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Abstract. During most volcanic eruptions and many peri-
ods of volcanic unrest, detectable quantities of sulfur diox-
ide (SO2) are injected into the atmosphere at a wide range
of altitudes, from ground level to the lower stratosphere. Be-
cause the fine ash fraction of a volcanic plume is, at times,
colocated with SO2 emissions, global tracking of volcanic
SO2 is useful in tracking the hazard long after ash detection
becomes dominated by noise. Typically, retrievals of SO2
vertical column density (VCD) have relied heavily on hy-
perspectral ultraviolet measurements. More recently, infrared
sounders have provided additional VCD measurements and
estimates of the SO2 layer altitude, adding significant value
to real-time monitoring of volcanic emissions and climato-
logical analyses. These methods can provide fast and accu-
rate physics-based retrievals of VCD and altitude without re-
gard to solar irradiance, meaning that they are effective day
and night and can observe high-latitude SO2 even in the win-
ter.

In this study, we detail a probabilistic enhancement of an
infrared SO2 retrieval method, based on a modified trace
gas retrieval, to estimate SO2 VCD and altitude probabilis-
tically using the Cross-track Infrared Sounder (CrIS) on the
Joint Polar Satellite System (JPSS) series of satellites. The
methodology requires the characterization of real SO2-free
spectra aggregated seasonally and spatially. The probabilis-
tic approach replaces altitude and VCD estimates with prob-
ability density functions for the layer height and the partial
VCD at multiple heights, fully quantifying the retrieval un-
certainty and allowing the estimation of SO2 partitioning by
layer. This framework adds significant value over basic VCD

and altitude retrieval because it can be used to assign proba-
bilities of SO2 occurrence to different atmospheric intervals.

We highlight analyses of several recent significant erup-
tions, including the 22 June 2019 eruption of Raikoke vol-
cano, in the Kuril Islands; the mid-December 2016 erup-
tion of Bogoslof volcano, in the Aleutian Islands; and the
26 June 2018 eruption of Sierra Negra volcano, in the Gala-
pagos Islands. This retrieval method is currently being im-
plemented in the VOLcanic Cloud Analysis Toolkit (VOL-
CAT), where it will be used to generate additional cloud ob-
ject properties for real-time detection, probabilistic charac-
terization, and tracking of volcanic clouds in support of avi-
ation safety.

1 Introduction

During most volcanic eruptions and many periods of vol-
canic unrest, detectable quantities of sulfur dioxide (SO2)
are injected into the atmosphere at a wide range of altitudes,
from ground level to the lower stratosphere. Often early in
eruptions the fine ash fraction of a volcanic plume is colo-
cated with SO2 emissions, and thus ash tracking can be per-
formed by proxy; however, later ash and SO2 tend to evolve
along different trajectories due to subtly differences in alti-
tude and removal processes (Karagulian et al., 2010; Corra-
dini et al., 2010; Sears et al., 2013; Moxnes et al., 2014).
Early colocation of SO2 and ash is highly significant for in-
forming forward trajectory models (e.g., HYSPLIT) of vol-
canic clouds as is performed in response to Volcanic Ash Ad-
visories (VAAs) reported by the global network of Volcanic
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Ash Advisory Centers (VAACs). Because fine ash and SO2
eventually diverge along different trajectories, due in large
part to wind shear, layer height estimates are critical for ash
and SO2 cloud estimates. Although volcanic ash presents a
demonstrated threat to aviation (e.g., ICAO, 2012; Casade-
vall, 1994; Prata and Rose, 2015; Guffanti et al., 2010), SO2
also presents an aviation safety concern, mainly as a human
health hazard and through damage by sulfuric acid, as well
as via impacts on global climate and air quality (Chin and
Jacob, 1996; Prata, 2009; Carn et al., 2009; Robock, 2000).

Globally, measurements of SO2 vertical column den-
sity (VCD, here in Dobson Units, DU, 1 DU= 2.69×
1016 molec. cm−2) have previously relied heavily on low-
earth-orbiting hyperspectral ultraviolet (UV) instruments in-
cluding the Ozone Monitoring Instrument (OMI), Ozone
Mapping and Profiler Suite (OMPS), and Global Ozone
Monitoring Experiment-2 (GOME-2) (e.g., Krotkov et al.,
2010; Carn et al., 2017; Li et al., 2017; Theys et al., 2013).
More recently, efforts to improve UV methods have focused
on high-cadence UV measurements made from the Deep
Space Climate Observatory – Earth Polychromatic Imaging
Camera (DSCOVR-EPIC) at the Earth–Sun (L1) Lagrange
point (Carn et al., 2018), as well as from high spatial res-
olution SO2 VCD and limited layer height measurements
from the Tropospheric Monitoring Instrument (TROPOMI)
(Theys et al., 2019; Hedelt et al., 2019). In the last decade,
infrared sounders such as the Infrared Atmospheric Sounding
Interferometer (IASI) have provided additional SO2 VCD
measurements and estimates of the layer altitude, provid-
ing significant added value to real-time monitoring of vol-
canic emissions and climatological analyses (Walker et al.,
2011, 2012; Carboni et al., 2012, 2016; Clarisse et al., 2014;
Bauduin et al., 2016). These methods can provide fast and
accurate physics-based retrievals of VCD and altitude. Fur-
thermore, because these techniques principally rely on ther-
mal contrast in the atmosphere and not solar irradiance (as
in UV measurements), they are effective day and night and
can observe high-latitude SO2 in the winter months when UV
techniques are unavailable. This twice-daily global coverage
makes IR-based SO2 retrieval a highly useful tool for op-
erational support of aviation safety and for creating a truly
continuous global analysis of SO2 from volcanic eruptions.

In this study, we detail a probabilistic enhancement of
the infrared SO2 retrieval method of Clarisse et al. (2014),
based on a modified trace gas retrieval (Walker et al., 2011)
to estimate SO2 VCD and altitude probabilistically utilizing
the Cross-track Infrared Sounder (CrIS) currently aboard the
Suomi-NPP (SNPP) and NOAA-20 satellites as part of the
Joint Polar Satellite System (JPSS), having a local time as-
cending node (LTAN) of 13:30 with NOAA-20 operating ap-
proximately 50 min ahead of SNPP. Similar to IASI, CrIS
is a Fourier transform Michelson interferometer covering
three regions of the infrared spectrum: long-wave infrared
(LWIR) (650–1095 cm−1), mid-wave IR (MWIR) (1210–
1750 cm−1), and short-wave IR (SWIR) (2155–2550 cm−1)

(Han et al., 2013). Of the two principal SO2 absorption
features in the infrared (ν1: 1000–1200 cm−1; ν3: 1300–
1410 cm−1), only the ν3 band is covered by CrIS (MWIR).
As highlighted by Carboni et al. (2012) and Clarisse et al.
(2014), ν3 is the stronger of the two absorption bands; how-
ever, it does contain significant interference from water va-
por, limiting this retrieval’s ability to characterize SO2 fea-
tures at very low altitudes. However, it is exactly the variable
amounts of interference with water vapor at different heights
that gives this technique its ability to retrieve SO2 altitude
information (Clarisse et al., 2014). As these studies pointed
out, although clouds pose similar absorption features to wa-
ter vapor, it is only in a broadband sense, allowing the finer
absorption lines of SO2 to be distinguished even in scenes
with overlying meteorological clouds, as long as the clouds
are not nearly opaque. Although the interference from water
vapor is a significant theoretical limitation of this approach,
in practice we have been able to extract some information
on low-altitude SO2 clouds even in the tropics which is de-
tailed later. Despite these limitations, the ν3 band absorption
lines are only minimally influenced by ash and dust, mak-
ing this height retrieval method especially useful early in the
evolution of volcanic eruption clouds where there is typically
colocation between SO2 and ash clouds.

Both CrIS instruments are currently operating in full spec-
tral resolution mode (FSR), providing MWIR spectra at
0.625 cm−1 spectral resolution since December 2015 for
SNPP CrIS (excepting a major outage 26 March–1 August
2019) and February 2018 for NOAA-20 CrIS. CrIS scans
consist of 30 fields of regard (FOR) in 3.3◦ steps between
±48.3◦ scan angle, each of which contains 9 circular fields
of view (FOV) arranged in a square (3× 3) array that ro-
tates and stretches as the mirror moves away from nadir to-
wards edge of scan (Han et al., 2013). CrIS granules are col-
lected into 6 min granules of 45 scans, resulting in 12 150
MWIR FSR spectra collected every 6 min. The CrIS swath
width is 2200 km; however, because of the rotating FORs,
some ground points are measured by multiple FOVs even
within the same scan, and some gaps exist due to the square
FOR layout of circular FOVs and the presence of short
gaps between scans. The FOV at the center of each FOR
(number 5) is a 14 km diameter circle at nadir, extending
out to an 43.6 km× 23.2 km (major and minor axes) ellipse
for the first and last FORs on the edge of the swath (Han
et al., 2013; Wang et al., 2013). Although CrIS FOVs are
slightly larger than IASI FOVs (14 km versus 12 km at nadir),
there are many more of them per scan since CrIS FOR are
3× 3 arrays, whereas IASI FOR are 2× 2 with larger gaps
between FOV, FORs, and scan lines but the same swath
width (e.g., Sun et al., 2018). Consequently, CrIS makes
many more measurements per area than IASI does, result-
ing in greater overall resolution than IASI. Lastly, all of the
CrIS MWIR channels used in the present study are, in gen-
eral, very low noise (noise equivalent differential radiance,
NEdN< 0.05 mW m−2 sr−1 cm) with the exception of SNPP

Atmos. Meas. Tech., 13, 5891–5921, 2020 https://doi.org/10.5194/amt-13-5891-2020



D. M. Hyman and M. J. Pavolonis: Probabilistic retrieval of volcanic SO2 5893

CrIS FOV 7, which is above specification. Later in this study
we will show some retrievals from this FOV; however, these
are considered to be of very low quality and are not con-
sidered reliable. They are shown here only to elucidate how
strong instrument noise is propagated to the retrieval.

The NOAA Unique CrIS/ATMS Processing System (NU-
CAPS) already includes a retrieval of SO2 from CrIS data
(Gambacorta, 2013); however, it is based on a heritage al-
gorithm designed to estimate many trace gases from cloud-
cleared radiances in one retrieval, whereas we focus more
specifically on the problem of retrieving SO2 in any back-
ground atmosphere from all available CrIS measurements.
The methodology requires the characterization of the back-
ground mid-wave infrared spectrum of the SO2-free atmo-
sphere, which is done by collecting the statistics of more
than 360 million SO2-free CrIS spectra aggregated season-
ally and spatially. The probabilistic approach replaces alti-
tude and VCD estimates with a nonparametric probability
density function (PDF) for the layer height and estimates
(with uncertainty) of the partial VCD at multiple heights,
fully quantifying the retrieval uncertainty and allowing the
estimation of SO2 partitioning by layer (Fig. 1). This frame-
work adds significant value because it can be used to as-
sign probabilities of SO2 occurrence in different intervals of
the atmosphere, which could prove very useful for aviation
safety in the future when changing aviation hazard priorities
will require such information (ICAO, 2019).

In this study we analyze several recent significant erup-
tions, including the 22 June 2019 eruption of Raikoke vol-
cano, in the Kuril Islands; the mid-December 2016 erup-
tion of Bogoslof volcano, in the Aleutian Islands; and the
26 June 2018 eruption of Sierra Negra volcano, in the Gala-
pagos Islands. This retrieval method is currently being imple-
mented in the VOLcanic Cloud Analysis Toolkit (VOLCAT,
https://volcano.ssec.wisc.edu/, last access: 26 October 2020;
Pavolonis et al., 2013, 2015a,b, 2018), where it will be used
to generate additional cloud object properties for real-time
detection, probabilistic characterization, and tracking of vol-
canic clouds in support of aviation safety.

