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Abstract. In this study, we explore a new approach based
on machine learning (ML) for deriving aerosol extinction
coefficient profiles, single-scattering albedo and asymme-
try parameter at 360 nm from a single multi-axis differen-
tial optical absorption spectroscopy (MAX-DOAS) sky scan.
Our method relies on a multi-output sequence-to-sequence
model combining convolutional neural networks (CNNs) for
feature extraction and long short-term memory networks
(LSTMs) for profile prediction. The model was trained and
evaluated using data simulated by Vector Linearized Discrete
Ordinate Radiative Transfer (VLIDORT) v2.7, which con-
tains 1 459 200 unique mappings. From the simulations, 75 %
were randomly selected for training and the remaining 25 %
for validation. The overall error of estimated aerosol prop-
erties (1) for total aerosol optical depth (AOD) is −1.4±
10.1 %, (2) for the single-scattering albedo is 0.1±3.6 %, and
(3) for the asymmetry factor is −0.1± 2.1 %. The resulting
model is capable of retrieving aerosol extinction coefficient
profiles with degrading accuracy as a function of height. The
uncertainty due to the randomness in ML training is also dis-
cussed.

1 Introduction

Aerosols play an important role in the Earth–atmosphere sys-
tem by modifying the global energy balance, participating
in cloud formation and atmospheric chemistry, and fertiliz-
ing land and ocean. Aerosols are widely spread in the tro-
posphere, being emitted by anthropogenic and natural pro-

cesses (primary aerosols) and formed by gas-to-particle con-
version mechanisms (secondary aerosols). Aerosols are re-
moved from the atmosphere by dry (gravitational settling and
turbulent) deposition and wet deposition and have variable
lifetimes ranging from a few minutes to a few weeks (Hay-
wood and Boucher, 2000).

The spatial and temporal distribution of aerosols in the
lower troposphere is highly variable and greatly depends on
the proximity to the sources, type of aerosols, meteorologi-
cal conditions and photochemical processes. Horizontal and
vertical heterogeneity of the aerosol distribution, their prop-
erties and processes pose a serious challenge for modeling
aerosol-induced radiative forcing and is an important source
of uncertainties in the climate modeling results (IPCC, 2013).

Macroscopic aerosol optical properties required for mod-
eling aerosol radiative forcing include single-scattering
albedo, scattering phase function and aerosol optical depth
(AOD; Dubovik et al., 2002).

This paper investigates the potential of using advances in
machine learning to invert aerosol properties (aerosol extinc-
tion coefficient profiles, single-scattering albedo and scat-
tering phase function) from a hyperspectral remote-sensing
technique called multi-axis differential optical absorption
spectroscopy (MAX-DOAS).

Machine learning (ML) is a branch of artificial intelligence
that derives its roots from pattern recognition and statistics.
The goal of ML is to build statistical (or mathematical) mod-
els of a real-world phenomenon by relying on training ex-
amples. For instance, in supervised ML, a model is first pre-
sented with a set of paired examples (termed as the train-
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ing set), where every training example contains a pair of in-
put variables and output variables, and the goal of ML al-
gorithms is to find the statistical structure of mapping from
the input variables to the output variables that match with the
training examples and can be generalized to unseen examples
(termed as test set). The learned mapping (or the model) can
be applied to the inputs of test examples to make predictions
on their outputs. There are several advantages of using ML.
Firstly, it can sift through vast amounts of training data and
discover patterns that are not apparent to humans. Secondly,
ML algorithms can have continuous improvement in accu-
racy and efficiency with increasing amount of training data.
Thirdly, ML algorithms are usually very fast to apply on test
examples since the time-consuming training process of ML
models is offline and one time. With these advantages as well
as the availability of faster hardware, ML has soon become
the most popular data analytic technique since the 1990s. In
recent years, it has also been applied to the field of remote
sensing (Efremenko et al., 2017; Hedelt et al., 2019).

Artificial neural networks (ANN) are methods studied in
the ML field, successfully applied to a number of commer-
cial problems such as image detection, text translation and
speech recognition. It is inspired by the biological neural net-
works constituting animal brains. As an analogy to a biologi-
cal brain, an ANN is based on artificial neurons. An artificial
neuron is a mathematical function receiving and processing
input signals and producing outputs signals or activations.
Each neuron comprises weighted inputs, an activation func-
tion and an output. Weights of the neuron are parameters to
be adjusted, while the activation function defines the rela-
tionship from the input signals to the output signals. When
multiple neurons are composed together in a layered man-
ner (where the output signals of neurons in a given layer are
used as inputs for the neurons in the next layer), we call it an
artificial neural network. A common algorithm for training
ANNs is the backpropagation algorithm, which passes the
gradients of errors on the training set from the output layer
to inner layers to refine the weights at all layers in an incre-
mental way. The backpropagation algorithm converges when
there is no change in ANN weights across all layers beyond
a certain threshold. There are several optimization methods
that are used for performing backpropagation and are behind
standalone ANN packages commonly used by the ML com-
munity. ANNs have many different types depending on the
specifics of the neuron arrangement or architecture. A sim-
ple type of ANN is a multilayer perceptron (MLP), where all
neurons at a given layer are fully connected with all neu-
rons of the next layer, also termed as dense layers. Other
complex types of ANN include convolutional neural network
(CNN) and recurrent neural network (RNN). Two important
types of artificial neural networks used in this study are the
CNNs (Fukushima, 1980; LeCun et al., 1999) and the long
short-term memory (LSTM) neural networks (Hochreiter and
Schmidhuber, 1997), which are variants of recurrent neural
networks.

