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Abstract. There is a growing interest in emerging oppor-
tunistic sensors for precipitation, motivated by the need to
improve its quantitative estimates at the ground. The scope
of this work is to present a preliminary assessment of the
accuracy of commercial microwave link (CML) retrieved
rainfall rates in Northern Italy. The CML product, obtained
by the open-source RAINLINK software package, is evalu-
ated on different scales (single link, 5km× 5km grid, river
basin) against the precipitation products operationally used
at Arpae-SIMC, the regional weather service of Emilia-
Romagna, in Northern Italy. The results of the 15 min single-
link validation with nearby rain gauges show high variabil-
ity, which can be caused by the complex physiography and
precipitation patterns. Known sources of errors (e.g. the at-
tenuation caused by the wetting of the antennas or random
fluctuations in the baseline) are particularly hard to mitigate
in these conditions without a specific calibration, which has
not been implemented. However, hourly cumulated spatially
interpolated CML rainfall maps, validated with respect to
the established regional gauge-based reference, show sim-
ilar performance (R2 of 0.46 and coefficient of variation,
CV, of 0.78) to adjusted radar-based precipitation gridded
products and better performance than satellite-based ones.
Performance improves when basin-scale total precipitation
amounts are considered (R2 of 0.83 and CV of 0.48). Avoid-
ing regional-specific calibration therefore does not preclude
the algorithm from working but has some limitations in prob-
ability of detection (POD) and accuracy. A widespread un-
derestimation is evident at both the grid box scale (mean
error of −0.26) and the basin scale (multiplicative bias of
0.7), while the number of false alarms is generally low and
becomes even lower as link coverage increases. Also taking

into account delays in the availability of the data (latency of
0.33 h for CML against 1 h for the adjusted radar and 24 h
for the quality-controlled rain gauges), CML appears as a
valuable data source in particular from a local operational
framework perspective. Finally, results show complementary
strengths for CMLs and radars, encouraging joint exploita-
tion.

1 Introduction

High spatial and temporal variability make precipitation one
of the most difficult geophysical observables to measure
and monitor. Its accurate measurement would benefit a wide
range of applications in meteorology, hydrology, climatol-
ogy, and agriculture, just to name the most directly related
fields where rainfall plays a key role. The precipitation rate
can be measured or estimated directly at the ground or using
different remote sensing approaches. Rain gauge networks
provide point-like measurements of the amount of rain that
has fallen within the instrument’s sampling area, cumulated
over time intervals which usually range from 1 min to 1 d,
with well-known instrumental constraints (Lanza and Stagi,
2012) and representativeness limitations (Porcù et al., 2014).
Ground-based weather radars, often deployed in large-scale
networks (Serafin and Wilson, 2000; Huuskonen et al., 2014;
Saltikoff et al., 2019), are widely used by hydrometeoro-
logical services to quantitatively monitor precipitation fields,
being an effective trade-off between spatial temporal cover-
age and accuracy in the measurements. However, radar es-
timates are affected by several errors, which the last gener-
ation of polarimetric systems have only partially mitigated

Published by Copernicus Publications on behalf of the European Geosciences Union.



5780 G. Roversi et al.: CMLs for operational rainfall monitoring

(Figueras i Ventura et al., 2012; Gou et al., 2019). Satellite
estimates have received a renewed boost in the last decade
from the full exploitation of the Global Precipitation Mea-
surement (GPM) mission (Skofronick-Jackson et al., 2017)
that has operationally released a new suite of precipitation
products with a high temporal and spatial resolution (Mug-
nai et al., 2013; Grecu et al., 2016). Despite the undoubted
potential of satellite products to provide estimates over open
oceans and regions not equipped with ground instruments,
their accuracy is difficult to assess at high spatial and tem-
poral scales (Tang et al., 2020), and their latency hinders a
real-time use.

A relatively new and independent approach to the estimate
of precipitation at the ground has become available in the
last few decades thanks to the growing number of microwave
links (or commercial microwave links, CMLs) employed for
the backhauling of cellular communication networks, growth
which only recently and only in some densely populated ar-
eas seems to have come to a halt. Integrated precipitation
content along a straight path between two antennas can be
estimated by measuring the attenuation of the microwave sig-
nal travelling down the same path (Turner and Turner, 1970;
Harden et al., 1978). Accurate experiments with dedicated
hardware and numerical simulation were used to assess the
capability of microwave links to measure average rainfall
rates (Rahimi et al., 2003), drop size distribution (Rincon
and Lang, 2002; van Leth et al., 2020), and water content
(Jameson, 1993). The possibility of having a spatially con-
tinuous rainfall field depends on the density and distribution
of the links, making the CML approach of particular inter-
est for urban areas (Upton et al., 2005; Overeem et al., 2011;
Fenicia et al., 2012; Fencl et al., 2013; Rios Gaona et al.,
2018; de Vos et al., 2018) also with direct hydrological use
in combination with conventional instruments (Grum et al.,
2005; Fencl et al., 2013). A further application of the CML
approach could be in regions where other instruments are
lacking or entirely absent (Mulangu and Afullo, 2009; Ab-
dulrahman et al., 2011; Doumounia et al., 2014). However, as
happens for conventional precipitation instruments, the qual-
ity of the retrieval is sensitive to several factors, which are
often difficult to control (Leijnse et al., 2008), and to the pre-
cipitation’s microphysical structure (Berne and Uijlenhoet,
2007; Leijnse et al., 2010). Given these limitations intrinsic
to the measurement geometry and to the nature of precipita-
tion, possible synergistic approaches are considered to min-
imize the uncertainties of the different instruments, suggest-
ing the potential of blending CML measurements with con-
ventional precipitation estimates, such as rain gauges (Fencl
et al., 2017; Haese et al., 2017), radar (Cummings et al.,
2009; de Vos et al., 2019), or both (Grum et al., 2005; Bianchi
et al., 2013).

Even if the general relationship between signal attenua-
tion and rain rate is already well established, the success-
ful use of CML data to quantitatively monitor precipitation
still depends on the quality and technical characteristics of

the transmitted power data and on the fine-tuning of the al-
gorithms. The somewhat standardized policies of acquisition
and storage of the different companies in different countries
make the use of CMLs feasible all around the world, but there
is as yet no standard way to access them as scientific data.
As they consist mostly of confidential maintenance data, ma-
jor obstacles to face are the widespread unwillingness of re-
leasing them cost-free and inadequate data-quality standards
(Chwala and Kunstmann, 2019).

The first objective of the present work is to make a valida-
tion of the precipitation amounts and distributions estimated
only from CML attenuation data, using a well-established,
freely available algorithm (i.e. RAINLINK; Overeem et al.,
2016a), over two areas of interest in the Po Valley (provinces
of Bologna and Parma), where CML data have been obtained
from Vodafone (by direct purchase). Both areas contain river
basins of considerable local interest, which will be explic-
itly addressed. Moreover, we consider for intercomparison
only precipitation products routinely available at the Meteo-
rological Service of the Regional Agency for Environmental
Protection and Energy (Arpae-SIMC); this, on the one hand,
prevents us from performing a solid calibration of the algo-
rithm (see Sect. 3.2), but, on the other hand, allows us to
understand how CML product behaves with respect to other
operational products. The further aim of the validation study
is thus to test the potential of the technology even at its most
basic implementation, indicating where to direct the tuning
efforts and setting the background for possible inclusion of
CML data in the operational routine procedures for precipi-
tation monitoring.

