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Abstract. The Ozone Monitoring Instrument (OMI) has
been providing global observations of SO2 pollution since
2004. Here we introduce the new anthropogenic SO2 ver-
tical column density (VCD) dataset in the version 2 OMI
SO2 product (OMSO2 V2). As with the previous version
(OMSO2 V1.3), the new dataset is generated with an al-
gorithm based on principal component analysis of OMI ra-
diances but features several updates. The most important
among those is the use of expanded lookup tables and model
a priori profiles to estimate SO2 Jacobians for individual
OMI pixels, in order to better characterize pixel-to-pixel vari-
ations in SO2 sensitivity including over snow and ice. Addi-
tionally, new data screening and spectral fitting schemes have
been implemented to improve the quality of the spectral fit.
As compared with the planetary boundary layer SO2 dataset
in OMSO2 V1.3, the new dataset has substantially better data
quality, especially over areas that are relatively clean or af-
fected by the South Atlantic Anomaly. The updated retrievals
over snow/ice yield more realistic seasonal changes in SO2 at
high latitudes and offer enhanced sensitivity to sources dur-
ing wintertime. An error analysis has been conducted to as-
sess uncertainties in SO2 VCDs from both the spectral fit
and Jacobian calculations. The uncertainties from spectral
fitting are reflected in SO2 slant column densities (SCDs) and
largely depend on the signal-to-noise ratio of the measured
radiances, as implied by the generally smaller SCD uncer-
tainties over clouds or for smaller solar zenith angles. The

SCD uncertainties for individual pixels are estimated to be
∼ 0.15–0.3 DU (Dobson units) between∼ 40◦ S and∼ 40◦ N
and to be ∼ 0.2–0.5 DU at higher latitudes. The uncertainties
from the Jacobians are approximately ∼ 50 %–100 % over
polluted areas and are primarily attributed to errors in SO2
a priori profiles and cloud pressures, as well as the lack of
explicit treatment for aerosols. Finally, the daily mean and
median SCDs over the presumably SO2-free equatorial east
Pacific have increased by only∼ 0.0035 DU and∼ 0.003 DU
respectively over the entire 15-year OMI record, while the
standard deviation of SCDs has grown by only ∼ 0.02 DU or
∼ 10%. Such remarkable long-term stability makes the new
dataset particularly suitable for detecting regional changes in
SO2 pollution.

1 Introduction

Despite substantial overall downward trends in recent years
(e.g., Aas et al., 2019; Klimont et al., 2013), sulfur dioxide
(SO2) emitted from anthropogenic sources (e.g., coal-fired
power plants) continues to have significant impacts on the
environment (Seinfeld and Pandis, 2006). SO2 is toxic and a
regulated criteria air pollutant in many countries (e.g., U.S.
Environmental Protection Agency, 2010). It is also a precur-
sor to secondary sulfate aerosols that contribute to smog and
haze (e.g., Huang et al., 2014), cause acid deposition (e.g.,
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Likens et al., 1996), and influence regional climate (e.g.,
Chuang et al., 1997; Haywood and Boucher, 2000). Removal
of SO2 and other short-lived pollutants is expected to bring
health benefits (Lelieveld et al., 2019) but may also lead to
additional warming (Samset et al., 2018). The ability to mon-
itor global and regional changes in SO2 pollution is thus crit-
ical for predicting and mitigating both air pollution and cli-
mate change.

Since the 1990s, a series of hyperspectral satellite sensors
that measure solar backscattered radiances in the ultraviolet
(UV) spectral range of ∼ 300–400 nm has provided global
monitoring of anthropogenic SO2 (e.g., Eisinger and Bur-
rows, 1998; Lee et al., 2008; Nowlan et al., 2011; Theys et
al., 2017; Valks and Loyola, 2008; Yang et al., 2013; Zhang
et al., 2017). Among these sensors, the Ozone Monitoring
Instrument (OMI) aboard the NASA Earth Observing Sys-
tem Aura spacecraft (Levelt et al., 2006) is particularly use-
ful for SO2 observations, thanks to its high spatial resolu-
tion (best at its launch in 2004) and daily contiguous global
coverage. The 15-year and growing OMI SO2 data record
is the longest among those from similar UV backscatter in-
struments (Levelt et al., 2018), having facilitated a number
of studies on regional trends of SO2 pollution. For example,
OMI data have provided observational evidence on the ef-
ficacy of SO2 control measures in China (Li et al., 2010;
2017a), confirmed significant further reductions in SO2 emis-
sions from the United States (Fioletov et al., 2011; He et al.,
2016) and Europe (Krotkov et al., 2016), and detected large
recent increases in SO2 pollution over India (e.g., Li et al.,
2017a; Lu et al., 2013). OMI SO2 data have also helped to
quantify emissions from different types of sources (e.g., Carn
et al., 2017; Fioletov et al., 2016; Kharol et al., 2020; Zhang
et al., 2019), to identify sources that are missing or under-
estimated in bottom-up emission inventories (McLinden et
al., 2016), and to build a hybrid SO2 inventory that com-
bines both top-down and bottom-up emission estimates (Liu
et al., 2018). More recently, OMI SO2 data have been used
to study changes in acid deposition over the eastern United
States (Fedkin et al., 2019) and China (Zhang et al., 2020).

Several different techniques have been applied to OMI
SO2 retrievals. The first-generation OMI standard SO2 total
vertical column density (VCD) product (OMSO2 V1.1 and
earlier versions; see Table 1 for a summary of different ver-
sions of OMSO2 product) is based on the band residual dif-
ference (BRD) algorithm (Krotkov et al., 2006) for planetary
boundary layer (PBL) SO2 VCDs (primarily for monitoring
anthropogenic pollution) and the linear fit (LF) algorithm
(Yang et al., 2007) for volcanic SO2 VCDs. Both are dis-
crete wavelength algorithms that only use a small subset of
OMI wavelengths in the spectral range of interest. They are
fast and sensitive to sources such as large power plants and
degassing volcanoes but are relatively noisy and are prone to
artifacts. Starting from OMSO2 V1.2, a new retrieval tech-
nique based on principal component analysis (PCA) of OMI-
measured radiances (Li et al., 2013) was introduced to pro-

duce the OMI PBL SO2 dataset. The PCA-based spectral fit-
ting algorithm makes use of all available OMI wavelengths
between 310.5 and 340 nm, suppressing retrieval noise by a
factor of 2 as compared with the BRD algorithm and largely
eliminating unphysical biases over clean background areas.
These improvements allow SO2 point sources as small as
30 kt (103 t) per year to be quantified (Fioletov et al., 2015).
In OMSO2 V1.3, an extended version of the OMI PCA algo-
rithm (Li et al., 2017b) was developed for the updated vol-
canic SO2 dataset. The same algorithm has also been imple-
mented with the Ozone Mapping Profiler Suite (OMPS) nadir
mapper aboard the NASA/NOAA Suomi National Polar-
orbiting Partnership (SNPP) spacecraft, thereby generating
consistent retrievals with OMI (Li et al., 2017b; Zhang et
al., 2017). Additionally, comparisons of OMI SO2 retrievals
between the PCA algorithm and a differential optical absorp-
tion spectroscopy (DOAS) algorithm (Theys et al., 2015) also
show generally good agreement.