Convolutional neural network is a class of deep neural net-
works that uses the convolution operation to define the type
of connections from one layer to another. While they have
shown impressive results in extracting complex features from
images in computer vision applications (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015), they are relevant in
many other applications involving structured input data, e.g.,
1D sequences. A CNN is composed of an input layer, mul-
tiple hidden layers and an output layer. The hidden layers
usually consist of several convolutional layers, followed by
pooling layers, fully connected layers (dense layers) and nor-
malization layers. Figure 1 shows a simple example of CNN.
The input vector (or sequence) is first passed through a con-
volutional layer where it is convolved with three filters (con-
volution kernels) of size 3 using the same padding to pro-
duce three 6× 1 feature maps. Since the rectified linear unit
(ReLU) function, f (x)=max(0,x), is commonly chosen as
the activation function in CNNs, the feature maps only con-
tain positive values. Then the max pooling layer picks the
maximum value every three elements for each feature map,
generating three 2× 1 vectors. After passing through a flat-
tened layer, the max pooling output is reshaped into a 6× 1
vector, which is followed by a dense (fully connected) layer
with two nodes. The dense layer multiplies its input by a
weight matrix and adds a bias vector for generating the out-
put of the model. The computer adjusts the model’s convo-
lutional kernel values or weights through a training process
called backpropagation, a class of algorithms utilizing the
gradient of loss function to update weights. For the case in
Fig. 1, there are 26 tunable parameters, i.e., (3+1)×3= 12
from convolution kernels and (6+1)×2= 14 from the dense
layer.

LSTM neural networks have many applications such as
speech recognition (Li and Wu, 2015) and handwriting
recognition (Graves et al., 2008; Graves and Schmidhuber,
2009). They are a special kind of ANNs termed as recur-
rent neural networks (RNNs). RNNs are designed for mod-
eling sequence-dependent behavior (e.g., in time). They are
called “recurrent” because they perform the same operation
for every element of a sequence, with the output at a given
element dependent on previous computations at earlier ele-
ments (Britz, 2015). This is different from traditional neural
networks wherein all the input–output examples are assumed
to be independent of each other.

Figure 2 shows a diagram of an unrolled RNN with t input
nodes, where “unrolled” means showing the network for the
full sequence of inputs and outputs. The RNNs work as fol-
lows. At the first element of the sequence, the set of input sig-
nals x1 (which can be multidimensional) is fed into the neural
network F to produce an output h1. At the next element of
the sequence, the same neural network F takes both the next
input x2 and previous output h1, generating the next output
h2. This recurrent computation continues for t times to pro-
duce the output at the t th element of the sequence, ht . While
RNNs are powerful architectures for modeling sequence be-
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Figure 1. Schematics of a simple CNN.

Figure 2. Unrolled recurrent neural network.

havior, classical RNNs are inadequate to capture long-term
memory effects where the inputs–outputs at a given element
of the sequence can affect the outputs at another element of
the sequence separated by a long interval. LSTM models are
variants of RNNs that are able to overcome this challenge and
are efficient at capturing long-term dependencies as well as
short-term dependencies. It does so by introducing an inter-
nal memory state that is operated by neural network layers
termed as gates, such as the “input gate,” which adds new
information from the input signals to the memory state, the
“forgot gate,” which erases content from the memory state
depending on the input signals, and the “output gate,” which
transforms information contained in the input signals and the
memory state to produce output signals.

An example of an LSTM cell is illustrated in Fig. 3, of
which the update rules are as follows:
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g
)
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)
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(
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o
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)

hj = tanh
(
sj
)
◦ oj ,

where j is the element index, σ(x) represents the sigmoid
function, and tanh(x) represents the hyperbolic tangent func-
tion. x ◦ y denotes the element-wise product of x and y. Ug ,

Figure 3. LSTM cell diagram (modified from Thomas, 2018).

U i , Uf and Uo are the weights for the input xj , while V g ,
V i , V f and V o are the weights for the other input hj−1, and
bg , bi , bf and bo are the scalar terms (termed as bias). The
term gj is the input modulation gate, which modulates the
input bg+xjUg+hj−1V

g by a hyperbolic tangent function,
squashing the input between −1 and 1. The term ij is the
input gate, which applies a sigmoid function to its input, lim-
iting the output values to between 0 and 1. The input gate ij
determines which inputs are switched on or off when mul-
tiplying the modulated inputs (gj ◦ ij ). The term sj is the
internal cell state that provides an internal recurrence loop to
learn the sequence dependence. The terms fj and oj are the
forgot gate and output gate, respectively. They have similar
function to the input gate ij , regulating the information into
and out of the LSTM cell. The term hj is the output at step
j .

2 Multi-axis differential optical absorption
spectroscopy (MAX-DOAS) technique

The MAX-DOAS technique has been widely used to derive
vertical aerosol extinction coefficient profiles in the lower
troposphere. This is typically done from ground-based mea-
surements of oxygen collision complex (O2O2) absorption
(for a detailed list of references see Table 1 in Wagner et al.,
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2019). Since the oxygen volume mixing ratio (χO2 = 0.209)
is considered constant, the O2O2 abundance depends only on
the total number of air molecules (pressure, temperature and,
to a small degree, humidity) and can be easily calculated.
More than 93 % of O2O2 is located below 10 km (scale height
∼ 4 km). Any deviation in measured O2O2 absorption from
this molecular (Rayleigh) scattering case is only due to the
change in the photon path through the O2O2 layer. Aerosols
and clouds are the main causes of such photon path modi-
fication for ground-based measurements. O2O2 has several
absorption bands in the ultraviolet (UV) and visible (VIS)
parts of the electromagnetic spectrum (band peaks at 343,
360, 380, 477, 577, 630 nm; Thalman and Volkamer, 2013).