In Sect. 2 we will describe the area of interest and the dif-
ferent rainfall datasets (CML, radar, and rain gauges), includ-
ing data quality and coverage. In Sect. 3 we will describe
the RAINLINK algorithm and discuss its application to the
Emilia-Romagna area. The comparison – at single-link and
gridded-map scales – between the rainfall estimates from the
different data sources is presented in Sect. 4 and discussed in
Sect. 5, while conclusions are provided in Sect. 6.

2 Data

We have considered 57 d from 5 May to 30 June 2016. The
two target areas for which we have available CML data are
the provinces of Bologna (BO, 3702 km2) and Parma (PR,
3447 km2), both in the Po Valley in Emilia-Romagna, North-
ern Italy (coloured areas in Fig. 1). The physiography of the
two regions is similar: the highest peaks (about 1500 m a.s.l.)
are located on the southern border, in the Apennine chain,
while the central and northern parts of the two areas are flat
land. The two river basins (thick lines in Fig. 1) are both lo-
cated in the hilly region and have their closing sections lo-
cated near the cities, in densely populated and asset-rich ar-
eas.
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Figure 1. Map of the Emilia-Romagna region in Northern Italy (grey area). The coloured areas are the two provinces where the CML
estimates are computed (the colour scale represents the link coverage, LC, where orange is not a negative value but exactly zero), and thick
black lines delimit the two river basins (Parma, to the east, and Reno). Blue circles and red crosses indicate operational rain gauge and
weather radar locations, respectively, while red circles are the 100 km radar coverage. Thin black lines show two elevation contours (300 and
800 m a.s.l.). The capital cities of the two areas (Bologna – BO – and Parma – PR) are indicated with the black diamonds.

Precipitation climatology in the Po Valley during the late
spring season is characterized by both stratified structures
and small-scale convection, with the maxima of the rainfall
amounts located on the Apennines ridge (see Supplement).
We divided the whole area into square boxes of 5km× 5km
(see also Sect. 2.2.2), and this grid will be used to carry out
rainfall interpolation and product intercomparison.

The validation has been carried out comparing, at differ-
ent spatial and temporal scales, the rain amount obtained by
CMLs, through the RAINLINK algorithm (Overeem et al.,
2016a), with other rainfall estimates operationally available
over the target domain. In particular, the CML product has
been compared with radar surface rain rates, both raw and
gauge-corrected; rain gauges measurements; and the op-
erational precipitation analysis (ERG5) made available by
Arpae-SIMC.

2.1 CMLs

Microwave attenuation data and metadata were purchased
as a single dataset of 2 months, from Vodafone Italia
S.p.A. within the EU Life project called RainBO LIFE15
CCA/IT/000035 (Alberoni et al., 2018). Received powers are
measured by the provider with the resolution of 1 dB at a
frequency of 10 times per second for maintenance purposes,
but only maximum (Pmax) and minimum (Pmin) readings in a
time window of 15 min are stored for backup. Therefore, data
are in the format of 15 min [Pmin,Pmax] pairs. All the avail-
able 357 CMLs are “duplex” links so that two sublinks (back

and forth) are present for the same link (although not always
simultaneously active). Signal polarization is vertical for 259
CMLs and horizontal for the remaining 98, while carrier-
signal frequencies span 6 to 42.6 GHz, with an average fre-
quency (f ) of 22.1 GHz. Sublinks of the same CML always
share the same polarization and differ only in frequency by
a small gap of around 1 GHz. Path lengths of the links vary
from 162 m to 30 km; the interquartile range extends between
2.4 and 8 km; and the average length is 6 km. As expected,
the carrier frequency is anti-correlated with path length since
high frequencies, while allowing a wider transmission band,
are more prone to attenuation compared to the lower frequen-
cies (Leijnse et al., 2008).

2.1.1 Coverage and data quality

The number of working CMLs varies slightly over the
months: it grows from 348 at the beginning of May to a max-
imum of 357 in June. The number of valid CMLs for rain
retrieval is lower because of the quality and sensitivity fil-
tering performed by the preprocessor of the algorithm (see
Sect. 3.1), resulting in a median number of 308 valid CMLs
with very small fluctuations. Most of the rejected data are
empty or incomplete (Pmin or Pmax missing), probably due
to failures in reading or storing raw data. More details on the
rejected data are presented in the Supplement.

Four parameters are utilized to summarize the topological
structure of the CML network: the link density LD (defined
as the total number of link paths divided by the whole area,
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Table 1. CML dataset comparison.

Overeem Overeem
Variable Unit ER NL et al. et al.

(2013) (2016b)

Total area km2 7149 35 500 35 500 35 500
CMLs counts 308 1527 1514 2044
Sublinks counts 606 2473 2902 3383
LD km−2 0.043 0.043 0.043 0.058
LL km 5.8 2.9 3.1 3.6
BC km km−2 0.25 0.13 0.13 0.21
f GHz 22.1 37.11 37–40 37–40

in total number per square kilometre), the average link length
LL (in kilometres), the bulk link coverage BC (defined as
the sum of the link path lengths divided by the total area, in
kilometres per square kilometre), and the local link coverage
LC (calculated as BC but for each grid box, in kilometres
per square kilometre). Due to Vodafone confidentiality re-
strictions, we are not allowed to show the exact location of
the available links, so instead we show, in Fig. 1, the spa-
tial distribution of LC. The regions with the greatest cover-
age are located where the anthropic presence is highest, i.e.
around the two capital cities and along the main communi-
cation routes. The hilly region of the province of Parma and
the rural plains of the province of Bologna have in contrast
the less covered grid boxes.

Since the RAINLINK original settings depend on the net-
work characteristics, we compared the Emilia-Romagna net-
work (ER) with one from the Netherlands (NL), which is in-
cluded in the RAINLINK software package as a test sample
(Overeem et al., 2016a), and with other datasets for which
the algorithm was employed (Overeem et al., 2013, 2016b).
The datasets’ properties are summarized and compared in Ta-
ble 1. ER has a comparable link density and higher average
link length, resulting in a higher bulk coverage with respect
to the NL network. The province of Bologna hosts more than
half of the links (195 against 113) and thus has a higher LD.

2.1.2 Transmitting power levels

CMLs are usually equipped with automatic transmit power
control (ATPC) devices which modulate the transmit power
to guarantee a constant power level at the receiving end of
the link, cancelling minor fluctuations in the total attenua-
tion along the path. ATPC works at a higher frequency than
15 min and in a power window spanning 0 to +6 dB. With
ATPC active, attenuation measurements should, therefore, be
performed, subtracting receiving from transmitting powers,
and are not possible from receiving powers only (Overeem
et al., 2016a). The CMLs analysed in this work are equipped
with ATPC, but unfortunately we do not have access to the
transmitting powers, due to confidentiality restrictions. Luck-
ily, provider engineers gave us instead some ATPC data –

specifically, the maximum modulation offsets (in dB) that
were applied during each time interval – through which we
are able to correct the receiving power levels, compensating
for the power modulation effects and simulating CML data
with constant transmitting powers, allowing RAINLINK to
estimate attenuations from receiving powers only. The cor-
rection intervenes only on minimum received powers (Pmin),
which are no doubt affected by the ATPC: they are man-
ually lowered by the maximum ATPC modulation applied
within the respective 15 min time window. Maximum receiv-
ing powers (Pmax) are in contrast left untouched as the ATPC
working frequency and the 15 min sampling frequency do not
coincide and there was no way to infer a reasonable compen-
sation. This could result in a broader gap between Pmin and
Pmax.