While the OMI PBL SO2 dataset produced with the PCA
algorithm has significantly improved data quality as com-
pared with the earlier version based on the BRD algorithm,
the two algorithms share a common limitation: they both use
a constant air mass factor (AMF) or SO2 Jacobian spectrum
for all pixels. The AMFs (or Jacobians) represent the sensi-
tivity of OMI radiances to SO2 total VCDs, and they depend
on several factors including ozone amount and profile, SO2
a priori profile shape, surface reflectivity, cloudiness, surface
and cloud pressure, and solar and viewing zenith angles. The
constant Jacobian spectrum used in the latest OMI PBL SO2
dataset (OMSO2 V1.3) is precomputed with the VLIDORT
radiative transfer (RT) code (Spurr, 2008), assuming cloud-
free conditions with SO2 predominantly in the lowest 1 km
of the atmosphere. The spectrum does not take into account
variations in geometry, O3, clouds, or surface reflectivity (see
Li et al., 2013 for details). This simplification enhances com-
putation efficiency but also results in relatively large biases,
particularly for pixels over cloudy scenes or background ar-
eas and pixels near the edges of the swath where absorption
due to O3 can substantially change SO2 Jacobians.

Here, we describe the version 2 OMI SO2 total vertical
column density product (OMSO2 V2). As with the previous
versions, OMSO2 V2 includes datasets for both volcanic and
anthropogenic SO2. As compared with OMSO2 V1.3, the
volcanic SO2 dataset in OMSO2 V2 is largely unchanged,
while the anthropogenic SO2 algorithm has seen some ma-
jor updates and will be the focus of this paper. In particu-
lar, a set of new lookup tables and model-based a priori pro-
files are now used to estimate Jacobians for anthropogenic
SO2 retrievals for each individual pixel, thus better charac-
terizing the sensitivity to SO2 at different parts of the OMI
sensor swath (e.g., nadir pixels vs. swath edges), over differ-
ent regions (e.g., polluted vs. clean), and in different seasons
(e.g., summer vs. winter). This helps to further improve the
retrieval quality. The rest of the paper is organized as fol-
lows: in Sect. 2 we provide a description of the new OMI
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Table 1. Summary of the main characteristics of different versions of the standard OMI SO2 (OMSO2) product.

Product Anthropogenic/PBL SO2 algorithm Volcanic SO2 algorithm∗ References

OMSO2 V1.1 Band residual difference fixed air mass factor Linear Fit Krotkov et al. (2006)
and before Yang et al. (2007)
OMSO2 V1.2 Principal component analysis fixed Jacobians Linear fit Li et al. (2013)
OMSO2 V1.3 Principal component analysis fixed Jacobians Principal component analysis Li et al. (2017b)
OMSO2 V2.0 Principal component analysis pixel-specific Jacobians Principal component analysis This study

∗ Volcanic SO2 retrievals in all versions of OMSO2 use pixel-specific Jacobians.

anthropogenic SO2 algorithm. This is followed by data qual-
ity assessment in Sect. 3 and examples from the new anthro-
pogenic SO2 dataset in Sect. 4.

2 Algorithm description

2.1 Algorithm overview

The new anthropogenic SO2 algorithm for OMSO2 V2 intro-
duces several new components but retains the overall frame-
work of the original PCA-based OMI PBL SO2 algorithm
that has been described in detail elsewhere (Li et al., 2013).
Briefly, the algorithm employs a PCA technique to the mea-
sured radiance spectra from a number of satellite pixels to
extract spectral features in the form of principal components
(PCs). The PCs are ranked in a descending order according
to their spectral variance content. In the absence of large SO2
plumes, the leading PCs that contain the most variance (see
Fig. 1 in Li et al. 2013 for an example) are typically associ-
ated with physical processes other than SO2 absorption (e.g.,
ozone absorption, rotational Raman scattering) or some mea-
surement features (e.g., wavelength shift, dark current). By
fitting a set of nν PCs (νi) along with SO2 Jacobians ( ∂N

∂�SO2
)

to the measured radiances, we obtain an estimate of the SO2
VCD (�SO2), at the same time minimizing the interferences
from those processes represented by the PCs:

N
(
ω,�SO2

)
=

∑nv

i=1
ωivi +�SO2

∂N

∂�SO2

, (1)

where N is for the sun-normalized radiance spectrum for
a satellite pixel in N value (N(λ)=−100× log10(Imeas
(λ)/F (λ), Imeas and F are the measured radiance and solar
irradiance at wavelength λ, respectively), and ωi is the de-
rived coefficient for the PC νi . For OMI retrievals, the algo-
rithm processes one orbital swath at a time, with each swath
comprising 60 rows (also referred to as cross-track positions)
across the flight direction of the Aura spacecraft (cross-track)
and each row containing∼ 1600 pixels along the flight direc-
tion (along-track). For each swath, the algorithm also con-
ducts PCA and spectral fit for each row separately, effectively
treating them as different detectors.

The algorithm flowchart in Fig. 1 provides an overview
of the new OMI anthropogenic SO2 algorithm. It consists of

three main components: (1) preprocessing and data filtering
in order to select certain pixels within an OMI row for PCA
analysis, (2) initial estimates of SO2 vertical column densi-
ties (VCDs) made assuming a constant Jacobian spectrum,
and (3) determination of pixel-specific Jacobians and final
estimates of SO2 VCDs. More detailed descriptions of these
components are given below.

2.2 Preprocessing and data filtering

An important prerequisite for the spectral fit in Eq. (1) to
work properly is that the PCs contain minimal spectral struc-
tures from SO2 absorption. This condition is satisfied for
the vast majority of atmospheric scenarios, given that back-
ground SO2 loading is normally quite small (< 0.1 Dobson
units, 1 DU= 2.69× 1016 molecules cm−2) over most areas.
On the other hand, the absorption of radiances by SO2 can
be substantial in the presence of large volcanic plumes or
over heavily polluted areas, leading to apparent SO2 struc-
tures in some of the leading PCs. The preprocessing and
data-filtering component of the algorithm aims to flag those
pixels with strong SO2 signals and exclude them from the
PCA analysis, thus minimizing their impacts on the spec-
tral fit. Likewise, pixels having large solar zenith angles
(SZAs> 75◦) or affected by the OMI row anomaly (sig-
nal suppression at certain OMI rows; see Schenkeveld et
al., 2017, for more information) are also filtered out using
the dynamic row anomaly flag from the OMI L1B data. It
should be pointed out that SO2 VCD retrievals are conducted
for all pixels with SZA< 75◦ that are unaffected by the row
anomaly, even if they are flagged for SO2 and excluded from
the PCA analysis.

In the first step of data preprocessing, pixels with rela-
tively large volcanic signals are flagged based on ozone re-
trieval residuals from two wavelength pairs (313/314 and
314/315 nm). We first estimate OMI radiances at these wave-
lengths using the total column O3 from the OMTO3 product
(Bhartia, 2005) in conjunction with the simple Lambertian
equivalent reflectivity (SLER) derived at the surface (Ahmad
et al., 2004), assuming no SO2. The residuals are the differ-
ences between the measured and estimated logarithmic radi-
ances. When there is indeed little SO2 in the atmosphere, the
residuals are similar for the wavelength pairs (e.g., 313 and
314 nm). For volcanic eruptions, however, the residuals at
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Figure 1. Flowchart of the PCA-based spectral fitting algorithm for the anthropogenic SO2 dataset in the OMSO2 V2 product.

313 nm become much greater due to stronger SO2 absorption
that is unaccounted for in O3 retrievals. A large difference in
O3 residuals between 313 and 314 nm or between 314 and
315 nm for a given pixel thus signals relatively large abun-
dance of SO2, and that pixel is flagged. Side-by-side com-
parisons between the flagged pixels and OMI volcanic SO2
retrievals (Li et al., 2017b) indicate that the flagging scheme
is effective at identifying pixels with∼ 5 DU or more of SO2
(assuming plume centered at ∼ 18 km).

