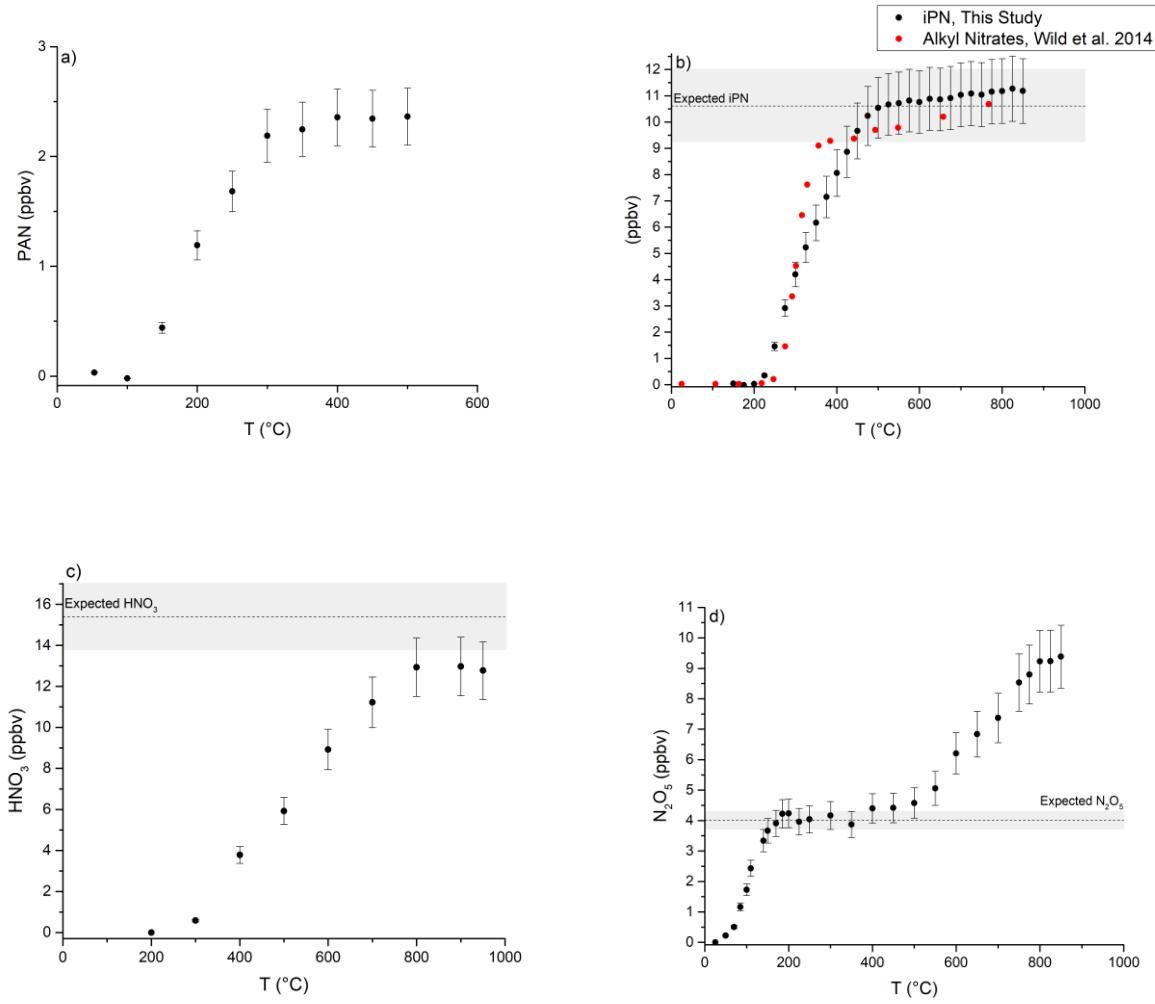

Supplement of

Measurement of NO_x and NO_y with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment


