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Abstract. Wind lidars present advantages over meteorolog-
ical masts, including simultaneous multipoint observations,
flexibility in measuring geometry, and reduced installation
cost. But wind lidars come with the “‘cost” of increased com-
plexity in terms of data quality and analysis. Carrier-to-noise
ratio (CNR) has been the metric most commonly used to re-
cover reliable observations from lidar measurements but with
severely reduced data recovery. In this work we apply a clus-
tering technique to identify unreliable measurements from
pulsed lidars scanning a horizontal plane, taking advantage
of all data available from the lidars – not only CNR but also
line-of-sight wind speed (VLOS), spatial position, and VLOS
smoothness. The performance of this data filtering technique
is evaluated in terms of data recovery and data quality against
both a median-like filter and a pure CNR-threshold filter. The
results show that the clustering filter is capable of recovering
more reliable data in noisy regions of the scans, increasing
the data recovery up to 38 % and reducing by at least two-
thirds the acceptance of unreliable measurements relative to
the commonly used CNR threshold. Along with this, the need
for user intervention in the setup of data filtering is reduced
considerably, which is a step towards a more automated and
robust filter.

1 Introduction

Long-range scanning wind lidars are useful tools, and their
adoption has grown rapidly in recent years in wind energy
applications (Vasiljević et al., 2016). Scanning wind lidars
can measure time evolution and spatial characteristics of
wind fields over large domains at a lower cost of installation
than meteorological masts. Nevertheless, atmospheric con-

ditions and instrument noise can have an important impact
on the data quality. For long-range scanning lidars this be-
comes an important issue due to the lack of additional in-
struments placed over the measurement area that would be
useful to compare data quality since noise can contaminate
large portions of the scanning domain. The most commonly
used criterion to retrieve reliable observations is a threshold
on values of the carrier-to-noise ratio, CNR, threshold that
will depend on site conditions, experimental setup, and the
instrument manufacturer (Gryning et al., 2016; Gryning and
Floors, 2019). Even though the CNR threshold retrieves qual-
ity observations, its application might result in large num-
bers of good data rejected in regions far from the instru-
ment, where CNR has decreased rapidly with distance. To
cope with this issue Meyer Forsting and Troldborg (2016)
and Vasiljević et al. (2017) have proposed filters based on
the smoothness and continuity of the wind field. Such filters
work by detecting discrete or anomalous steps (above a cer-
tain threshold predefined by the user) in line-of-sight wind
speed, VLOS, compared to its local (moving) median. Beck
and Kühn (2017) first and then Karagali et al. (2018), in an
adapted version, follow a different approach (here called a
KDE filter, from kernel density estimate) based on the statis-
tical self-similarity of the data, which, in simple terms, means
that reliable observations are alike and will be located close
together in the observational space. The probability density
distribution of observations (estimated via KDE) in a dynam-
ically normalized VLOS−CNR space shows that measure-
ments likely to be valid are located in a high-data-density
region. Observations sparsely distributed beyond a boundary
defined by a threshold in the acceptance ratio or the ratio
between the probability density of any observation and the
maximum probability density over the whole set of measure-
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ments are finally identified as noise. Both approaches need
the definition of one or more thresholds and a window size,
either in time for the KDE filter or in space for the wind
field smoothness approach. These parameters are dependent
on different characteristics of the data, like the lidar scanning
pattern for instance.

Both approaches miss important and complementary in-
formation, either neglecting the strength of the signal
backscattering (quantified by CNR) or the spatial distribu-
tion and smoothness of the wind field. Moreover, in both ap-
proaches the position of observations is not taken into ac-
count, information that can shed light on areas permanently
showing anomalous values of VLOS or CNR, like hard targets.
Including all these features within the smoothness approach
is difficult since CNR is not a smooth field like VLOS. More-
over, considering smoothness and position in the KDE filter
results in a computationally costly kernel density estimation
if we look for an optimal bandwidth parameter in a higher-
dimensional space with a fine resolution of the kernel density
estimate.