2.2 Reference rain rate fields

2.2.1 Rain gauges

Rain gauge hourly and 15 min data are provided by Arpae
RIRER (regional hydrometeorological network), established
in 2001 by bringing together existing hydrological and me-
teorological station networks and managed at the time by
various public bodies and local authorities. The network of
the whole region is composed of 285 stations, equipped with
tipping-bucket rain gauges: 110 of them are divided between
the Bologna (54) and Parma (56) provinces. Rain gauges
have different sampling intervals (from 10 to 60 min); they
undergo a process of homogenization and quality control and
are released as an hourly point-like product.

2.2.2 ERG5 rainfall analysis

The ERG5 gridded meteorological dataset has been devel-
oped by Arpae-SIMC, to support agricultural activities in
the region of Emilia-Romagna. ERG5 data have been opera-
tionally produced since 2001, interpolating the hourly station
measurements of the main meteorological variables (air tem-
perature, relative humidity, precipitation, wind, solar irradi-
ance) onto a 5km× 5km grid covering the Emilia-Romagna
region. The interpolation method used for hourly precipi-
tation consists of a Shepard (1968) modified scheme using
topographic distances instead of Cartesian distances. This
allows the interpolation to take into account the influence
of topography on precipitation, by making locations sepa-
rated by orographic obstacles more distant than they would
be if Cartesian distances were used (Antolini et al., 2016).
Data are stored and distributed freely in the form of GRIB2
files, which were imported in an R environment thanks to the
rNOMADS package (Bowman and Lees, 2015). Among all
the variables included in ERG5, we consider here only the
hourly accumulated precipitation. Its input is based on the
same RIRER network described in the previous section, no
longer limited to the two areas of study but extended to the
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whole region. Some discrepancies are therefore expected be-
tween the two products, mainly near the borders and in areas
where the distribution of the instruments is less uniform.

2.2.3 Radars

The radar dataset is based on hourly precipitation estimates
obtained from the composite of the regional radar network
managed by Arpae-SIMC. The regional network is com-
posed of two C-band systems, located in San Pietro Capofi-
ume and in Gattatico (easternmost and westernmost red
crosses in Fig. 1, respectively). For each instrument the
equivalent radar reflectivity factor close to the ground is ex-
tracted and interpolated from polar coordinates to a 256×256
Cartesian grid of 1 km× 1km resolution and then merged to
obtain a composite of both radars.

Raw radar images are affected by various non-
meteorological echoes that are removed before computing
the quantitative precipitation estimation (QPE). The current
scheme used at Arpae-SIMC during operational service in-
cludes many steps: the ground clutter is removed at first stat-
ically through the map of signal-free elevations recorded in
dry conditions and then dynamically by combining a beam
trajectory simulation at the current atmospheric state (as
measured by radio soundings) with a digital elevation model
(Fornasiero et al., 2006). The beam-blocking reduction and
correction is performed based on a geometric optic approach
(Bech et al., 2003), while anomalous propagation is detected
after the analysis of the echo coherence in the vertical di-
rection (Alberoni et al., 2001). The final conversion between
reflectivity and rainfall rate is performed on the corrected
dataset using the classic relationship Z = aRb, with a = 200
and b = 1.6.

Rain rates are obtained every 5 min, and hourly total rain
amount is computed by an advection algorithm which takes
into account the movement of the precipitating systems. The
algorithm is based on the computation of maximum cross-
correlation between consecutive maps, leading to the esti-
mate of the displacement vector for each precipitating sys-
tem. The rainfall field is then reconstructed every minute be-
tween the observations and cumulated over each hour. Fi-
nally, radar QPE is adjusted with rain gauge data, via the
spatial analysis of the ratio G/R between rain gauge rainfall
rates (G) and radar rainfall rates (R) over the station loca-
tions. The spatial analysis is obtained as the weighted mean
of theG/R values, where the weight is a function of both the
distance of the grid point from the station and the mean spac-
ing between five observations (Koistinen and Puhakka, 1981;
Amorati et al., 2012). In this work we will compare the CML
product with both adjusted and unadjusted radar QPEs.

3 Methodology

The process chain which takes CML signals and returns rain-
fall maps is governed by the open-source RAINLINK algo-
rithm (Overeem et al., 2016a) published on GitHub (https:
//github.com/overeem11/RAINLINK, last access: 25 Octo-
ber 2020) as an R package. We used the 1.14 version
of the RAINLINK algorithm, available online from July
2019, and we added some minor modifications and op-
timizations (forked version available at https://github.com/
giacom0rovers1/RAINLINK, last access: 25 October 2020).

3.1 CML rain retrieval algorithm

The algorithm works for both instantaneous power measure-
ments and [Pmin,Pmax] pairs; for the present work we use the
latter, at 15 min intervals. The algorithm treats Pmin and Pmax
separately (we will then use Pi to refer to both alternatively).
Two separate rain estimates Rmin and Rmax will thus be ob-
tained. The retrieval process is summarized below, while we
show more details of the data filtering in the Supplement.

1. Preprocessing. The raw input goes through three consis-
tency checks concerning data formatting and labelling.
Any multiple observations for the same “LinkID” and
“DateTime” are discarded; each LinkID is verified
to maintain the same metadata throughout the whole
dataset (“Frequency”, “PathLength”, and antenna coor-
dinates), and rows with “NA” (not available) values in
any of the columns except for “Polarization” (which is
assumed to be vertical if not indicated) are discarded as
well.

2. Wet–dry classification. The samples are classified into
wet and dry periods by assuming that rainfall is corre-
lated in space, through the so-called nearby links ap-
proach (NLA), which works as follows. For each link,
a time interval with a decrease in the received power
is labelled as wet if at least half of the links in the
vicinity (within a 15 km radius) experience a compa-
rable reduction, i.e. if the medians of the attenuation
and the specific attenuation of the nearby links are be-
low −1.4 dB and −0.7 dBkm−1, respectively. This is
the second most computationally time-consuming step
of the algorithm.

3. Baseline determination. A 24 h moving-window median
of the quantity 1

2 (Pmin+Pmax) over the dry time inter-
vals defines a reference level Pref (baseline). This is the
computationally time-consuming operation of the algo-
rithm.

4. Outlier filter and power correction. Outliers due to mal-
functioning links can be removed again by assuming
that rainfall is correlated in space. The filter discards
a time interval of a link for which the cumulative dif-
ference between its specific attenuation and that of the
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surrounding links over the previous 24 h (including the
current time interval) becomes lower than the outlier fil-
ter threshold, which is fixed at −32.5 dBkm−1 h. After
removing the outliers, the classification information is
used to clean the receiving powers of the noise over the
dry periods. The corrected powers PCor

i will be equal to
Pref in dry periods and Pi in wet ones.

5. Rain rate retrieval. Attenuation Ai is computed as Ai =
Pref−P

Cor
i . A fixed quantity Aa = 2.3 dB is subtracted

from the attenuation Ai in order to take into account the
wet-antenna effect, which is independent of path length
and is also assumed independent of frequency and rain
intensity. If Ai −Aa > 0, then the specific attenuation
ki (dBkm−1) is calculated as ki = (Ai −Aa)/L; oth-
erwise 0 is returned. Path-averaged mean rain intensity
Ri (mmh−1) is finally calculated using the k–R rela-
tionship Ri = a(ki)b, where the coefficients a and b are
from Leinse (2007) and Leijnse et al. (2010) for vertical
and horizontal polarization, respectively.