2 Probabilistic SO2 layer retrieval theory

2.1 Classical methods for height retrieval

As a preliminary we discuss several methods which we de-
scribe here as “classical”. In fact these methods are relatively
recent; however, they do not make full use of the probabil-
ity spaces that we will exploit here. Previous analyses of the
height and distribution of volcanic SO2 plumes using data
from IASI by Carboni et al. (2012, 2016) and Clarisse et al.
(2014) utilized trace gas methods modified from the method
originally outlined by Walker et al. (2011). The analysis of
Carboni et al. (2012) imposed an a priori Gaussian vertical
distribution over pressure coordinates for the SO2 concentra-

tion, retrieving the total SO2 VCD, the mean pressure, and
the standard deviation pressure (spread, only if VCD suffi-
ciently strong). By contrast, Clarisse et al. (2014) developed
a system in which the SO2 is assumed to exist in a narrow
box profile layer and an iterative retrieval is performed for the
VCD concentration conditional on the retrieved SO2 layer al-
titude. The principal differences between these methods and
the method detailed here are summarized in Table 1. Em-
ploying the notation of Rodgers (2000), this retrieval relates
a set of parameters governing the concentration of a trace gas
(the true state, x ∈ RM , SO2 in this case) to a set of measure-
ments y ∈ RN (typically brightness temperature spectra) by
a forward radiative transfer model F : RM → RN . In the fol-
lowing exposition, we focus on and enhance the method of
Clarisse et al. (2014).

The infrared trace gas methods of Walker et al. (2011) and
Clarisse et al. (2014) rely on the ability to write the data and
true state each as a sum of their respective climatological
background averages (ybg,xbg) and their anomalies (̃y, x̃).
Linearizing around the climatological average gives

ybg+ ỹ = F
(
xbg;u

)
+Kx̃+ εtot, (1)

where u is a collection of all auxiliary parameters necessary
to the forward model including atmospheric pressure, tem-
perature, and water vapor profiles, as well as the state of the
surface and instrument. K ∈ RN×M is the Jacobian of F lin-
earized around xbg, and εtot is the total error associated with
the measurement, linearization, and other surface and atmo-
spheric properties (including clouds) that influence the mea-
sured radiances. Because it is inferred that ybg = F (xbg;u),
the equation for the error is reduced simply to a relationship
between the state and measurement anomalies:

εtot = ỹ−Kx̃. (2)

From this formula, the retrieval of x̃ can proceed either by
maximum likelihood estimation, iterative methods such as
Levenberg–Marquardt and gradient descent algorithms, or
other methods.

For a 1 km thick box profile layer, the concentration of
anomalous SO2 can be represented by two parameters: the
total VCD of the gas (x) and the height of the layer cen-
ter (h). Using such a profile, the model spectrum is then a
function of the VCD and the layer height. In Clarisse et al.
(2014) and this paper, the Jacobian is represented a function
of height but only contains a VCD perturbation. Because this
Jacobian only measures the sensitivity of the forward model
to the presence of SO2 at each height independently, it is best
viewed as a set of vectors in the same space as y rather than
as a matrix and thus we write it hereafter as K(h) ∈ RN . Ad-
ditionally, the model Jacobian for the trace gas retrieval is
calculated at the background state (zero for SO2), and the Ja-
cobian is approximated as a finite difference at each altitude:

K(h)≈
F (ε,h;u)−F (0,h;u)

ε
, (3)

https://doi.org/10.5194/amt-13-5891-2020 Atmos. Meas. Tech., 13, 5891–5921, 2020

https://volcano.ssec.wisc.edu/


5894 D. M. Hyman and M. J. Pavolonis: Probabilistic retrieval of volcanic SO2

Figure 1. Flowchart showing the probabilistic framework for Monte Carlo height and VCD, yielding a PDF for the height, which is not
generally Gaussian and may be heavily skewed, and a Gaussian distribution of conditional VCD (X̂|H = h). The height retrieval of Clarisse
et al. (2014) is shown schematically as red lines, giving a single height estimate, which is not the mean height in general (approximately
the dotted black line in the height PDF). As this figure is only a schematic, the pictorial relationship between these height estimates in not
universal.

Table 1. Summary of Recent Infrared SO2 Height Estimation Methods.

Method Carboni et al. (2012) Clarisse et al. (2014) This study

Instrument IASI IASI CrIS

SO2 band ν1+ ν3 (1000–1200 cm−1
+

1300–1410 cm−1)
ν3 (1300–1410 cm−1) ν3 (1300–1410 cm−1)

Retrieved quantities SO2 center height (pressure),
total VCD, spread (pressure)

SO2 layer height, total VCD SO2 height PDF, partial VCD
at each height

SO2 profile type Gaussian (pressure)
(≈ lognormal, altitude)

Box (altitude) Box (altitude)

SO2 profile spread Retrieved (100 mbar default) 1 km 1 km

Height retrieval Joint with VCD Independent of VCD Independent of VCD

Style Levenberg–Marquardt Z-score maximizing Z-score maximizing

VCD retrieval Joint with height Total (conditional) VCD
given retrieved height

Partial VCD weighted by
height PDF

Style Levenberg–Marquardt Levenberg–Marquardt Modified linear

Retrieval uncertainty Posterior covariance matrix
(Multivariate Normal)

Height, VCD variances
(independent bivariate
normal)

Height PDF (nonparametric),
partial VCD variances
(normal)

Probabilities retrieved No No Yes

where the perturbation (ε) is taken as 5 DU.
In the present study, we pre-compute a limited database

of Jacobians for 1 km thick SO2 layers centered at 28 al-
titudes between 0 and 32 km (Fig. 2b; Fig. 1 of Clarisse
et al., 2014). We use standard profiles of pressure, temper-
ature, and water vapor for a tropical atmosphere, summer
and winter midlatitude atmospheres, and summer and win-
ter subarctic atmospheres, resulting in a total of 140 Jaco-

bians to be used in the retrieval (Clough et al., 2005). As
in Pavolonis (2010), all radiative transfer model simulations
used here were performed using the LBLDIS tool (Turner,
2005), which utilizes the Line-by-Line Radiative Transfer
Model (LBLRTM; Clough and Iacono, 1995; Clough et al.,
2005) to compute gaseous absorption and the Discrete Or-
dinate Radiative Transfer (DISORT) model to complete the
radiative transfer calculation (including multiple scattering).
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Figure 2. (a) Channel-wise brightness temperature difference response to increasing VCD. All channels here are used in the original retrieval.
Red channels are used in the specialized retrieval due to their mostly linear response across the full range of reasonable VCD. (b) Height-
dependent Jacobians (normalized) showing specialized channel selection in panel (a).

Following Clarisse et al. (2014), a height-dependent Jaco-
bian can be used to calculate a statistical z score, measuring
the relative confidence in the presence of SO2 at each height:

z
(
h;y,ybg

)
=

[
KT(h)S−1K(h)

]− 1
2
KT(h)S−1 (y− ybg

)
, (4)

where the mean climatological background spectrum ybg and
error covariance matrix S are built from spectral residuals
from a database of measurements with low or no detectable
SO2 present. The construction of this database of SO2-free
spectra is detailed in Sect. 2.5. Note that because K(h) is a
vector, the factor KT(h)S−1K(h) is a scalar at each height h.
Here, z(h;y,ybg) is the statistical z score (number of stan-
dard deviations from the mean) of finding the SO2 anomaly
at altitude h given the data y and the SO2-free background
spectrum ybg. Using the z score, Clarisse et al. (2014) esti-
mated the layer height (which we refer to as hC) as that which
maximizes the z-score function:

hC := argmax
h

z
(
h;y,ybg

)
. (5)

This method was used in that study to produce a consistent
and reasonably accurate set of cloud top height estimates for
the 2011 eruption of Nabro Volcano, Eritrea. This method is
currently the principal operational SO2 layer height method
for IASI used by the Support to Aviation Control Service
(SACS, https://sacs.aeronomie.be/, last access: 26 October
2020) of the Royal Belgian Institute for Space Aeronomy
(BIRA-IASB), supporting several Volcanic Ash Advisory
Centers (VAACs) in near-real time (Brenot et al., 2014).

For simplicity, throughout the remainder of this work we
refer to this type of height retrieval with a function notation:

hC = g
(
y,ybg

)
:= argmax

h

z
(
h;y,ybg

)
. (6)

2.2 Probabilistic enhancement

Throughout, we make a distinction between our method
being probabilistic and other methods being deterministic;
however, we note here that the classical methods are all based
on the optimal estimation (a Bayesian method) of Rodgers
(2000) and therefore are probabilistic in the sense that the re-
trieved quantities are the (Gaussian) mean and covariance of
the state estimate. We make this distinction to highlight the
fact that in the present study we focus on a much more de-
tailed uncertainty propagation, specifically, propagation un-
certainty about the SO2-free background atmosphere to the
height retrieval, allowing some departure from the Gaus-
sian assumption underlying previous methods. Although the
Gaussian assumption is workable for many types of retrieval,
it is unsuitable for the Clarisse et al. (2014) height retrieval
in particular due to the role played by the argmax operation.
To see this directly, we must “probabilize” the Clarisse et al.
(2014) height retrieval as follows. In this process, we use
a notation common in probability theory in which random
variables are represented as capitalized versions of their de-
terministic realizations. In what follows, the only exception
to this notation will be that the forward model, Jacobian, and
covariance matrix are not random variables.

Instead of calculating the mean and covariance of the
climatological background as in a traditional trace gas re-
trieval, we treat the background (SO2-free) spectrum as a
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random vector Y bg (rather than the realization ybg, which
is its mean), where the vector elements (each of the sampled
wavenumbers or channels) are random variables. Although
the total uncertainty in the measured SO2-free background
spectrum contains a mix of aleatoric (stochastic in fact) and
epistemic (knowledge-deficit) uncertainties, the epistemic
uncertainty due to a lack of knowledge about the true SO2-
free background for a given spectrum is considerably larger
than aleatoric sources such as instrument noise and scat-
tering. Consequently, we generate a probability space for
the SO2-free spectrum Y bg, the uncertainty for which is de-
rived principally from our ignorance of the true atmospheric
state if SO2 were not present. The brightness temperatures
for each channel (element of Y bg) is characterized by its
own marginal probability distribution. In reality, these dis-
tributions may belong to a family of parameterized distri-
butions; however, in this study they are nonparametric and
only characterized by a marginal distribution (histogram) on
each channel. Additionally, the elements of Y bg are corre-
lated, which is given by the covariance structure:

S= E
[(

Y bg−E
[
Y bg

])(
Y −E

[
Y bg

])T]
, (7)

where the expectation is an average over all SO2-free spectra
in the database (detailed in Sect. 2.5).

In this framework, the z-score function is a conditional
random variable given the layer height h:

Z
(
h;y,Y bg

)
= Z|H = h

=

[
KT(h)S−1K(h)

]− 1
2
KT(h)S−1 (y−Y bg

)
, (8)

and the height is therefore a random variableH = g(y,Y bg).
Implicitly, Clarisse et al. (2014) assumes that Y bg is a mul-

tivariate normal random vector with mean ybg = E[Y bg] and
covariance S, meaning that Z is a standard normal random
variable. This fact about the z score is expected to hold in
the present case with the full probabilistic characterization
of the generally non-Gaussian Y bg because the z score is a
weighted sum over all of the channels in Y bg, which is ex-
pected to converge to a Gaussian for a large collection of
channels. Because the function g uses the argmax operation,
which in not exactly a proper function (and also not linear),
we can write that

E
[
g
(
y,Y bg

)]
6= g

(
y,E

[
Y bg

])
. (9)

That is, the random variable resulting from a nonlinear trans-
formation of a Gaussian random variable is not itself Gaus-
sian and the mean value of that new variable is not equal to
the value obtained by transforming the mean of the Gaus-
sian (thus, E[H ] 6= hC; Fig. 1 schematically), a standard re-
sult in elementary probability theory texts (e.g., DeGroot
and Schervish, 2012). Similarly, hC is not generally the
maximum likelihood height either (hC 6=mode[H ]). Conse-
quently, without a clear understanding of what hC is mea-

suring in terms of the statistics of H , it is difficult to con-
textualize the value hC. The principal enhancement over the
classical method comes from setting the height retrieval in
a probabilistic framework, enabling precise propagation of
uncertainty in the background state to uncertainty in the re-
trieved height.

This study aims to estimate the probability distribution of
H and show the importance of its PDF in making predic-
tions about the cloud. We enhance the method of Clarisse
et al. (2014) by retrieving a probabilistic SO2 layer; i.e., we
retrieve the SO2 layer height as a PDF for the height (Fig. 1).
As described, the probabilistic nature of the retrieval prod-
uct is derived from propagating our uncertainty about the
SO2-free background spectrum through the Clarisse et al.
(2014) height retrieval method (Fig. 1). Here, we use a set
of 10 000 possible SO2-free background spectra computed
by Monte Carlo (MC) sampling according to the collection
of marginal distributions of Y bg and its covariance matrix
S, which are first computed from a database of SO2-free
spectra (detailed in Sect. 2.5). The process for sampling this
generally non-Gaussian correlated random vector is detailed
in Appendix A. In this study each sample is denoted as
ysbg ∈�Y bg , where �Y bg is the sample space of Y bg.