Data self-similarity – over any scale in the case of fractals
or a range of them in real situations (Mandelbrot, 1983) –
is closely related to clustering techniques (Backer, 1995),
which can classify large data sets with many different fea-
tures at a relatively low computational cost. The KDE fil-
ter approach shares some characteristics with the popular
k-means clustering algorithm MacQueen (1967) since they
define one (or several for k-means) specific group of data
belonging to a unique category (or cluster) whose size and
location in the observational space will depend on data den-
sity or, more specifically, on a kernel density estimation. The
main difference between these two algorithms is the way they
treat sparse data points that fall in low-density regions. Un-
like the KDE filter, which rejects noise via the acceptance
ratio, the k-means clustering algorithm assigns sparse points
to the cluster with the nearest center no matter if they are
outliers or present unlikely values from a physical point of
view.

The Density Based Spatial Clustering for Applications
with Noise algorithm, or DBSCAN (Ester et al., 1996; Pe-
dregosa et al., 2011), introduced in Sect. 4.3, presents several
advantages over k-means in detecting clusters in a higher di-
mensional space: it introduces the notion of noise or sparsely
distributed observations, it does not need prior knowledge of
the number of clusters in the data and it is capable of identify-
ing clusters of arbitrary shape. To the best of our knowledge,
this is the first time that this type of clustering algorithm is
applied to identify nonreliable observations from pulsed li-
dars. This approach, which can be understood as a natural
extension of the KDE filter, is compared to the smoothness-
based filter on two types of data: synthetic wind fields data
as a controlled test case and real data.

This paper is organized as follows: Sect. 2 describes the
real data used to test the different filtering approaches, and
Sect. 3 presents the synthetic data used during a controlled

test as well as the methodology to obtain it. Section 4 then
gives a description of the different filters applied in this study
to both data sets to continue with the definition of the per-
formance tests in Sect. 5. In Sect. 6 the performance tests
are presented along with a discussion on their validity and
quality. Section 7 discusses the quality of the methodology
behind the tests and the advantages and disadvantages of the
proposed approach. Section 8 presents the conclusions of this
study.

2 Real data: Østerild balconies experiment

The filtering techniques presented here were tested on lidar
measurements made at the Test Centre Østerild located in
northern Jutland, Denmark (see Fig. 1). Known as the Øster-
ild balconies experiment (Mann et al., 2017; Karagali et al.,
2018; Simon and Vasiljevic, 2018), this measuring campaign
aimed to characterize horizontal flow patterns above a flat,
heterogeneous forested landscape at two heights relevant for
wind energy applications, covering an area of around 50 km2

and a wide range of scales in both time and space.
The experiment consist of two measuring phases (see Ta-

ble 1) with two long-range WindScanners performing plan
position indicator (PPI) scanning patterns, aligned in the
north–south axis and installed at 50 ma.g.l. during phase 1
and 200 ma.g.l. in phase 2. WindScanners (Vasiljević et al.,
2016) consist of two or more spatially separated lidars, which
are synchronized to perform coherent scanning patterns, al-
lowing the retrieval of two- or three-dimensional velocity
vectors at different points in space. These experiments were
conducted between April and August of 2016 (Simon and
Vasiljevic, 2018). In each phase, the northern and southern li-
dars scanned in the west and east direction relative to the cor-
responding meteorological masts where they were installed.
The data used in this study originated from both phases of
the experiment, with PPIs pointing to the west. For more de-
tails about the experiment, lidars, and terrain characteristics
see Karagali et al. (2018), Vasiljević et al. (2016), and Simon
and Vasiljevic (2018).

This data set is well suited to test different data filtering
techniques. A large measurement area will be affected by lo-
cal terrain and atmospheric conditions, like clouds or large
hard targets. Moreover, at this scale lidars reach their mea-
suring limitations since the backscattering from aerosols de-
creases rapidly with distance (Cariou, 2015).

