2005; Friedman et al., 2001). For each patch the
multinomial classifier models a probability value for each la-
bel. This probability model has several parameters that are
estimated from the labeled training dataset by finding the
parameters that minimizes an objective (i.e., cost) function;
the objective function consists of (1) a loss function that fits
the parameters onto the patches and labels and (2) a l2 (Eu-
clidean norm) penalty function with a tuning parameter that
regularizes the parameters to prevent the multinomial classi-
fier from overfitting on the training dataset (Friedman et al.,
2001). The optimum tuning parameter is estimated via 5-fold
cross validation, since the size of our training dataset is lim-
ited (Friedman et al., 2001). Once the multinomial classifier
has been trained the test dataset is used to compute a test er-
ror for the method by labeling the patches in the test dataset
and computing the labeling accuracy.

2.1.2 Algorithm 2 – applying trained method to label a
MODIS or VIIRS image

Algorithm 2 takes as input a MODIS or VIIRS image, patch
size and a trained method which consists of an FE algorithm
with its corresponding trained multinomial classifier. For ev-
ery pixel in the input MODIS or VIIRS image, Algorithm 2
assigns a label to the pixel by (1) computing what is the prob-
ability that pixel belongs to one of the six label categories
(clear-air, optically thick aerosol, etc.) and (2) assigning the
label with maximum probability value to the corresponding
pixel. To assign a probability value of a specific label to a
pixel, Algorithm 2 in summary (1) takes all the patches that
intersects with the target pixel, (2) extracts the feature vec-

Figure 3. A method that identifies cloud types and aerosols in
MODIS–VIIRS images consists of a feature extractor (FE) algo-
rithm and a multiclass classifier. (a) The parameters of the method’s
multiclass classifier are estimated and the test error is computed
by (1) creating the feature vectors from each patch in the training
dataset via the method’s FE algorithm, (2) estimating the multiclass
classifier’s parameters using the training feature vectors and the cor-
responding labels, and (3) extracting the feature vectors from each
patch in the test dataset and computing the test error from the test
feature vectors and corresponding labels. (b) A trained method is
applied to a MODIS or VIIRS image by (i) dividing the MODIS or
VIIRS image into overlapping patches, (ii) extracting for each patch
the spatial texture feature vectors via the method’s FE algorithm,
(iii) labeling each patch via the feature vector and the method’s
trained multiclass classifier, and (iv) putting together all the labeled
patches to create a labeled image.

tors from the patches with the given FE algorithm, (3) ap-
plies the multinomial classifier on each feature vector to pro-
duce a series of probability values (of the specific label) and
(4) averages the series of probability values to produce a final
probability value of the target pixel. This labeling procedure
assumes that the category to which a pixel belongs is corre-
lated with the categories of the surrounding pixels, implying
that all patches that intersect a pixel contribute to the proba-
bility value of the pixel.

In order to reduce the computational demand on estimating
the probability values per pixel, the overlapping patches have
a row and column index stride of 5.
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2.2 The labeled dataset

The labeled dataset, from which each method’s parameters
and error performance are estimated, is created through an
adapted Space Science Engineering Center (SSEC) NASA
Worldview web interface; the website allows an atmospheric
scientist to interactively create a labeled dataset. Figure 4
shows how the labeled dataset is assembled; the subset
MODIS–VIIRS images that are chosen are divided into over-
lapping patches of the two different sizes of 25 and 100 pix-
els. From the labeled dataset a training and a test dataset
are created by sampling from labeled datasets; the training
and test datasets are used to estimate the parameters and er-
ror performance of a method, respectively (Friedman et al.,
2001).

In order to ensure consistent labels for the study, one co-
author created the labeled dataset (JSR); the system is able
to track individual trainers to identify areas of ambiguity.
The labeled dataset provides specific cloud and aerosol cate-
gories. The cloud categories are (1) clear-air, (2) cirrus/high-
altitude, (3) transitional/mixed, (4) closed stratiform, and
(5) cumuliform, and the aerosol categories are (1) severe
dust, (2) severe smoke and (3) severe pollution. For this study
all the aerosol categories are aggregated into one aerosol
label; our methodology does not identify specific aerosol
types, because the required number of samples in the training
dataset increases exponentially as a function of the number
of distinct labels the multiclass classifier with the CNN FE
algorithm has to identify (Shalev-Shwartz and Ben-David,
2014).

The labeled subset of MODIS–VIIRS images in the
datasets was projected onto an equirectangular grid
(i.e., equidistant cylindrical map projection) with a spatial
resolution of 1 km (i.e., 1 pixel equals 1 km), and each so-
lar reflectance channel was corrected for Rayleigh scattering
(Vermote and Vermeulen, 1999).

2.2.1 Training and test datasets

For a specific patch size we created a training dataset by ran-
domly sampling, without replacement, patches from the la-
beled dataset. The training dataset consists of 75 % of the
extracted patches, and the rest of the patches that were not
sampled are placed into the test dataset. To prevent a mul-
ticlass classifier with an FE algorithm from being biased to-
wards classifying a specific cloud type or aerosol, the random
sampling of the patches was carried out such that (1) there
are equal portions of patches of each label and (2) there are
equal portions of aerosol subtypes (e.g., smoke, dust, pollu-
tion; Japkowicz and Stephen, 2002).

2.2.2 Quality assurance of labeled data

To label a subset of a MODIS or VIIRS image through the
web interface, as shown in Fig. 4, (1) the cloud and aerosol

Figure 4. (A) The web interface through which a labeled dataset
of aerosols and cloud types can be created. First the user decides
what to label; e.g., in the above image the user chose to label cu-
muliform clouds with a dust event. Then the user selects the region
of interest (the blue rectangle over the aerosol event) via the mouse
cursor; a counter increases (0002) to indicate the labeled image has
been archived in a database. (B) To create the labeled dataset (a) a
MODIS or VIIRS image is chosen through the web interface, (b) the
selected region of interest is used to create a subset of the MODIS
or VIIRS image, (c) the subset image is divided into overlapping
patches and (d) the patches are archived with the corresponding la-
bels.

categories are first chosen and (2) the region of the cloud and
aerosol type is selected by dragging a rectangular box over
a subset of a MODIS or VIIRS swath which is associated
with the cloud and aerosol categories; the MODIS–VIIRS
11 µm band can used to separate high-altitude (cirrus) and
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low-altitude clouds. To further avoid label inconsistencies in
the training dataset two guidelines were followed:

1. The MODIS or VIIRS image subset must only contain
the specific cloud and aerosol categories. For example, a
subset image must only contain a collection of cumuli-
form clouds.