The second step of the preprocessing attempts to fur-
ther screen for SO2. After rejecting pixels with large SZAs
or flagged for volcanic SO2, the measured radiance spec-
tra between 310.5 and 340 nm from the remaining (typically
∼ 1200–1300) pixels in the row are subject to a PCA analy-
sis. As large volcanic SO2 signals have already been screened
out, the first five derived PCs are usually free from SO2 spec-
tral structures. We fit those PCs to the measured radiances
and calculate fitting residuals for each pixel. Without SO2
structures in the PCs or the SO2 Jacobian term on the right-
hand side (RHS) of Eq. (1), the fitting residuals for a pixel
having sizable SO2 (e.g., those over heavily polluted areas)
are expected to be correlated with the SO2 cross sections. We
flag pixels that have a relatively large absolute cross product
between the fitting residuals and a normalized spectrum of
SO2 cross sections.

In the final step of the preprocessing, a second PCA anal-
ysis is conducted for the radiance spectra within 310.5–
340 nm from a given OMI row, this time excluding all pixels
that have been flagged for SO2. The resulted PCs are used
as input to the second component of the algorithm for initial
estimates of SO2 VCDs.

2.3 Initial estimates of SO2 VCDs

To make initial estimates of SO2 VCDs (�SO2_ini), we carry
out a spectral fit following Eq. (1) using the first six PCs from
the final preprocessing step (see Sect. 2.2) along with a fixed
SO2 Jacobian spectrum identical to that for the PBL SO2 re-
trievals in OMSO2 V1.3. Pixels that are not flagged for SO2
in the preprocessing and have relatively small initial SO2
VCDs, with−2σ <�SO2_ini< 1.5σ (where σ is the standard
deviation of �SO2_ini), are selected for a new round of PCA
analysis. The updated PCs are then used in another spectral
fit to produce updated VCD estimates (Fig. 1). Note that the
threshold for pixel selection was set at±1.5σ in our previous
PBL SO2 algorithm (Li et al., 2013). Now the lower limit has
been relaxed to reduce the minor negative biases over some
areas in the previous product. Additionally, the threshold is
further relaxed by 50 %, to −3σ <�SO2_ini< 2.25σ for pix-
els with SZA> 60◦, considering that the VCDs at larger solar
zenith angles tend to be noisier due to lower signal-to-noise
ratio in the radiance data.

This process of spectral fit, pixel selection, updated PCA,
and updated spectral fit as described above is repeated three
times. For the last two iterations, the OMI row is divided
into three subsectors based on the SZAs: a tropical subsector
with small solar zenith angles (SZA<SZAmin+ 0.4× (75◦

– SZAmin), where SZAmin is the minimal SZA of the row)
and two extratropical ones south and north of it. As dis-
cussed in Li et al. (2013), PCs derived from these subsec-
tors more closely represent local observation conditions and
reduce retrieval noise and biases. For these two iterations,
we also use up to nν = 30 PCs in the spectral fit. The ex-
act value of nν is determined by checking the correlation
between the PCs and the SO2 cross sections. If for exam-
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ple the ith PC has significant SO2 spectral structures, only
nν = i–1 PCs are used in the spectral fit (see Li et al., 2013,
for more discussion on the number of PCs included in the
fit). With effective SO2 screening steps in data preprocess-
ing (Sect. 2.2), nν = 30 PCs are used in the fit most of the
time. Also as pixels affected by row anomaly are excluded
from retrievals during the data-filtering step (see Sect. 2.2),
the OMI row anomaly has a minimal effect on nν . After these
three iterations, the finalized PCs are transferred to the third
component of the algorithm.

2.4 Determination of SO2 Jacobians and final estimates
of SO2 VCDs

In the third and final component of the algorithm, we use the
finalized PCs (Sect. 2.3) and the SO2 cross sections (in place
of Jacobians in Eq. 1) to estimate SO2 slant column densi-
ties (SCDs). In addition, we also use pixel-specific Jacobian
spectra for the final SO2 VCDs. To this end, we employ a ta-
ble lookup approach and model-based a priori profiles to es-
timate SO2 Jacobians for individual OMI pixels (Sect. 2.4.1
and 2.4.2). Special consideration is required for pixels cov-
ered by snow or ice (Sect. 2.4.3), as well as those over areas
affected by the South Atlantic Anomaly (SAA, Sect. 2.4.4)

2.4.1 Jacobian lookup tables

The total column SO2 Jacobians ( ∂ln(I )
∂�SO2

) and AMFs

(− ∂ln(I )
∂τSO2

) represent the sensitivity of the natural logarithm
of top of atmosphere (TOA), sun-normalized radiances (I =
Imeas/F , the ratio between the measured radiances, Imeas,
and solar irradiances, F ) to perturbations in SO2 VCD
(�SO2) and SO2 optical thickness (τSO2) in the entire atmo-
spheric column, respectively. The two derivatives are linked
through the absorption cross sections of SO2. They can be
calculated from the vertically resolved layer Jacobians (or
box AMFs) and a priori profile shape of SO2, for example

∂ln(I )
∂�SO2

=

∫ TOA

0
m(z)nSO2 (z)dz, (2)

where nSO2(z) is the normalized a priori profile or shape fac-
tor that represents the fraction of SO2 molecules in layer z to
the overall number of SO2 molecules in the entire column.
The layer Jacobians (sometimes also referred to as scatter-
ing weights), m(z), are defined as the sensitivity of ln(I ) to
changes in �SO2(z), the partial column SO2 density within
layer z:

m(z)=
∂ln(I )
∂�SO2 (z)

. (3)

Sun-normalized TOA radiances I and layer Jacobians m(z)
at a wavelength λ depend on several factors including O3
(both the total amount and vertical distribution), observation
geometry, and the pressure and reflectivity of the underlying

clouds or surfaces. Following the same parameterization ap-
proach as in Li et al. (2017b), I in a Rayleigh atmosphere
can be calculated with the following equation:

I = I0 (θ0,θ)+ I1 (θ0,θ)cosφ+ I2 (θ0,θ)cos2φ

+
RIr (θ0,θ)

(1−RSb)
, (4)

where θ0, θ , and φ stand for SZA, viewing zenith angle
(VZA), and relative azimuth angle (RAA), respectively. I0,
I1, and I2 are Fourier expansion coefficients in φ; together
these terms represent the atmospheric component of I . The
fourth term on the RHS of Eq. (4) represents the surface com-
ponent of I , in which RIr is the TOA radiance reflected once
by the underlying surface (that has a Lambertian reflectivity
of R) and transmitted through the atmosphere, Sb is the frac-
tion of the surface-reflected radiance that is scattered back to
the surface, and (1–RSb) accounts for the multiple reflections
between the surface and the atmosphere. The layer Jacobians
can then be parameterized differentiating Eq. (4):

m(z)=

[
∂I0 (θ0,θ)

∂�SO2 (z)
+
∂I1 (θ0,θ)

∂�SO2 (z)
cosφ

+
∂I2 (θ0,θ)

∂�SO2 (z)
cos2φ+

R

(1−RSb)

∂Ir (θ0,θ)

∂�SO2 (z)

+
R2Ir (θ0,θ)

(1−RSb)
2

∂Sb

∂�SO2 (z)

]
· I−1. (5)

With Eqs. (4) and (5), we can determine the layer Jacobians
for any given φ and R from multidimensional lookup ta-
bles that contain I0, I1, I2, Ir, and Sb and their derivatives
with respect to �SO2(z) for different SZAs, VZAs, underly-
ing surface/cloud pressures, and O3 amounts and profiles. To
account for the effects of O3 on layer Jacobians, we use a
climatology of ozone profiles that depends on the total ozone
amount developed by Labow et al. (2015) from ozone sonde
and Microwave Limb Sounder (MLS) measurements. The
profile Jacobian elements in Eq. (5) may be calculated conve-
niently using the VLIDORT radiative transfer model, which
has the ability to generate any sets of analytically calculated
Jacobians in a polarized multilayer atmosphere. For each of
the 46 ozone climatology profiles, we ran the VLIDORT
to build a Jacobian lookup table (LUT) with dimensions of
6× 8× 8× 72× 801. The first three dimensions (6× 8× 8)
correspond to the different nodes in the lookup table for the
underlying surface/cloud pressures, SZAs, and VZAs (see
Table 2 for details). The last two dimensions are necessary
for storing vertically (72 layers, 0.01–1013.25 hPa) and spec-
trally (305–345 nm at 0.05 nm resolution) resolved parame-
ters for Jacobians.