Nils Friedrich et al.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

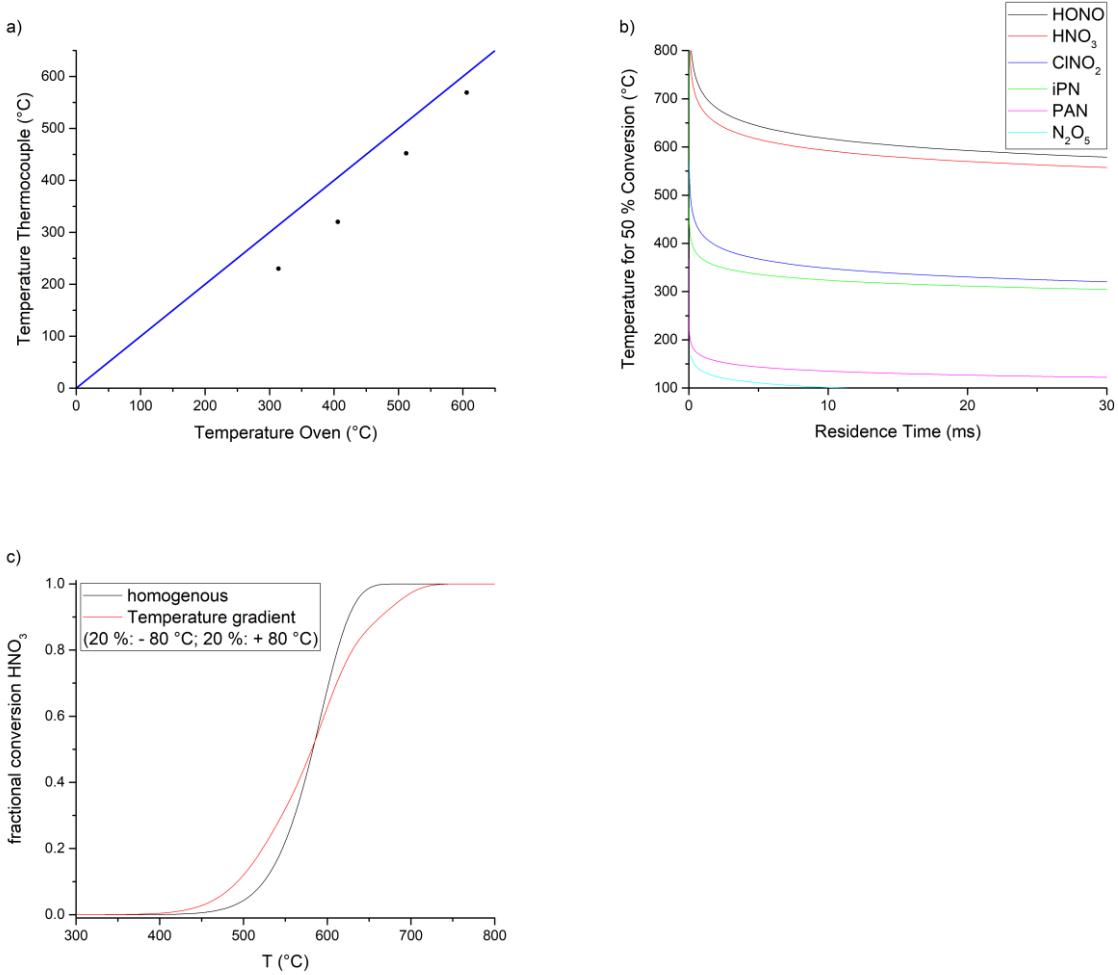
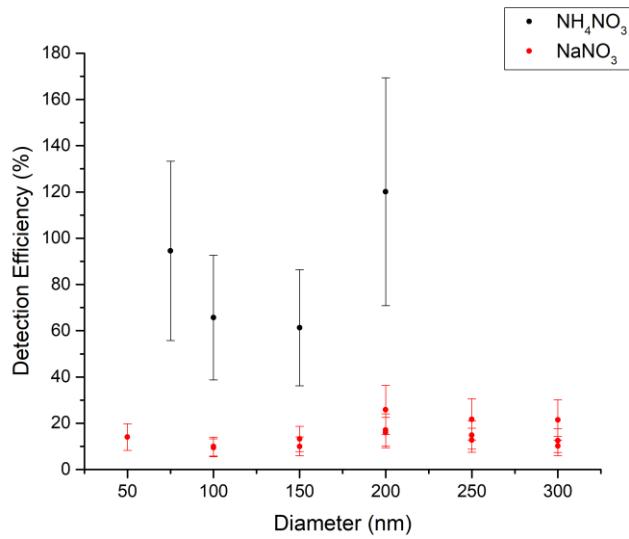


Figure S1: Optimisation of NO to NO₂ conversion via the addition of O₃. *a)* Ozone generated by passing synthetic air over the Pen-Ray lamp as a function of the flow rate. *b)* Numerical simulation of the fractional NO conversion as a function of reaction time and a chemical scheme showing reactions included in the model. High concentrations of O₃ can lead to the formation of significant amounts of N₂O₅ (50 pptv at 20 ppmv O₃ and 2 s reaction time). *c)* Conversion of 5.3 ppbv NO to NO₂ as a function of O₃ in 1.05 s reaction time. Both laboratory results and predictions of a numerical simulation are shown. Quantitative conversion is achieved for O₃ concentrations above 15 ppmv. The error bars indicate total overall uncertainty.