3 Synthetic data

Assessing and comparing the performance of filters is chal-
lenging with no reference available to verify that rejected
or accepted observations are reliable or bad observations.
This is especially difficult for long-range scanning lidars
since their measurements cover large areas and, due to spa-
tial variability, a valid reference would need several sec-
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Figure 1. (a) Location of the Østerild turbine test center, place of the balconies experiments, northern Jutland, Denmark (© 2009 Esri).
(b) Detail of the test center site, with the location of the meteorological masts where north (blue) and south (red) WindScanners were
installed. During the measurement campaign the PPI scans both pointed west in some periods and east in others (© 2017 DigitalGlobe, Inc.).

Table 1. Characteristics of the balconies experiment, from Karagali et al. (2018). The scans are neither instantaneous nor totally synchronous,
with a horizontal sweep speed of 2 ◦ s−1 in the azimuth direction in a range of 90◦ and a total time of 45 s per scan.

Phase Measurement start Measurement end

50 ma.g.l. (1) 12 Apr 2016 12:45:41 UTC 17 Jun 2016 12:48:01 UTC
200 ma.g.l. (2) 29 Jun 2016 13:35:56 UTC 12 Aug 2016 09:09:55 UTC

Scanner Location coordinates (m) Scanning pattern, west

Southern lidar 492768.8 (E) 6322832.3 (N) 344–256◦, 2◦ steps
Northern lidar 492768.7 (E) 6327082.4 (N) 196–284◦, 2◦ steps

ondary anemometers scattered over the scanning area. Test-
ing filters on a controlled and synthetic data set contaminated
with well-defined noise presents an option to deal with this
problem. In this study, the filters presented in Sect. 4 are
tested on individual scans sampled from synthetic wind fields
generated using the Mann turbulence spectral tensor model
(Mann, 1994) and contaminated with procedural noise (Per-
lin, 2001).

3.1 Synthetic-wind-field generation

Synthetic PPI scans are sampled by a lidar simula-
tor from synthetic wind fields generated via the Mann
model (Mann, 1998) in a horizontal, two-dimensional square
domain of 2048× 2048 grid points, with dimensions of
9200 m× 7000 m. The generated turbulence fields are the
result of input parameters of the turbulence spectral tensor
model, namely length scale, L; turbulence energy dissipa-
tion, αε2/3; and anisotropy, 0. The fields generated corre-
spond to wind speed fluctuations, to which the desired mean
wind speed is subsequently added. Depending on the initial
random seed used, different wind field realizations with the

Table 2. Synthetic wind field characteristics and parameters.

Parameter Values

L, m 62, 125, 250, 500, 750, 1000
αε2/3, m4/3 s−2 0.025, 0.05, 0.075
0 0, 1, 2, 2.5, 3.5
Number of seeds used 10
Mean wind speed, U (ms−1) 15
Mean wind speed direction
range (degrees)

90 to 270

Total number of scans generated 4305

exact same turbulence statistics can be generated. For de-
tails on wind field generation using the Mann model, refer
to Mann (1998). Table 2 shows the range of values used for
the generation of two-dimensional wind fields. Large values
of αε2/3 or small-scale turbulence, for instance, mean that
sudden spatial changes in wind speed are more likely, which
increase the false identification of outliers. Mean wind direc-
tion, turbulence anisotropy, and length scale will also affect
the sampling due to the lidars’ measuring characteristics.
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3.2 Lidar simulator

Lidar simulators have been presented previously by Staw-
iarski et al. (2013) and Meyer Forsting and Troldborg (2016).
They sample VLOS values from wind fields generated via
large-eddy simulation (LES), mimicking the operational
principle of lidars by proper time and spatial (probe vol-
ume) averaging of the background wind field. The lidar sim-
ulator presented here follows the same principles, this time
sampling from synthetic wind fields generated via the Mann
model.