Although we could directly estimate the height PDF from
sampling the many different backgrounds, we treat our re-
trieval as an update on the Clarisse et al. (2014) height es-
timate and cast this process in a Bayesian framework. In
this framework, we treat the estimate and uncertainty from
the (Clarisse et al., 2014) method as a prior distribution for
the height and construct an approximate likelihood function
from the data not accounted for directly in that method (the
distribution of the many possible spectral residuals). The
height PDF which is sought is the posterior distribution.

We impose a Gaussian prior with mean and variance given
by the Clarisse et al. (2014) method. To estimate the mean
and variance of the Gaussian, we first retrieve the Clarisse
et al. (2014) height hC and then generate many height esti-
mates around hC using a model spectral anomaly with SO2
assumed at hC and MC sampling of the zero-mean noise con-
tained in the collection of possible backgrounds. Specifically,
we estimate the height due to noisy model spectral anomaly
samples

ỹs = [F (ε,hC,u)−F (0,hC,u)]−
[
ysbg− ybg

]
. (10)

This anomaly represents a modeled spectral anomaly with
zero-mean spectral noise added and allows for the possibility
of a bias induced by the difference between the mean cli-
matological background and the model background which
does not include cloud layers. The Gaussian prior mean and
variance are then taken to be the mean and variance of these
noisy modeled samples. Of note, this Gaussian prior mean is
very close to the value hC, but is preferred since its use does
not restrict the Gaussian to be centered only at height val-
ues for which Jacobians were computed. Using these values
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for mean and variance is very similar to the estimate with
uncertainty shown in Fig. 2 of Clarisse et al. (2014). This
mean and variance parameterizes the Gaussian prior distri-
bution f prior

H (h).
The likelihood function is constructed directly by retriev-

ing the height due to the real spectrum y and the set of sam-
pled background spectra. Each height sample is generated as
follows:

hs = g
(
y,ysbg

)
, (11)

i.e., we construct the random variable from elements of its
sample space hs ∈�H . The likelihood function measures the
distribution of the possible real spectral residuals (y−Y bg)
given an SO2 layer at height h. As there is no analytic proba-
bility model to describe this, we estimate that the likelihood
is proportional to the distribution of possible heights as com-
puted by kernel density estimation (KDE, e.g., Silverman,
1986) on this set of height samples:

L
(
h;y−Y bg

)
:= f̂

(
y−Y bg|h

)
∝ KDE

(
{hs}

)
. (12)

An alternative approach would be to replace the KDE dis-
tribution with a simple histogram of the samples, although
we use KDE because we seek a distribution which is at least
piecewise-continuous and not piecewise-constant. This gives
an estimate of the posterior height PDF:

fH (h)∝ L
(
h;y−Y bg

)
f

prior
H (h), (13)

where the proportionality is eliminated by normalizing the
posterior PDF such that the total probability is unity.

Although slower than retrieving the layer height (hC) due
to a mean spectrum alone, this distribution provides signifi-
cantly more information, including the full PDF of H . This
PDF may be used to calculate the modal, mean, and me-
dian values of the retrieved height or probabilities of finding
the plume in a given altitude interval. Additionally, this PDF
is essential for calculating the VCD correctly according to
probability theory as detailed in the following section.

2.3 Probabilistic vertical column density

Although this method is used primarily for detection (us-
ing z scores) and height estimation, we estimate VCD as a
side-product, which we treat here as a random variable X̂.
Because we will use a linearized retrieval, the VCD values
presented here will not be as accurate as those produced by
an iterative technique. However, the details of our process
below produce VCD values that are reasonably accurate for
all but very strong emissions, as is demonstrated later in this
work. Specifically, the way in which the height PDF is in-
corporated (detailed below) mitigates some underestimation
error that would otherwise occur in a linearized approach for
even dilute SO2 clouds. As with the height estimation, the

uncertainty propagated to the VCD primarily represents un-
certainty about the SO2-free background, which is of great
importance in these linearized trace gas methods.

Because the estimated VCD depends strongly on the layer
height, we refer to an estimate of total VCD where the layer
is given as a specified height as a “conditional VCD”. In this
framework, the VCD estimates of Walker et al. (2011, 2012)
are conditional VCDs and are represented as a conditional
random variable:

X̂|H = h

= cosθ
[
KT(h)S−1K(h)

]−1
KT(h)S−1 (y−Y bg

)
, (14)

where an air mass factor equal to the cosine of the satel-
lite zenith angle (cosθ ) has been applied. This formula is in
some sense a probabilistic enhancement of an optimal uncon-
strained least-squares estimate. Similar to the z scores, this
function is normally distributed at every height with mean
E[X̂|H = h] and variance Var[X̂|H = h]. These are calcu-
lated as the sample mean and variance of the conditional
VCD samples due to the many possible background spec-
tra used to estimate the height PDF. The conditional VCD
is a random function of height which generally reflects the
principles of the Beer–Lambert law for any given realization;
i.e., a smaller VCD is retrieved for a given spectral anomaly
if the layer is assumed to be higher in the atmosphere. If the
height of the SO2 layer were known exactly, the VCD could
be estimated by evaluating the conditional VCD function at
that exact height. This is exactly what is done in the VCD
retrieval of Clarisse et al. (2014), except by using an iterative
conditional VCD calculation. However, in this study, since
the height of the layer is known only probabilistically, i.e.,
as measured by the PDF fH (h), additional computation is
required to determine the VCD.

Although we do not know the true vertical profile of SO2
concentration, the retrieval assumes a thin layer representa-
tion of the SO2. The total VCD (X̂, a random variable) is ob-
tained by integrating the box profile between the ground and
the top of the atmosphere. Similarly, a partial VCD, denoted
here as X̂(h), can be calculated by integrating the box profile
between the ground and the height h and is zero for h < H
and rises linearly within the layer to X̂ for h≥H . Because
the assumed concentration profile scales linearly with the to-
tal VCD (X̂) and the conditional VCD is normally distributed
at each height, the partial VCD is normally distributed as
well, thus requiring only two parameters: the mean and vari-
ance, which can be found using the conditional VCD func-
tion calculated above.

Here, we give approximation formulae for the mean and
variance partial VCD. The derivation of these formulae is
detailed in Appendix B. The mean partial VCD below height
h is found by the law of total expectation:
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µ
X̂
(h) := E

[
X̂(h)

]
=

h∫
0

fH (η)E
[
X̂|H = η

]
dη, (15)

where the expectation of the conditional VCD is taken as
the mean of the samples. This formula represents a weighted
average of mean conditional VCD values where the height
probability density assigns the weights. Because the condi-
tional VCD is a function of height, this formula mixes the
VCD estimates from different assumed heights.

The variance can also be calculated from the statistics of
the conditional VCD expectation:

σ 2
X̂
(h) := Var

[
X̂(h)

]
=

h∫
0

fH (η)

[
Var

[
X̂|H = η

]

+

(
E
[
X̂|H = η

])2
]

dη−µ2
X̂
(h), (16)

where the conditional mean and conditional variance were
previously estimated from the MC samples.

The covariance between the partial VCDs for two altitudes
(a and b) is given in Appendix B. Of particular interest is that
these formulae may be used to calculate the expectation and
variance values of the partial VCD between two altitudes:

E
[
X̂(b)− X̂(a)

]
= µ

X̂
(b)−µ

X̂
(a), (17a)

Var
[
X̂(b)− X̂(a)

]
= σ 2

X̂
(b)

+µ
X̂
(a)

(
µ
X̂
(b)−µ

X̂
(a)
)
. (17b)

In this system, we retrieve probabilistic SO2 information
in two stages. In the first stage we perform an initial detection
using the classical method (Eq. 4) to pre-screen each CrIS
FOV that likely contains SO2, taken as an initial maximum
z score greater than 5, i.e, z(hC;y,ybg) > 5 (e.g., Walker
et al., 2011, 2012; Clarisse et al., 2014). Preliminary investi-
gation of this threshold indicates that it somewhat conserva-
tive, striking a balance between including regions of diffuse
SO2 and excluding almost all false detections. In the second
stage, we retrieve the height PDF and the mean and variance
partial VCD as a function of height for each CrIS FOV that
satisfies this initial z-score threshold.

2.4 Specialized retrieval for strong SO2 loading

For strong SO2 columns, an alternate retrieval is needed to
increase sensitivity of the retrieved VCD owing to error in-
duced by the linearized retrieval. We define strong loading
here heuristically as z > 200, which in preliminary testing
corresponded to VCD values between approximately 10 and

20 DU. Since the conditional VCD retrieval uses a linearized
forward model with only a 5 DU perturbation, it is expected
that such an approximation would only hold for values near
5 DU and that many physically realistic VCD values would
fall outside the linearization’s radius of convergence. For
large VCD values, the sensitivity of linear Jacobians to ad-
ditional SO2 is greatly reduced for most CrIS channels, es-
pecially the strongest CrIS channels, so linearized Jacobians
with only a 5 DU anomaly will drastically underpredict the
VCD for a given brightness temperature difference (Fig. 2a).
In order to construct a linearized Jacobian that is more sen-
sitive at higher VCD values, two approaches are possible:
(i) we could use a larger VCD perturbation (a coarser finite
difference), or (ii) we could seek a special combination of
channels for which the linearization is a good approximation.
The first approach is limited in that the strongest responses in
the forward model are highly nonlinear, so a coarse finite dif-
ference will induce large errors there. The second approach
is promising as long as such a suitable channel selection can
be made that still preserves some of the main features of the
ν3 absorption band, retains enough channels to be robust, and
is only applied when it is certain that SO2 is dominating the
signal.

In addressing this issue, we adopt the second approach.
The specialized Jacobian must be dominated by chan-
nels with approximately linear forward model responses
(Fig. 2b). This was accomplished in practice by constructing
a sequence of Jacobians with various finite difference coarse-
ness and choosing those channels for which the sequence
of Jacobians is approximately constant. This channel subset
(Appendix D) is used with the original 5 DU Jacobian, which
can then be extrapolated successfully to high VCD values
because the forward model truly is approximately linear for
those channels.

One complication here is the fact that the channels with the
most linear response are also those which are least sensitive
to SO2 VCD (Fig. 2). However, by applying this new retrieval
only when strong SO2 loading (z > 200) is detected by the
pre-screening retrieval, the signal is guaranteed to be domi-
nated by SO2 absorption even in the weak, approximately lin-
ear channels, and the linearization is expected to have moder-
ately good accuracy. In theory, a sequence of increasingly re-
stricted retrievals could be implemented to increase the sen-
sitivity to even stronger SO2 loads; however, even the most
sensitive channels in the specialized subset show the worst
linear approximations (Fig. 2a), and so some underestima-
tion in the inversion will always be present with such an ap-
proach. As we will demonstrate below, this approach does
not increase the sensitivity so much that extremely high VCD
values (several hundred to thousands of Dobson units) can be
retrieved but instead increases the ability of the linearized ap-
proach to resolve moderate to high VCD values (perhaps tens
to low hundreds of Dobson units).
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2.5 Background state construction

At every stage of the retrieval, the background state of the
volcanic SO2-free atmosphere must be accurate in order for
this linearized method to succeed. Consequently, calculating
accurate statistics of the background state is paramount. Each
CrIS instrument collects almost 3 million spectra per day, al-
lowing for robust characterization of the background spec-
trum including variation in conditions across seasons and lo-
cations. Because we use real CrIS spectra, not only are mete-
orological variations (including water vapor, clouds, temper-
ature, etc.) accounted for, but the instrument noise profile is
also included.

In constructing the background spectrum channel-wise
marginal PDFs (histograms) and covariance matrix, periods
with little or no SO2 must be determined. We utilize the de-
tailed record of global volcanic SO2 emissions from the op-
erational IASI SO2 retrieval algorithm (Lieven Clarisse, per-
sonal communication, 2018) between 1 November 2017 and
1 November 2018, collecting all SNPP CrIS spectra mea-
sured on days with maximum VCD less than 1 DU SO2
present anywhere in the atmosphere (Fig. 3a).