The effects of clouds on SO2 Jacobians are accounted for
with the independent pixel approximation (IPA) approach
that is commonly employed in UV/VIS trace gas retrievals
(e.g., Ahmad et al., 2004; Koelemeijer et al., 2001; Martin
et al., 2002; Seftor et al., 1994). For each OMI pixel, we
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Table 2. Nodes of the solar zenith angle (SZA), viewing zenith angle (VZA), and surface/cloud pressure, as used in the precomputed SO2
Jacobians lookup tables.

Parameter Nodes

SZA 0◦ 15◦ 30◦ 45◦ 60◦ 70◦ 77◦ 81◦

VZA 0◦ 15◦ 30◦ 45◦ 60◦ 70◦ 75◦ 80◦

Surface/cloud 243.2 374.9 526.9 638.3 841.0 1013.2
pressure (hPa)

use multidimensional interpolation to estimate layer Jaco-
bians for both cloudy and cloud-free parts of the pixel. For
the cloudy part, the optical centroid cloud pressure (OCP)
from the OMI Raman scattering cloud product (OMCLDRR,
Joiner and Vasilkov, 2006), retrieved at wavelengths near the
SO2 fitting window, is used and R is taken to be 0.8. For
the cloud-free part, the surface reflectivity and surface pres-
sure assumed in OMCLDRR retrievals are used. The cloudy
(mcld(z)) and cloud-free (mclr(z)) layer Jacobians at layer z
are weighted with the cloud radiance fraction (CRF) in the
SO2 fitting window:

m(z)=mcld (z)CRF+mclr (z)(1−CRF) , (6)

CRF= fc
Icld

Imeas
, (7)

where Imeas and Icld are measured TOA radiances and es-
timated cloudy radiances, respectively, and fc is the effec-
tive cloud fraction retrieved by the OMCLDRR algorithm.
Following Eq. (2), the interpolated layer Jacobian profile is
combined with the a priori profile shape factor selected based
on the latitude, longitude, and time (month of the year) of
the OMI measurement (see Sect. 2.4.2) to produce SO2 col-
umn Jacobians between 305 and 340 nm at 0.05 nm resolu-
tion. The high-resolution Jacobians are then convolved using
the OMI slit function.

2.4.2 GEOS-5 a priori profiles

For a priori profile shape factors (nSO2(z)), we use GEOS-5
(Goddard Earth Observing System, Version 5) global model
simulations (72 vertical layers, 0.5◦ latitude by 0.667◦ lon-
gitude horizonal resolution) for the time period 2004–2014.
The output from GEOS-5 is sampled at the OMI overpass
time and normalized against the model-simulated total SO2
VCD within each grid cell to produce monthly shape factor
profiles. For each month of the year, these shape factor pro-
files are then averaged over the entire simulation period to
generate monthly climatology profiles for use as a priori in
our SO2 retrievals.

2.4.3 Retrievals for pixels covered by snow or ice

From Eq. (5), one would expect that highly reflective
snow/ice-covered surfaces could enhance the sensitivity of

OMI to SO2 particularly at lower altitudes. Retrievals over
these areas in the previous OMI PBL SO2 dataset (OMSO2
V1.3) are however biased high, owing to the use of a con-
stant Jacobian spectrum. Here we use OMCLDRR product
and snow/ice flag in the OMI L1B data to identify pixels
that are cloud-free and covered by snow/ice, following an
approach proposed by Vasilkov et al. (2010). For OMI pix-
els flagged for snow/ice in the L1B data (OML1BRGU), we
compare the terrain pressure with the effective scene pressure
retrieved by the OMCLDRR algorithm (Joiner and Vasilkov,
2006). If the difference between the two is within 50 hPa, the
pixel is likely cloud-free. We then assume a cloud fraction
of zero and use the simple Lambertian equivalent reflectiv-
ity (SLER) derived for that pixel in Jacobian calculations.
On the other hand, if the difference is greater than 100 hPa,
the pixel is likely cloudy, and the cloud fraction is set to one
in Jacobian calculations. For pixels having scene and terrain
pressure differences between 50 and 100 hPa, unambiguous
cloud detection is not possible. While we still assume cloud-
free conditions in the Jacobian calculations for such pixels,
they are flagged and should be excluded from data analysis
due to greater uncertainty.

2.4.4 Retrieval noise suppression for areas affected by
the South Atlantic Anomaly

Polar-orbiting satellite sensors like OMI are often subject to
greater fluxes of high-energy particles when flying over ar-
eas affected by the South Atlantic Anomaly (SAA), lead-
ing to larger noise in trace gas retrievals. Following Richter
et al. (2011), we have implemented a two-step spectral
fit to suppress SO2 retrieval noise over the SAA region.
The scheme examines the spectral fitting residual at each
wavelength between 310.5 and 340 nm for all OMI pixels
within the SAA region (defined here as the domain 0–45◦ S,
100◦W–5◦ E). If a pixel has wavelengths with relatively large
fitting residuals (beyond ±0.2 N value), these wavelengths
are excluded in a second step spectral fit that produces the
final SO2 VCD for the pixel. As shown in the following sec-
tions, this two-step scheme effectively reduces retrieval noise
over the SAA region.

Atmos. Meas. Tech., 13, 6175–6191, 2020 https://doi.org/10.5194/amt-13-6175-2020



C. Li et al.: New Anthropogenic SO2 Vertical Column Density Dataset 6181

3 Quality assessment

Uncertainties in the retrieved SO2 VCDs arise from both the
spectral fit and the Jacobian calculation parts of the algorithm
that are largely independent from each other. Uncertainties in
the former can originate from measurement errors as well as
the basis functions (i.e., the PCs) and can be represented as
uncertainties in SO2 SCDs. On the other hand, uncertainties
in the SO2 Jacobians are primarily due to the various assump-
tions inherent in the radiative transfer model and also to un-
certainties in input parameters used in the RT calculations.
In this section, we assess the uncertainties (Sect. 3.1) and
long-term stability (Sect. 3.2) in SCDs, and we also discuss
various factors that contribute to the uncertainties in SO2 Ja-
cobians (Sect. 3.3).

3.1 Uncertainties in slant column densities (SCDs)

Two different methods have been used to estimate uncertain-
ties in SO2 SCDs: the first based on the fitting residuals with
an approach similar to that for DOAS uncertainty estimates
and the other based on a statistical analysis of SO2 SCDs
over the remote Pacific.