2. Except for with cumuliform and cirrus/high-altitude
clouds, avoid the inclusion of cloud or aerosol edges
wherever possible.

With these guidelines the training dataset excludes examples
of cloud and aerosol types that are similar to each other;
e.g., cases are avoided where a cloud is equally likely to be
transitional/mixed cloud or closed-stratiform cloud.

Further quality assurance (QA) was conducted on the im-
ages that were labeled transitional/mixed and cumuliform
clouds and aerosols. For a chosen small patch size and
a subset MODIS or VIIRS image, cumuliform or transi-
tional/mixed clouds could have in-between regions that are
considered clear-air. The MODIS–VIIRS level-2 cloud mask
was used to screen out patches within cumuliform or transi-
tional/mixed subset images that are clear-air, since for day-
time deep-ocean images the MODIS–VIIRS cloud mask re-
liably identifies clouds (Frey et al., 2008)1.

2.3 Overview of CNNs in the context of aerosol and
cloud-type identification

A set of convolution filters can be used to make distinctions
between different image types based on their spatial proper-
ties. Based on the response of the filters a decision is made
about in what category (i.e., label) the input image belongs.
For example, if we want to make a distinction between clear-
air and cumuliform cloud images, the output of a high-pass
filter would emphasize spatial variation in a cloudy image.

A CNN essentially consists of a series of convolution fil-
ters that are tuned to emphasize various spatial properties in
an image; each filter produces a feature map. The feature
maps are passed through pooling–aggregation (i.e., down-
sampling) operations that allow a CNN to be less sensitive
to shift and distortions of the spatial properties in the im-
ages (Simonyan and Zisserman, 2014; LeCun et al., 1989;
Krizhevsky et al., 2012; Szegedy et al., 2017; LeCun et al.,
1998; LeCun, 1989). More specifically, a CNN extracts lo-
cal spatial features from an image and combines all the lo-
cal spatial features to higher-order features via the pooling–
aggregation operations, and the higher-order features can be
used to make a distinction between different image types;
Fig. 5 shows a simplified diagram of a CNN which gives
an idea of how the local spatial features and higher-order
features are created through the convolutional filters and
pooling–aggregation operations.

1The VIIRS and MODIS level-2 cloud masks use the same al-
gorithm, except for VIIRS fewer spectral bands are used.

Similar to fully connected neural networks (NNs), the out-
put of the convolution filters is passed through nonlinear
functions (activation functions) with a bias term; the pur-
pose of the nonlinear function with the bias term is to “ac-
tivate” the output of a convolution filter if the output exceeds
some threshold value set by the nonlinear function and bias
term. For example, we can emphasize two different levels
of variability in an image by connecting a high-pass filter
to two ramp functions (f (x)=max(0,x+ b)) with different
bias values b; the ramp function basically acts as a threshold
function. Figure 6 shows an example of the output of a three-
dimensional (3D) convolutional filter that is produced from
a cirrus/high-altitude cloud image. Each layer of the 3D fil-
ter in Fig. 6 convolves with each corresponding layer of the
input image; the discrete Fourier transforms (DFTs) in Fig. 6
show that the filter layers are low- and band-pass filters. With
the bias term and nonlinear activation function the 3D filter
produces an image that highlights the local high-reflectivity
and clear-air regions in the cirrus/high-altitude cloud.

The layers of filters and pooling–aggregation operations
with nonlinear activation functions, which produce feature
maps, are repeated several times. The last layers of the fea-
ture maps are passed through a fully connected NN, and
the output is a one-dimensional vector as shown in Fig. 5.
The number of consecutive filter and downsampling opera-
tions (i.e., depth) increases the expressive power of a CNN
(i.e., makes the CNN more accurate). The one-dimensional
output vector of a CNN is typically passed through a multi-
class classifier that models a probability value of each label
for the input image.

Although fully connected NNs have the ability to nonlin-
early separate vectors (e.g., images) of different types (Fried-
man et al., 2001), a fully connected NN is a suboptimal can-
didate for image recognition tasks since it has no built-in in-
variance to shifts and distortions in images or structured vec-
tors (LeCun et al., 1998).

Several different CNN configurations have been proposed
(Szegedy et al., 2017; Simonyan and Zisserman, 2014); each
CNN configuration has different convolution dimension sizes
– the number of features maps and the depths differ, the se-
quence of the convolution and pooling or aggregation differ,
etc. It is not clear which CNN configuration is a best choice
for a particular image classification problem. In this paper we
chose a CNN based on the (1) accuracy ranking of various
TensorFlow CNN implementations (Silberman and Guadar-
rama, 2020) and (2) accessibility of the TensorFlow CNN
implementation (Silberman and Guadarrama, 2016).

2.4 Pretrained and fine-tuned CNNs

A CNN that classifies images typically requires a very large
labeled training dataset (e.g., a million labeled images) to
estimate the parameters of the CNN (i.e., the convolutional
filters and bias terms), since the number of parameters re-
quired to accurately identify different image types increases
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Figure 5. A convolutional neural network (CNN) extracts local spatial features from an image and combines the local spatial features
to higher-order features. The higher-order features are then used to linearly separate different image types; this figure shows a simplified
diagram of a CNN which gives an idea of how the local spatial features and higher-order features are created. In the first CNN layer, after the
input image, the CNN has multiple multilayer convolution filters that produce feature maps: for each multilayer filter (1) the CNN convolves
the filter with the input image, (2) a bias term specific to the feature map is added to each convolution sum, (3) the results are passed through
a nonlinear activation function and (4) the outputs are then placed on a feature map; the nonlinear function with the convolution sums and
biases gives the CNN the ability to find the nonlinear separation between different image types. The feature maps produced by the first CNN
layer contain local extracted spatial features. The next CNN layer converts the local extracted spatial features into higher-order features by
pooling or aggregating the features in each feature map separately using either an averaging or a max operator. The convolution and pooling–
aggregation steps are repeated until a series of small feature maps are produced. Depending on the architecture of the CNN, the final layer of
feature maps is then passed through a fully connected NN and then finally through a multiclass classifier.