The MAX-DOAS technique consists of measuring sky-
scattered UV–VIS solar photons at multiple, primarily, low
elevation angles (Fig. 4). MAX-DOAS shows a large sensi-
tivity to the tropospheric gases due to increased photon path
length through the lower troposphere (Platt and Stutz, 2008).
To eliminate the contribution from the upper-atmosphere, so-
lar spectra measured at low elevation angles are divided by
the reference spectrum collected from the zenith direction.
The DOAS technique has the advantage of not needing an
absolute radiometric calibration.

The first step of the DOAS retrieval is a spectral eval-
uation to calculate the differential slant column density
(1SCDmeasured = SCD−SCDreference) of O2O2. This step
is accomplished through the simultaneous nonlinear least-
squares fitting of the absorption by species i, low-order poly-
nomial function (PLO) and offset to the difference between
the logarithms of the attenuated (I ) and reference (Ireference)
spectra (Eq. 1). PLO estimates combined attenuation due to
molecular scattering and aerosol total extinction (scattering
and absorption). The offset term approximates instrumental
stray light and residual dark current.

ln(Ireference (λ))− ln(I (λ)− offset(λ))

=

(∑
s

σi (λ) ·1SCDi

)
+PLO (1)

The second step of the MAX-DOAS analysis is the con-
version of a single sky scan (multiple viewing angles)
1SCD(O2O2) into a vertical aerosol extinction coefficient
profile. The physical relationship between the measured
1SCD and the desired aerosol extinction coefficient profile
and aerosol properties is complex and, in general, can be ex-
pressed mathematically by Eq. (2) (Rodgers, 2004):

y = f (x,b)+ ε, (2)

where the measured quantities (measurement vector y) are
described by a forward model f (x,b) and the measurement
error vector (ε). The forward model, f (x,b), is a model that
estimates physical processes that relate the measured param-
eter (y), the unknown quantity to be retrieved (state vector
x), and forward model parameters (b) that are considered ap-
proximately known (e.g., temperature and pressure profiles

from atmospheric soundings or models). Under most condi-
tions, there are more unknowns than measurements, and as a
result Eq. (2) does not have a unique solution.

The inversion of Eq. (2) is often done in the framework of
Bayes’ theorem, which allows for the assignment of proba-
bility density functions to all possible states given measure-
ments and prior knowledge of the state. However, in reality,
we are not interested in all possible solutions but rather a sin-
gle, the most “probable” solution with its error estimation.
Equation (3) shows a Transfer Function that defines an esti-
mated solution (x̂) as a function of the measurement system
and retrieval method (Rodgers, 2004) as follows:

x̂ = R
(
f (x,b)+ ε, b̂,xa,c

)
, (3)

where R is a retrieval method, f (x,b) is a forward function
with the true state (x) and true parameters (b), b̂ is the esti-
mated forward model parameter vector, xa is the a priori es-
timate of state vector (x), and c is a retrieval method parame-
ter vector (e.g. convergence criteria). For nonlinear problems
the solution to Eq. (3) cannot be found explicitly, and itera-
tive numerical methods are required. A maximum a posteri-
ori (MAP) approach has been widely applied to moderately
nonlinear problems with Gaussian distribution of both mea-
surement errors and a priori state errors. A priori information
about the state vector distribution before the measurements
are made is used to constrain the solution of the ill-posed
problems (Rodgers, 2004). It is essential to use the best es-
timate of the state available since in the MAP approach the
retrieved state is proportional to the weighted mean of the
actual state and the a priori state. In addition, an appropri-
ate covariance matrix for the a priori state vector has to be
constructed. This a priori information for aerosol vertical ex-
tinction coefficient profiles, however, is rarely available.

In addition to the optimal estimation method (OEM),
briefly described above, parameterized (Beirle et al., 2019;
Vlemmix et al., 2015) and analytic (Frieß et al., 2019; Spinei
et al., 2020) inversion algorithms were developed. Frieß et
al. (2019) provided a detailed intercomparison of currently
available state-of-the-art inversion algorithms for the MAX-
DOAS measurements. Most of the current algorithms take
between 3 to 216 s to process a single MAX-DOAS sky
scan (Frieß et al., 2019), mainly due to the iterative inver-
sion step. Aerosol extinction coefficient profiles are inverted,
while aerosol single-scattering albedo and asymmetry fac-
tor are typically assumed based on the colocated AERONET
measurements. They also require external information about
the atmosphere (e.g. temperature and pressure profiles) that
might not be readily available at the measurement timescales
and a priori information that does not typically exist. With an
increasing number of MAX-DOAS 2D instruments world-
wide capable of sunrise to sunset measurements (e.g. Pan-
donia Global Network), fast methods are needed that can
harvest full information from the MAX-DOAS hyperspectral
measurements.
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Figure 4. Demonstration of the MAX-DOAS principle: (a) side view and (b) top view. Simplified photon paths through the atmosphere are
shown in yellow. A single sky scan sequence for profile retrieval consists of multiple viewing zenith angles (VZAs) in a specific direction
(viewing azimuth angle, VAA) at a specific solar zenith angle (SZA) and is shown in red.