Figure S2: Absolute thermograms of PAN (a), iPN (b), HNO₃ (c), and N₂O₅ (d). Error bars represent the measurement uncertainty (see Sect. 2.2). Shaded areas show the estimated uncertainty ranges for the expected iPN and HNO₃ concentrations, based on errors during sample preparation and gas stream dilution. Within combined uncertainties we observe quantitative conversion of PAN, iPN, 2x N₂O₅ and HNO₃ to NO₂ at the TD-CRDS set temperature of 850 °C. (b) also includes data points for an alkyl nitrates mixtures from Wild et al. (2014), to illustrate the continuous increases in signal above 400 °C.


Wild, R. J., Edwards, P. M., Dube, W. P., Baumann, K., Edgerton, E. S., Quinn, P. K., Roberts, J. M., Rollins, A. W., Veres, P. R., Warneke, C., Williams, E. J., Yuan, B., and Brown, S. S.: A measurement of total reactive nitrogen, NO_y, together with NO₂, NO, and O₃ via cavity ring-down spectroscopy, Env. Sci. Tech., 48, 9609-9615, doi:doi:10.1021/es501896w, 2014

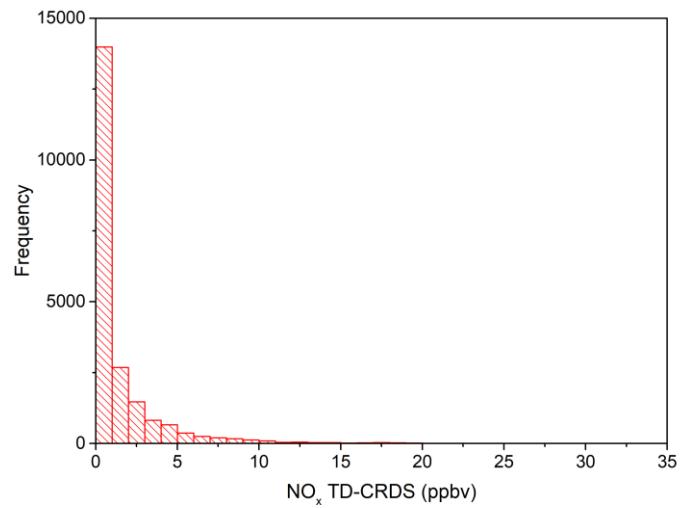

5 **Figure S3:** a) Plot of temperature from the internal reading of the TD-oven and a thermocouple located in the gas stream. The
 10 blue line shows a 1:1 correlation. b) Calculated threshold temperature for 50% conversion of N_2O_5 , PAN, iPN, CINO_2 , HNO_3
 and HONO to NO_x relative to the residence time in the heated inlet and based on kinetic parameters of their thermal dissociation
 (see Sect. 3.1.8). For HNO_3 , the threshold temperature increases by 40 $^{\circ}\text{C}$ when the residence time decreases from 30 to 10 ms.
 c) Impact of temperature gradients inside the TD-inlet on the shape of the calculated HNO_3 thermogram. The width of the
 10 thermogram increases by ca. 100 $^{\circ}\text{C}$.

Figure S4: Graphical representation of the bias caused by $RO_2 + NO$ reactions in detecting iPN. In both cases an initial mixing ratio of 7 ppbv iPN is present, along with 5 ppbv NO and 1 ppbv NO₂. When passed through the oven the iPN is converted to 7 ppbv NO₂ and (in this scenario) 2 ppbv of NO are converted to NO₂ via reaction with HO₂. In total 13 ppbv of NO₂ are detected in the cavity sampling via the oven. In the cavity at ambient temperature 6 ppbv of NO₂ are detected so that a (correct) iPN mixing ratio of 7 ppbv is derived. In the lower part of the figure, the same initial conditions apply, but O₃ is not added. The conversion of 2 ppbv NO to NO₂ occurs as above, so that 10 ppbv NO₂ are detected when sampling from the oven. The NO₂ mixing ratio in the cavity sampling at ambient is 1 ppbv, resulting in a derived (incorrect) NO₂ iPN mixing ratio of 9 ppbv.