3.1.1 SCD uncertainties estimated from fitting
residuals

We can express the basis functions on the RHS of Eq. (1)
in terms of a matrix A that has dimensions of K ×M . The
number of columns in A, M = nν + 1, represents the nν PCs
plus the SO2 cross-section spectrum included in the least
squares fit, whereas the row dimension K is the number of
OMI wavelengths at which the PCs and SO2 cross sections
are specified. Following a common approach for estimating
uncertainty in DOAS spectral fitting (e.g., Zara et al., 2018),
the uncertainty (εj ) in the j th fitted parameter is the square
root of the j th diagonal element of the covariance matrix:

εj =

√
χ2
(
ATA

)−1
jj
, (8)

where χ2 can be calculated from the fitting residuals (r(λk),
the difference between the measured and fitted N values) at
all wavelengths in the fitting window and the degree of free-
dom (K −M):

χ2
=

1
K −M

k=K∑
k=1

r2 (λk) . (9)

The estimated SCD uncertainties for four selected OMI
swaths over the remote Pacific in different seasons in 2007
are given in Fig. 2i–l, along with the SCDs (Fig. 2a–d) and
scene reflectivity at 354 nm (Fig. 2e–h). As can be seen from
the plots, the SCD uncertainties for most pixels are within the
range of 0.05–0.25 DU and demonstrate substantial spatial
variability. To the first order, there is an apparent connection

between the estimated uncertainties and the reflectivity. Pix-
els over bright surfaces covered by clouds (e.g., east of New
Zealand in orbit 13160) or snow/ice (e.g., over the Antarc-
tica) often have smaller uncertainties. This is probably due
to enhanced signal-to-noise ratio in OMI-measured radiances
over highly reflective scenes, suggesting that the measure-
ment noise is probably a driving factor for SCD uncertainties.
The estimated SCD uncertainties are also generally greater at
higher latitudes, again probably reflecting strong light extinc-
tion and reduced signal-to-noise ratio at larger solar zenith
angles and larger O3 amounts. There is also a gradient in
SCD uncertainties, for example, just south of Hawaii in or-
bit 13160. Recall that pixels from each row are grouped into
three subsectors for the final PCA (see Sect. 2.4), based on
their solar zenith angles. And the gradient is likely caused by
the changes in basis functions (i.e., the PCs) over the tran-
sition zones between the tropical and the extratropical sub-
sectors. Additionally, the SCD uncertainties also show some
cross-track dependence particularly at lower latitudes, be-
ing mostly smaller on the eastern side of the swath than on
the western side. The reason for this cross-track difference
is not yet fully understood, but it could be due to stronger
reflection of sky light on the eastern side of the swath over
ocean (Vasilkov et al., 2017). Similar cross-track dependence
has also been found over land and could be due to gener-
ally stronger scattering in the backscattering direction (on the
eastern side) than in the forward scattering direction (on the
western side), as demonstrated by Qin et al. (2019).

As expected, the retrieved SCDs are quite small over the
remote Pacific covered by these swaths (Fig. 2a–d). As a re-
sult, the relative uncertainties (calculated as the ratio between
the estimated uncertainties and the retrieved SCDs) are fairly
large (see Fig. S1 in the Supplement). About half of the pix-
els have relative uncertainties within ±100 %, and ∼ 80 %
have relative uncertainties within ±275 %. In contrast, pix-
els that have substantial real SO2 signals (e.g., downwind of
the Kı̄lauea volcano in Hawaii) have relative uncertainties of
∼ 20 %–50 %.

3.1.2 SCD uncertainties estimated from statistical
analysis

Another common way to assess SCD uncertainties is to cal-
culate the standard deviation of SCDs over background areas
that have small natural variability in SO2 such as the equato-
rial Pacific (e.g., Li et al., 2013). In Fig. 2m–p, we map the
standard deviation of SO2 SCDs within 2◦ latitude segments
of each row for the same OMI swaths as in Fig. 2i–l. Calcula-
tions are limited to 60◦ S–60◦ N, as SZAs and ozone amounts
tend to be more variable at higher latitudes. Also, pixels with
large SCDs (> 2 DU) are excluded. As compared with the
SCD uncertainties estimated from the fitting residuals (here-
after referred to as εSCD), the standard deviation of SCDs
(hereafter referred to as σSCD) is considerably greater espe-
cially at higher latitudes. This is to be expected, given that
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Figure 2. (a–d) The SO2 slant column densities for four OMI swaths over the remote Pacific on (a) 4 January, (b) 3 April, (c) 1 July, and
(d) 3 October 2007. (e–h) The reflectivity at 354 nm for the same swaths. (i–l) Estimated uncertainties in SO2 slant column densities (εSCD)
for the same swaths. Cloudy or snow/ice-covered areas have greater reflectivity and generally smaller errors in SO2 SCDs. No retrievals were
attempted for pixels with SZA> 75◦ that are grey-shaded. (m–p) The standard deviation of SO2 SCDs (σSCD) within 2◦ latitude segments
of individual OMI rows for the same swaths. The spatial coverage for panels (m–p) is limited to 60◦ S to 60◦ N as changes in observation
conditions tend to be larger at higher latitudes. In addition, pixels with SCD> 2 DU or SZA> 75◦ and segments with < 10 valid pixels are
excluded from the statistical analysis.
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Figure 3. Mean SO2 SCD uncertainties estimated from fitting resid-
uals (εSCD, red triangles) and SCD standard deviation (σSCD, blue
plus signs) for 2◦ latitude segments between 60◦ S and 60◦ N from
selected OMI rows from orbit 14456 on 3 April 2007.

σSCD includes not only just noise from the spectral fit, but the
natural variability in SCDs. For instance, σSCD is enhanced
downwind of Hawaii (Fig. 2p), likely reflecting larger vari-
ability caused by the SO2 plume from the Kı̄lauea volcano
(Fig. 2d). As for the spatial pattern, there are similarities be-
tween σSCD and εSCD, with both being generally smaller at
low latitudes and over clouds. As with εSCD, σSCD also ap-
pears to be smaller on the eastern side of the swath.

A more detailed comparison between εSCD and σSCD for
selected OMI rows can be found in Fig. 3. εSCD is∼ 0.15 DU
over the equatorial Pacific (20◦ S–20◦ N) and, with few ex-
ceptions, is mostly < 0.2 DU at all latitudes. σSCD shows
much larger variability, ranging from ∼ 0.2 DU near the
Equator to over 0.5 DU at around 60◦ S and 60◦ N in some
cases. The difference between εSCD and σSCD is generally
less than 0.1 DU at low latitudes but can exceed 0.2 DU at
high latitudes. If we consider εSCD as a lower bound for
SCD uncertainties and σSCD as an upper bound, we arrive
at the conclusion that the SCD uncertainties from the new
algorithm are ∼ 0.15–0.3 DU between ∼ 40◦ S and ∼ 40◦ N
and ∼ 0.2–0.5 DU at higher latitudes. For a moderately pol-
luted area in the middle latitudes (e.g., ∼ 30–40◦ N) with an
SCD of ∼ 0.3 DU, this translates into a relative uncertainty
of ∼ 50 %–100 %.

3.2 Long-term changes in SCDs over remote
background areas

Drift in retrievals over background areas may introduce ar-
tificial trends or mask actual trends over polluted regions,
and the long-term stability in the OMI anthropogenic SO2
dataset is of great importance for detecting regional changes.
Here we examine temporal changes in SCDs from the new al-
gorithm over the equatorial east Pacific (20◦ S–20◦ N, 130–
150◦W) throughout the OMI record from October 2004 to

Figure 4. Daily (a) median, (b) mean, (c) standard deviation, (d) 5th
percentile, (e) 95th percentile, and (f) the difference between 5th
and 95th percentiles of OMI SO2 SCDs over the equatorial east Pa-
cific (20◦ S–20◦ N, 130–150◦W) during the period of 2004–2019
indicate stable long-term performance of the PCA-based anthro-
pogenic SO2 algorithm. Estimated linear trends and their 95 % con-
fidence intervals are given for each time series. Only rows deemed
to be minimally affected by the row anomaly are included in the
statistical analysis. Days with possible influence of large volcanic
SO2 eruptions have also been excluded.