This study describes and evaluates a fast novel machine
learning (ML) approach for retrieving aerosol extinction
coefficient profiles, asymmetry factor and single-scattering
albedo at 360 nm from 1SCD(O2O2) observations within
a single MAX-DOAS sky scan. The basic idea of our ap-
proach is as follows: (1) develop an “inverse model” by
one-time offline training of a supervised ML algorithm on
simulated MAX-DOAS data and corresponding atmospheric
aerosol conditions and (2) use the relationships derived in
the first step to estimate the aerosol extinction profile, asym-
metry factor and single-scattering albedo from the MAX-
DOAS 1SCD(O2O2) measurements. We specifically lever-
age recent advances in ML, e.g., deep learning methods, to
automatically extract the inverse mapping from the observa-
tions (y) to the state vectors (x), using a collection of (x, y)
pairs available for training. Different machine learning algo-
rithms were successfully used in remote-sensing applications
(Schulz et al., 2018; Schilling et al., 2018; Efremenko et al.,
2017; Hedelt et al., 2019).

The rest of the paper is organized in the following sec-
tions. Section 3 provides an overview of the new retrieval
algorithm. Section 4 focuses on training data generation us-
ing the radiative transfer model (Vector Linearized Discrete
Ordinate Radiative Transfer, VLIDORT). Section 5 details
ML implementation. Section 6 provides an extensive com-
parison of ML-predicted versus “true” macroscopic aerosol
properties outside the training dataset. Section 7 summarizes
the findings.

3 Overview of the methodology

Our approach consists of three stages: (1) training set gener-
ation; (2) a one-time training that results in an inverse ML
model R(2̂) with appropriate architecture and parameters
2̂; and (3) an inversion stage, where the trained ML model
R(2̂) is applied to MAX-DOAS measurements to retrieve
aerosol properties. Figure 5 provides a schematic overview
of the three stages.

First, a training set containing simulated measurements
{yi |i = 1,2, . . .,M} is generated by a forward model (VLI-
DORT v2.7) given atmospheric states {xi |i = 1,2, . . .,N}.
The model describes atmospheric radiative transfer processes
connecting the atmospheric states and the measurements.
Second, both the atmospheric states and the simulated mea-
surements are fed into the ML model for learning the in-
verse mapping from the measurement space to the state
space. This is based on solving an optimization problem
that minimizes the mean squared error (MSE) between the
retrieved values ({x̂i |i = 1,2, . . .,N}) and the true values
({xi |i = 1,2, . . .,N}). We specifically chose artificial neural
network (ANN) models to learn the inverse mapping from
y to x. By iteratively adjusting the parameters of the ANN
model using gradient descent (backpropagation) algorithms
(Johansson et al., 1991), we are able to arrive at ANN model
parameters 2̂ that provide a local optimum performance in
terms of MSE on the training data. The result of the train-
ing stage is an inverse model R(2̂) whose architecture and
parameters are saved in an HDF5 file (1.3 MB). The trained
model R(2̂) is an inversion operator that transforms mea-
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Figure 5. Schematics of the machine learning inversion algorithm.

surements vector y into the state vector x̂ through a set of
simple linear and nonlinear operations. The inverse model
provides a convenient and fast way for retrieval of aerosol
properties from 1SCD(O2O2) measurements during the in-
version stage. It takes ∼ 0.15 ms for the retrieval of the stud-
ied aerosol properties from a single MAX-DOAS sky scan
1SCD(O2O2) on a single CPU core.

4 Training data preparation

The success of any ML model depends on the quality of the
training data. Since there is no reliable dataset that combines
simultaneous MAX-DOAS measurements and observations
of aerosol macrophysical properties and vertical extinction
coefficient profiles at 360 nm, we use a radiative transfer
model to simulate MAX-DOAS measurements. In this study,
we train our ML model on air mass factors (AMF) calculated
from the simulated solar radiances at the bottom of the atmo-
sphere.

AMF represents a ratio between the true average path that
photons take through a gas layer before detection by a MAX-
DOAS instrument and the vertical path. Since O2O2 absorp-
tion in the reference (zenith scattered) spectrum is not pre-
cisely known, a differential AMF at a specific wavelength λ
and observations geometry µ (relative azimuth angle, solar
zenith angle and viewing zenith angle) is determined as fol-
lows:

1AMF(O2O2,λ,µ)=
1SCDmeasured (O2O2,λ,µ)

VCD(O2O2)calculated

=
ln(Ireference (λ,µo))− ln(I (λ,µ))
VCD(O2O2)calculated · σ (O2O2,λ)

, (4)

where vertical column density of O2O2 (VCD) is estimated
as the squared oxygen number density integrated from the
surface to the top of the atmosphere; and σ(λ) is the molec-
ular absorption cross section of O2O2.

In the absence of aerosols and clouds, only air molecules
(mainly oxygen and nitrogen) scatter solar photons in the
Earth’s atmosphere. This molecular-only (Rayleigh) scatter-
ing process is considered to be well understood (Bodhaine
et al., 1999), and 1AMFRayleigh can be calculated from the
simulated intensities. In the presence of aerosols, dust and
clouds, not only air molecules but also particles and cloud
droplets scatter solar photons. This type of scattering can be
generally described by the T-matrix theory. In this study we
consider only spherical aerosols (Lorenz–Mie theory), whose
scattering phase function is approximated according to the
Henyey–Greenstein approach using the asymmetry factor g.
1AMFaerosol+Rayleigh are determined from simulated down-
welling radiances for atmosphere with different aerosol types
and their extinction coefficient profiles. The change in AMF
due to aerosol presence can be described by 1AMFaerosol:

1AMFaerosol
=1AMFRayleigh

−1AMFaerosol+Rayleigh. (5)