6. Path-averaged rainfall depth. To obtain a single-path-
averaged rain depth, Ri is combined through a weighted
mean: R = 1

4 [αRmin+(1−α)Rmax]. The factor 1
4 trans-

forms rain rates into 15 min rain depths. The weight α
varies between 0 (estimate derived from Pmax only) and
1 (estimate derived from Pmin only); we adopted the de-
fault value (α = 0.33). We specify that, unlike Overeem
et al. (2016a), we chose to keep the subscripts related to
the original receiving powers; thus in our notation the
rain rate Rmin is higher than Rmax because it is obtained
from the most attenuated signal Pmin.

7. Interpolation. CML-path-averaged precipitation esti-
mates are assigned to the midpoints of the links like
point measurements (“virtual rain gauges”). Interpola-
tion of the point-like measurements is performed at an
hourly scale with ordinary kriging on a spherical semi-
variogram on the ERG5 grid. Sill and range parame-
ters are estimated from the available rain gauge stations
of 3 consecutive years. The nugget parameter is set as
1/10 of the sill, as in Overeem et al. (2016a). The in-
terpolated field is truncated if it becomes smaller than
0.05 mm, which is half of the minimum detectable rain
from a rain gauge.

3.2 Preliminary discussion about the RAINLINK
set-up for Northern Italy

The implementation of RAINLINK in Emilia-Romagna re-
quired some technical and conceptual considerations, based
on the differences and similarities between the local and
Dutch climatology, orography, and CML network features.
We will describe them below:

– The CMLs’ operational frequency in our dataset spans
5.0 to 45.0 GHz. The default frequency allowance win-

dow of the RAINLINK algorithm is 12.5–40.5 GHz in-
stead. We decided to extend it to 10.0–45.0 GHz but no
further, so five CMLs belonging to the 5 to 10 GHz in-
terval were left out. We then removed 10 other links,
which had higher frequencies but whose sensitivities
were below 0.1 dBmm−1 (see Supplement for more
details). This was done to avoid contamination from
coarse, low-sensitivity signals.

– The average link density (0.043 kmkm−2) is the same
as the one of the network used for the original set-up of
the algorithm (see Table 1).

– Spherical variogram parameters (see Sect. 3.1, point 7,
“Interpolation”) were calculated for 3 years from a pool
of validated rain gauges from the entire region. The
range and sill are 36.12 km and 1.12 mm2, respectively.
These values very much resemble the median for May
and June of the outputs of the “ClimVarParam” sub-
function of Overeem et al. (2016a), which approximates
30 years of Dutch climate (van de Beek et al., 2012).
Accordingly, it is expected that both the network struc-
ture and the rainfall spatial patterns are similar between
the Italian and Dutch sites. This assumption drives the
choice for the correct value of the NLA radius of the
wet–dry classification algorithm.

– The differences to the Netherlands regarding orography
are more relevant (see Sect. 2). We expect that rain-
fall patterns could deviate from the average behaviours
described by the variograms when interacting with the
complex orography of the hilly part of the region. How-
ever, we do not have enough data to calibrate the NLA
radius at a small scale or considering geographical sub-
samples. Moreover, a shorter NLA radius could theoret-
ically improve the consistency with the expected decor-
relation length, but, given the network in the hilly re-
gion mostly consists of medium to long links, candi-
dates which would fall inside the NLA radius could be
too few to ensure a statistical significance of the sam-
ples. Thus, we left its value unaltered at 15 km, but we
expect that some issues could possibly arise in the areas
characterized by the most heterogeneous terrain.

– The default k–R relationship from Overeem et al.
(2016a) is also maintained as is, since Northern Italy
and the Netherlands share a similar climate: the aver-
age drop size distribution (DSD) differences between
the two countries are expected to be negligible (Carac-
ciolo et al., 2006) and certainly lower than the expected
variations in DSD along the link paths and during the
15 min time intervals (Tokay et al., 2017).

All the other algorithm’s parameters were not specifically
calibrated. The reasons behind this out-of-the-box approach
are numerous:

Atmos. Meas. Tech., 13, 5779–5797, 2020 https://doi.org/10.5194/amt-13-5779-2020



G. Roversi et al.: CMLs for operational rainfall monitoring 5785

– As suggested by its authors (Overeem et al., 2016a),
a solid calibration of the RAINLINK retrieval algo-
rithm should be implemented exploiting numerous in-
struments along the link paths and organizing dedicated
measurement campaigns, which was not feasible for us.

– The overall temporal span should also allow the dataset
to be split into two non-overlapping datasets for cali-
bration and validation, but the total wet hours available
to us was not enough to grant statistical significance to
both subsets.

– The gauge-adjusted radar product (which is commonly
exploited in most CML studies) is not the one cur-
rently selected by the regional weather agency Arpae-
SIMC as their quantitative reference, a choice that went
in favour of the interpolated rain gauge product ERG5
(see Sect. 2.2.2). The spatial and temporal resolution of
ERG5, however, is too low to perform an effective cali-
bration.

Therefore we analysed some CML–rain gauge pairs only
where the gauges were already in the vicinity of the links
(Sect. 4.1), while we validated the rest of the dataset
against the reference only through its interpolated product
(Sect. 4.2.1 and 4.2.3).

We consider RAINLINK’s ability to function as a stand-
alone system – while other approaches rely on gauges or
radars for wet–dry classification – as one of its key fea-
tures. However, since RAINLINK does not include any stan-
dardized algorithm or procedure for calibration, perform-
ing it would lead to a huge increase in the set-up efforts,
which would make other algorithms (where adaptation to lo-
cal characteristics is naturally present, e.g. neural networks)
much more competitive.

3.3 Error metrics

In the present work, we selected two sets of classical skill in-
dicators, broadly used in the validation community (Nurmi,
2003): the first one is to assess the capability of the prod-
uct to detect rainfall occurrence (categorical indicators) and
the second one is to evaluate the skill in correctly estimat-
ing the quantitative precipitation rate (continuous indicators).
The first set is computed after a definition of a confusion ma-
trix by counting the number of samples where both the esti-
mate and the observation agree on classifying wet (hit, H ),
or dry (correct negative, CN) samples, and where there are
misses (M , observed wet and estimated dry) or false alarms
(F , observed dry and estimated wet). Namely, the probabil-
ity of detection (POD), false alarm ratio (FAR), multiplica-
tive bias (MB), and equitable threat score (ETS) are defined,

respectively, as

POD=
H

H +M
, (1)

FAR=
F

H +F
, (2)

MB=
H +F

H +M
, (3)

ETS=
H −Hrnd

H +M +F
, (4)

whereHrnd represents the number of hits obtained by chance.
Given ei and oi as estimated and observed values, respec-

tively, continuous indicators are the normalized mean error
(ME) and the normalized mean absolute error (MAE), de-
fined as

ME=
∑
i(ei − oi)

o
, (5)

MAE=
∑
i‖ei − oi‖

o
, (6)

plus the coefficient of variation (CV), defined as the root
mean square error divided by the mean of the observed val-
ues o, and Pearson’s correlation coefficient (CC), defined as
the covariance of observed oi and estimated values ei divided
by the product of the two standard deviations (Nurmi, 2003;
Overeem et al., 2016b).