Figure S5: Detection efficiencies of NH_4NO_3 and NaNO_3 in the TD-CRDS, as a function of particle diameter. The CPC measured particle numbers were converted to mixing ratios and compared to the TD-CRDS. Errors imminent for this method are explained in Sect. 3.1.7. The particle conversion to NO_2 is clearly more efficient for NH_4NO_3 , in direct comparison to NaNO_3 .

Figure S6: Histogram of the AQABA TD-CRDS NO_x mixing ratios shown in Fig. 10a). 92 % of the NO_x data points were at mixing ratios below 5 ppbv.

Table S1: Reactions included in the numerical simulations used to generate Fig. S1.

Reaction	Rate coefficients (Burkholder et al. (2015))
$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2$	$1.2\text{E-}13 * \exp(-2450/T)$
$\text{NO} + \text{NO}_3 \rightarrow \text{NO}_2 + \text{NO}_2$	$1.5\text{E-}11 * \exp(170/T)$
$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$	$3.0\text{E-}12 * \exp(-1500/T)$
$\text{N}_2\text{O}_5 \rightarrow \text{NO}_3 + \text{NO}_2$	$((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1 + ((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1.4\text{E-}12 * (T/300)^{-0.7}))) * 0.6^{((1 + \text{LOG10}((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1.4\text{E-}12 * (T/300)^{-0.7})))^2)^{-1}}) / (3.0\text{E-}27 * \exp(10990/T))$
$\text{NO}_2 + \text{NO}_3 \rightarrow \text{N}_2\text{O}_5$	$((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1 + ((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1.4\text{E-}12 * (T/300)^{-0.7}))) * 0.6^{((1 + \text{LOG10}((2.0\text{E-}30 * (T/300)^{-4.4}) * \text{M} / (1.4\text{E-}12 * (T/300)^{-0.7})))^2)^{-1}})$

M = molecular density in molecule cm⁻³, T = temperature in K.

5 *Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18," JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, <http://jpldataeval.jpl.nasa.gov>, 2015.*

Table S2: Denuder characterisation

NO_y species	RH (%)	Reference mixing ratio (pptv) = $I_0 \pm \Delta I_0$	Mixing ratio with denuder (pptv) = $I \pm \Delta I$	Removal efficiency (%) = $(R \pm \Delta R) \times 100$
NO	0	37036 \pm 261	0 \pm 43	100.0 \pm 1.0
	14		62 \pm 46	99.8 \pm 1.0
	28		832 \pm 94	97.8 \pm 1.0
	42		7832 \pm 60	78.9 \pm 0.9
	55		10391 \pm 65	71.9 \pm 0.9
	68		12575 \pm 45	66.0 \pm 0.9
	81		13758 \pm 51	62.9 \pm 0.8
	97		14220 \pm 74	61.6 \pm 0.9
iPN	0	20181 \pm 247	0 \pm 22	100.0 \pm 1.0
	14		-98 \pm 91	100.5 \pm 1.0
	27		-65 \pm 58	100.3 \pm 1.0
	41		355 \pm 49	98.2 \pm 0.9
	55		303 \pm 41	98.5 \pm 0.9
	68		537 \pm 47	97.3 \pm 0.9
	81		907 \pm 46	95.5 \pm 0.8
	95		1043 \pm 33	94.8 \pm 0.9
HNO ₃	0	8224 \pm 214	35 \pm 58	99.6 \pm 2.7
	68	9104 \pm 173	247 \pm 50	97.3 \pm 3.7
NO ₂	0	24259 \pm 211	54 \pm 45	99.8 \pm 1.3
	65	24164 \pm 225	448 \pm 40	98.1 \pm 1.2
PAN	0	7575 \pm 93	58 \pm 130	99.2 \pm 2.4
N ₂ O ₅	0	4179 \pm 230	5 \pm 48	99.9 \pm 7.8
HONO	46	10000 \pm 61	1521 \pm 47	84.8 \pm 0.9
ClNO ₂	60	2068 \pm 103	521 \pm 141	74.8 \pm 9.2

Mixing ratios (reference determined in heated inlet with bypassed denuder), standard deviations (1σ) during the averaging intervals and derived denuder removal efficiencies of various NO_y species, as a function of RH and as presented graphically

5 in Fig. 6. $R = (I_0 - I) / I_0$. ΔR was determined by error propagation.