1AMFaerosol for O2O2 at 360 nm for different observation
geometries and scattering conditions is used for ML train-
ing in this feasibility study. A single MAX-DOAS measure-
ment considered here is 1AMFaerosol set from the full sky
scan at a single solar zenith angle, single relative azimuth an-
gles, and 19 viewing zenith angles between 0 and 89◦ (see
Table 1). To ensure that the training dataset contains all ob-
servation geometries feasible for MAX-DOAS sky scans we
have included 19 relative azimuth angles (0 to 180◦, 10◦

step) and 12 solar zenith angles (0 to 85◦ – see Table 1).
Solar radiances at the bottom of the atmosphere were sim-
ulated using VLIDORT v.2.7 (Spurr, 2008). VLIDORT is a
discrete-ordinate radiative transfer model that has been suc-
cessfully applied to simulate radiances and weighting func-
tions for forward models in optimal estimation inversion
(e.g., Clémer et al., 2010) and machine learning algorithms
(Efremenko et al., 2017; Hedelt et al., 2019). VLIDORT
code applies pseudo-spherical approximation to direct solar
beam attenuation in a curved atmosphere. All scattering pro-
cesses are estimated using the plane-parallel approximation
in a stratified atmosphere. Precise single-scattering computa-
tion is performed using Nakajima–Tanaka ansatz and delta-
M scaling. VLIDORT v.2.7 calculates analytically derived
Jacobians (radiance weighting functions) with respect to any
profile/column/surface variables. VLIDORT computes elas-
tic scattering by molecules to all orders (Spurr, 2008).
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Table 1. Radiative transfer model settings.

General model settings Physical and observation geometry inputs

No refraction correction;
Scalar calculations;
Only elastic scattering;
Aerosol scattering phase function
estimation using Henyey–
Greenstein approximation from the
asymmetry factor (g).

Observation geometry:
Viewing zenith angle scan: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89◦;
Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
120, 130, 140, 150, 160, 170, 180◦;
Solar zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 86, 87,
88, 89◦.

Wavelength: 360 nm.

Vertical grid (67 layers):
100 m up to 4 km, 500 m from 4 to 8 km, 1 km from 8 to 12 km, 2 km
from 12 to 30 km, 5 km from 30 to 60 km.

Atmospheric air density:
Pressure (hPa): US1976 standard atmosphere;
Temperature (K): US1976 standard atmosphere.

Gas volume mixing ratio profiles:
O3 profile: climatology over Cabauw in September;
O3 molecular absorption cross section: Daumont;
O2O2 profile: from temperature and pressure;
O2O2 molecular absorption cross section: Thalman and
Volkamer (2013).

Aerosol properties:
Single-scattering albedo: 0.775, 0.825, 0.875, 0.925, 0.975;
Henyey–Greenstein asymmetry factor: 0.675, 0.725, 0.775, 0.825.

Aerosol extinction coefficient profiles (km−1) as a function of
altitude;
Exponential function at the surface combined with “sliding” Gaussian
function above;
Total AOD: 0, 0.15, 0.3, 0.45, 0.6, 0.75;
Gaussian profile center height: 0.5, 1, 1.5, 2 km;
Gaussian width: 0.1, 0.2, 0.3, 0.5 km;
Partitioning between exponential and Gaussian attributed AOD: 0.3,
0.6, 0.9.

Surface reflectivity:
Lambertian albedo at 0.04.

VLIDORT models radiative transfer processes at a specific
wavelength in a stratified atmosphere. It requires geometrical
and “optical” information about the atmospheric layers and
the underlying ground surface. These include layer heights,
pressure and temperature at layer boundaries for refractive
geometry calculations, solar zenith, viewing zenith direction,
and relative azimuth angles between the viewing direction
and solar position. Each atmospheric layer is described by
total optical thickness, total single-scattering albedo and the
set of Greek matrices specifying the total scattering law.

VLIDORT simulations were performed for the US 1976
standard atmosphere divided into 67 layers (same as in Frieß
et al., 2019) with 0.1 km layers from the surface to 4 km;
0.5 km layers from 4 to 8 km and varying width up to 60 km.

Since surface reflectivity has a small effect on ground-based
MAX-DOAS measurements we performed simulations only
for a single Lambertian albedo of 0.04. Absorption only by
two gases was considered in this study: ozone and O2O2.
Light polarization, direct beam refraction and inelastic scat-
tering were not included in this study. Table 1 summarizes
VLIDORT inputs and general settings.

Aerosol types in this study are described by a single-
scattering albedo and asymmetry factor combination with a
total of 20 “types”: (1) single-scattering albedo: 0.775, 0.825,
0.875, 0.925, 0.975; (2) Henyey–Greenstein asymmetry fac-
tor: 0.675, 0.725, 0.775, 0.825. Aerosol extinction coeffi-
cient profiles were generated by combining an exponential
function at the surface with a “sliding” Gaussian function
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above. The aerosol total optical depth was partitioned be-
tween the exponential and Gaussian functions. Total AOD
cases included 0.15, 0.3, 0.45, 0.6 and 0.75 with exponential-
to-Gaussian partitioning fractions of 0.3, 0.6 and 0.9. The
Gaussian function peak center height was varied from 0.5 to
2 km in steps of 0.5 km. The Gaussian function peak width
was varied too, at 0.1, 0.2, 0.3 and 0.5 km. This results in
4800 aerosol cases and a total of 1 459 200 measurement sim-
ulations (sky scan). Figure 14 demonstrates the aerosol pro-
file samples, where the near-surface aerosol partial optical
depth profiles are described by the exponential function, and
the layers aloft are described by the Gaussian function with
various widths and heights added to the exponential function
profile. While VLIDORT simulations were performed for an
atmosphere divided into 67 layers, ML training was done by
resampling only onto 23 layers. The new layer depths are
100 m from the surface to 1 km, 200 m from 1 to 3 km, 500 m
from 3 to 4 km, and 56 km (height of the last layer). The new
layer partial AODs were generated by adding the neighboring
layer partial aerosol optical depths. The ML algorithm was
trained on 75 % randomly selected measurement simulations
(1 094 400 samples), and model performance was tested on
the remaining 25 %. Note that no validation data were held
off from the 75 % training set for tuning hyperparameters of
our ML model, as all ML hyperparameters were kept con-
stant across all experimental settings in this paper.