The simulator receives scanning pattern characteristics as
input (beam range, range gate step, azimuth angle range, and
azimuth angle steps) to generate a primary mesh with the
sampling positions on top of background wind field. Follow-
ing the measuring principle of the lidar, the VLOS observed at
each position in this mesh will represent averages of a con-
tinuum along each range gate step (due to probe volume av-
eraging) and an average of many azimuth positions within
the azimuth step due to the almost continuous sweep of the
lidar’s beam. The simulator mimics this by generating a sec-
ondary, refined mesh with Nr points in each range gate and
Nφ beams within each azimuth step. The background wind
field components, U and V , are then interpolated on this sec-
ondary mesh and projected on each refined beam to obtain
VLOS using Eq. (1), with θ being the corresponding beam az-
imuth angle.

VLOS = cos(θ)U + sin(θ)V (1)

The final step is the spatial (probe volume) averaging and
the azimuth (sweeping) averaging around each position in
the primary mesh. Spatial averaging is done by applying a
weighting function to all VLOS values along each refined
beam. The weighting function used here is defined in Eq. (2),
as in Banakh and Smalikho (1997) and Smalikho and Banakh
(2013). This function will assign weights to each point in
the refined beam according to its distance to the range gate
position in the primary mesh, F , and the instrument probe
volume parameters, namely, range gate length, 1p, and full
width at half maximum, 1l (cf. Table 3). Here, Erf(x) is the
error function, and rp is the beam width contribution to the
volume averaging.

w =
1

21p

{
Erf

[
(r −F)+1p/2

rp

]
−Erf

[
(r −F)−1p/2

rp

]}
; rp =

1l

2
√

ln(2)
(2)

The azimuth averaging is the arithmetic mean of the Nφ
values of VLOS at each range gate after spatial averaging. It
represents the accumulation information of the backscattered
signal spectra as they sweep an azimuth sector before estima-
tion of the spectral peak and VLOS.

3.3 Synthetic noise generation

The most simple noise that can be used to contaminate syn-
thetic scans are sparse, uniformly distributed outliers. This
noise, also known as salt-and-pepper noise, is easily detected
and eliminated by median-like filters when extreme; discrete
steps affect the smoothness of an image (Huang et al., 1979;
Burger and Burge, 2008). Nevertheless, noise in real scans
comes as regions of anomalously high and/or low VLOS,
and they can pass through the filter undetected. Procedu-
ral noise, introduced by Perlin (2001) to recreate synthetic
textures on surfaces for computer graphics applications, cre-
ates regions of coherent noise that better resembles the spa-
tial distribution of scanning lidars’ measurements. For the
two-dimensional case, the procedural noise function N(x,y)
maps two-dimensional coordinates, (x,y), onto the range
[−1,1] as follows,

– A two-dimensional grid of m by n elements is gener-
ated, and a pseudorandom, two-dimensional unit gra-
dient, gij = (gx,gy), is assigned to each grid point
(xi,yj ). The pseudorandomness rises from the fact that
gij are picked from a precomputed list of gradients with
length l�m× n. We select values from this list us-
ing the index permutation grid pij ∈ {0, . . ., l}, also with
m× n elements. Then, gij will correspond to the gradi-
ent in the position pij of the precomputed list. Elements
pij are shuffled for each realization.

– For each grid point (xi,yj ) enclosing (x,y), a distance
vector d i,j = (x− xi,y− yj ) is generated.

– Finally, the noise function is the sum of dot products,
N(x,y)=

∑
qwq(g

q
ij ·d

q
i,j ), for q grid points surround-

ing (x,y). Weights wq correspond to wq = C 1
‖d
q
i,j ‖

, and

C is a normalization constant to ensure that N(x,y) ∈
[−1,1].