This leaves a database of more than 3.6× 108 SO2-free
CrIS spectra over the 1-year period. We classify the spectra
regionally and seasonally, partitioning this database into four
seasons and 5◦× 5◦ latitude and longitude grid cells yield-
ing 10 368 bins (Fig. 4). Each bin has a full set of marginal
PDFs (brightness temperature histograms) for each channel
and a covariance matrix characterizing the correlation struc-
ture among the channels. This partitioning reduces the over-
all variability represented in the mean spectra and thus also
reduces the magnitude of the error covariance matrix entries
while still capturing the fundamental variability due to spec-
tral trends between regions and throughout a year.

For each season–latitude–longitude bin, we construct a
representative sample of 10 000 possible background spec-
tra that conform to the set of channel-wise marginal distri-
butions and the covariance matrix relevant to that bin. Al-
though our database is large enough to construct this sample
for each bin, we generate these possible spectra via another
method because it is preferable (from a mathematical stand-
point) that the samples represent only what is known statisti-
cally about the spectra. That is a subtle point, but because the
channel marginal distributions are represented as histograms
(with finite range), generating synthetic background spectra
very slightly damps the possible variance contained in a set
of real measured spectra and limits the possibility of two
key issues: (i) that real but anomalous or erroneous back-
ground spectra will be used and (ii) that real spectra with
SO2 just below 1 DU (the database threshold) will be used
as a supposedly SO2-free background. For example, if ex-
treme record-breaking conditions (e.g., hurricanes, droughts,
etc.) appear in the database collection interval, their spectra
will get caught in the database. These events will affect the
covariance matrix and marginal distributions; however, they

will cause far more variance in the retrieval if used as back-
grounds than if they can only affect the used backgrounds
as a forcing on the bin statistics. Additionally, construction
of similar databases for other sensors could still proceed
with fewer database entries since the statistics of the season–
latitude–longitude bins would be expected to converge after
fewer entries than were used here.

Since the channel-wise marginal distributions are gener-
ally non-Gaussian (e.g., Fig. 4), sampling the random vec-
tor Y bg with covariance matrix S is non-trivial. The general
problem of sampling a correlated random vector with known
non-normal marginal distributions and covariance matrix is
accomplished by a transform sampling technique known as
NORTA (NORmal To Anything) (Cario and Nelson, 1997).
The NORTA process by which we generate samples of Y bg
is detailed in Appendix A. In the above retrieval (in the
pre-screening and fully probabilistic phases), the background
spectrum and covariance are interpolated spatially from the
collection of binned backgrounds to each CrIS FOV cen-
ter by a bilinear interpolation scheme using the four nearest
season–latitude–longitude cells (Appendix C).

NOAA-20 CrIS has very similar radiometric characteris-
tics as SNPP, except that NOAA-20 FOV 7 noise is within
specification and is therefore considered in this study (JPSS
CrIS SDR Team, https://www.star.nesdis.noaa.gov/jpss/
documents/AMM/N20/CrIS_SDR_Validated.pdf, last ac-
cess: 24 August 2020). Consequently, we use the SNPP-
generated backgrounds in SO2 retrievals with both SNPP and
NOAA-20 CrIS spectra.

3 Results

3.1 Test case I: Raikoke, Kuril Islands, 2019

At approximately 18:00 UTC on 21 June 2019 (04:00 LT),
Raikoke volcano in the Kuril Islands erupted for the first
time since 1924 (Sennert, 2019; Global Volcanism Program;
Hedelt et al., 2019). The strongest pulses of the eruption rose
to an altitude of approximately 13 km, forming an umbrella
cloud that was quickly advected to the east by strong winds.
In the first hours of the eruption, SO2 columns with VCD>

900 DU (Hedelt et al., 2019, >1000 DU, Simon Carn, per-
sonal communication, 2019) were detected. The strongest in-
dividual measurement made by our method (48.52107◦ N,
167.25615◦W; 15:22:25 UTC, 22 June 2019) had a mean
total VCD of 432 DU with a standard deviation of 15 DU
(Fig. 5); however, because there is significantly greater un-
certainty within the support of the height PDF, the largest
value of mean plus uncertainty occurs just below the upper
end of the height PDF support (Fig. 5c). This underestimate
early in the Raikoke cloud history was likely due two factors,
channel saturation despite the specialized strong column re-
trieval and the fact that the footprint and layout of CrIS FOV
leaves many gaps (≈ 30 % by area) where extremal values
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Figure 3. (a) IASI-derived days with (blue) and without (white) SO2 columns with VCD≥ 1 DU in the 1-year background construction
interval (1 November 2017–1 November 2018). Date intervals across the top define the seasons. (b) Histogram showing the number of SNPP
CrIS spectra in each latitude–longitude cell totaled over the 1-year interval.

could have been present. Because this analysis focuses on the
SO2 ν3 band (1300–1410 cm−1), it is very unlikely that ash
was responsible for the strong underestimation (e.g., Carboni
et al., 2012). As described above, more specialized retrievals
could be devised to increase the sensitivity to very strong
SO2 loading as in the Raikoke case; however, such schemes
are beyond the scope of this work, which is principally con-
cerned with advances in height information and estimating
VCD values in more typical (low to moderate concentration)
emissions. Within about 1 d, the ash and SO2 were entrained
into a large extratropical cyclone, which heavily distorted the
dispersion of the cloud, with the SO2 cloud being pushed to
the north and dispersing in both easterly and westerly direc-
tions (Fig. 6). Early in this complex dispersion, SO2 VCD
values remained strong despite a rapid decline in eruptive
output. This is most likely a result of the convergence caused
by entrainment into the cyclone. Based on the probabilis-
tic retrieval and tropopause data from the National Centers
for Environmental Prediction (NCEP), it is clear that the vast
majority of the SO2 cloud mass was in the lower stratosphere,
with only a small lower layer in the mid-upper troposphere
which had mostly dispersed after the first week (Fig. 6b–l).
After 1 month, the SO2 cloud had spread out over most of
the Northern Hemisphere above 30◦ N with most VCD val-
ues < 2 DU; however, some columns remained as strong as
20 DU. After 2 months, traces of the SO2 cloud remained

over northern Canada and Hudson Bay with all measured
VCD less than 1 DU.

3.2 Test case II: early detection of SO2 emission from
Bogoslof Volcano, Aleutian Islands, 2016

In the 2016–2017 eruptive period at Bogoslof volcano, 70 ex-
plosive events were identified (Coombs et al., 2018, 2019).
The first five explosions were not detected in real time and
could only be identified and characterized after reanalysis
of satellite and other data sources (Coombs et al., 2019).
The first CrIS detection of the SO2 cloud from this sequence
of explosions occurred at 22:48 UTC on 16 December 2016
(cluster of 17 CrIS FOVs, approximately 300 km NE of Bo-
goslof), which was most likely the Event 4 (18:39 UTC) SO2
plume drifting downwind (Coombs et al., 2018, 2019). As
noted in Coombs et al. (2018), the USGS Alaska Volcano
Observatory (AVO) was not able to issue a Volcanic Ac-
tivity Notice (VAN) for this small event and consequently
no height information was generated until the reanalyses of
Schneider et al. (2020), in which a cloud height of 6.1 km
was determined. The SACS near-real-time retrieval (https:
//sacs.aeronomie.be/) only detected SO2 from this cloud in
two IASI FOVs, which was not sufficient to trigger an alert
notification. This small pulse was observable by neither
the multispectral infrared remote sensing methods nor auto-
mated analysis of multispectral signatures and cloud growth
rates (Pavolonis et al., 2013, 2015a,b, 2018; Schneider et al.,
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Figure 4. SNPP CrIS mean (a) and standard deviation (b) brightness temperature at 1300 cm−1 for each grid cell and each season interval.
The red dot corresponds to the data shown in panel (c). (c) Marginal PDF of the background spectrum indicated by the red dot in panels (a)
and (b) with mean spectrum (red dashes) and several individual marginal PDFs (right) shown.

2020). CrIS median heights are mainly clustered between 5–
8 km with some scatter due to localized cloud edge effects
(Fig. 7c, d). This is broadly consistent with the reanalysis of
Schneider et al. (2020).

Of particular importance in this small cloud made up of
only a few (17) FOVs, SNPP CrIS FOV 7 is significantly
nosier (above specification) than that of other FOVs (Za-
vyalov et al., 2013; Han et al., 2013), and consequently the
FOV 7 retrievals are highly suspect and have not been used
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Figure 5. NOAA-20 CrIS mean total VCD (a) and median height (b) early in the evolution of the Raikoke eruption cloud. The star indicates
the location of panel (c). (c) Probabilistic retrieval of SO2 layer altitude (PDF, green) and partial VCD (mean, solid blue; mean ± standard
deviation, dotted blue; PDF, color bar) for the strongest individual VCD measured by CrIS in the Raikoke cloud (48.52107◦ N, 167.25615◦W;
22 June 2019, 15:22:25 UTC).

to estimate the SO2 height. They are included in Fig. 7d and
e mainly to illustrate how an increase in instrument noise
affects height information. As might be expected, increased
instrument noise propagates larger uncertainty to the height
PDFs and tends to distribute their centers to the lower and
upper end of the range of considered altitudes. This is the
signature of the central role the argmax operation plays in
the retrieval. For example, if higher noise is propagated to the
z-score height functions, the argmax can produce wildly dif-
ferent heights even for small differences in the z-score height
profile.

Because the probabilistic framework allows the calcula-
tion of a mean partial VCD, we may derive a formula for the
mean or expected concentration profile by similar means as
those for Eq. (15):

E[C(h)] = E
[

d
dh
X̂(h)

]
= fH (h)E

[
X̂|H = h

]
, (18)

which is shown for FOVs in the detected Bogoslof cloud
(Fig. 7e). This example demonstrates that the CrIS SO2 de-
tection and characterization scheme is sufficiently sensitive
to capture some small emissions that are generally difficult
to observe by other means.

3.3 Test case III: resolving strong stratification in an
SO2 plume, Sierra Negra, Galapagos Islands, 2018

On 26 June 2018, after a period of elevated seismicity, the
onset of a major eruption at Sierra Negra was signaled by
volcanic tremor at 19:40 UTC, producing an ash and SO2
plume at 20:09 UTC (Carn et al., 2018; Vasconez et al.,

2018; Hedelt et al., 2019). The first CrIS observation also
occurred at 20:09 UTC from SNPP, detecting SO2 above the
Sierra Negra on three adjacent FOVs on the edge of scan
with maximum initial z scores of approximately 9, 16, and
31. Subsequent overpasses show the plume rising to approx-
imately 14–19 km and spreading in a complex manner due
to vertical wind shear, as evidenced by the lower plume al-
titudes spreading towards the west and the upper plume al-
titudes spreading towards the southeast (Fig. 8). The signif-
icant shearing of the eruption plume enables direct observa-
tions of the cloud at many levels. Consequently, this eruption
forms a good opportunity to highlight the broad sensitivity of
this method in detecting and characterizing SO2 at every el-
evation from the vent (1.124 m a.s.l.) up to ∼ 14–19 km and
potentially higher. Additionally, this example highlights the
strength of the probabilistic height retrieval, enabling the re-
trieval of any desired confidence interval on the height. Here
we compute the 90 % confidence interval (Fig. 8), highlight-
ing the fact that the 95th and 5th percentiles are in general
not symmetric around the median or the same size at differ-
ent locations within the plume. Because our method retrieves
consistent statistics across all measurements, we can ensure
the stability of the method and derived probabilities in partic-
ular, giving good smoothness even without post-processing.
As described above, this is not necessarily the case for other
height retrievals, which compute a single estimate with con-
stant uncertainty.
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Figure 6. Time evolution (top to bottom) of the Raikoke SO2 plume from NOAA-20 CrIS showing the expected-value total VCD (a, e, i),
the expected-value stratospheric partial VCD (b, f, j), the probability that the SO2 layer is in the stratosphere (c, g, k), and the median layer
height (d, h, l). The height of the tropopause was calculated from daily NCEP reanalysis data.

4 Discussion

4.1 Comparison with other data

Although a deep analysis of the differences between the
present method and others is beyond the scope of the present
work, here we highlight a brief representative comparison
of our SO2 retrievals with data from TROPOMI, IASI,
and the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) during the evolution of the Raikoke eruption
cloud. These sources of data are described briefly here.