Both the interpolated CMLs and the reference field have a
large number of very low positive values (below 0.1 mmh−1)
that do not have any physical relevance but which are po-
tentially very influential in normalized error metrics. Thus
we have set a wet–dry threshold equal to the minimum
rain quantity detected by the tipping-bucket rain gauge,
i.e. 0.1 mmh−1, for both estimate and reference. Categorical
indicators are calculated with respect to this threshold for the
whole dataset, while all the continuous indicators are com-
puted only for the product–reference pairs where both values
exceed the threshold (i.e. wet–wet). ME, MAE, and CV are
normalized with the averaged reference rain depth.

4 Comparison between CML and conventional
precipitation products

We carried out the validation of the CML product at three dif-
ferent levels. First, we compared single-link estimates with
the measurements of a nearby rain gauge, at the shortest tem-
poral scale available (15 min), to discuss success and failure
cases, trying to understand the latter. Secondly, we compared
the interpolated 5km× 5km CML hourly rainfall maps vs.
the ERG5 product at a grid box scale, also analysing three
case studies. In the third step, the map comparison is car-
ried out at a basin scale including even the other precipitation
products available at Arpae-SIMC.

https://doi.org/10.5194/amt-13-5779-2020 Atmos. Meas. Tech., 13, 5779–5797, 2020



5786 G. Roversi et al.: CMLs for operational rainfall monitoring

4.1 Single-link verification

We have selected links in rural areas and different terrains
with an active rain gauge close to the link: the distance be-
tween link and rain gauge, reported in Fig. 2, is always be-
low 3 km (significantly lower than the correlation distance
of precipitation in Italy; Puca et al., 2014) and always lower
than the length of the link itself. In general, no dependence
of the link performance on the distance from the rain gauge
is found. Selected links had to be active for the whole anal-
ysed period. In many cases more than one link was selected
for one rain gauge. Temporal sampling is kept at the highest
frequency, which is a measurement every 15 min for both the
CML and the rain gauges. A total of 12 rain gauges and 26
CMLs were chosen, 14 of which are in the northern part of
the domain and the other 12 on the hilly region at elevations
between 193 and 960 m a.s.l.

The rain depths of the 26 CMLs are reported in Fig. 2
for the whole study period, grouped according to the closest
rain gauge and ranked by its altitude. A large variability is
found (ranging from near-perfect agreement to discrepancy
of a factor of 2 or 3 in the worst cases). Of the 26 links’
CCs, 75 % are between 0.5 and 0.88, with an overall median
value of 0.68, proving an acceptable overall skill. We relate
this variability to the heterogeneity of CML sensitivity, the
small scale of the meteorological events (see Supplement),
and different site exposures and elevations. In most cases,
CMLs underestimate the rain gauge values: the links located
in the lowlands (Fig. 2a, b, d, and e) show a better correspon-
dence than those in the hilly regions, where underestimation
is more significant.

In some cases (Fig. 2f, k, and l) the discrepancies between
CMLs close to the same rain gauge (but different in loca-
tion, frequency, and length) are much lower than the CML–
rain gauge differences: all these CMLs are in good mutual
agreement and share the same classification issues, resulting
in a systematic underestimation which therefore seems to be
caused by the algorithm set-up. In other cases (Fig. 2b, d, and
g) some links clearly outperform other members of the same
group. This second kind of discrepancy is more likely re-
lated to real differences, like inhomogeneous rainy structures
which crossed the link paths or different hardware set-ups,
while there is no evidence of a correlation with frequency
or path length. The difference between the two directions of
the same link is generally below 10 %, except for the Ostia
Parmense site (see Fig. 2g).

To gain a deeper understanding of better and worse perfor-
mance of the single links, we performed a more detailed anal-
ysis of case studies at the rain-event scale (Fig. 3). We show a
case when the link retrievals accurately match the measure-
ments of the nearby rain gauge and a case with markedly
low performance. In Fig. 3, graph panels are organized in
columns by CML and in rows by sublink. In panels a and d
are shown all the signals managed by the algorithm: the refer-
ence power Pref, the raw received powers Pmin and Pmax, and

the filtered received powers PCor
min and PCor

max. In panels b and e
rain gauge measurements are compared with CML estimates,
and the minimum and maximum attenuation signals are also
plotted (Amax and Amin, respectively). The grey background
indicates when the classification detects a dry period. The
pink background indicates the band inside which attenuation
is considered to be caused by a wet antenna (Aa parameter)
and is discarded for rain retrieval. Panels c and f show the
cumulated rainfall depths in the same time frame.

4.1.1 Best-case example

Between 11 and 12 May 2016 an extensive convective sys-
tem covered the Bologna Province area almost entirely, with
a maximum rain rate of 23 mmh−1 and widespread precip-
itation. For this case, the NLA classification on the three
links near Sant’Agata (Bologna Province, 18 m a.s.l.) works
properly: in Fig. 3b most of the measured rain is on the
white background. In Fig. 3a, after the attenuation event, the
noisy signal is correctly filtered, and a very small amount
of rain (just above the gauge threshold) is neglected. The
agreement is qualitatively very high between each pair of
sublinks and good among the different links, in terms of
specific attenuations and retrieved quantities (see Fig. 3b).
Quantitative retrievals give some overestimation for one of
the CMLs, whose effect is evident on the accumulation plot
(Fig. 3c) where the total rain depths are compared. During the
2 months, the Sant’Agata links are generally in good agree-
ment with the nearby rain gauge, with CC values ranging be-
tween 0.66 and 0.88 and CV values between 0.47 and 0.96.

4.1.2 Worst-case example

Between 8 and 10 June 2016 an event hit the Vergato site
(Bologna Province, 193 m a.s.l.). It was characterized by in-
tense rainfall peaks (rain rate up to 14.6 mmh−1) and iter-
ated moderate scattered precipitation. Many wet intervals are
missed due to wet–dry misclassification (Fig. 3e), leading to
a 20 mm loss in the rain accumulation (Fig. 3f). The POD
over the entire period for these two links is between 0.22 and
0.29.

In the case when the NLA classification correctly identi-
fies some rain occurrence, there is still a general quantitative
underestimation. It could be seen that half of the signal is
hidden from the wet-antenna attenuation threshold. The con-
tinuous scores for the wet–wet sample over the entire period
show a good correlation with gauges but are poor in statistical
relevance because of the high number of misses. They nev-
ertheless confirm the tendency to underestimate, by around
40% (ME=−0.40).

4.2 Gridded product verification

The verification of the RAINLINK gridded product (1 h cu-
mulated on the 5km× 5km grid) with respect to the ERG5
product is first performed at the highest available resolution
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Figure 2. Accumulated rain depths over the entire period for the 26 CMLs selected for the single-link analysis. Each panel is named with the
corresponding rain gauge, whose accumulated rain depth is shown by the thick black line. Solid and dashed lines represent the two directions
(if both active) for every CML (distinguished by colour). Link length and link–rain gauge distance, in brackets, are also reported.
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Figure 3. Single-link analysis for Sant’Agata (from 11 May 19:00 UTC to 12 May 03:00 UTC) and Vergato (from 9 June 06:00 UTC to
10 June 12:00 UTC): (a) and (d) show the received signals (Pmax, dark blue; PCor

max, light blue; Pmin, dark green; PCor
min , light green; Pref,

cyan); (b) and (e) show maximum attenuation (red), minimum attenuation (orange), estimated rain rate (purple), and gauge measurements
(black); in (c) and (f) the cumulated rain gauge rain rate (black) is plotted with the link estimates. Grey vertical bands correspond to intervals
labelled as dry by the NLA classification; pink horizontal bands correspond to the threshold in decibels per kilometre of the wet-antenna
correction of 2.3 dB. The y-axis ranges are specific for each CML as received powers differ between different path lengths.