The function N(x,y) allows the generation of noisy regions,
than can be distributed according to backscatter decay with
distance. Three bands centered at 50 %, 70 %, and 90 % of
the total beam length (and spanning the entire azimuth range)
have an increasing fraction of noise, contaminating 30 %,
60 %, and 90 % of the observation, respectively. The noise
amplitude is 35 (ms−1), the limit of the observable range for
the instruments described in Sect. 2. Figure 2c shows one
contaminated scan and its increasing contaminated area as
we move along the beams. The same figure shows the dis-
tribution of the noise generated by the algorithm after scal-
ing and the probability distribution of contaminated synthetic
VLOS compared to real data with low values of CNR. The dis-
tribution of real data presents heavier tails than the ones gen-
erated, with higher probability of observing extreme values
of VLOS. Modeling real noise is difficult since the process
that generates it depends on the measuring principle of the
lidar and atmospheric conditions. The synthetic noise used
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Table 3. The characteristics of the lidar simulator and real long-range lidar (Karagali et al., 2018; Vasiljević et al., 2016) used for the
controlled test of the filters.

Simulator Real

Azimuth range 256–344◦ 256–344◦

Azimuth step 2◦ 2◦

Beam length 7000 (m) 7000 (m)
Range gate length, 1p 35 (m) 35 (m)
Full width at half maximum, 1l 75 (m) 75 (m)
Sweeping time per scan Instantaneous 45 (s)
Primary mesh size (radial× azimuth) 45× 198 –
Secondary mesh size at each range gate (Nr×Nφ) 21× 51 –
Total secondary mesh size (Nr×Nφ) 21× 51 –

here does not intend to be totally realistic but more subtle
and smoother than the one observed in real measurements,
making the identification of contaminated points more diffi-
cult.

4 Filtering techniques applied on real and synthetic
data

4.1 CNR threshold

CNR thresholds are well known, and lidar manufacturers
usually recommend values for rejection of signals with poor
backscattering or hitting hard targets (Cariou, 2015). How-
ever, the selection of an appropriate threshold for CNR that
assures data quality and good data recovery is not easy. Fig-
ures 3 and 4 show data from a scan with noisy observations
from CNR values below −27 dB. Both extreme and limited
values of VLOS show low CNR values in the distant region of
the scan and data loss results after the application of the CNR
threshold (Fig. 4b). When a limit to VLOS is applied instead,
Fig. 4c shows that the smoothness in VLOS is lost in the lower
part of the scan. A conservative threshold of −24 dB is used
here since the resulting VLOS probability distribution shows
very few outliers, and it can be used as a reference when the
performance of the filters proposed is compared.

4.2 Median-like filter

The median filter arises as a viable option for detecting erro-
neous measurements since it is well known that this type of
nonlinear filter is suited to detect and filter noise that presents
distributions with large tails. Here we use an adaptation of the
traditional median filter used in the image-processing com-
munity, closely related to the three-stage filtering technique
described in Menke et al. (2019): observations are not re-
placed by the local moving median but excluded if the ab-
solute difference between their value and the local moving
median is above a certain threshold, 1VLOS, threshold. Un-
like Huang et al. (1979), the two-dimensional moving win-
dow is replaced by two one-dimensional window instances,

the first in the line of sight or the radial direction, r , and fi-
nally in the azimuth direction, θ , considering the polar coor-
dinates of the scan. This simplification reduces the computa-
tion time significantly.

The input parameters of this filter will be the size (or
number of elements) of the moving windows in the ra-
dial and azimuth directions, nr and nφ , respectively, and
1VLOS, threshold. For fixed values of 1VLOS, threshold, nr, and
nφ , the spatial structure of wind speed fluctuations will have
an important effect on the recovery rate and noise detec-
tion of this filter. A sensitivity analysis carried out using
the metrics presented in Sect. 5.1 on the synthetic data set
shows that the optimal set of parameters is nr= 5, nφ = 3,
and 1VLOS, threshold= 2.33 ms−1 (See Appendix A). This set
is used for both artificial and real data. The filter does not
include a time window, and it is applied to individual scans.