As mentioned above, CrIS is a very similar instrument
to IASI (both Fourier transform Michelson interferometers).
The relevant instrument differences are that IASI (aboard
EUMETSAT satellites METOP-A/B, 21:30 LTAN) covers
both the ν1 and ν3 SO2 absorption bands (though only ν3 is

used to generate IASI heights), IASI’s spectral resolution is
0.5 cm−1 (apodized spectra) compared with 0.625 cm−1 for
apodized FSR CrIS, and, as mentioned above, despite IASI’s
slightly smaller FOV size (12 km-diameter at nadir) com-
pared with CrIS (14 km-diameter at nadir), the greater spatial
number density of CrIS FOVs gives CrIS a higher resolution
than IASI by virtue of a smaller average sampling distance.
For comparison with the set of NOAA-20 CrIS overpasses
of the Raikoke cloud in Fig. 9 (24 June 2019, 22:42 UTC, to
25 June 2019, 02:36 UTC), the nearest IASI height data were
collected from IASI instrument aboard METOP-B between
00:00 and 11:59 UTC on 25 June 2019. Although some of
the data in this interval are highly asynchronous, the cloud
did not experience major changes in this time, and the heights
(and to a lesser extent VCD) can be compared. As described
in Table 1, IASI heights are generated by the Clarisse et al.
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Figure 7. Initial (classical) z score (a), mean total VCD (b), and median height (c) for an explosion from Bogoslof very early in the 2016–
2017 eruption (SNPP CrIS). Height PDFs (d) and expected (mean) cloud concentration (e) profiles for the detected SO2 cloud. Retrievals
from the high-noise SNPP CrIS FOV 7 (dotted red lines in d and e) are not shown in panels (a)–(c).

(2014) retrieval and the VCDs are computed by a related non-
linear technique using the retrieved heights (Clarisse et al.,
2012). In the framework presented here, this VCD is the con-
ditional VCD sampled at the IASI-retrieved height.

TROPOMI is a UV spectrometer operating aboard the
TROPOMI the Copernicus Sentinel-5 Precursor (S5P) satel-
lite, which orbits only 3.5 min behind SNPP CrIS (Veefkind
et al., 2012). TROPOMI represents a significant advance in
monitoring of SO2 and other atmospheric constituents due to
its very high spatial resolution (7×3.5 km2 pixels at nadir) in-
creasing the sensitivity and signal to noise ratio in a given re-
gion by a factor of 3 over OMI and OPMS (Theys et al., 2017,
2019; Fioletov et al., 2020). The TROPOMI SO2 data used
here are generated from back-scattered UV radiances with
the S5P operational processing algorithm (a differential opti-
cal absorption spectroscopy, DOAS, technique)(Theys et al.,
2017). Because most UV-based techniques are not able to
retrieve height information, UV-based VCD data are typi-
cally presented as conditional VCD for several heights. The
TROPOMI SO2 conditional VCDs are given for assumed
SO2 plume altitudes of 1, 7, and 15 km. As the vast major-

ity of the Raikoke cloud was in the stratosphere, we use the
15 km data for direct comparison with CrIS (Fig. 10). Obvi-
ously such high-resolution data are difficult to compare di-
rectly with CrIS, so it was first resampled to the CrIS FOV
footprints by constructing weighted averages of TROPOMI
pixel data with weights determined by the fraction of inter-
secting area between the pixels and each elliptical CrIS FOV,
as in Sun et al. (2018). Unfortunately, since SNPP CrIS was
experiencing a major outage during the Raikoke cloud’s evo-
lution due to an electrical fault, only NOAA-20 CrIS was
able to measure the cloud, and consequently the NOAA-20
CrIS-TROPOMI comparison is asynchronous by about 50–
55 min instead of the 3.5–5 min that would have been possi-
ble if SNPP CrIS was functioning.

The last source of comparison data is 532 nm backscat-
tered lidar measurements from the CALIOP overpass of the
Raikoke cloud between 14:32 and 14:36 UTC on 25 June
2019 (Fig. 11). CALIOP profiles aerosols, clouds, and other
features between the ground and lower stratosphere (Winker
et al., 2009). Although it cannot detect molecular SO2, it can
detect volcanic ash and sulfate aerosols, which are a pho-
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Figure 8. Time evolution (top to bottom) of the 27 June 2018 Sierra Negra SO2 plume height represented as the 5th percentile (a, d, g),
median (b, e, h), and 95th percentile (c, f, i) heights. Data are merged SNPP CrIS and NOAA-20 CrIS with SNPP CrIS FOV 7 excluded.

tochemical product of SO2 in the atmosphere. As is typical
of volcanic SO2 studies, highly attenuating CALIOP aerosol
layers (especially in the stratosphere) are considered here as
a proxy for the presence of SO2 (Clarisse et al., 2014; Car-
boni et al., 2016, e.g.,).

As mentioned above, our strongest total VCD measure-
ment from the Raikoke cloud was 432 DU. This is signif-
icantly lower than the maximum detected by TROPOMI
(> 900 DU, Hedelt et al., 2019) and several other UV-based
methods (∼ 1000 DU, Simon Carn, personal communica-
tion, 2019). This suggests that our method, despite the inte-
grated height estimate and the specialized retrieval for strong
SO2 loading, currently cannot fully capture these extremely
high VCD values; however, away from these extreme val-
ues, our retrieval performs well in comparison to TROPOMI
and IASI (Figs. 9a–e, 10a–e). Other than the relatively few
columns with unusually large VCD values, the largest dis-
crepancy between the TROPOMI-retrieved Raikoke cloud

and that from CrIS is that the CrIS retrieval does not fully re-
solve the long, narrow, and diffuse east–west-running cloud
to the south of the main cloud, although the CrIS retrieval
does resolve some similar features elsewhere in the cloud.
This may be due to the very high spatial resolution and sen-
sitivity of the TROPOMI data compared with the coarse CrIS
resolution that also contains≈ 30 % gaps. An additional con-
tributing factor is that the CrIS retrieval starts with an ini-
tial detection of the z score for pre-screening (Fig. 9j) and
only retrieves the height and VCD for FOVs with z > 5.
Traces of this narrow, diffuse cloud are present in the ini-
tial z-score field, although it mostly presents with a z score
below the detection threshold but slightly above the back-
ground noise. Because the western part of this cloud is low
altitude, the weak signal in CrIS and IASI but good detection
by TROPOMI is evidence that the IR sensors were limited
somewhat by interference with larger quantities of water va-
por. Overall, it is likely that all of these factors played a role.
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Figure 9. Representative comparison between TROPOMI, IASI, and CrIS SO2 data. TROPOMI VCD given a 1 km thick layer at 1 km (a),
7 km (b), and 15 km (c) altitudes; IASI (METOP-B) VCD given a 1 km thick layer at the IASI height estimate (f); and CrIS (NOAA-20)
mean total VCD (integrated against the height PDF). IASI height estimate (f); CrIS 5th (g), 50th (median, h), and 95th (i) percentile heights;
and CrIS initial z score (j). The CrIS–TROPOMI comparison regions analyzed in Fig. 10 are shown in panels (c) and (e) as outlined dashed
red and blue latitude–longitude boxes.

A more detailed view of the comparison between CrIS
VCDs and TROPOMI conditional VCDs at 15 km altitude
is shown for two regions of the Raikoke cloud in Fig. 10. As
described above, these measurements are asynchronous by
about 50–55 min, which is evident in Fig. 10a, b, f, g, where
the largest errors between CrIS and the CrIS-resolution
TROPOMI occur at the cloud edges (as well as internally
in areas with more complex motion) where it had clearly
moved between these observations. These two regions were
selected because they both contain VCDs spanning several
orders of magnitude but different ranges. The northwestern
region (dashed red, Figs. 9, 10a–e) contains VCD values gen-
erally up to about 50 DU whereas the southeastern region
(dashed blue, Figs. 9, 10f–j) contains VCD values as high
as 230 DU. As can be seen from the histograms of native
resolution and CrIS-resolution TROPOMI, the lower spatial
resolution (and gaps) of CrIS is at least partially responsi-
ble for its inability to resolve some of the highest VCD val-
ues measured by TROPOMI in native resolution. In regions
of the cloud with generally lower concentrations, CrIS and
TROPOMI compare well, scaling approximately one-to-one,
with much of the noise being generated by the asynchrony.
Although not a perfect comparison, the rank-order correla-
tion is also shown for the CrIS-resolution comparison and
a coarse, 100 km pixel aggregate. Taken together, the FOV-
by-FOV and 100 km pixel comparisons (both exact matching
and rank-order) demonstrate that CrIS matches TROPOMI
VCDs moderately well for these low to moderate concentra-
tion clouds. In higher concentration clouds (Fig. 10f–j), the
comparison has a similar noise profile; however, CrIS consis-
tently underestimates TROPOMI by about 75 % (−0.25 rel-

ative error, Fig. 10f, g). Based on the histograms and correla-
tion of CrIS and CrIS-resolution TROPOMI, there is a simi-
lar distribution of VCDs below about 50 DU that becomes di-
vergent by about 100 DU. In all regions of the Raikoke cloud,
the sensitivity of the fully probabilistic retrieval is limited to
VCDs greater than about 0.3–0.5 DU.

The main focus and strength of our approach is the abil-
ity to generate physics-based PDFs for the height. Because
our retrieval is based on the operational algorithm in use for
IASI, our retrieved heights are very similar to those from
IASI, although there are key differences readily apparent in
Fig. 9f–i. As mentioned above, the IASI heights represent
the height retrieved due to the mean background spectrum;
however, because the retrieval of height is not linear (due
to the argmax operation), the retrieved height is not the ex-
pected value height. Inspection of the PDFs generated by
this approach show that they are typically non-symmetric, al-
though exact comparison is not possible due the orbital sep-
aration between the satellites carrying IASI (METOP-A,B)
and those carrying CrIS (SNPP, NOAA-20). At least for the
Raikoke cloud, the IASI heights are almost entirely bound
within the CrIS 90 % confidence interval (Fig. 9f, g, i) and
are similar to the CrIS median heights (Fig. 9h) in most ar-
eas. For the snapshot of the Raikoke cloud shown in Fig. 9,
the largest differences in height appear at the southernmost
part of the cloud, where the IASI heights are > 19 km in al-
titude over a significant region. Furthermore, the IASI height
estimate (Fig. 9f) varies significantly over nearby continu-
ous parts of the cloud, whereas the CrIS median height is
more consistent across space with some minor variation due
to noise.
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Figure 10. Comparison between TROPOMI and CrIS SO2 data for the red (a–e) and blue (f–j) regions outlined in Fig. 9. (a) Relative
difference between CrIS FOVs and TROPOMI-synthesized CrIS FOVs for the red-outlined region. (b) The same as panel (a) but smoothed
onto a 100 km× 100 km grid. (c) Direct (dots) and rank-order (lines) comparison of CrIS and TROPOMI VCD from (a; grey) and (b; red).
(d) Log scale version of panel (c). (e) Histogram (relative frequency) comparison for CrIS and TROPOMI data in red-outlined region, with
dotted lines corresponding to the relative frequency of a single measurement. (f–g) The same as panels (a)–(e) for the blue-outlined region.

Although not shown here, Hedelt et al. (2019) have re-
cently developed a new SO2 height retrieval for TROPOMI
using inverse learning machines. Although computationally
expensive to train, such an approach has the advantage of
computation speed of the inversion once deployed, though
it has not yet been incorporated into the TROPOMI SO2
data product as of this writing, and thus a direct compari-
son is not possible. However, it is clear from the data pre-
sented in Hedelt et al. (2019) that their height estimates for
the Raikoke cloud span the CrIS 90 % confidence interval,
though they are significantly nosier than CrIS SO2 height es-
timates and display a very prominent negative trend in height
versus VCD, leading to systematically higher layer heights

on the cloud edges than in the cloud centers (Fig. 14 of
Hedelt et al., 2019). CrIS PDFs very rarely show a similar
trend.