(grid box by grid box), since the two products intentionally
share the same interpolation grid (see Fig. 4). Secondly, the
comparison is carried out at the basin scale by matching spa-
tially averaged time series over areas of different size, in par-
allel with other operational precipitation products available
at Arpae-SIMC.

4.2.1 Highest-resolution matching

Figure 5 shows a density scatter plot for the whole dataset
over the entire period. CML estimates from RAINLINK in
Northern Italy over uneven ground have an overall underesti-
mating performance of −26 % on the accumulated rain over
the 2 months. The CV is 0.78 and R2 (the square of Pear-

son’s correlation coefficient CC) is 0.46, based on a sample
of 10 672 total wet hours. To make the comparison with past
works easier, we computed continuous indicators with the
filter set as reference > 0.1 mm and with no filtering at all.
Results with the first setting yield worse indicators, increas-
ing the ME to −0.41 and the CV to 0.95, with a second digit
increase for R2, around 0.5. The no-filter run shows values
of ME=−0.33 and R2

= 0.53, which are aligned with our
most filtered results, while CV= 4.6 is greatly affected by
very small rain rates. These results are in agreement with
similar studies (Overeem et al., 2013, 2016b) despite the dif-
ferences in the products involved; comparisons between our
results, with both filters, and the ones presented in the men-
tioned works are shown in Table 2.
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Figure 4. Analysis of three 1 d case studies (19 May, a–d; 11 May, e–h; 12 May, i–l): (a, e, and i) daily cumulated ERG5 precipitation; (b,
f, and j) daily cumulated RAINLINK precipitation; (c, g, and k) scatter plot between the two daily precipitation values; (d, h, and l) PDF of
hourly rain rates.

Table 2. Comparison with previous studies. Ref is the reference rain rate; Pr is the product.

Variable Unit ER Overeem Overeem
(present work) et al. (2013) et al. (2016b)

Total time window – 2 months 3 months 2.5 years
Timescale min 60 15 60
Grid box area km2 25 81 74
Reference – Interpolated rain gauges Gauge-adjusted radar Gauge-adjusted radar
Filter – Ref and Pr > 0.1 mm Ref > 0.1 mm none Ref or Pr > 0.1 mm Ref > 0.1 mm
ME – −0.26 −0.41 −0.33 0.02 −0.16
CV – 0.77 0.95 4.6 1.13 0.64
R2 – 0.47 0.50 0.53 0.49 0.49

The performance of the rain detection capabilities with re-
spect to the 0.1 mm threshold is evaluated by the set of cat-
egorical scores defined in Sect. 3.3. Quantitative continuous
indicators from now on are computed only for the grid boxes
where both CML and ERG5 reported more than 0.1 mm at
the same time. Categorical and continuous indicators are
evaluated for five areas, with a different extension (S) and
average link coverage (LC). They are reported in Table 3,
ranked according to the LC value: Parma Province (PP), total
area (TA), Parma Basin (PRB), Bologna Province (BP), and
Reno Basin (RRB). The total area and the two provinces do
not have any specific hydrological meaning but may resem-
ble larger river basins with heterogeneous terrain (see Fig. 1).
All normalized indicators are relative to the average refer-

ence (ERG5) rain rate. Numbers in bold (italics) are the best
(worst) value in the column.

We found ETS values ranging from 0.38 to 0.43, which
are comparable with the ones obtained from satellite ob-
servations (Puca et al., 2014; Feidas et al., 2018) in simi-
lar regions. For four out of five areas (excluding RRB for
now) the RAINLINK product underestimates the rain occur-
rence (MB< 1), with a relatively low value of POD (0.48
to 0.57). The FAR is also rather small, (0.28 to 0.32), re-
sulting in low ETS values (0.38 to 0.43). The mean error
confirms the underestimation of rain amount (ME between
−0.18 and−0.34); the CV ranges between 0.73 and 0.80 and
CC between 0.62 and 0.74. For comparison, Petracca et al.
(2018) analysed over Italy the instantaneous estimate of the
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Table 3. Statistical indicators for each considered area, considering the highest-resolution information (grid box scale), shown in ascending
order of LC. Continuous indicators are normalized and fractional. Values in bold (italics) are the best (worst) values in the column.

Area LC S FAR POD ETS MB ME MAE CV CC
(kmkm−2) (km2)

PP 0.17 3447 0.28 0.51 0.41 0.71 −0.34 0.55 0.80 0.62
TA 0.18 7149 0.30 0.54 0.42 0.77 −0.26 0.52 0.77 0.68
PRB 0.19 624 0.30 0.48 0.38 0.69 −0.31 0.50 0.76 0.67
BP 0.19 3702 0.32 0.57 0.43 0.83 −0.18 0.48 0.73 0.74
RRB 0.29 828 0.16 0.39 0.35 0.47 −0.31 0.45 0.62 0.80

Figure 5. Hourly validation of link rainfall maps against ERG5 rain-
fall maps at the grid box scale (highest resolution). Only the rainfall
depths in which both CMLs and ERG5 measured > 0.1 mm were
used. The black line is the y = x line.

Global Precipitation Measurement Dual-frequency Precipita-
tion Radar (GPM DPR), considered the most reliable and ac-
curate instrument to measure precipitation from space. Over
a footprint of a size comparable to the one used in this paper,
the best value of CC is 0.57, while the CV was between 1
and 2. Other validation studies of GPM DPR products in the
alpine region (Speirs et al., 2017) obtained a relatively good
POD (up to 0.78), FAR (below 0.08), and CC (up to 0.63)
over flat terrain, with a dramatic drop of the skill indicators
when areas with complex topography were considered.

The averages over the Reno Basin stand out for all the indi-
cators, either positively or negatively; therefore they need a
separate description. As highlighted in Table 3 in bold and
italics fonts, RRB has half the FAR of the other samples
(0.16), a CV almost 10 points lower (0.62), and a CC nearly
15 points better (0.8, which is unexpectedly high), with the
mean errors aligned to the other samples. The higher accu-
racy in the estimates is reached at the expense of POD, ETS,

and MB: around 50 % of the rainfall duration is lost in this
area. The main peculiarity of the RRB area is the high LC,
which is 50 % higher than in the rest of the regions.

The marked improvement of continuous indicators for
RRB suggests that the quantitative matching between the es-
timate and reference could be positively related to LC. Thus,
we further investigate its effect on scores by grouping each
grid box by LC quartiles, regardless of the actual geograph-
ical location, and we reported the results in Fig. 6. Five out
of six indicators improve as LC increases (FAR, MAE, ETS,
CC, and CV), among which the most striking is the FAR,
while POD remains mostly unchanged, allowing the ETS im-
provement.

4.2.2 Case studies

To assess the performance of RAINLINK with respect to the
structure of rainfall fields we focused the analysis on three 1 d
long events with different characteristics, for which RAIN-
LINK provided results of varying quality.