5 Learning inverse mapping using ML

We employ a supervised ML formulation for our problem of
aerosol profile retrieval, where the goal is to learn the map-
ping from input variables to output variables given a training
set of paired data instances. In our formulation, every data
instance corresponds to a single MAX-DOAS sky scan at a
fixed relative azimuth angle (RAA) and solar zenith angle
(SZA), where the inputs of the data instance comprise the fol-
lowing: (a) RAA scalar value, (b) SZA scalar value and (c) a
sequence of 1AMFaerosol values at 16 VZAs. The output
variables at a data instance correspond to the aerosol proper-
ties we are interested in predicting given the inputs, which are
as follows: (a) single-scattering albedo (SSA) scalar value;
(b) asymmetry factor (ASY) scalar value; and (c) a sequence
of partial aerosol optical depth (AOD) values at 23 vertical
layers of the atmosphere, termed as the aerosol extinction
profile.

Note that in our supervised ML formulation, there are se-
quences in both the input signals and output signals, namely
1AMFaerosol sequence and partial AOD sequence, respec-
tively. Further note that the input and output signals used in
our problem setting are of very different types and thus have
different dimensionalities (e.g.,1AMFaerosol takes 16 values
at varying VZAs, while partial AOD takes 23 values at vary-
ing atmospheric layers). We thus first apply a 1D CNN to
extract features from the sequence part of the input signals.

Note that our input signals are not image based, which is
one of the common types of input data for which CNNs are
used. Instead, our input data are structured as a 1D sequence,
and the convolution operations of CNN help in extracting
sequence-based features from the input signals that are then
fed into subsequent ANN components. We also use an LSTM
to model the sequence part of the output signals. Note that
our data contain no time dimension as we are only work-
ing with single-scan data, assuming the atmosphere does not
change during the scan time. However, it is the sequence-
based nature of the output signals that motivated us to use
LSTM models for sequence-based output prediction. Fur-
thermore, the dataset we use for training is produced by a
physical model (VLIDORT), where the relationship between
the inputs and outputs are known.

Figure 6 illustrates the novel multi-output sequence-to-
sequence model for learning the inverse mapping from
MAX-DOAS measurements to aerosol optical properties. To
extract sequence-based features from MAX-DOAS inputs, a
1D convolutional neural network (CNN; Fukushima, 1980;
LeCun et al., 1999) is first applied to the sequence of inputs
(we concatenate 1AMFaerosol sequence with SZA and RAA
to obtain an input sequence of length 18), which results in a
sequence of preliminary hidden features. These preliminary
hidden features are then sent to two different branches of 1D
CNN layers that perform further compositions of convolu-
tion operators to produce nonlinear hidden features for pre-
dicting two different types of outputs: (a) scalar outputs: SSA
and ASY; and (b) sequence-based outputs: aerosol extinction
profile. For the branch corresponding to scalar outputs, the
features extracted from 1D CNN layers are simply passed
on to a fully connected dense layer to produce a 2D output
of SSA and ASY. For the branch corresponding to sequence-
based outputs, the features extracted from 1D CNN layers are
fed to a long short-term memory network (LSTM; Hochre-
iter and Schmidhuber, 1997) to produce a sequence of partial
AOD values at varying atmospheric layers.

Figure S1 in the Supplement shows the detailed architec-
ture of the multi-output sequence-to-sequence model. The
CNNs consist of eight 1D convolutional layers (c1 to c8) and
four max-pooling layers (p1 to p4). For convolutional lay-
ers c1 to c6, the activation function is the rectified linear unit
(ReLU) function. For layers c7 and c8, it is a hyperbolic tan-
gent function (tanh). We set the kernel size of the convolu-
tion operation to be the typical value of 5 and use the same
padding for all ck∀k ∈ {1,2, . . .,8}. ReLU and max pooling
layers help to reduce overfitting through model sparsity and
parameter reduction. The convolution kernel weights are ini-
tialized using a “Glorot uniform” method (Glorot and Ben-
gio, 2010).

Extracted feature vector from the p1 layer is sent into two
different branches. In the branch for profile prediction, we
take a one-to-many LSTM with 23 layer steps and a hid-
den size of 128 to capture the correlation between the partial
AODs at different layers. We simply duplicate the feature
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Figure 6. Schematics of the multi-output sequence-to-sequence model for deriving aerosol optical properties from MAX-DOAS measure-
ments.

vector learned from CNNs 23 times to generate the inputs
for the LSTM model. The sequential output {y1,y2, . . .,y23}

of the LSTM (after passing through a flattened layer and an
ReLU layer) is interpreted as the 23-layer aerosol extinction
profile. For the SSA–ASY branch, 1D convolutional layers
and dense layers are combined for the prediction. The reason
for taking a two-output architecture is that SSA and ASY
are independent scalar outputs that cannot be treated as a se-
quence, in contrast to the aerosol extinction profile.