Figure 6. This figure shows an example of a feature map that is produced from a cirrus/high-altitude cloud image by a specific 3-dimensional
(3D) convolution filter of the first layer of a convolutional neural network (CNN). The layers of the 3D filter are low- and band-pass filters as
indicated by the discrete Fourier transforms (DFTs). The 3D convolution filter is convolved over the input image; for each convolution sum
a bias term is added and then passed through a nonlinear activation function which corresponds to a feature map pixel. For this example the
feature map highlights the local high-reflectivity and clear-air regions in the cirrus/high-altitude cloud.

exponentially with the size of the input images (Gilton et al.,
2020). In this paper the training dataset is relatively small
since it is time-consuming to hand-label MODIS–VIIRS im-
ages and for optically thick aerosols there are not enough
events in the observations.

To address the issue of a small training dataset, we take
advantage of a remarkable property of CNNs: if the CNN’s
convolution filters were tuned (i.e., estimated) on a general
set of images (e.g., a wide range of internet images) to make
a distinction between image types, the same tuned convolu-
tions filters can be used in the image recognition domain of
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an entirely different problem. More specifically, the convolu-
tion filters in a CNN are kept fixed and the parameters of the
multiclass classifier are re-estimated with a training dataset in
the new image recognition domain; we call this type of CNN
a pretrained CNN. For example, a pretrained CNN that was
trained on internet images has been employed successfully in
a radar remote-sensing application (Chilson et al., 2019).

The reason why a pretrained CNN’s convolutional filters
are transferable to a different image recognition domain is
(1) concepts of edges and different smoothness properties in
images are shared across various image domains, (2) convo-
lutional filters by themselves are agnostic to the image recog-
nition domain since they quantify smoothness properties of
images and (3) re-estimation of the multiclass classifier pa-
rameters adjust for how the convolution filters respond to the
new image recognition domain.

We demonstrate through our results that the method that
employs the pretrained CNN feature extractor (FE) can pro-
vide accurate classification results, though the classification
accuracy is dependent on the patch size.

Since it is not clear whether a pretrained CNN is the best
CNN configuration to identify cloud types and optically thick
aerosol features, in this paper we also consider a fine-tuned
CNN. A fine-tuned CNN is created by (1) taking the pre-
estimated convolution filters of a pretrained CNN as ini-
tial values, (2) placing the initial values in a new CNN and
(3) training the CNN on the training dataset of MODIS–
VIIRS images (Sun et al., 2017). In other words, a fine-tuned
CNN is basically a pretrained CNN that has been adjusted
for another image domain.

3 Results – case studies and sensitivity analysis

Table 2 shows the shorthand notation of the methods that
were used to produce the results; recall that each method,
which is created by Algorithm 1, consists of a multiclass
classifier with an FE algorithm and Algorithm 2 applies the
method on MODIS–VIIRS images. For example, the short-
hand notation P-CNNAppp indicates that the method’s mul-
ticlass classifier is paired with the pretrained CNN FE algo-
rithm (i.e., FE Algorithm I) which operates on a patch size of
ppp by ppp pixels.

In our results we seek to answer the following questions:

1. Can our methodology reliably identify optically thick
aerosols which the MODIS–VIIRS level-2 products
struggle to detect?

2. Can our methodology make a distinction between dif-
ferent cloud types?

3. How well does our methodology label MODIS–VIIRS
images that are not part of the training and test datasets?
In other words, how well does our methodology gener-
alize?

With the first two questions we qualitatively validate our re-
sults with four case studies, since we are unaware of a quan-
titative dataset to characterize transitional/mixed, closed-
stratiform and cumuliform clouds and any dataset that lists
aerosol events that the MODIS–VIIRS level-2 products fail
to detect. We answer the third question by quantifying
cirrus/high-altitude cloud and aerosol identification accura-
cies as a function of optical depth (OD) by using CALIOP
cloud OD and both MODIS and CALIOP aerosol OD (AOD)
measurements. Consequently, since we use CALIOP OD
measurements to validate our results and because the SNPP
VIIRS is not consistently in the same orbit as CALIOP, we
only used MODIS-Aqua observations.

3.1 Training, test datasets, and test errors

Recall that two labeled datasets with patch sizes 100 and
25 pixels were created from the adapted NASA Worldview
website (see Fig. 4 and Sect. 2.2) and from each labeled
dataset training and validation datasets were assembled. Ta-
ble 3 shows the number of patches in the training and test
datasets per patch size and number of unique MODIS–VIIRS
image subsets from which the patches were extracted; the
quantities in the second column are less than in the third be-
cause some images subsets were smaller than 100 pixels by
100 pixels.

Table 4 shows the test errors of the different methods. The
test error is defined as the average number of labeled patches
that are misclassified from the test datasets, where the esti-
mated parameters of the methods are independent from the
patches in the test datasets. Although the test error is infor-
mative in comparing the classification performances of the
different methods (Friedman et al., 2001), the test error is
not necessarily an accurate predictor of the out-of-sample
(i.e., samples that are not in the training and test datasets)
misclassification error (Recht et al., 2019).

Table 4 clearly shows that the method with the fine-
tuned CNN (i.e., F-CNNA025) has a better error perfor-
mance compared to the method with a pretrained CNN
(i.e., P-CNNA025).

It should be noted that unlike the patches in the training
and test datasets that do not contain a mixture of cloud types
and aerosols (see Sect. 2.2), patches in MODIS–VIIRS im-
agery often have a mixture of cloud types. For a patch that
contains a mixture of cloud types and/or aerosols, we expect
that the methods will label a patch that has the most dominant
cloud type or aerosols.