The best performance was achieved on 19 May (see
Fig. 4a–d), when an intense event was characterized by a
few convective episodes on the Apennines, in the Parma
Province. Precipitation peaks were around 90 mmd−1 (see
Fig. 4c); maximum and mean hourly rain rates were about
24 and 2.6 mmh−1, respectively (see Table 4). A large
area of widespread moderate precipitation over the Bologna
Province (Fig. 4a) is also present. RAINLINK is able to lo-
calize precipitation local maxima (Fig. 4b), even if the pre-
cipitation occurred in areas where link coverage is relatively
poor (see Fig. 1), also providing accuracy in the peaks’ inten-
sity. Estimated PDF closely matches the ERG5 curve, indi-
cating that all rain rates are represented in the estimates (see
Fig. 4d). However, underestimation is present at all ranges
and more markedly at the highest rain rates. Numerical indi-
cators confirm the goodness of the estimate, in terms of wet-
area detection (ETS= 0.59) and relative error (CV= 0.69),
while the fractional amount of rain lost by the estimate is
low (ME=−0.29).

The second case (11 May) shows a more patchy rainfall
field (Fig. 4e), which resulted from a series of storms that oc-
curred in the area during the day. Maximum and mean rates
are lower with respect to the first case (Fig. 4g and h), as well
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Figure 6. Distributions of four statistical indicators computed for every grid box and grouped in box plots by quartiles of the link coverage
LC (labelled by the quartiles’ centres). Dashed red lines are the optimal values for each score.

Table 4. Rainfall characteristics and performance indicators for the three 1 d case studies.

Date Mean R Max R Wet FAR POD ETS ME CV CC
(mm) (mm) fraction

19.05 2.60 24.0 0.37 0.10 0.77 0.59 −0.29 0.69 0.78
11.05 2.50 21.0 0.35 0.10 0.66 0.49 −0.40 0.76 0.82
12.05 1.80 14.0 0.16 0.20 0.58 0.46 −0.65 1.10 0.46

as the wet fraction of overall samples (see Table 4). Some lo-
cal peaks are correctly located (especially inside the Bologna
Province), as shown in Fig. 4f, and some others, in Parma
Province and particularly on the Apennines, are missing. In
this case the underestimation is marked for all rain rates, re-
sulting in a higher ME (−0.40) and lower POD (0.66).

A completely different scenario is represented by case
three (12 May), when ERG5 measured light to moderate pre-
cipitation (see Fig. 4i), with maxima on the Apennines and a
much lower fraction of wet samples. RAINLINK (Fig. 4j) is
not able to estimate the highest rain rates or to locate the area
with the highest intensity. Moreover, it finds a spurious peak
in the northern area of the Bologna Province, which is not
detected by ERG5. Here the fractional amount of rain loss is
−65 %, the POD is low, and an increase in FAR is also to be
remarked upon, indicating that underestimation again dom-
inates throughout the whole range of rain rates (see Fig. 4k
and l), but in the case of light rain, overestimation can also
take place.

4.2.3 Areal averages matching

In this section, the matching between estimate and reference
field is performed at basin (and province) scales, comparing
hourly rain amounts averaged over areas of different sizes.
The areas selected for this evaluation are the ones introduced
in the previous section: two of them are chosen because of
direct hydrological interest (RRB and PRB), while the other
three (BP, PP, and TA) are selected to assess the impact of the
increasing target area.

In Table 5 we present the categorical indicators calculated
around the 0.1 mmh−1 threshold and the continuous indi-
cators calculated on wet–wet occurrences only, for the five
mentioned areas listed this time in order of increasing area
size. In general, the best performance is found for the largest
areas (BP and TA), while the smallest ones (PRB and RRB)
show the worst values. The CML product underestimates
precipitation occurrence (MB between 0.41 and 0.70) and
amount (ME between −0.18 and −0.34) at all scales. Due
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Table 5. Values of the statistical indicators for the mean rain amounts over each considered area, shown in ascending order of surface area
S. Values in bold (italics) are the best (worst) values in the column.

Area S LC FAR POD ETS MB ME MAE CV CC
(km2) (kmkm−2)

PRB 624 0.19 0.18 0.51 0.43 0.63 −0.34 0.45 0.61 0.84
RRB 828 0.29 0.03 0.40 0.36 0.41 −0.34 0.40 0.52 0.93
PP 3447 0.17 0.14 0.57 0.48 0.66 −0.34 0.48 0.56 0.98
BP 3702 0.19 0.14 0.60 0.51 0.70 −0.18 0.33 0.49 0.91
TA 7149 0.18 0.10 0.64 0.55 0.70 −0.26 0.35 0.48 0.91

to the areal averaging, the CC is markedly higher than the
high-resolution values reported in Table 3. The characteristic
behaviour of RRB (lowest FAR and POD, highest CC) also
applies in this case.

The same areal-averaged statistical indicators have also
been computed for all the operational products available at
Arpae-SIMC for routine use and described in Sect. 2.2, re-
ported on an hourly scale and compared with the ERG5 prod-
uct. We show in Fig. 7 the values of the statistical indicators
as a function of the target area.

The rain gauge product, obtained by averaging the mea-
surements of the rain gauges in the area, performs similarly
to its interpolated version ERG5, as expected, and diverges
only for small areas, where the impact of a single sensor in
disagreement with neighbours is the highest.

The radar product shows, in this metric, almost the same
performance both with and without the gauge adjustment1.
Both have very good detection capabilities (POD is almost 1)
but high rates of false alarms (FAR around 0.5) and marked
quantitative discrepancies (MAE around 0.9; CV between
0.75 and 2).

The CML product outperforms both radar products in
terms of CC, CV, MAE, and FAR, while it lacks in detection
capability (CML POD between 0.4 and 0.6). Figure 8 shows
that the overestimating and underestimating behaviours of
radar and CML products, respectively, can be seen as com-
plementary. For radars, the spread is more relevant than for
CML, but it has to be remarked that the latter has a smaller
sample size due to the already-mentioned low POD issues. It
also has to be said that part of the radar’s high FAR and over-
estimation could represent real rain from small precipitat-
ing structures, often observed between meteorological spring
and summer in Italy (see Supplement), that are randomly
missed by the rain gauges (and therefore by the ERG5 ref-
erence product as well).

1This is to be expected since the radar adjustment acts only at the
rain gauges’ locations and does not guarantee the consistency of the
areal average of the entire rain field. Furthermore, the adjustment
mainly affects rainfall rates higher than our threshold of 0.1 mm
and has lower performance as spatial variance increases, e.g. in the
case of small-scale convection.

Table 6. Latency and spatial and temporal sampling of the consid-
ered precipitation products.

Product Reference time Latency Spatial
step (min) (min) resolution (km)

CML 15 20 5
Radar raw 5 15 1
Radar adj. 60 60 1
Rain gauges raw 60 60 –
ERG5 60 1440 5

In Table 6 the latency and sampling characteristics of the
four precipitation products we took for comparison are re-
ported, along with the CML product. CML operational spec-
ifications refer to an implementation of the RAINLINK algo-
rithm as part of a real-time service, tested in 2019 by MEEO
S.r.l. within the RainBO project (LIFE15 CCA/IT/000035).

5 Discussion

The underestimating behaviour that emerged in the single-
link-versus-gauge analysis (Sect. 4.1) seems to be largely im-
putable to a wrong wet–dry classification. Though we do not
have a dataset large enough to support general statements,
looking at Fig. 3d we could gain some insights about what
goes wrong in two of the most problematic CMLs of our pop-
ulation, the Vergato ones.