December 2019. To ensure consistency in sampling, we only
use data from rows 6–24 (1-based) that are considered to
be minimally affected by the OMI row anomaly. Following
McLinden et al. (2016), we also try to minimize the impact
of volcanic eruptions. This is achieved by excluding days
when the 99th percentile of SO2 SCDs over the east Pacific
(80◦ S–80◦ N, 130–150◦W) exceeds 0.8 DU. The daily me-
dian and mean of SO2 SCDs for the equatorial east Pacific are
shown in Fig. 4a and b, respectively. A linear regression anal-
ysis indicates that both median and mean SCDs have statisti-
cally significant (the linear correlation coefficient, r = 0.18,
and p < 0.05 from two-tailed t test) but very small changes
over time, at 2.0× 10−4 and 2.3× 10−4 DU per year, re-
spectively. In other words, over the entire ∼ 15-year OMI
record to date, the daily mean of background SO2 SCDs has
only increased slightly by∼ 0.0035 DU (∼ 0.003 DU for me-
dian). This long-term stability in the SO2 record is an indi-
cator of the stable performance of the OMI instrument itself
(Schenkeveld et al., 2017), and it also confirms the ability of
the PCA-based retrieval method to account for some of the
drifts in measurements.

On the other hand, the standard deviation of SO2 SCDs
(Fig. 4c) over the equatorial east Pacific shows more notable
changes, growing from ∼ 0.19 DU in 2005 to ∼ 0.21 DU in
2019 at a rate of ∼ 1.5× 10−3 DU per year. This repre-
sents an approximately 10 % increase in SCD uncertainties
in ∼ 15 years. The well below 1 % per year rise in retrieval
noise can be attributed to instrument degradation over time
(Schenkeveld et al., 2017). A recent study (Zara et al., 2018)
reports a faster growth rate in the uncertainties for OMI NO2
retrievals (1 %–2 % per year) and a more comparable rate for
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HCHO retrievals (< 1 % per year). Note that NO2 retrievals
rely on measurements at visible wavelengths from a different
detector (VIS) of the OMI instrument than SO2 and HCHO
retrievals (UV-2).

An examination of the daily 5th and 95th percentiles
of the SCDs (Fig. 4d and e) over the same area reveals
larger changes in opposite directions, at −2.0× 10−3 and
2.7× 10−3 DU per year, respectively. As a result, the spread
or the difference (Fig. 4f) between these two time series has
increased by a total of almost 0.1 DU over the 15-year period.
These changes in the percentiles suggest that the growth in
the standard deviation is likely driven by more outliers in the
retrieved SCDs. Indeed, the distribution of SO2 SCDs over
the equatorial east Pacific has grown broader since 2005 (see
Fig. S2 for plots of probability density function for different
years). For 2005, 43.2 % (98.5 %) of the OMI pixels over the
area have SCDs between−0.1 and 0.1 DU (−0.5 to 0.5 DU).
The percentage has decreased to 41.3 % (98.1 %) by 2012
and further to 39.6 % (97.4 %) by 2019. Overall, the increase
in the noise in the SCD retrievals is quite modest, pointing to
good long-term stability of the new OMI anthropogenic SO2
dataset.

3.3 Discussion on uncertainties in SO2 Jacobians

In addition to the spectral fit, uncertainties in the SO2 VCDs
also depend on the Jacobian calculations. We have con-
ducted several sensitivity tests using the VLIDORT RT code
to investigate potential sources of uncertainties in Jaco-
bians/AMFs. Note that these tests are not meant to be inclu-
sive; rather, the aim is to shed some light on the relevance of
different aspects in the error budget. Detailed results of these
tests can be found in the Supplement (Figs. S3–S9). Here we
summarize the potential error sources.

1. Uncertainties in forward radiative transfer model as-
sumptions (such as SO2 cross sections) and the ta-
ble lookup interpolation scheme. Laboratory-measured
cross sections usually have uncertainties < 10 %, and
RT codes have uncertainties of about 5 % (Theys et al.,
2017). Also, a fixed temperature profile was used in RT
calculations in this study. In extreme cases where the
seasonal temperature change can reach ∼ 50 ◦C, this
can cause up to ∼ 5 %–10 % error in SO2 Jacobians
(Fig. S3) due to the temperature dependence of the SO2
cross sections that is unaccounted for. As for LUT inter-
polation, our tests indicate that the associated uncertain-
ties should be generally within 5 %–10 % at altitudes
relevant to anthropogenic SO2 retrievals (Fig. S4).

2. Uncertainties in a priori profiles. Comparisons of
monthly a priori profiles (Sect. 2.4.2) with available air-
craft measurements (e.g., Dickerson et al., 2007) sug-
gest that the climatology lacks the day-to-day variations
associated with synoptic weather systems, and that may
lead to ∼ 15 %–40 % of error for individual pixels over

polluted regions such as northeastern China (Fig. S5).
Model-simulated daily a priori profiles may better cap-
ture short-term changes in SO2 vertical distribution but
are currently not yet implemented in our retrievals.

3. Uncertainties in surface reflectivity, cloud fraction,
and cloud pressure. Assuming a surface reflectivity of
∼ 0.05, a typical uncertainty of 0.01 causes ∼ 7% un-
certainty in SO2 Jacobians under cloud-free conditions
(Fig. S6). Depending on the vertical distribution of SO2
and cloud height, clouds can either enhance (albedo ef-
fect) or reduce (shielding effect) OMI sensitivity. For
polluted areas where SO2 is predominantly in the lower
troposphere, an uncertainty of∼ 0.05–0.1 in cloud frac-
tion leads to an uncertainty of ∼ 5 %–10 % in Jacobians
(Fig. S7), while an uncertainty of∼ 50–100 hPa in cloud
pressure translates into ∼ 25 %–40 % uncertainty in Ja-
cobians (Fig. S8).

4. Lack of explicit consideration for aerosol effects on SO2
Jacobians. In the IPA approach (Sect. 2.4.1), the contri-
bution of aerosols to TOA radiances is treated as if they
arose from clouds. As a result, the aerosol scattering ef-
fects are implicitly accounted for by including aerosols
as part of the effective cloud fraction. For nonabsorbing
or weakly absorbing aerosols (Fig. S9a and b), such im-
plicit treatment may cause ∼ 10 %–30 % uncertainties
in SO2 Jacobians, but the sign (shielding vs. albedo ef-
fects) and the size of the errors are determined by the
vertical distributions of aerosols and SO2, as well as
the cloud/scene pressures from the cloud algorithm. For
UV absorbing aerosols such as dust and smoke (Mok
et al., 2016), the uncertainties can amount to ∼ 50 %
(Fig. S9c).

The estimated uncertainties for the above aspects are
mostly comparable with the error analysis conducted by
Theys et al. (2017) for the Copernicus Sentinel-5 precursor
(TROPOMI) SO2 algorithm. Both studies point to the impor-
tance of SO2 a priori profiles, cloud pressure, and the implicit
treatment of aerosol effects, with the latter two associated
with the IPA approach. If we assume that all these uncer-
tainty terms are independent, the overall uncertainties of col-
umn Jacobians/AMFs are estimated to be ∼ 30 %–80 % for
individual pixels. For a polluted area where the uncertain-
ties in SCDs are ∼ 50 %–100 %, the uncertainties in the re-
trieved SO2 VCDs would be ∼ 60 %–130 % on an individual
pixel basis. This is slightly higher than a previous estimate
(45 %–110 %) for SNPP/OMPS HCHO retrievals also using
the PCA-based method (Li et al., 2015), as the present study
considers additional error arising from the aerosol effects.