3.2 Case studies

Figures 7, 8, 9 and 10 show four MODIS-Aqua scenes with
the labeled results of four methods; we do not show the re-
sults of method P-CNNA025 since it has the largest test error.
Included in the figures are the true color, 11 µm brightness
temperature (BT), and MODIS MYD04 AOD and MODIS
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Table 2. Method mnemonics that are used throughout this results section and the corresponding feature extraction (FE) algorithms.

Shorthand notation FE algorithm Description of FE

P-CNNAppp FE Algorithm I With pretrained CNN
F-CNNAppp FE Algorithm II With fine-tuned CNN
MeanStdAppp FE Algorithm III With baseline mean–standard deviation FE

Table 3. The first two rows show the number of patches in the train-
ing and test datasets per patch size. The rest of the rows show the
number of unique MODIS–VIIRS image subsets from which the
patches were extracted.

100 px by 100 px 25 px by 25 px

Training patches 50 283 148 284
Test patches 16 761 49 428

Clear-air scenes 46 142
Aerosol scenes 148 343
Cumuliform scenes 38 67
Transitional/mixed scenes 20 35
Closed-stratiform scenes 31 47
Cirrus/high-altitude scenes 102 119

MYD35 cloud-mask products (Levy et al., 2013; Frey et al.,
2008). The scenes in Figs. 7 and 8 were not part of the
training or test datasets, and for all images any sun glint
and landmasses have been masked out. The four MODIS-
Aqua scenes were specifically chosen because the MYD04
aerosol product has retrievals which are flagged as bad by
the MYD04 quality control (QC) and because the MYD35
cloud product labeled the aerosols as clouds (Levy et al.,
2013; Frey et al., 2008).

Box A in Figs. 7, 8, 9 and 10 specifically points out
where the CNN methods (i.e., F-CNNA025 and P-CNNA100)
were able to correctly label the aerosol plumes and the cor-
responding MYD04 and MYD35 products have bad QC
AOD retrievals and the aerosols are labeled as clouds; the
CNN methods use the spatial texture differences between
aerosols and clouds to make a distinction which enables
them to correctly label these optically thick aerosols, where
the fine-tuned CNN method is able to identify aerosols at
a finer image resolution. In contrast, the baseline meth-
ods (i.e., MeanStdA025 and MeanStdA100) misclassify
aerosols as clouds in box B in Figs. 7, 8, 9 and 10 because the
baseline methods use simple statistics which do not capture
the complexity of the spatial texture features of aerosols and
cloud types.

The fine-tuned CNN method does misclassify some of
the edges of aerosol plumes as cumuliform and cirrus/high-
altitude clouds. We did not explicitly model the labeling of
the edges of aerosols and clouds, and we consider it part of
our future work to improve the labeling of aerosol plume
edges. A possible remedy for the misclassified edges is to

apply either k-means or spectral clustering to the extracted
features of the patches along the edges between the different
labels (Shalev-Shwartz and Ben-David, 2014); the labeled
edges serve as an initial value of where there might be differ-
ent cloud types and aerosols, and the cluster method group
extracted features of the patches based on how similar they
are to each other.

Box C in Figs. 7 and 8 shows the presence of sparse
cirrus/high-altitude clouds where the 11 µm BTs range be-
tween 249 and 257 K, and in Fig. 9 box C shows dense
cirrus/high-altitude clouds that cover a larger area with
11 µm BTs between 242 and 253 K. For the cases where the
cirrus/high-altitude clouds are sparser, as in Figs. 7 and 8, the
methods with patch size 25 pixels are more sensitive to de-
tecting the cirrus/high-altitude clouds compared to the meth-
ods with patch size 100 pixels. In the following subsection
we quantify how sensitive the different methods are in de-
tecting the cirrus/high-altitude clouds.

For closed-stratiform, transitional/mixed and cumuliform
clouds there is no clear approach to objectively validate
the results of the various methods; we point out where
these clouds were detected in the case studies with the true-
color imagery providing validation. Box D in Figs. 8 and 9
shows possible closed-stratiform clouds which are near or
under smoke plumes. In Fig. 8 the fine-tuned CNN method
was able to detect the closed-stratiform cloud south of the
smoke plume. In Fig. 9 box D.1 shows that a portion of
the closed-stratiform cloud is under the smoke plume, and
box D.2 shows another closed-stratiform cloud sandwiched
between a cirrus/high-altitude cloud and the smoke plume.
For box D.1 methods P-CNNA100 and MeanStdA100 iden-
tify a larger portion of the closed-stratiform cloud compared
to F-CNNA025 and MeanStdA025, since the 25-pixel meth-
ods can resolve the closed-stratiform clouds at a higher im-
age resolution which is also evident in box D.2; the baseline
methods incorrectly identify more closed-stratiform clouds
compared to the other methods.

Box E in Fig. 8 shows where the methods separate cumuli-
form from transitional/mixed clouds.

Box F in Fig. 10 shows a part of the clouds that were la-
beled as cirrus/high-altitude by the fine-tuned CNN method
where the 11 µm BT is more than 278 K. A possible reason
for this misclassification is because the cirrus/high-altitude-
labeled observations in the training dataset are contaminated
with other cloud types.
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Table 4. The test errors of the different methods with different patch sizes. For patch size 25 pixels by 25 pixels the method with the fine-tuned
CNN FE algorithm F-CNNA025 has the smallest error. For patch size 100 pixels by 100 pixels the mean–standard deviation FE algorithm
MeanStdA100 performs better than the pretrained CNN FE algorithm P-CNNA100. The case studies and sensitivity analyses results, shown
elsewhere, demonstrate that F-CNNA025 identifies optically thick aerosols and cirrus clouds at higher accuracies compared to the other
methods. The discrepancy between the test errors and what is observed in case studies and sensitivity results indicates that test error is not
necessarily an accurate predictor of the out-of-sample (i.e., samples that are not in the training and test datasets) misclassification error.