Because we retrieve a PDF on each CrIS FOV rather than
a single estimate, we can compare the PDFs directly to data
from a CALIOP overpass of the cloud. Here we show an ex-
ample comparison from Raikoke; however, a full comparison
for every overpass of the Raikoke cloud is the subject of fu-
ture work. For the first several days after the eruption, there
was still significant ash suspended in the dispersing cloud,
leading to the appearance of several highly attenuating layers
in CALIOP data between 10–15 km (Fig. 11a, b). The com-
parison we focus on is between CrIS retrievals from 14:18:00
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Figure 11. Representative example comparison of CALIOP lidar backscatter (a, b), CrIS SO2 height PDFs (b partially transparent, c), and
CALIOP vertical feature mask (d) for the Raikoke cloud on 25 June 2019. (e) Nearest-neighbor gridded interpolation of CrIS SO2 median
heights with the closest CALIOP overpass shown (black arrow indicating descending orbit < 15 min after CrIS acquisition).
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to 14:24:00 UTC and CALIOP data from a subsequent over-
pass between 14:32:06 and 14:36:14 UTC on 25 June 2019.
To prevent the mixing of nearby height PDFs, the CrIS data
are interpolated to the CALIOP track by nearest-neighbor in-
terpolation, creating a profile of the nearest CrIS SO2 height
PDFs. The nearest-neighbor interpolation over all of space is
shown in Fig. 11e with 16 km pixels (the average CrIS sam-
pling distance).

Overall, there is good agreement between the CrIS SO2
height PDFs and the altitudes of the strongly attenuating
CALIOP layers; however, the CrIS PDFs have several im-
portant characteristics that complicate comparison. There is
some minor noise derived mainly from two anomalous CrIS
FOVs at the cloud edge (≈ 62◦ N, 175◦W) exactly at the
CALIOP track, leading to anomalously high altitudes there
(Fig. 11e). Most interestingly, some regions of the cloud have
bimodal PDFs (Fig. 11b, c, south of 60◦ N). Preliminary in-
vestigations of this retrieval suggest that such occurrences
are not exceedingly rare throughout this and other clouds;
however, such PDFs occur widely and tend to persist over
moderate distances (as in Fig. 11b, c).

In the strictest sense, such PDFs can only be attributed to
the presence of similar statistical features in the background.
Specifically, if the background spectrum probability space
is dominated by two sets of meteorological conditions (for
example, one mode representing deep convective cloud ra-
diances and another for cloud-free radiances), then multiple
populations of the Monte Carlo height samples may accumu-
late, leading to a multimodal height PDF.

Relaxing this strict interpretation, there is some evidence
that these bimodal PDFs may represent the presence of SO2
at multiple altitudes. In this case, the strongest CrIS probabil-
ities occur in a lower layer around 12 km altitude (Fig. 11b,
c) suggesting the presence of molecular SO2 layer; how-
ever, there is no attenuating CALIOP layer there. Addition-
ally, the CrIS retrieval assigns significant (but less) proba-
bility mass to a higher level colocated with a strongly at-
tenuating CALIOP layer at about 15 km. Since these data
are very early in the cloud’s evolution (< 5 d), this layer is
likely dominated by volcanic ash rather than being domi-
nated by sulfate aerosols, having not had enough time to
convert large portions of the erupted SO2. Of note, because
the upper CALIOP layer is very strongly attenuating, it may
completely shadow any evidence of lower diffuse ash clouds
if they existed. Considering that ash minimally affects the
SO2 ν3 band, this colocation at 15 km altitude suggests that
this strongly attenuating layer (likely mainly ash) contains
SO2. The fact that the stronger of the two probabilities is in
the lower layer combined with the CALIOP–CrIS colocation
could be interpreted as evidence that there is SO2 at both lay-
ers. Although this is a possibility, confirmation of such a con-
figuration would require a deeper analysis including forward
and inverse trajectory modeling with advanced data assimi-
lation techniques and therefore is well beyond the scope of
the present work.

4.2 Long-term analysis of the Raikoke SO2 cloud

By retrieving PDFs for height and partial VCD it is possible
to enhance time series analysis of SO2 clouds accordingly,
enabling the generation of time series with quantified uncer-
tainty. As an example, we calculate the total and stratospheric
SO2 mass time series probabilistically as sums of many in-
dependent retrievals (Fig. 12).

To estimate the mass of an SO2 cloud, the values of the
retrieval on the CrIS FOVs must be interpolated onto a con-
tinuous grid spanning the cloud. In the present study we
use an equal-area grid and perform nearest-neighbor inter-
polation of the CrIS FOV retrievals. We calculate the mass
(with uncertainty) as in Appendix E for both the total SO2
mass in the atmosphere and in the stratosphere only. The
stratospheric partial VCD values X̂(htropopause) were calcu-
lated from Eqs. (17a) and (17b) using daily NCEP/NCAR
tropopause pressure level and geopotential height reanaly-
sis data (Kalnay et al., 1996). By exploiting the fact that
the mass is a normal random variable at each time, we can
from these results estimate the daily “instantaneous” appar-
ent e-folding time of the SO2 as τ =−M(t)/Ṁ(t)with Ṁ(t)
calculated by finite difference and the PDFs computed by
standard results in probability theory (Fieller, 1932; Hink-
ley, 1969; DeGroot and Schervish, 2012, Appendix E). The
e-folding times shown here are really apparent measurements
since mass is lost from the cloud not only due to photochem-
ical conversion of SO2 to sulfate aerosols but also due to the
dispersion and dilution of the cloud below levels that can
be detected. We include this time series because it illustrates
some interesting aspects of the Raikoke cloud’s evolution and
because it illustrates a logical extension of how uncertainty
is propagated through this work.

From Fig. 12 it is clear that the SO2 cloud, as charac-
terized by CrIS, did not immediately show the exponential
mass decay that has been used in similar studies of large
eruptions (e.g., Read et al., 1993; Carn et al., 2017; Krotkov
et al., 2010). The observed trend is likely a combination
of retrieval limitations and genuine atmospheric chemical
properties. As described above, the CrIS VCD underestimate
early in the Raikoke cloud history was likely due to channel
saturation despite the specialized strong column retrieval.
The strongest CrIS VCDs were only approximately 50%
of the strongest columns reported at the time; 432 DU
from CrIS versus > 900 DU (Hedelt et al., 2019) and
> 1000 DU (Simon Carn, personal communication, 2019).
In aggregate, CrIS total VCD were approximately 75 %
of those of TROPOMI in the most concentrated regions
(Fig. 10). This underestimate was propagated to the CrIS
maximum total mass estimate of approximately 1.1 Tg
SO2 (Fig. 12) compared with preliminary estimates from
other sources (1.4–1.5 Tg; Sennert, 2019; Global Volcanism
Program; Simon Carn, personal communication, 2019).
Very large VCD values persisted for many days, though
after approximately 10 d most of the cloud had diluted
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Figure 12. (a) Total (blue) and stratospheric (red) mass of SO2 above 30◦ N for 2 months following the eruption of Raikoke showing CrIS-
derived mean (solid lines) ±1 standard deviation (dotted lines), with the log scale in the inset. Black shows the preliminary TROPOMI mass
(Fig. 12; https://so2.gsfc.nasa.gov/pix/special/2019/raikoke/raikoke_tropomi_so2stl_0621-07062019.html, NASA/GSFC, 2019). “Instanta-
neous” (daily aggregated) e-folding time PDFs for the total (b) and stratospheric (c) SO2 in the Raikoke eruption cloud.

sufficiently that CrIS and preliminary TROPOMI data
were in good agreement between 10 and 20 d from the
eruption, both decreasing from about 1.0 to 0.6 Tg (Fig. 12;
https://so2.gsfc.nasa.gov/pix/special/2019/raikoke/raikoke_
tropomi_so2stl_0621-07062019.html, NASA/GSFC, 2019).

Despite this early underestimation and the fact that the
SO2 injection is more or less instantaneous compared with
the time span of cloud detectability, CrIS total mass (and, to
a lesser extent, preliminary TROPOMI total mass as well)
did not begin the anticipated exponential decay until approx-
imately 15–20 d after SO2 injection. We posit that this was
mainly due to CrIS channel saturation and highly irregular
dispersal by extratropical cyclonic winds affecting the total
CrIS-measurable mass and cloud dilution, respectively. How-
ever, the presence of this effect in preliminary TROPOMI
suggests that at least some contribution may have derived
from time-dependent SO2 to sulfate conversion kinetics. As
has been invoked in previous studies, this could have been
the result of limited hydroxyl radical (OH) early in the cloud
history (e.g., Theys et al., 2013; Sekiya et al., 2016), although
detailed chemical modeling to support this is beyond the
scope of this work. As the e-folding times shown in Fig. 12c
and d are calculated by finite difference, they are quite noisy;

however, they exhibit the same trend of slow decay early in
the cloud history even after CrIS and TROPOMI masses be-
come similar. After about 35 d, the apparent e-folding time
for the total VCD settles to a more or less constant value
(∼ 10 d e-folding time). The apparent stratospheric e-folding
time exhibits a very different pattern, remaining approxi-
mately constant (∼ 10 d e-folding time) until about day 30,
when it begins to shorten. The large uncertainty in the strato-
spheric e-folding time after approximately 30 d is the result
of the increasing relative stratospheric mass uncertainty and
the particular details of the PDF calculation (Hinkley, 1969).
Because SO2 is typically assumed to have a long lifetime
in the stratosphere, this is likely the result of dilution below
the detection threshold over large low-concentration regions
of the cloud, although some portion of the SO2 re-entering
the troposphere as it extends to lower latitudes (where the
tropopause is higher) may also play a role considering that
the total column does not show this effect as significantly.
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5 Conclusions

i. New probabilistic enhancement of existing hyperspec-
tral IR SO2 retrieval techniques enables the retrieval of
PDFs for SO2 height and partial VCD, providing sig-
nificant statistical power, precision, and consistency to
global SO2 detection, tracking, and characterization ef-
forts. Retrieving these PDFs enables the calculation of
many new quantities, including exceedance probabili-
ties for concentration, layer height constraint probabil-
ities, mean concentration profiles, and mass at differ-
ent layers with uncertainty. Although these capabilities
are primarily beneficial for operational SO2 monitoring,
these methods are relevant to climatological studies be-
cause of the ability to the stratospheric fraction of total
mass for a given SO2 cloud if tropopause heights are
available from ancillary sources.

ii. This technique is capable of resolving larger VCD val-
ues than would be anticipated for a linearized approach
due to two factors: (i) the use of the height PDF in-
creases the retrieved total VCD compared with a single
height estimate and (ii) the use of a specialized chan-
nel subset retrieval that improves the linear approxima-
tion when the signal is certain to be dominated by SO2.
However, these techniques are still limited in their abil-
ity to resolve extreme VCD values (many hundreds of
Dobson units) like some of those observed in the recent
(2019) eruption of Raikoke Volcano, Kuril Islands. Be-
cause of the improved spatial resolution over IASI and
the technique’s sensitivity, we can resolve heights for
small clouds that cannot be resolved well by IASI. Ad-
ditionally, the technique can adequately resolve height
information across a broad range of plume altitudes, in-
cluding those in the lower stratosphere and close to the
surface (though with more limited detection).

iii. Preliminary comparisons suggest that this method gen-
erally compares well with other measurements of SO2
VCD and altitude; however, the probabilistic frame-
work adds significant value, especially in the retrieval of
height information. Cross sections through these proba-
bility clouds compare very well with cloud heights from
CALIOP lidar backscatter.

iv. As a logical extension of the probabilistic framework,
this technique enables the characterization of SO2
clouds for long-term probabilistic analyses of cloud
evolution and key time-varying parameters such as total
mass, stratospheric mass, and apparent e-folding time.

v. The algorithms presented here are currently being in-
tegrated into VOLCAT, where they will be used for
operational SO2 cloud detection, characterization, and
tracking in support of aviation safety. We anticipate fu-
ture work to include more comprehensive comparison
of height PDFs with CALIOP lidar backscatter data,
application of these techniques to similar instruments
including IASI and the Atmospheric Infrared Sounder
(AIRS), and the development of volcanic degassing and
aviation-focused products.
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Appendix A: Generating correlated random spectra for
Monte Carlo retrieval: NORTA sampling

The general problem of sampling a correlated random vector
(Yi ∈ Y ∈ RN ) with non-normal marginal distributions FYi
and covariance matrix S is accomplished by a transform sam-
pling technique known as NORTA (NORmal To Anything)
(Cario and Nelson, 1997), in which the desired random vec-
tor is written as a component-wise inverse marginal trans-
form of a standard normal random vector:

Yi = F
−1
Yi
(8(Zi)) , (A1)

where8 is the univariate standard normal cumulative density
function (CDF). In this formulation, the individual marginals
can be used to transform the components of the standard nor-
mal vector. The crux of this method lies in generating a stan-
dard normal random vector Z with appropriate correlation
structure ρZ , which upon component-wise transformation, as
above, will produce the desired random vector Y with the de-
sired covariance structure S. That is, a correlated Z must be
generated with the correlation matrix

ρZ = Cov(Z)= E
[
ZZT] , (A2)

which, after transformation, results in the correlation matrix
ρY = Corr(Y ) associated with the known covariance matrix
S.