4 Example results

In this section, we present examples from the new OMI an-
thropogenic SO2 dataset (OMSO2 V2), focusing on the re-
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trievals over snow/ice (Sect. 4.2) and long-term changes in
SO2 pollution over China and India (Sect. 4.3).

4.1 Comparison with the previous version OMI PBL
SO2 dataset

As an example, Fig. 5 compares the global mean SO2
VCDs for May 2007 between the previous PBL SO2 re-
trievals (Fig. 5a, OMSO2 V1.3), the new anthropogenic
SO2 retrievals using the same constant Jacobian spectrum
(Fig. 5b), and the new retrievals using pixel-specific Jaco-
bians (Fig. 5c). With the constant Jacobians, the differences
between Fig. 5a and b are solely driven by changes in data
screening and spectral fitting schemes (see Sect. 2.2 and 2.3).
Overall, the two retrievals are quite similar. The most obvi-
ous difference is found over the areas affected by the SAA,
where the mean (standard deviation) is 0.21 (0.48) and 0.08
(0.32) DU, respectively, for the previous PBL (Fig. 5a) and
new (Fig. 5b) SO2 VCDs. Outside of the SAA-affected areas,
the two datasets are highly correlated, with a spatial correla-
tion coefficient (r) of 0.89 and a slope of 0.9 (slope is ∼ 1
when using the reduced major axis method in the regression
analysis). Over the equatorial Pacific, the new SO2 VCDs in
Fig. 5b also have a slightly more positive background than
the PBL SO2 retrievals (mean VCD: 0.06 vs. −0.03 DU),
but the noise level is quite comparable (standard deviation:
0.11 vs. 0.10 DU). The pixel-specific Jacobians and GEOS-
5 a priori profiles implemented for the retrievals in Fig. 5c
further reduce noise and biases over background areas. For
example, over the equatorial Pacific, the mean and standard
deviation of SO2 VCDs are 0.01 and 0.02 DU, respectively.
The large reduction in SO2 VCDs over northern Russia in
Fig. 5c is due to revised Jacobian calculations over snow/ice
and is further discussed in Sect. 4.2.

4.2 Retrievals over snow/ice

In Fig. 6, we examine the SO2 VCDs over Norilsk, Russia,
home to the world’s largest anthropogenic SO2 source (No-
rilsk Nickel smelters, Fioletov et al., 2016). The area is usu-
ally covered by snow/ice in April but not in July. As shown in
Fig. 6c and d, there is a large seasonal change in SO2 VCDs
from the previous OMI PBL SO2 dataset (OMSO2 V1.3),
likely caused by snow/ice effects in April that were previ-
ously unaccounted for with the use of constant Jacobians.
The maximal SO2 VCD within the domain for April 2007 is
7.0 DU, a factor of 2 greater than the maximum of 3.5 DU for
July of the same year. Similarly, the mean SO2 VCD for April
(0.14 DU) is over 3 times greater than that for July (0.04 DU).
The temperature dependence of SO2 cross sections may have
also contributed to the apparent seasonal change here, but the
effect is likely< 10 %. In comparison, the seasonal change in
the new OMI anthropogenic SO2 dataset (OMSO2 V2) over
the same area is much smaller (Fig. 6a and b). The maximal
SO2 VCDs for the same 2 months are 2.5 and 3.4 DU, respec-

Figure 5. Monthly mean OMI SO2 VCDs for May 2007 from
(a) the previous PBL SO2 dataset in OMSO2 V1.3 using constant
Jacobians, (b) the new OMI anthropogenic SO2 retrievals using
the same Jacobians as in panel (a), and (c) the new OMI anthro-
pogenic SO2 dataset in OMSO2 V2 using pixel-specific Jacobians
as described in Sect. 2.4. Data are gridded to a horizontal resolu-
tion of 0.25◦× 0.25◦, and only those pixels near the center of the
OMI swath (rows 6–55, 1-based), with SZA< 70◦, and with a small
cloud radiance fraction (CRF< 0.3) are included.

tively, whereas the corresponding mean SO2 VCDs are 0.07
and 0.04 DU. Note that the maximal and mean SO2 VCDs
for July are nearly identical between the two versions, im-
plying that the updated retrievals over snow/ice are at least
partly responsible for the more gradual and realistic seasonal
change in OMSO2 V2.

For another case of retrievals over snow/ice, refer to Fig. 7,
which compares the new OMI anthropogenic SO2 VCDs
over snow-covered and snow-free surfaces during a historic
snowstorm in eastern China in January to February 2008.
Both Fig. 7a and b show retrievals from OMSO2 V2, but
Fig. 7a is for retrievals over snow-covered pixels and Fig. 7b
is for those over snow-free pixels. The two sets of retrievals
are spatially well correlated (r = 0.68), but retrievals over
snow show generally stronger SO2 signals over source areas
that can be identified from the bottom-up emission inventory
(Crippa et al., 2018) in Fig. 7c. This appears to provide ev-
idence that highly reflective snow/ice surfaces can enhance
OMI sensitivity to emission sources even at relatively large
SZAs during wintertime, although a more thorough evalua-
tion using other datasets such as those from ground monitors
is necessary before a more definite conclusion can be drawn.
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Figure 6. Monthly mean SO2 VCDs from the new anthropogenic
SO2 dataset in OMSO2 V2 for (a) April and (b) July 2007 using
pixel-specific Jacobians, showing comparable SO2 over the area
around Norilsk, Russia between the 2 months. Monthly mean SO2
VCDs from the PBL SO2 dataset in OMSO2 V1.3 show much
greater apparent SO2 in (c) April than in (d) July, due to the
snow/ice effects that are unaccounted for with the constant Jaco-
bians. Data have been filtered and gridded following the same crite-
ria as in Fig. 5.

4.3 Long-term regional trends in SO2 VCDs

With stable retrievals over background areas (Sect. 3.2), the
new OMI anthropogenic SO2 dataset is particularly suitable
for monitoring long-term regional trends in SO2 pollution.
Here we examine the changes in OMI SO2 VCDs over two
polluted regions, eastern China and India, from 2005 to 2019.
To ensure consistent sampling throughout the entire period,
we use data from the same set of OMI rows (6–24, 1-based)
that are minimally affected by the row anomaly. Retrievals
over snow/ice (Sect. 4.2) can enhance sensitivity to SO2, but
the sample size is too small for long-term data analysis for
India and for most areas in China. As a result, we also fo-
cus on the warm season (April to October) when OMI has
more retrievals and overall better sensitivity to SO2, espe-
cially when compared with nonsnow days in the cold season.
The results are presented in Fig. 8 for eastern China and in
Fig. 9 for India. As shown in Fig. 8, SO2 VCDs over China
are much greater at the beginning of the OMI record than
in recent years. We can also calculate the average total SO2
mass within the domain by summing up the SO2 mass from
all grid cells that have SO2 VCDs above a certain threshold.
For grid cells with VCDs below the threshold, we assume
that the actual SO2 signal is too weak to be reliably detected
by OMI, and we effectively treat them as if they contained
no SO2. Considering the typical retrieval noise (standard de-
viation) for a PBL SO2 profile (∼ 0.5 DU) and the number of
measurements during the 8-month period each year available
for averaging (∼ 50–100), we chose 0.1 DU as a threshold.
Calculated in this manner, the time series of SO2 mass over