25 px by 25 px 100 px by 100 px

FE algorithm F-CNNA025 P-CNNA025 MeanStdA025 P-CNNA100 MeanStdA100

Test error 0.11 % 4.84 % 4.08 % 0.45 % 0.38 %

Figure 7. Box A shows where (1) the MODIS MYD04 aerosol product has aerosol optical depth (AOD) retrievals which are flagged as bad
by the MYD04 quality control, (2) the MODIS MYD35 cloud-mask product labeled the aerosols as clouds, and (3) the pretrained 100-pixel
CNN and fine-tuned 25-pixel CNN (F-CNN) methods were able to successfully detect the extreme aerosols. Box B shows where the baseline
mean–standard deviation (MeanStd) method misclassified the aerosols as clouds. Box C shows the presence of sparse cirrus/high-altitude
clouds with 11 µm brightness temperatures (BTs) ranging between 249 and 257 K and where the 25-pixel methods (F-CNN and MeanStd)
were able to detect the cirrus/high-altitude cloud. For all images any sun glint and landmasses have been masked out.

3.3 Generalization study through cirrus/high-altitude
and aerosol sensitivity analyses

To understand how well our methodology generalizes in la-
beling MODIS–VIIRS observations that were not part of the
training and test datasets, we generated identification accu-
racy statistics using both the MODIS MYD04 and CALIOP
aerosol products and the CALIOP cloud product. Given that

the CALIOP spatial footprint is 90 m, only the patches that
intersect with the CALIOP footprint were processed by the
methods.

3.3.1 Cirrus/high-altitude cloud sensitivity analysis

Figure 11 shows the average fraction of cirrus/high-altitude
clouds, per OD interval, detected in the intersection of a
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Figure 8. Box A shows where (1) the MODIS MYD04 aerosol product has aerosol optical depth (AOD) retrievals which are flagged as bad
by the MYD04 quality control, (2) the MODIS MYD35 cloud-mask product labeled the aerosols as clouds, and (3) the pretrained 100-pixel
CNN and fine-tuned 25-pixel CNN (F-CNN) methods were able to successfully detect the extreme aerosols. Box B shows where the baseline
mean–standard deviation (MeanStd) method misclassified the aerosols as clouds. Box C shows the presence of sparse cirrus/high-altitude
clouds with 11 µm brightness temperatures (BTs) ranging between 249 and 257 K and where the 25-pixel methods (F-CNN and MeanStd)
were able to detect the cirrus/high-altitude cloud. Box D shows possible closed-stratiform clouds which are near the smoke plume that was
detected by the F-CNN method. Box E shows where the F-CNN method separates cumuliform from transitional/mixed clouds. For all images
any sun glint and landmasses have been masked out.

CALIOP footprint and patch by the different methods and
the MODIS cloud mask (CM) where the CALIOP cloud
product indicated that only ice clouds were present. The re-
ported fraction of cirrus/high-altitude cloud statistics is from
all of July 2016; CALIOP observations were excluded from
the analysis that had water cloud and aerosol observations
present at any altitude.

Figure 11a and c show that the F-CNN method detects
cirrus/high-altitude clouds at a higher accuracy compared to
the other methods at different patch sizes. Figure 11b and d
show that for both patch sizes of 100 and 25 pixels the mis-
classifications are due to cumuliform clouds, since tenuous
cirrus/high-altitude clouds are frequently above cumuliform
clouds. At patch size 25 pixels, tenuous cirrus/high-altitude
clouds are also prone to misclassification as clear-air as ex-
pected. The MODIS cloud mask in Fig. 11a and c provides a
benchmark for detecting clouds.

Figure 11a and c show the fraction of cirrus/high-altitude
clouds detected by the methods operating on 100- and 25-
pixel patches, respectively; the fine-tuned CNN method de-
tects cirrus/high-altitude clouds at a higher accuracy com-
pared to all the other methods. Figure 11b and d give in-
sight as to why the accuracy of detecting cirrus/high-altitude
clouds decreases as the cirrus/high-altitude cloud OD de-
creases. Figure 11b shows that for OD, fewer than three
cirrus/high-altitude clouds are typically labeled as cumuli-
form clouds by the pretrained CNN method. The cumuliform
labeling of cirrus/high-altitude clouds should not be regarded
as a consistent misclassification, since tenuous cirrus/high-
altitude clouds over the ocean are commonly surrounded
by cumuliform clouds in a patch size of 100 pixels. Once
the patch size decreases to 25 pixels, Fig. 11d shows that
the fine-tuned CNN method identifies tenuous cirrus/high-
altitude clouds with an OD of less than 1 and are misclassi-
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Figure 9. Box A shows where (1) the MODIS MYD04 aerosol product has bad aerosol optical depth (AOD) retrievals which are flagged as
bad by the MYD04 quality control, (2) the MODIS MYD35 cloud-mask product labeled the aerosols as clouds, and (3) the pretrained 100-
pixel CNN and fine-tuned 25-pixel CNN (F-CNN) methods were able to successfully detect the extreme aerosols. Box B shows where the
baseline mean–standard deviation (MeanStd) methods misclassified the aerosols as clouds. Box C shows the presence of dense cirrus/high-
altitude clouds with 11 µm brightness temperatures (BTs) ranging between 242 and 253 K and where all four methods were able to detect the
cirrus/high-altitude cloud. Box D shows possible closed-stratiform clouds which are near or under the smoke plume. All four methods were
able to detect the closed-stratiform clouds to various degrees, whereas the 25-pixel methods were able to detect the closed-stratiform clouds
at −127 longitude at a finer image resolution compared to the 100-pixel methods. For all images any sun glint and landmasses have been
masked out.

fied as clear-air, though cumuliform clouds are still present
for cirrus/high-altitude clouds with ODs of up to 3.