This is accomplished by solving

ρY (i,j)= Cij
[
ρZ(i,j)

]
, (A3)

for each of the unique N(N − 1)/2 correlations (ρZ(i,j)) in
the lower triangle of ρZ . The correlation transformation func-
tion is

Cij
[
ρZ(i,j)

]
:=

E[Yi(Zi)Yj (Zj )] −E[Yi]E[Yj ]
√

Var[Yi]Var[Yi]
, (A4)

and

E
[
Yi(Zi)Yj (Zj )

]
= I

[
ρZ(i,j)

]
:=∫∫

R2

F−1
Yi

[8(zi)]F−1
Yj

[
8(zj )

]
ϕ
(
zi,zj ;ρZ(i,j)

)
dzi dzj , (A5)

where ϕ(zi,zj ;ρZ(i,j)) is the bivariate standard normal
density function with correlation ρZ(i,j) between the vari-
ables Zi and Zj . These problems may be inverted individu-
ally by various methods outlined in the original formulation
of Cario and Nelson (1997).

A1 Application of NORTA to background spectrum

For the purpose of generating the correlated random back-
ground spectrum in the present study, we make several mod-
ifications to the classical method of Cario and Nelson (1997)

to make our problem tractable but retain the high fidelity
of the CrIS measurements. In the present study, 177 CrIS
channels are used, representing the FSR mid-wave band be-
tween 1300–1410 cm−1. This yields 15 576 independent cor-
relations – matching inverse problems that are solved in the
present study by gradient descent iteration. As in the main
text, we first collect a database of SO2-free CrIS spectra for
each seasonal 5◦× 5◦ bin and compute the 1300–1410 cm−1

background covariance matrix S, as well as the channel-
wise marginal distributions, as a sequence of 177 histograms.
Then we perform the NORTA process to generate 10 000
samples of Y bg for each season–latitude–longitude bin.

A2 Numerical integration of the joint expectation

Because each of the correlations matching inverse prob-
lems requires multiple rounds of numerical integration of
Eq. (A5), we make several modifications to increase com-
putational efficiency. Because many of the channel correla-
tions are strong, the bivariate standard normal distribution
ϕ(zi,zj ;ρZ(i,j)) for each such pair of channels is very nar-
row. Consequently, for a typical rectangular sampling do-
main, the integrand of Eq. (A5) is approximately zero almost
everywhere except for a concentrated region in which accu-
rate numerical integration is challenging. To reduce wasted
integrand samples, we make a standard transformation of the
bivariate normal distribution and then cast the domain in po-
lar coordinates and approximate the integral over a finite ra-
dial domain [0,R]:

I
[
ρZ(i,j)

]
:=

2π∫
0

R∫
0

Gij (r,θ;ρZ(i,j))
e−r

2/2

2π
rdrdθ, (A6)

where

Gij (r,θ;ρZ(i,j))= F
−1
Yi

[8(r cosθ)]

×F−1
Yj

[
8

(
ρZ(i,j)r cosθ +

√
1− ρ2

Z(i,j)r sinθ
)]
, (A7)

is the product of the transformed ith and j th components
of the desired random vector. This approximates the full
improper integral within tolerance ε, with the fixed value
ε = 10−6 in the present study. The terminal radius is esti-
mated conservatively as

R =

√
2ln

(
1
ε

maxYimaxYj
minYiminYj

)
, (A8)

where the maximum and minimum values of the components
were recorded during the generation of S and the marginal
distributions from sample data. In the absence of knowledge
of these minima and maxima, they could be estimated from
the marginal distributions as fixed percentiles of these distri-
butions.
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The estimated radial limit of integration R is derived by
requiring that

2π∫
0

∞∫
R

Gij
e−r

2/2

2π
rdrdθ ≤ ε

2π∫
0

∞∫
0

Gij
e−r

2/2

2π
rdrdθ. (A9)

This inequality can be solved for R under the conserva-
tive estimation that maxGij =maxYimaxYj and minGij =
minYiminYj which are derived from the maximum and min-
imum brightness temperatures on each channel from among
all background spectra in the database. This leads to

∞∫
R

re−r
2/2dr ≤ ε

minYiminYj
maxYimaxYj

∞∫
0

re−r
2/2dr, (A10)

and, upon integrating, R may be chosen conservatively to
satisfy

e−R
2/2
≤ ε

minYiminYj
maxYimaxYj

. (A11)

This transformation to a scaled polar coordinates ensures that
the curvature and gradients in the integrand are as small as
possible, ensuring that numerical integration is as accurate as
possible for a given domain sampling up to the order of the
method employed. Additionally, the sensible radial limitation
of this integral ensures that it can be computed efficiently
to within tolerance without the inclusion of samples which
minimally affect the total (approximately Gaussian tails).

A3 Numerical solution of inverse problems

Although each channel pair inverse problem can be solved
separately by Newton’s method or other algorithms, we solve
all of the problems jointly, restating the problem as a gradient
and descent minimization of the total square correlation error

ε2(rZ)=
[
C(rZ)− rY

]T[
C(rZ)− rY

]
, (A12)

where the vectors rZ,rY ∈ R15,576 are comprised of the
unique lower triangular elements of ρZ and ρY , respectively,
and C : R15,576

→ R15,576 is the correlation transformation
function cast as a vector function. Although this seems in-
tractable due to the extreme dimensionality, there is no cor-
relation between these dimensions (no correlation between
pairwise inverse problems), and consequently the Jacobian
is zero everywhere except for its main diagonal. The gradi-
ent descent method of Barzilai and Borwein (1988) produces
fast convergence to a global minimum due to the monotonic-
ity and bounding properties of the correlation functions Cij
as described by Cario and Nelson (1997). At each iteration,
the NORTA process is completed and the error in the synthe-
sized channel marginal distributions and spectral covariance
matrix are used as convergence criteria. The vectorization
of these independent problems allows for standardization in

convergence criteria using global (total) error minimization.
Because the error is measured on the final product (the de-
sired random spectra), a minimum number of iterations is
required by comparison with performing each problem sepa-
rately and then generating the desired random spectra.

Appendix B: Derivation of VCD mean, variance, and
covariance formulae

As in the text, SO2 is assumed to exist in a narrow, 1 km thick
layer, represented by a box profile:

x =X5(h−H)=

{
X/L L/2< h−H < L/2
0 otherwise , (B1)

where L is 1 km. For the purposes of simplicity in computa-
tion, we consider a limiting case of a very thin layer (L→ 0),
where the finite box profile converges in distribution to the
Dirac delta:

5(h−H)
d
−→ δ(h−H) as L→ 0. (B2)

The calculation of the mean and variance below makes exten-
sive use of Fubini’s theorem, allowing reordering of iterated
integration. Because these integrals contain the Dirac delta,
it is not simple to show that the conditions of Fubini’s theo-
rem are satisfied due to the Lebesgue non-integrability of the
Dirac delta, which in turn stems from the fact that the Dirac
delta is not a proper function but is a distribution instead.
However, we proceed assuming that the iterated integrals can
be interchanged. We remark that a proof using limits of func-
tions (“nascent delta functions”) approaching the Dirac delta
could be substituted here at great cost to simplicity and read-
ability. For a finite thickness layer (as assumed in the main
text), all convolutions with the Dirac delta below would be
replaced with convolutions with a boxcar function (a finite
nascent delta). For the 1 km thick box profile above, the re-
sults of convolution will be smoothed, 1 km running-average
versions of the desired functions. The final integral formu-
las would be the same except that the integrands would first
be smoothed by a 1 km running average. In a discrete setting
with 1 km sampling of the retrieved height PDF, the assump-
tion of a 1 km thick box profile yields the same results as
using the Dirac delta.
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The mean partial VCD is calculated as the expectation

E
[
X̂(h)

]
= E

 h∫
0

X̂δ(η−H)dη


=

∫
H

∫
X

 h∫
0

x̂δ
(
η−h′

)
dη

f
X̂,H

(
x̂,h′

)
dx̂dh′

=

∫
H

∫
X

 h∫
0

x̂δ
(
η−h′

)
dη

f
X̂|H

(
x̂|h′

)
fH

(
h′
)]

dx̂dh′, (B3)

where H and X are the domains of height and VCD (both
σ finite measure spaces) and the last equality follows from
the definition of the conditional PDF. Rearranging this iter-
ated integral gives

E
[
X̂(h)

]
=

h∫
0

∫
H

[
δ
(
η−h′

)

fH
(
h′
)∫

X

x̂f
X̂|H

(
x̂|h′

)
dx̂

dh′dη

=

h∫
0

∫
H

δ
(
η−h′

)
fH

(
h′
)
E
(
X̂|H = h′

)
dh′dη. (B4)

Because of the symmetry of the delta function (δ(η−h′)=
δ(h′−η)), the integral properties of the delta function yields

E
[
X̂(h)

]
=

h∫
0

fH (η)E
(
X̂|H = η

)
dη. (B5)

Because the algebraic form of the variance is Var(X̂(h))=
E[X̂2(h)]− [E(X̂(h))]2, only the second moment of the par-
tial VCD E[X̂2(h)] must be calculated to complete the for-
mula. This quantity is

E
[
X̂2(h)

]
= E


 h∫

0

X̂δ(η−H)dη

2
=

∫
H

∫
X

 h∫
0

x̂δ
(
η0−h

′
)

dη0

 h∫
0

x̂δ
(
η−h′

)
dη


f
X̂|H

(
x̂|h′

)
fH

(
h′
)]

dx̂dh′

=

h∫
0

h∫
0

∫
H

[
δ
(
η0−h

′
)
δ
(
η−h′

)
fH

(
h′
)

∫
X

x̂2f
X̂|H

(
x̂|h′

)
dx̂

dh′dη0dη

=

h∫
0

h∫
0

∫
H

[
δ
(
h′− η0

)
δ
(
h′− η

)
fH

(
h′
)

E
(
X̂2
|H = h′

)]
dh′dη0dη

=

h∫
0

h∫
0

δ (η0− η)fH (η0)E
(
X̂2
|H = η0

)
dη0dη. (B6)

Since the dummy variable η always runs between 0< η <
h, the delta function δ(η0−η) is always centered in the inter-
val 0< η0 < h and the integral properties of the delta func-
tion can be applied again:

E
[
X̂2(h)

]
=

h∫
0

fH (η)E
(
X̂2
|H = η

)
dη. (B7)

Substitution of E(X̂2
|H = η)= Var(X̂|H = η)+[E(X̂|H =

η)]2 into the formula for E[X̂2(h)] and subsequently into the
formula above for Var(X̂(h)) completes the variance.
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Similarly, for the covariance between partial VCD at two
altitudes h= a and h= b with b ≥ a, only the mixed expec-
tation E[X̂(b)X̂(a)] must be calculated:

E
[
X̂(a)X̂(b)

]
= E

 a∫
0

X̂δ (ηa −H)dηa

b∫
0

X̂δ (ηb−H)dηb


=

∫
H

∫
X

 a∫
0

x̂δ
(
ηa −h

′
)

dηa

 b∫
0

x̂δ
(
ηb −h

′
)

dηb


f
X̂|H

(
x̂|h′

)
fH

(
h′
)]

dx̂dh′

=

a∫
0

b∫
0

∫
H

[
δ
(
h′− ηb

)
δ
(
h′− ηa

)
fH

(
h′
)

E
(
X̂2
|H = h′

)]
dh′dηbdηa, (B8)

because the domains (0,a), (0,b), and H have the relation-
ship

(0,a)⊆ (0,b)⊆H, (B9)

it follows that ηa ∈H, ηb ∈H and 0< ηa < ηb, so that

E
[
X̂(a)X̂(b)

]
=

a∫
0

b∫
0

[
δ (ηb− ηa)fH (ηb)

E
(
X̂2
|H = ηb

)]
dηbdηa

=

a∫
0

fH (ηa)E
(
X̂2
|H = ηa

)
dηa = E

[
X̂2(a)

]
. (B10)

Using the algebraic formula for the variance and covariance,
we attain by substitution

Cov
[
X̂(a),X̂(b)

]
= Var

[
X̂(a)

]
−E

[
X̂(a)

](
E
[
X̂(b)

]
−E

[
X̂(a)

])
, (B11)

which is always less than Var[X̂(a)] unless a = b since the
partial VCD is cumulative, yielding larger values at higher
altitudes.