Most of the rain which is sensed by the gauge falls in inter-
vals that the NLA reports as “dry” (grey background). Pmin
in fact clearly experiences some decrease, which is coupled
to the missed rainfall, but Pmax does not. This behaviour of
Pmax is not an issue in itself, as the NLA classification re-
lies on Pmin only. It indicates, however, that there are power
fluctuations which happen faster than 15 min; otherwise Pmax
would have decreased too. Rapid fluctuations, in turn, sug-
gest irregular, rapidly varying, or scattered precipitation pat-
terns. These are actually elements that could affect the cor-
rect classification, since NLA relies on the spatial correlation
of the rainfall field in a range of 15 km (see Sect. 3.2). There-
fore, a Pmax signal which remains always near the baseline
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Figure 7. Scores of the areal-averaged rainfall amounts grouped per sensor and plotted against basin area. Linear fits are highlighted with
dashed lines. The CML scores are also indicated numerically in Table 5.

Figure 8. Comparison of hourly areal-averaged rainfall depths from the four products against the ERG5 reference. The total area (TA)
wet–wet hours are considered.
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could be a precursor of local NLA issues. Classification er-
rors are likely the best explanation for the low POD scores.

Given how we filtered the data (product > 0.1 and refer-
ence > 0.1), we need a source of error other than the mis-
classification to be responsible for the quantitative underes-
timation measured by the set of continuous indicators (see
Sect. 3.3 for reference). We saw that half of the signal in
the correctly classified interval (Fig. 3e, white background)
remains under the wet-antenna attenuation threshold (pink
horizontal band). We can presume that the antenna is actually
dry, so the Aa threshold in this case is reasonably too high
(as also noted by de Vos et al., 2019). However, a simple sen-
sitivity test, carried out to assess the impact of a decrement
in the Aa threshold on the single-link-versus-gauge scores,
did not lead to any substantial improvement, especially if the
new value was used to process the whole dataset. More in-
formation is provided in the Supplement.

Comparing the average performance of the interpolated
product (Sect. 4.2) above the different subareas, particularly
with respect to the RRB one, we can infer that higher mean
coverage (LC) leads to a more selective NLA classification,
which reduces the FAR and POD. When grouping the sin-
gle grid boxes based on their coverage (see Fig. 6), it seems
however that the sensitivity to LC could explain only the im-
provement in FAR and not the sharp decline in POD, suggest-
ing that LC was probably not the only variable at play in the
Reno Basin. These results integrate the findings of Overeem
et al. (2016b) that highlighted the positive impact of higher
LC on the CV and CC at a lower spatial resolution. Other
studies will be conducted in the future to gain more insights
into these topics.

Looking at a daily scale (Sect. 4.2.2), the interpolated out-
put of RAINLINK is undoubtedly able to resolve small-size,
short-lived events and even provide quantitatively accurate
estimates. In the case of widespread, moderate precipitation
the overall rain pattern is still effectively represented, but
some underestimation of the numerical values appears. When
in the presence of light and intermittent rainfall, instead, we
see the consequences of the issues emerged during the single-
link analysis. The rainfall maps in the panels i and j of Fig. 4
reveal that the discontinuity of the link distribution across
the borders of the considered areas could be another possible
source of discrepancies. We give more insight about this is-
sue examining the maps of the total rainfall accumulation in
the Supplement.

Even knowing that the limitations we have just discussed
are not negligible, we can still compare the interpolated CML
product’s performance with that of the traditional ones, to
see whether some overall sensing skill is present or not. We
used the areal-averaged hourly rainfall accumulations (see
Sect. 4.2.3) to compare products with different spatial res-
olutions. The comparison between radar and CML is partic-
ularly interesting as they appear to be rather complementary
data sources. The CML product in this set-up clearly lacks
the detection capability (POD) of the radar. The CML re-

trieval process however, being based on electromagnetic at-
tenuation instead of backscattering, does not share the radar’s
high sensitivity to the drop size distribution (Leijnse et al.,
2008). This could make the CML a more robust sensor, in
the sense that the same coefficients can be applied regardless
the different types of rain (convective, stratiform, mixed), and
the values of the continuous indicators seem to endorse that.

Alongside the considerations of the sensing skills, the time
which will elapse from the acquisition of primary data (ide-
ally, the occurrence of the event) to the actual delivery of the
product ready for use is also valuable to a forecaster in an
operational context. We referred to this as “latency”. It can
be seen from Table 6 that the combination of short latency
and high resolution provided by CMLs is unmatched by all
the other products except the raw radar, which however lacks
the required quantitative accuracy. It is left to the operators’
preference, based on products’ error structures, current me-
teorological conditions, and customer requirements, to make
use of the most suitable product or of a combination of them.
CMLs are valuably able to widen the range of available op-
tions.

6 Conclusions

An assessment of the rainfall retrieval capability of CML op-
portunistic sensors over complex terrain in Northern Italy
is conducted at different spatial and temporal scales for
2 months of data. We implemented the open-source RAIN-
LINK algorithm in a new area and context, where no regional
CML studies had previously been performed. We evaluated
its performance through a complete validation scheme which
utilizes operational precipitation products as reference, at the
same time also gauging the implementation efforts and iden-
tifying major strengths and weaknesses to facilitate the prof-
itable use of CML products.

First, 26 CMLs are compared with the closest rain gauges
at a 15 min scale. Overestimation and underestimation of rain
amount are both present, though the latter appears dominant.
A marked variability among different links does not prevent
the achievement of a generally acceptable skill (CC from
0.50 to 0.88). The wet–dry classification approach (NLA,
based on the spatial correlation of the rain) and the value of
the wet-antenna correction (Aa) may produce some misses
in both rainfall occurrence and amount, particularly in the
case of small-scale or intermittent episodes. Finally, CMLs
located at higher elevations generally show worse perfor-
mance.

Interpolated products obtained from 308 links not only
confirm that a non-negligible quantity of rain is missed (nor-
malized mean error is −0.26; overall CC is 0.68; and overall
CV is 0.78) but also show that the rain retrieval capability is
suitable for operational application, especially if the product
is integrated over large areas (CC rises to 0.92). Higher link
densities increase the quality of the CML estimates at both
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grid box and basin scales, mostly in terms of a decreased
FAR.

Performance at the daily scale shows enhanced skill in
the case of heavy precipitation, even in the case of local-
ized episodes. Problems arise instead during light to mod-
erate rainfall, when the limitations that emerged during the
single-link analysis become evident. Negative impact on the
overall results comes from areas with poor sensor coverage,
especially near the borders of the studied areas, but it should
be considered that reference rainfall fields can also be af-
fected by shortcomings of the same nature.

Furthermore, when compared to other products currently
available for real-time operational exploitation, the RAIN-
LINK output shows similar or better abilities, especially if
a low FAR is valued more than a high POD and if latency
is also taken into account. The integration of a CML-based
product into an operational weather service appears worth-
while, even in a plug-in implementation that omits specific
local calibration.

Code and data availability. CML data were provided by Voda-
fone Italia S.p.A.. via direct purchase from MEEO S.r.l.
and are not publicly available. Gauge data from Emilia-
Romagna are freely available at https://simc.arpae.it/dext3r/
(SI@SIMC@ARPAE, 2020). Radar reflectivities in near real
time are freely available at https://dati.arpae.it/dataset/radar-meteo
(SIMC, 2020), while derived rain products and ERG5 analy-
ses are available upon request at Arpae-SIMC (https://dati.arpae.
it/dataset/erg5-interpolazione-su-griglia-di-dati-meteo, Osservato-
rio Clima, 2020). The core algorithm is available open source
at https://github.com/giacom0rovers1/RAINLINK; it was forked
from Aart Overeem’s original RAINLINK (Overeem et al, 2016a;
https://doi.org/10.5281/zenodo.4153473, Roversi, 2020) on 26 Au-
gust 2019 (version 1.14).
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