3.3.2 Aerosol sensitivity analysis

Figure 12 shows the average fraction of aerosols, per AOD
interval, detected in the intersection of a CALIOP foot-
print and patch by the different methods where the MODIS
MYD04 or CALIOP aerosol products indicated that aerosols
were present in the complete intersection. The reported frac-
tion of aerosol statistics are from March 2012 up to May
2018, and aerosol observations were excluded from the anal-
ysis if (1) any cloud was present according to both the
MODIS and CALIOP cloud products and (2) the confidence
in the AOD retrieval was less than “high confidence” as indi-
cated by the MYD04 QC.

Comparing Fig. 12a and b with Fig. 12c and d indi-
cates that methods operating on 100-pixel patches can detect
aerosols with a smaller AOD more accurately than methods
operating on 25-pixel patches, where the method MeanStd
can identify aerosols at a slightly lower AOD compared to
the pretrained CNN (P-CNN) and fine-tuned CNN (F-CNN);
aerosols that are not identified are typically labeled as clear-
air.

In Fig. 12 the insensitivity to detecting tenuous aerosols by
the CNN and baseline methods is by design of the training
dataset, since the aerosol training data were manually gen-
erated from true-color imagery which is not sensitive to thin
aerosols. Figure 13 shows histograms of the median MODIS
MYD04 aerosol optical depth per patch of the training and
test datasets of patch sizes 100 and 25 pixels, specifically for
the clear-air and aerosol labels; these histograms indicate a

https://doi.org/10.5194/amt-13-5459-2020 Atmos. Meas. Tech., 13, 5459–5480, 2020



5472 W. J. Marais et al.: Leveraging spatial textures to identify aerosols and distinct cloud types

Figure 10. Box A shows where (1) the MODIS MYD04 aerosol product has bad aerosol optical depth (AOD) retrievals which are flagged
as bad by the MYD04 quality control, (2) the MODIS MYD35 cloud-mask product labeled the aerosols as clouds, and (3) the pretrained
100-pixel CNN and fine-tuned 25-pixel CNN (F-CNN) methods were able to successfully detect the extreme aerosols. Box B shows where
the baseline mean–standard deviation (MeanStd) methods misclassified the aerosols as clouds. Box F shows where a part of the clouds were
misclassified as cirrus/high-altitude by the F-CNN method, which is possibly due to cirrus/high-altitude-labeled observations in the training
dataset that have some contamination of other cloud classes. For all images any sun glint and landmasses have been masked out.

small portion of the training dataset contains tenuous aerosol
patches.

Figure 12 shows that the sensitivity to detecting aerosols
decreases as the patch size decreases, which is an opposite
trend compared to the cirrus cloud identification accuracy
versus patch size. Figure 13 gives a possible reason why there
is a decrease in sensitivity: the AOD distribution of aerosol
patches overlaps more with clear-air patches in the 25-pixel
patch size training dataset compared to the larger patch size
training dataset.

According to Fig. 12a and c the MODIS aerosol product of
the proposed methodology can accurately identify optically
thick aerosols. However, the CALIOP aerosol product indi-
cates otherwise in Fig. 12b and d. The reason why the pro-
posed methodology’s aerosol identification sensitivities rela-
tive to MODIS (MYD04) and CALIOP differ could be a dis-
crepancy between the MODIS and CALIOP measured AODs
as shown in the two-dimensional histogram in Fig. 12e. For
example, for a fixed CALIOP AOD of 2 the corresponding

MODIS AOD ranges between 0.25 and 1; in other words,
what might be considered optically thick by the CALIOP,
could be considered optically thin by the MODIS aerosol
product. It is unclear why there is such a large disagreement
between the MODIS and CALIOP AODs; there are a cou-
ple of studies in which discrepancies between MODIS and
CALIOP AODs have been discussed (Kim et al., 2013; Oo
and Holz, 2011).

4 Conclusion

4.1 Summary

We introduced a new methodology that identifies distinct
cloud types and optically thick aerosols by leveraging spatial
textual features from radiometer images that are extracted via
CNNs. We demonstrated the following through several case
studies and via comparisons of the MODIS and CALIOP
cloud and aerosol products:
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Figure 11. For the patches that intersect with the CALIPSO satellite
track and the CALIOP cloud product indicating that only ice was
present, panels (a) to (d) show the fraction of cirrus/high-altitude
clouds detected versus cloud optical depth (OD) in the intersec-
tion by the different methods of the proposed methodology and the
MODIS cloud mask (CM). Panels (a), (b) and (c), (d) show the
fraction of cirrus/high-altitude clouds detected for methods operat-
ing on 100- and 25-pixel patches, respectively. Panels (b) and (d)
show what the patch intersections were labeled as, versus optical
depth, by the pretrained convolutional neural network (P-CNN) and
fine-tuned CNN (F-CNN) methods. The MODIS cloud mask in pan-
els (a) and (c) provides a benchmark for detecting clouds.

1. The proposed methodology can identify low-level
to midlevel cumuliform, closed-stratiform, transi-
tional/mixed (transitional between the two or mixed
types) or cirrus/high-altitude cloud types; these cloud
regimes are related to meteorological conditions due to
the strong correlations between cloud types and atmo-
spheric dynamics (Levy et al., 2013; Tselioudis et al.,
2013; Evan et al., 2006; Jakob et al., 2005; Holz, 2002).

2. The detection accuracy of the cirrus/high-altitude cloud
type is a strong function of the image patch size, where a
smaller patch size yields higher accuracy. We found that
cirrus/high-altitude clouds are often misclassified as
clear-air and cumuliform clouds, resulting from the fre-
quent cumuliform clouds beneath tenuous cirrus clouds.