4.3 Filtering using a clustering algorithm

If we represent lidar observations as m-dimensional vectors,
withm the number of features or parameters of the data, mea-
surements not affected by poor backscattering or noise will
cluster together in regions of high data density, as shown in
Figs. 3 and 4. The approach presented here identifies such
clusters applying DBSCAN to data described by CNR, VLOS,
and, additionally, spatial location and smoothness features,
which help to make clusters more distinguishable.
DBSCAN identifies clusters and noise based on two pa-

rameters: a neighborhood size, ε, and a minimum number
of nearest neighbors, NN. The parameter ε is the Euclidean
distance from one observation to the limits of a neighbor-
hood that might contain NN (or more) nearest neighbors. In-
tuitively, these parameters will define the minimum density
that a group of data points needs to have to be identified as a
cluster. Observations within a cluster fall into the following
categories.

– Core point: points q whose ε neighborhood contains NN
or more points.
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Figure 2. Procedural noise on synthetic scans. (a) Distribution of 1VLOS, noise, the noise added. Maximum values are within the observable
range [−35, 35] (ms−1). (b) Distribution of real VLOS with low CNR values (black) and contaminated, synthetic VLOS+1VLOS, noise (red)
for a mean wind direction facing the scan. (c) Individual scan showing the increasing fraction of added noise (gray) with distance.

Figure 3. (a) CNR and VLOS for one scan from the balconies experiment, including the probability density (KDE). Observations with
CNR>−27 dB (dashed red line) show a limited range of VLOS (dashed black line). A portion of observations with high probability density
remains in the rejection area. (b) CNR v/s distance for the same data. Observations with low CNR values and high probability density can
be found in the distant region of the scan.

– Direct density-reachable point: points p which are
reachable by q by lying within its ε neighborhood.

– Density-reachable point: points p reachable by a point
r through one or a set of directly connected core points
q.

DBSCAN travels across data points identifying core points,
border points (density-reachable points with at least one core
point within the ε neighborhood) and noise, or points that
do not belong to any of the categories described above. Fi-
nally, the algorithm separates clusters as individual groups
of density-connected points. Figure 5 schematically shows
these definitions and how the algorithm works.

The input parameters ε and NN have a significant influ-
ence on the number and characteristics of the clusters de-
tected. For example, large ε together with a small NN will
end up with sparse clusters that might include noise. In or-
der to find the parameters separating the least dense cluster

from noise, we fix NN to a certain value k and determine
ε from the data density distribution. The latter is well de-
scribed by the k-distance function, dk(n), which represents
the distances from all data points n to their respective kth
nearest neighbor, sorted in ascending order. When k is 5, for
instance, d5(n) in Fig. 6 shows sudden changes (or knees)
that give some indications about the data density distribution.
The knee highlighted represents a limit between a group of
reliable observations and the one growing fast towards noisy
data. The positions of these knees in the graph correspond
to the peaks in the curvature of dk(n), κ(n) in expression
Eq. (3). In this expression primes correspond to the peaks in
the curvature of dk(n) with respect to n. The continuous ver-
sion of dk(n) is made by spline-fitting on a reduced set of
uniformly distributed points over the original data set.

κ = (dk(n))
′′/(1+ (dk(n))′2)3/2 (3)
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Figure 4. (a) Unfiltered scan with VLOS values outside the range [−21, 0] in Fig. 3a in black. (b) Filtered scan with CNR>−27 and the
resulting data loss in the upper part of the scan. (c) VLOS within the [−21, 0] range, showing anomalous values in the lower part of the scan.

Figure 5. (a) DBSCAN algorithm definitions: direct density-reachable point p (reachable by the core point q) and density-reachable and
density-connected points p and r . Here point n does not belong to any of these categories but noise. The DBSCAN algorithm working: (b) the
current point being evaluated has the minimum number of nearest neighbors required, NN, within a neighborhood of size ε, classified as
a core point (red). (c) The next point has fewer than NN neighbors, but one of them is a core point and becomes a border point (yellow).
(d) A point with neither NN neighbors nor core points within ε, classified as noise (brown). (e) The final cluster and noise. The former is a
collection of density-connected points.