Remark

Of particular importance is that these formulae may be used
to calculate the expectation and variance values of the partial
VCD between two altitudes. The expected value is

E
[
X̂(b)− X̂(a)

]
= E

[
X̂(b)

]
−E

[
X̂(a)

]
, (B12)

and the variance is

Var
[
X̂(b)− X̂(a)

]
= Var

[
X̂(b)

]
+Var

[
X̂(a)

]
−Cov

[
X̂(a),X̂(b)

]
= Var

[
X̂(b)

]
+E

[
X̂(a)

](
E
[
X̂(b)

]
−E

[
X̂(a)

])
. (B13)

Appendix C: Bilinear interpolation of background
spectrum

To smooth the changes between retrievals in adjacent back-
ground cells, we use a bilinear interpolation of the back-
ground spectra. For a general quantity (Q), the bilinear in-
terpolation is represented as

Q(x,y)= cxcyQ(x0,y0)+ (1− cx)cyQ(x1,y0)

+ cx
(
1− cy

)
Q(x0,y1)

+ (1− cx)
(
1− cy

)
Q(x1,y1) , (C1)

between the corner points (x0,y0), (x1,y0), (x0,y1), and
(x1,y1), using the scalings cx = (x1−x)/(x1−x0) and cy =
(y1− y)/(y1− y0). We interpolate the inverse error covari-
ance matrix S−1 by this formula. However, because our back-
ground spectrum is characterized probabilistically as a set
of N = 10000 samples (ysbg ∈�Y bg ) of a correlated random
vector Y bg in each seasonal 5◦× 5◦ background grid cell,
the samples cannot be interpolated directly by the above for-
mula. Instead we treat Y bg = Y bg(X,Y ) as a function of a
random position where (X,Y ) is a discrete random posi-
tion, taking only the cell corner points as possible values.
In this case, X and Y represent longitude and latitude. In
particular, we characterize (X,Y ) by the probability mass
function p(xi,yj )= (−1)i+j (i−cx)(j−cy) for i,j ∈ {0,1},
which is simply the corner point weights in the bilinear in-
terpolation formula. Consequently, we generate Y bg(x,y)=

E(X,Y )[Y bg(X,Y )] =
∑
i,jY bg(xi,yj )p(xi,yj ) by sampling

the discrete distribution p(xi,yj ) to generate the number of
samples taken from each of the corner points n(xi,yj )=
[Np(xi,yj )], where the bracket represents rounding to the
nearest integer. Using this sampling, we generate the sam-
ples of Y bg(x,y) as the collection of each of the n(xi,yj )
samples from the corners Y bg(xi,yj ). This generates a total
of N samples for the interpolated background spectrum.
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Appendix D: CrIS channels used in SO2 retrieval

The following CrIS channels are used in this work and are
identified by their wavenumber value (cm−1).

D1 For the regular retrieval

1300.0, 1300.625, 1301.25, 1301.875, 1302.5, 1303.125,
1303.75, 1304.375, 1305., 1305.625, 1306.25, 1306.875,
1307.5, 1308.125, 1308.75, 1309.375, 1310., 1310.625,
1311.25, 1311.875, 1312.5, 1313.125, 1313.75, 1314.375,
1315., 1315.625, 1316.25, 1316.875, 1317.5, 1318.125,
1318.75, 1319.375, 1320., 1320.625, 1321.25, 1321.875,
1322.5, 1323.125, 1323.75, 1324.375, 1325., 1325.625,
1326.25, 1326.875, 1327.5, 1328.125, 1328.75, 1329.375,
1330., 1330.625, 1331.25, 1331.875, 1332.5, 1333.125,
1333.75, 1334.375, 1335., 1335.625, 1336.25, 1336.875,
1337.5, 1338.125, 1338.75, 1339.375, 1340., 1340.625,
1341.25, 1341.875, 1342.5, 1343.125, 1343.75, 1344.375,
1345., 1345.625, 1346.25, 1346.875, 1347.5, 1348.125,
1348.75, 1349.375, 1350., 1350.625, 1351.25, 1351.875,
1352.5, 1353.125, 1353.75, 1354.375, 1355., 1355.625,
1356.25, 1356.875, 1357.5, 1358.125, 1358.75, 1359.375,
1360., 1360.625, 1361.25, 1361.875, 1362.5, 1363.125,
1363.75, 1364.375, 1365., 1365.625, 1366.25, 1366.875,
1367.5, 1368.125, 1368.75, 1369.375, 1370., 1370.625,
1371.25, 1371.875, 1372.5, 1373.125, 1373.75, 1374.375,
1375., 1375.625, 1376.25, 1376.875, 1377.5, 1378.125,
1378.75, 1379.375, 1380., 1380.625, 1381.25, 1381.875,
1382.5, 1383.125, 1383.75, 1384.375, 1385., 1385.625,
1386.25, 1386.875, 1387.5, 1388.125, 1388.75, 1389.375,
1390., 1390.625, 1391.25, 1391.875, 1392.5, 1393.125,
1393.75, 1394.375, 1395., 1395.625, 1396.25, 1396.875,
1397.5, 1398.125, 1398.75, 1399.375, 1400., 1400.625,
1401.25, 1401.875, 1402.5, 1403.125, 1403.75, 1404.375,
1405., 1405.625, 1406.25, 1406.875, 1407.5, 1408.125,
1408.75, 1409.375, 1410.0

D2 For the specialized, high-loading retrieval

1300., 1300.625, 1301.25, 1301.875, 1302.5, 1303.125,
1303.75, 1304.375, 1305., 1305.625, 1306.25, 1306.875,
1307.5, 1308.125, 1308.75, 1309.375, 1310., 1310.625,
1311.25, 1311.875, 1312.5, 1313.125, 1313.75, 1314.375,
1315., 1315.625, 1316.25, 1316.875, 1317.5, 1318.125,
1318.75, 1319.375, 1320., 1320.625, 1321.25, 1321.875,
1322.5, 1323.125, 1323.75, 1324.375, 1325., 1325.625,
1326.25, 1326.875, 1327.5, 1328.125, 1328.75, 1329.375,
1330., 1330.625, 1331.25, 1331.875, 1332.5, 1362.5,
1363.125, 1363.75, 1387.5, 1388.125, 1388.75, 1389.375,
1390., 1390.625, 1391.25, 1391.875, 1392.5, 1393.125,
1393.75, 1394.375, 1395., 1395.625, 1396.25, 1396.875,
1397.5, 1398.125, 1398.75, 1399.375, 1400., 1400.625,
1401.25, 1401.875, 1402.5, 1403.125, 1403.75, 1404.375,

1405., 1405.625, 1406.25, 1406.875, 1407.5, 1408.125,
1408.75, 1409.375, 1410.

Appendix E: Probabilistic time series

E1 Probabilistic mass

In general, the total cloud mass can be calculated by integrat-
ing the total VCD X̂(h∞) over the SO2 cloud region. In the
present study, we make this calculation after interpolating the
CrIS retrievals onto an equal area grid (grid cells of constant
area δA). Because the sets of measurements are normally
distributed and assumed independent with means E[X̂i(h∞)]
and variances Var[X̂i(h∞)], their sum is also normally dis-
tributed (DeGroot and Schervish, 2012):

M ∼N (E(M),Var(M)), (E1)

where the mean is

E(M)= κδA
∑
i

E
[
X̂i (h∞)

]
, (E2)

and variance is

Var(M)= (κδA)2
∑
i

Var
[
X̂i (h∞)

]
, (E3)

and M has units of kilotons (kt) of SO2 and the factor
κ = 2.8617× 10−11 kt m−2 DU−1 has been included for di-
mensional consistency with VCD measured in DU. This pa-
rameterizes the total cloud mass as a Gaussian PDF for any
period of data coverage.

E2 Probabilistic decay rate coefficient and e-folding
time

We treat the above time series of PDFs of SO2 mass as a ran-
dom process Mt . As a continuous process, the conversion of
SO2 into sulfur aerosols can be modeled kinetically by the
differential equation Ṁt =−ktMt , where kt is the instanta-
neous decay rate coefficient. Below we generate kt and the
e-folding time τt = k−1

t as random processes from Mt .
To make this calculation in practice, a finite difference for-

mula is needed for Ṁt . We write this as a general 2α order
accuracy central finite difference formula for the first deriva-
tive:

Ṁt ≈
1
1t

α∑
i=−α

δt+iMt+i, (E4)

where δt+i is the central difference scheme coefficient. As
before, the weighted sum of normal random variables is also
normally distributed. Consequently,

Ṁt ∼N
(
E
(
Ṁt

)
,Var

(
Ṁt

))
, (E5)
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where the mean is

E
(
Ṁt

)
=

1
1t

α∑
i=−α

δt+iE(Mt+i) , (E6)

and variance is

Var
(
Ṁt

)
=

1
(1t)2

[ α∑
i=−α

δ2
t+iVar(Mt+i)

+ 2
∑
i 6=j

δt+iδt+jCov
(
Mt+i,Mt+j

)]
=

1
(1t)2

α∑
i=−α

δ2
t+iVar(Mt+i) , (E7)

where each covariance is zero because each measurement
is independent. Because each Ṁt is normally distributed,
this sequence of means and variances fully parameterizes
its random process. To calculate kt , we also must calculate
Cov(Mt ,Ṁt ):

Cov
(
Mt ,Ṁt

)
=

1
1t

E

[
Mt

α∑
i=−α

δt+iMt+i

]

−
1
1t

E(Mt )

α∑
i=−α

δt+iE(Mt+i)

=
1
1t

α∑
i=−α

δt+iCov(Mt ,Mt+i)

=
1
1t
δtVar(Mt )= 0 (E8)

where the last two equalities follow from the independence
of each Mt and the fact that the central coefficient (δt ) in
any central finite difference for the first derivative is zero.
For non-central differences, this is not zero, the last equality
does not hold, and Cov(Mt ,Ṁt )=

1
1t
δtVar(Mt ).

With random processes for the mass and mass rate of
change calculated we can calculate the decay rate coefficient
as a function of these two random processes:

kt =−
Ṁt

Mt

, (E9)

which is a ratio of two Gaussian random processes which
may be correlated depending on the finite differencing
scheme. The calculation of such a ratio of random variables
(Fieller, 1932; Hinkley, 1969) describes the uncertainty of
the decay coefficient at each time as a PDF fkt (k).

Calculating the PDF for the instantaneous e-folding time
τt = k

−1
t is performed by applying standard rules for func-

tions of random variables (from DeGroot and Schervish,
2012):

fτt (τ )=
1
τ 2 fkt

(
1
τ

)
. (E10)

Notably, the distributions are not Gaussian either the decay
rate coefficient or the e-folding time .
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Code and data availability. The Level-1B CrIS data utilized
in this study are available from the Goddard Earth Sci-
ences Data and Information Services Center (GES-DISC,
https://disc.gsfc.nasa.gov/, last access: 26 October 2020;
https://doi.org/10.5067/EETSCFBDBLX6, Revercomb and
Strow, 2018). The tropopause data used here to define the lower
limit of the stratosphere are available from the NOAA Earth
Science Research Laboratory Physical Sciences Laboratory
(NOAA/OAR/ESRL PSL, https://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis.html, Kalnay et al., 1996) The code
developed to generate samples of the SO2-free background
spectrum by the NORTA process is available in a git repository at
https://gitlab.ssec.wisc.edu/dhyman/trace_gas_background_spectra
(Hyman, 2020). This repository also includes a list of the SO2-free
days discussed in the text, as well as GES-DISC links for all
of the CrIS granules collected during those days. The Eumetsat
IASI Level-2 SO2 height and VCD data are available from the
AERIS IASI portal (https://iasi.aeris-data.fr/; Clarisse et al.,
2012, 2014). IASI is a joint mission of EUMETSAT and the
Centre National dÉtudes Spatiales (CNES, France). The au-
thors acknowledge the AERIS data infrastructure for providing
access to the IASI data in this study and ULB-LATMOS for
the development of the retrieval algorithms. S5P TROPOMI
Level-2 SO2 data are available from the Sentinel-5p Pre-
Operations Data Hub https://s5phub.copernicus.eu/dhus/#/home
(https://doi.org/10.5270/S5P-74eidii, Copernicus Sentinel-
5P, 2020). NASA CALIOP data are available from
https://www-calipso.larc.nasa.gov/tools/data_avail/ (Winker
et al., 2009).
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