We implemented our ML model in the Jupyter notebook
using the Keras library, which is a commonly used deep
learning library for Python. RMSprop was chosen as the opti-
mizer, and the mean squared error was used as the loss func-
tion (Hinton, 2012). We trained the model on 75 % of the
dataset for 124 epochs with a batch size of 640. The fol-
lowing choice of hyperparameters was used: choice of op-
timizer is RMSprop, with a learning rate of 0.001, a decay
factor of 0.9, a learning rate decay of 0 and a fuzz factor –
none. We did not perform any hyperparameter tuning on a
separately held validation set inside the training set, and the
values of all hyperparameters in our ML model were kept
constant throughout all experiments in the paper on the test
set. In order to ensure that there was no overlap between the
training and testing steps, we did not make use of the test data
either directly or indirectly during the training phase, either
for learning parameter weights or selecting hyperparameters.

6 Results

Evaluation of the accuracy of ML mapping rules derived dur-
ing the training stage for MAX-DOAS data inversion was
done by comparing the true atmospheric aerosol properties
to the ML inverted properties. The evaluation dataset con-
sists of 364 800 MAX-DOAS simulated sky scans that are
outside of the training set. The number of simulations in the
evaluation dataset as a function of solar zenith angle (SZA)
and relative azimuth angle (RAA) are shown in Fig. 7. Be-
tween 1100 and 1300 aerosol scenarios are present in each
SZA-RAA bin.

The following ML-predicted aerosol properties were eval-
uated: (1) asymmetry factor, (2) single-scattering albedo,
(3) total aerosol optical thickness and (4) partial aerosol opti-

Figure 7. Number of simulations in the evaluation dataset as a func-
tion of solar zenith (SZA) angle and relative azimuth angle (RAA).

cal thickness for each layer from 0 to 4 km. A relative error ε
of the retrieved by ML parameter x̂ relative to the true value
x is calculated according to Eq. (6):

ε ≡
x̂− x

x
· 100%. (6)

The relative error evaluation presented in the subsequent sec-
tions was performed on the retrievals from a single ML train-
ing. Since ML itself introduces randomness during the train-
ing stage, we retrained the model 20 times with the same hy-
perparameters for evaluating the uncertainty in the ML train-
ing.

6.1 Asymmetry factor at 360 nm

The ML-based approach shows an ability to invert aerosol
asymmetry factor with a mean error of −0.14 % and 2 stan-
dard deviations of 2.04 % and nearly normal error distribu-
tion (Fig. 8a). To evaluate if any dependence of the asym-
metry factor retrieval exists on SZA and RAA, the mean er-
ror and the 2 standard deviations are shown in Fig. 8b, c.
These distributions suggest that dependence of the asymme-
try factor retrieval on SZAs and RAAs is relatively small.
However, systematically higher relative errors are observed
around SZA of 65◦ and RAA of 30–40◦. The cause of these
elevated errors is not clear at this point.

6.2 Single-scattering albedo at 360 nm

Similar high accuracy is achieved for ML retrieval of the
single-scattering albedo with a mean error of 0.19 % and
2 standard deviations of 3.46 % and nearly normal error
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Figure 8. Asymmetry factor retrieval errors: (a) error histogram; (b) mean error as a function of SZA and RAA; (c) 2 standard deviations as
a function of SZA and RAA.

Figure 9. Single-scattering albedo retrieval errors: (a) error histogram, (b) mean error as a function of SZA and RAA, and (c) 2 standard
deviations as a function of SZA and RAA.

distribution, somewhat positively skewed (Fig. 9). Slightly
higher errors are observed at RAA smaller than 60◦ and most
SZA.

Mean errors are also larger at small RAA and SZA> 85◦.
Traditional optimal estimation techniques also struggle with
the MAX-DOAS data inversion at small RAA due to uncer-
tainty in aerosol forward and backward scattering.

6.3 Total aerosol optical depth at 360 nm

Total AOD retrieval is more challenging for the ML model
than the single-scattering albedo or asymmetry factor, es-
pecially at lower total AOD levels. Boxplots of the total
AOD error for different true total AOD values are given in
Fig. 10. In general, the ML algorithm tends to underestimate
total AOD from the mean error ±2 standard deviations of
−8.39± 8.81 % (total AOD 0.15) to −1.52± 3.10 % (total
AOD of 0.75). Total AOD retrieval error distribution over
all cases is close to a Gaussian distribution but with two
peaks (Fig. 11). The mean error (±2 standard deviations) is
−3.58%±7.68 %. The bias of the model does not have much
dependence on SZAs and RAAs (Fig. 11b). Still, larger er-

Figure 10. Boxplots of total AOD prediction errors for each true
total AOD value. The box central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individu-
ally using the “+” symbol.

rors and uncertainties can be observed at higher SZAs and
lower RAAs (Fig. 11c).
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Figure 11. Total AOD retrieval errors: (a) error histogram, (b) mean error as a function of SZA and RAA, and (c) 2 standard deviations as a
function of SZA and RAA.

Figure 12. Mean partial layer AOD error ± 1 standard deviation.

6.4 Partial aerosol optical depth profile from 0 to 4 km

The contribution of partial AOD retrieval error at each atmo-
spheric layer from 0 to 4 km to the total AOD is shown in
Fig. 12. Layer partial AOD retrieval error relative to the total
AOD depends on the absolute amount of aerosols and its alti-
tude and on average is less than 1 % per layer. Just like OEM
methods, the ML method has lower accuracy of retrieving
elevated aerosol layers especially corresponding to smaller
total AOD. The larger distribution of relative errors in partial
AOD at 1.5 and 2 km is mainly due to the presence of ele-
vated layers in the training data that peaked at those heights.
If the aerosol were also present in meaningful amounts above
those altitudes, the error distribution would have been larger
above 2 km.