China reached its peak at 27.5 kt in 2007 and then saw de-
creases in three consecutive years to the level of 15.6 kt in
2010, reflecting the effects of pollution control measures (Li
et al., 2010) as well as the global financial crisis (Krotkov et
al., 2016). The SO2 mass rebounded to 20.0 kt in 2011 and
remained relatively stable at around 16 kt, before starting to
decrease sharply since 2014 to reach 5.7 kt in 2016 and 3.2 kt
in 2019, marking a drastic drop of ∼ 88 % from the peak in
2007. As discussed in our previous study (Li et al., 2017a),
such a large reduction in SO2 over China is likely a result of
major efforts undertaken by the Chinese government to ad-
dress air quality issues. Given that the selection of the VCD
threshold is somewhat arbitrary, we have also tested other
thresholds. We found that adjusting the VCD threshold (e.g.,
to 0.05 DU) resulted in different estimates of the total mass
(e.g., to 29.6, 18.3, 8.8, and 7.2 kt in 2007, 2010, 2016, and
2019, respectively) but did not significantly alter the overall
relative trend. It also should be noted that the use of a thresh-
old for total mass calculation can lead to biases. For example,
for a background area where the retrieved VCDs are centered
around zero, the use of a small positive threshold like 0.1
or 0.05 DU will likely cause a positive bias in the estimated
SO2 mass. It is thus important to carefully evaluate and char-
acterize retrievals for a given region, before one can decide
whether a threshold should be applied to mass calculation.

For India, the trajectory of SO2 pollution is quite different
from that of China. The total SO2 mass within the domain
in Fig. 9 started at ∼ 1.2 kt in the first few years, increasing
to 3.7 kt in 2016 and remaining at approximately at the same
level for the next few years (e.g., 3.6 kt for 2019). Again,
adjusting the VCD threshold from 0.1 to 0.05 DU changes
the absolute amount of the estimated SO2 mass (to ∼ 4 kt
in 2005 and 2006, and 7.4 and 6.7 kt in 2016 and 2019, re-
spectively), but the qualitative trend remains unchanged. The
analysis here extends our previous study (Li et al., 2017a)
and confirms the projection that India is indeed becoming
the largest emitter of anthropogenic SO2 in the world.

5 Conclusions

We have made extensive updates to the PCA-based OMI an-
thropogenic SO2 retrieval algorithm for the version 2 OMI
SO2 product (OMSO2 V2). The most important change in-
volves the use of expanded lookup tables and model-based a
priori vertical SO2 profiles to account for the effects of var-
ious factors on SO2 Jacobians for individual pixels, includ-
ing observation geometry, ozone column amount and profile,
cloud fraction and cloud pressure, surface pressure and re-
flectivity, and the vertical distribution of SO2. Special con-
sideration has also been given to retrievals over snow/ice.
Other significant updates include new schemes that screen
for pixels having relatively large volcanic or anthropogenic
SO2 signals to minimize their impacts on the PCA analysis
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Figure 7. Mean SO2 VCDs from the new anthropogenic SO2 dataset in OMSO2 V2 for January to February 2008 over eastern China
from pixels identified to be (a) cloud-free and covered by snow and (b) cloud-free (CRF< 0.1) and snow-free. Retrievals over snow pixels
have enhanced signals over source areas that can be identified from (c) bottom-up emission estimates. Only grid cells having at least three
observations from both snow and snow-free pixels during the 2-month period are shown.

Figure 8. Mean warm season (April to October) OMI SO2 VCDs over eastern China from the new anthropogenic SO2 dataset in OMSO2
V2 for different years during 2005–2019. Data have been gridded to 0.25◦× 0.25◦ resolution using pixels from OMI rows 6–24 (1-based)
with cloud radiance fraction < 0.3, SZA< 65◦, and AMF at 313 nm> 0.3. Mean SO2 VCDs are calculated from the daily gridded data for
each year, after excluding days potentially affected by large volcanic plumes.

and also an updated spectral fitting scheme that suppresses
noise over the areas affected by the SAA.

Both spectral fitting and Jacobian calculations contribute
to the uncertainties in the new OMI anthropogenic SO2 re-
trievals. The contribution from the spectral fit part is repre-
sented by uncertainties in SCDs, which are largely driven by
the signal-to-noise ratio of radiance measurements. This is

evidenced by generally lower SCD uncertainties over clouds
and snow/ice-covered surfaces and also at smaller SZAs. The
SCD uncertainties on an individual pixel basis, estimated
through both the fitting residuals and a statistical analysis,
are∼ 0.15–0.3 DU between∼ 40◦ S and∼ 40◦ N and∼ 0.2–
0.5 DU at higher latitudes. As for uncertainties in Jacobian
calculations, the main contributions come from a priori pro-
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Figure 9. Same as Fig. 8 but for India.

files, cloud pressure, and the lack of explicit treatment for
aerosol effects. The overall uncertainties in Jacobians are
estimated at ∼ 50 %–100 % over polluted areas. For a mid-
latitude pixel with an SO2 SCD of ∼ 0.3 DU, typical of a
moderately polluted area, the overall uncertainty in the VCD
is ∼ 60 %–130 %.

The long-term stability of OMI anthropogenic SO2 re-
trievals has also been assessed by examining the daily statis-
tics of SCDs over the equatorial east Pacific. The mean and
median SO2 SCDs show little change throughout the 15-year
data record from 2004 to 2019, increasing by ∼ 0.0035 and
∼ 0.003 DU, respectively. This highlights the remarkable sta-
bility of both OMI measurements and the PCA-based re-
trieval approach that intrinsically accounts for some of the
instrument drifts. The standard deviation of SCDs, as a mea-
sure of retrieval noise, has increased by∼ 0.02 DU or∼ 10%
since the beginning of the OMI mission, likely driven by
more outliers in retrievals as suggested by the widening range
between the 5th and 95th percentiles. Nonetheless, the annual
increase in retrieval noise is well below 1 % and comparable
with or slower than the growth of noise in OMI HCHO and
NO2 retrievals (Zara et al., 2018).

Comparisons with the previous OMI PBL SO2 dataset in
OMSO2 V1.3 show that the new algorithm leads to further
improvements in data quality. When using the same Jaco-

bians, the noise in VCDs over the equatorial Pacific is com-
parable between the two versions, but the updated spectral
fit in V2 reduces the standard deviation in the monthly aver-
aged VCDs over the SAA areas by about a third. The use of
pixel-specific Jacobians further reduces retrieval noise over
the background areas. Updated retrievals over snow/ice yield
more gradual and realistic seasonal changes in SO2 VCDs
over the large source in Norilsk, Russia. Retrievals for snow-
covered pixels over eastern China during a historic snow-
storm in early 2008 also show enhanced signals over SO2
sources, as compared with retrievals for snow-free pixels
from the same period. Finally, SO2 VCDs from the new an-
thropogenic SO2 dataset show a continued reduction in SO2
over eastern China since 2016 and a gradual overall increase
over India from the beginning of the OMI record, confirming
previous reports on the different trajectories of SO2 pollution
between the two countries.

In summary, the new OMI anthropogenic SO2 dataset in
OMSO2 V2 has several improvements over the previous
PCA-based OMI PBL SO2 dataset in OMSO2 V1.3. Looking
forward, we are planning additional updates to the next ver-
sion OMSO2 product. These include the use of daily a priori
profiles from model simulations that better capture day-to-
day variations in SO2 vertical distribution, explicit consider-
ation of aerosol effects on SO2 Jacobians, and a more com-
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prehensive error analysis for Jacobian calculations to assign
an estimated VCD uncertainty for each pixel.

Code and data availability. OMSO2 V2 data are pub-
licly available, free of charge, at the Goddard Earth
Sciences Data and Information Services Center
(https://doi.org/10.5067/Aura/OMI/DATA2022, Can et al.,
2020). Code used to analyze data and produce figures in this paper
is available upon request from the corresponding author.
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