3. The proposed methodology can reliably identify these
optically thick aerosol events, whereas the MODIS
level-2 aerosol product labeled the AOD retrievals of
the optically thick aerosols as bad with the quality con-
trol flags (Levy et al., 2013). The implication of relying
on the MODIS level-2 aerosol product quality control
in a climatological research project involving aerosols
is that most of the large-impact optically thick aerosols
will be excluded in the research study; this problem

Figure 12. Panels (a) to (d) show the average fraction of aerosols
detected in the intersection by the different methods of the proposed
methodology for the patches that intersect with the CALIPSO satel-
lite track and either the MODIS MYD04 or the CALIOP aerosol
products that indicated there were aerosols present in the complete
intersection without any clouds. Panels (a) and (c) show the aerosol
fraction versus MODIS MYD04 aerosol optical depth (AOD), and
panels (b) and (d) show the aerosol fraction versus CALIOP AOD,
where panels (a), (b) and (c), (d) are specific to the methods of patch
sizes 100 and 25 pixels, respectively. Panel (e) gives insight as to
why the aerosol identification sensitivities relative to MODIS (a, c)
and CALIOP (b, d) differ; e.g., for a MYD04 AOD of 0.5, the cor-
responding CALIOP AOD ranges between 0.25 and 1.25.

stresses the importance of the reliable identification of
optically thick aerosols.

4. Optically thick aerosol detection is also a strong func-
tion of the image patch size, where smaller patch
sizes yield lower accuracy. The insensitivity to tenu-
ous aerosols is by design, since the human-labeled train-
ing dataset only contained optically thick aerosols. For
future work we will consider increasing the number
of lower AOD aerosol-labeled images in the labeled
dataset in order to increase the aerosol detection sen-
sitivity.

Unfortunately, since we do not know of any dataset of la-
beled cumuliform, closed-stratiform and transitional/mixed
clouds, there was no clear approach to quantifying the detec-
tion accuracy of these clouds; we leave it to future work to
characterize this accuracy performance.
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Figure 13. Panels (a) and (b) show histograms of the median
MODIS MYD04 aerosol optical depth per patch of the training and
test datasets of patch sizes 100 and 25 pixels, specifically for the
clear-air and aerosol labels. There is a clearer AOD separation be-
tween the clear-air and aerosol labels for the (a) 100-pixel patch
size datasets compared to that of the (b) 25-pixel patch size.

A surprising aspect of our methodology is that the CNNs
that we employ are pretrained on nonradiometer images
(e.g., random images from the internet). In more detail, the
convolutional filters of the CNNs which extract the spa-
tial textual features from images were estimated from non-
radiometer images; employing pretrained CNNs in other
remote-sensing problems with promising results has been re-
cently reported in the literature (Chilson et al., 2019). We
demonstrated in this paper that with additional fine-tuning
of a pretrained CNN, by further estimating the convolutional
filters where the initial values are of a pretrained CNN, the
classification performance of radiometer images can be fur-
ther improved upon.

4.2 Future work

Our proposed methodology is considered preliminary work,
and further work will be required to maximize the method-
ology’s operation and scientific use. The current limitations
are that (1) the methodology is computationally inefficient,
(2) cloud type and aerosols are only identified over deep-
ocean images, and (3) the methodology only operates on day-
time observations. Currently a total of 20 min is required to
label a MODIS 5 min granule with a GPU-accelerated fine-
tuned CNN method. This computational inefficiency is be-
cause each image patch is processed independently from the
other patches although the patches overlap. Consequently,
the CNN convolutional operations on each pixel are repeated
several times. This computational redundancy can be elimi-
nated by adapting the CNN architecture, and potential com-
putational speed can be increased at least by a factor of 5.

We consider the deep-ocean and daytime-only limitations
as future research directions. Cloud-type and aerosol identifi-
cation over land is a much harder research problem since the
Earth’s surface is nonuniform and changes over time; in our
future work we plan to model the Earth’s surface and incor-
porate the land-surface model into our CNN methodology.
In regard to the daytime-only limitation, the CNN methods
in the paper have only been applied to three spectral chan-
nels (0.642, 0.555 and 11 µm) and it would be interesting to
understand how the cloud-type and aerosol identification ac-
curacies change when some spectral bands are removed or
added from the input images. For example, how would the
CNN identification accuracies be impacted if only infrared-
radiance measurements were used?

Another future research direction is how to adapt our
methodology to geostationary Earth-orbiting (GEO) im-
agers. GEO imagers provide temporal multispectral image
sequences where the temporal resolution is at least 10 min. A
compelling research question would be the following: how
can we leverage the temporal component of the GEO im-
ages to identify cloud types and aerosols while incorporating
cloud and aerosol physical models into the machine learn-
ing methodology? The temporal information content will al-
low the machine learning to separate high-altitude from low-
altitude clouds, while the cloud and aerosol physical mod-
els will provide additional information that can constrain the
cloud-type and aerosol identification.
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Appendix A: Algorithms

A1 Algorithm 1 – estimate method parameters –
training phase

Algorithm 1 shows a detailed outline of the training-phase
algorithm. Suppose the number of labeled patches in the
training and test datasets are K and L, respectively, the la-
beled training and test datasets are denoted by {X(k)

}
K
k=1×

{Y (k)}Kk=1 and {X̃(l)
}
L
l=1×{Ỹ

(l)
}
L
l=1, respectively; the super-

scripts (k) and (l) are indices to the labeled patches in the
training and test dataset, respectively. Each patch, denoted
by a 3-dimensional tensor X ∈ RS×S×3, has three layers and
covers an area of S by S pixels. The corresponding label vec-
tor Y ∈ R6 is a six-element canonical vector (i.e., ith vec-
tor equals 1 and the rest are zero) where the position of
the one-element corresponds to the categories of clear-air,
optically thick aerosol features, cumuliform clouds, transi-
tional clouds, closed-stratiform clouds or cirrus/high-altitude
clouds.

For each patch in the training dataset the FE algorithm cre-
ates S̃ element feature vectors denoted by Z ∈ RS̃ . The prob-
ability value of a feature vector Z being of label Y is modeled
by a normalized exponential function:

P(W ;Z,Y )=
exp

(
ZTWY

)∑6
i=1 exp

(
ZTWei

) , (A1)

where W ∈ RS̃×6 is the parameter of the multinomial clas-
sifier which linearly weights the feature vector Z, the label
vector Y selects the column of W that is multiplied with the
feature vector Z and ei ∈ R6 is a six-element canonical vec-
tor.