A linear regression analysis of the true versus the retrieved
partial AOD was performed using the least-squares fitting for
each layer from 0 to 2.2 km (Fig. 13). Intercepts of linear re-
gression analysis for all layers were zero with RMS≤ 0.01.
High R2 values (0.93–0.99) and slopes (m) close to one sug-
gest that the ML method relatively accurately estimates par-
tial AOD at the layers between 0 and 2.2 km. As was noted

Figure 13. Correlation between the retrieved partial AOD
and the true partial AOD for each layer from 0 to 2.2 km
(retrieved partial AOD=m · true partial AOD+ intercept). The in-
tercept of all linear regression analyses is 0 with RMS< 0.01.

earlier lower retrieval accuracy is observed at the higher alti-
tudes.

Figure 14 shows some examples of the partial AOD pro-
files retrieved by the ML inversion model. Panels (a)–(h) in
Fig. 14 contain randomly selected profiles out of the tested
pool. While panels (i)–(l) contain some of the worst predic-
tions. These examples show that the ML model is able to
predict the elevated aerosol layers and even in those cases
having large discrepancies, the model is still capturing the
correct shape.
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Figure 14. Examples of predicted partial layer AOD profiles: (a–
h) randomly selected examples and (i–l) bad predictions.

Figure 15. Effect of random noise in model training on the retrieved
aerosol properties.

6.5 Effect of random noise in ML training on the
retrievals

To estimate retrieval uncertainties due to random noise in ML
training on the aerosol properties we reran the ML training
stage 20 times. Mean errors and standard deviations for total
AOD, single-scattering albedo and asymmetry factor for each
trained model are shown in Fig. 15.

Table 2 summarizes the effect of random model training
noise on the retrieved properties. In general, most ML mod-
els result in a normal distribution of errors with an additional
bias in the mean. Since the individual model training has a
very small effect on error distribution (small changes in stan-

Table 2. Statistics of aerosol property error analysis from 20 ML
models (20 different training runs).

Optical property Bias ± SD, Standard
% deviation

± SD, %

Total AOD error −1.43± 3.54 3.56± 0.64
Single-scattering albedo error 0.06± 0.47 1.72± 0.10
Asymmetry factor error −0.08± 0.25 1.01± 0.03

dard deviation between the different training runs) we add the
variation in bias with standard deviation in quadrature to es-
timate the total error of the ML model including the random
error of the training as follows:

1. Total AOD error ±2 standard deviations=−1.4±
10.1 %;

2. Single-scattering albedo error±2 standard deviations=
0.1± 3.6 %;

3. Asymmetry factor error ±2 standard deviations=
−0.1± 2.1 %.

7 Conclusions and future work

This paper presents a fast ML-based algorithm for the inver-
sion of 1SCD(O2O2) from a single MAX-DOAS sky scan
into aerosol partial optical depth profile, single-scattering
albedo and asymmetry factor at 360 nm. Training and eval-
uation of the ML algorithm are performed using VLIDORT
simulations of 1AMF(O2O2) for about 1.45 million scenar-
ios with 75 % randomly selected cases for training and 25 %
(∼ 365 000 cases) for evaluation.

Evaluation of four retrieved aerosol properties (asymmetry
factor, single-scattering albedo, total AOD and partial AOD
for each layer from 0 to 4 km) shows good performance of
the ML algorithm with small biases and a normal distribution
of the errors. Overall, 95.4 % of the retrieved optical proper-
ties have errors within the following ranges: (−1.4±10.1) %
for total AOD, (0.1±3.6) % for single-scattering albedo and
(−0.1±2.1) % for asymmetry factor. Linear regression anal-
ysis using the least-squares fitting method between the true
and retrieved layer partial AODs resulted in high correlation
coefficients (R2

= 0.93–0.99), slopes near unity (0.95–1.02)
and zero intercepts with RMS≤ 0.01 for each layer from 0
to 2.2 km. The ML algorithm, in general, has less accuracy
retrieving low total AOD scenarios and their corresponding
profiles. Even in those scenarios with less accuracy, the ML
model is still capable of capturing the correct profile shape.

Application of ML-based algorithm to real data inversion
has the following advantages:

1. Fast real-time data inversion of the aerosol optical prop-
erties;
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2. Simple implementation by using an HDF file with the
model coefficients in open-source codes such as Python;

3. Ability to retrieve single-scattering albedo and asymme-
try factor;

4. Use of the ML algorithm-retrieved aerosol extinction
coefficient profiles; single-scattering albedo and asym-
metry factor as initial guess inputs in more formal in-
version algorithms (with radiative transfer simulations).

To verify that the ML retrievals are representative of the
physical processes, we suggest simulating 1SCD(O2O2) us-
ing a radiative transfer model (e.g., VLIDORT) with the ML-
retrieved properties as inputs (aerosol extinction coefficient
profile, single-scattering albedo, and asymmetry). Deviations
from the measured and simulated 1SCD(O2O2) should be
included in error analysis.

To make the ML model more robust, the training
data should include more realistic aerosol inputs and ra-
diative transfer simulations including (1) rotational Ra-
man scattering simulations to add ring measurements from
MAX-DOAS, (2) different surface albedos, (3) more re-
alistic aerosol profiles (e.g., from a 3D multiwavelength
aerosol/cloud database based on CALIPSO and EARLINET
aerosol profiles, LIVAS; Amiridis et al., 2015) and (4) mul-
tiple wavelengths.

Data availability. All data used in this study (radiative transfer sim-
ulations and ML model from a single training) are available from
https://doi.org/10.7294/6A3T-ZV25 (Dong et al., 2019).
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