Algorithm 1 employs Algorithm 1a to estimate the op-
timum weight matrix W. In more detail, with the training
features and label vectors Z = {Z(k)}Kk=1 and Y = {Y (k)}Kk=1,
Algorithm 1a estimates the weight matrix W by minimizing
the objective function:

8(W;Z,Y,λ)=
loss function︷ ︸︸ ︷
`(W;Z,Y)+ λ︸︷︷︸

tuning parameter

×

penalty term︷ ︸︸ ︷
trace

(
WTW

)
, (A2)

`(W;Z,Y)=
∑

(Z,Y )∈Z×Y
− logeP(W;Z,Y ), (A3)

where Eq. (A3) is the negative log-likelihood (i.e., loss) func-
tion and λ > 0 is the regularizer (i.e., tuning) parameter of the
l2 penalty term as indicated in Eq. (A2). The optimum tuning
parameter λ is estimated by Algorithm 1a using 5-fold cross
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validation (Friedman et al., 2001), where for each tuning pa-
rameter a validation error is computed and the optimum tun-
ing parameter corresponds to the smallest validation error;
the validation error is computed using the loss function (A3).

A patch is labeled with the function

9(Z;Ŵ)= ei∗ , (A4)

where

i∗ = arg max
i∈{1,2,...,6}

P(Ŵ;Z,ei),

which produces a label vector by finding the canonical vec-
tor ei that maximizes the modeled probability (A1) with the
extracted feature vector Z and estimated weight matrix Ŵ.

For a given test datasets of feature Z̃ = {Z̃(l)}Ll=1 and label
Ỹ = {Ỹ (l)}Ll=1 vectors, the test error is computed by

Err (Z̃, Ỹ,Ŵ)=
1∣∣∣Ỹ∣∣∣

∑
(Z̃,Ỹ )∈Z×Y

Indc
{
Ỹ 6=9(Z̃;Ŵ)

}
, (A5)

where
∣∣∣Ỹ∣∣∣ is number of label vectors and Indc{·} is an indi-

cator function defined as

Indc
{
Ỹ 6=9(Z̃;Ŵ)

}
=

{
1 if Ỹ 6=9(Z̃;Ŵ)

0 otherwise.
(A6)

Algorithm 1 assumes that the parameters of the CNN FE
algorithm are already estimated. Hence, the parameters of the
fine-tuned CNN are estimated separately from Algorithm 1
with the same training dataset that is used by Algorithm 1;
the fine-tuning is accomplished using a software package
such as TensorFlow (Abadi et al., 2016). The software pack-
age scikit-learn can be used to minimize the objective func-
tion (A2) (Pedregosa et al., 2011).

A2 Algorithm 2 – applying trained method to label a
MODIS or VIIRS image

Algorithm 2 shows a detailed outline of how a method is ap-
plied on a MODIS or VIIRS image.
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Appendix B: The feature extraction algorithms

B1 Pretrained CNN feature extractor

FE Algorithm I gives an outline of the pretrained CNN FE
algorithm. The pretrained CNN that is used is the Inception-
v4 CNN (Szegedy et al., 2017).

In FE Algorithm I the input image is normalized such
that each pixel for the average input image has a zero mean
and a standard deviation of 1. The Inception-v4 CNN was
trained on normalized images to improve performance (Orr
and Müller, 2003, chap. 1). The coefficients that are used to
normalize the input image are computed from the training
dataset. The Inception-v4 CNN takes as input images with
size 299 pixels by 299 pixels; hence the MODIS–VIIRS im-
age patches are upsampled using bilinear interpolation.

B2 Fine-tuned CNN feature extractor

FE Algorithm II gives an outline of the fine-tuned CNN FE.
The pretrained VGG-16 CNN was chosen as the basis of
the fine-tuned CNN rather than a pretrained Inception-v4,
since VGG-16 has fewer parameters (i.e., degrees of free-
dom) compared to that of the Inception-v4 CNN. The pa-
rameters of the fine-tuned VGG-16 CNN are estimated sepa-
rately from Algorithm 1 with the same training dataset that is
used by Algorithm 1; the fine-tuning is accomplished using
a software package such as TensorFlow (Abadi et al., 2016).
As with the Inception-v4 CNN the input image to the fine-
tuned VGG-16 CNN is normalized. The VGG-16 CNN takes
as input images with size 224 pixels by 224 pixels; hence the
MODIS–VIIRS image patches are upsampled using bilinear
interpolation.

B3 Mean–standard deviation feature extractor

FE Algorithm III gives an outline of the mean and standard
deviation FE; for a given patch, FE Algorithm III computes
for each input wavelength the mean and standard deviation
(SD) across all pixels, and the mean and SD values per wave-
length are placed in a six-element vector.

Appendix C: Description of satellite instruments

This paper uses observations of the MODIS, VIIRS and
CALIOP satellite instruments. MODIS and VIIRS are pas-
sive radiometers which measure the solar reflectances and
infrared emissions of the Earth and its atmosphere (Marchant
et al., 2016; Salomonson et al., 1989; Platnick et al., 2016).
The advantage of MODIS and VIIRS observations is that
they cover large spatial areas, though from these passive mea-
surements it is hard to identify tenuous clouds and aerosols.
In comparison CALIOP is an active lidar instrument which
makes direct measurements of cloud and aerosols at higher
sensitivities compared to passive instruments (Liu et al.,
2005; Young et al., 2008), though the CALIOP observations
cover a smaller spatial area compared to MODIS and VIIRS.
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Code availability. Publicly available software were used to pro-
duce the results in this paper. TensorFlow was used to for the
convolutional neural networks (CNNs), and the pretrained models
are available at https://github.com/tensorflow/models/tree/master/
research/slim (Silberman and Guadarrama, 2020). The software
package scikit-learn was used to model the multinomial classifier
(Pedregosa et al., 2011) (https://www.jmlr.org/papers/volume12/
pedregosa11a/pedregosa11a.pdf, last access: 8 October 2020).
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2020, NASA, 2020). The CALIOP data were obtained from the
NASA Langley Research Center Atmospheric Science Data Cen-
ter (https://www-calipso.larc.nasa.gov, last access: 8 October 2020,
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