When scans are very noisy, the selection of a proper value
of ε is difficult since knees are located closer together, and
a larger fraction of observations show a fast-growing dk(n),
as expected. In this case, the fraction of points showing re-
liable CNR values is taken into account, and ε is estimated
by expression Eq. (4). Here fCNR corresponds to the fraction
of observed CNR values within the range [−24,−8], and the
constants c1 and c2 are obtained from the upper and lower
bounds of ε in the data, respectively.

εCNR = c1fCNR+ c2 (4)

The set of features considered when filtering synthetic data
does not include CNR because it is not available from the
lidar simulator described in Sect. 3. For synthetic and real
data sets we consider spatial location (azimuth and radial
positions) and smoothness as additional features. The latter,
1VLOS, corresponds to the median difference in VLOS be-

tween a specific position and its direct neighbors in one indi-
vidual scan.

Since we consider features that vary significantly in mag-
nitude (CNR and range gate distance for instance), we nor-
malize the data before the application of DBSCAN. This
step is necessary for the estimation of meaningful distances
between observations, which is the basis of this approach.
There are several ways to do this. Here, the data in each fea-
ture are centered by subtracting their median and scaled ac-
cording to their interquartile range. This aims to minimize
the influence from outliers in the normalization.

The clustering filter is implemented to be a nonsupervised
classifier and does not need more input parameters than the
different features and the number of scans put together as a
batch before filtering. The latter is set to three in this case to
speed up calculations and avoid creating clusters from noisy
regions. From this point of view, this filter is also as dy-
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Figure 6. (a) Scan from the balconies experiment (phase 1) with 48 % of data points in the range of reliable observations with CNR ∈
[−24, −8] dB. (b) Logarithm of sorted distances to the fifth-nearest neighbor for each point in a data set. The total number of observations
corresponds to three consecutive scans, or 26 730 points. The sorted fifth distances show three knees separating three types of structures:
reliable observations with distances below εknee, an overlapping region where the distance between points grows faster, and pure noise or
nonstructured data.

namic – similar to Beck and Kühn (2017) – when applied
to a real data set since it will consider the data structure
within a period limited to 135 s (three scans of 45 s in our
case), and characteristics of temporal evolution of the data
are indirectly taken into account. For the synthetic data used
in this test, more than one scan filtered per iteration gives
enough data density in noisy and reliable areas of the obser-
vational space. We speculate that scans that are correlated in
time will enhance the self-similarity of the data, thus improv-
ing the performance of the filter. Turbulence structures with
length scales in a range between the range gate size and the
scanning area size will evolve at a slower rate than the time
elapsed between consecutive scans.

5 Performance metrics

5.1 Synthetic data

Equations (5) to (7) define three metrics to assess the per-
formance of the filters given prior knowledge of the position
and magnitude of noise in a controlled case with N observa-
tions. The fraction of noise detected, ηnoise, quantifies the rel-
ative importance of true positives or the difference between
observations identified as noise, Nnoise, and false positives,
Npos, over the total number of contaminated observations.
The fraction of good observations recovered, ηrecov, gives
an idea of the true negatives over the total number of non-
contaminated observations, Nnon-cont. True negatives are not
equal to N − Nnoise since the latter might include false neg-

atives, Nneg. The relative importance of these two metrics
for a given fraction of noise in a contaminated scan, fnoise,
is quantified by ηtot, which takes into account cases with a
large fraction of noise detected and low recovery rate and
vice versa.

ηnoise =
Nnoise−Npos

Ncont
(5)

ηrecov =
N − (Nnoise+Nneg)

Nnon-cont
(6)

ηtot = fnoiseηnoise+ (1− fnoise)ηrecov (7)

5.2 Real data

In the absence of reference measurements, the quality of the
data retrieved after filtering is assessed by comparing the dis-
tribution of radial wind speeds for very reliable observations
(with CNR values within the range of −24 to −8 dB) with
the distribution of filtered observations that fall out of this
range. Observations out of the reliable range population usu-
ally show a probability density function (or PDF) with heav-
ier tails, like the PDFs in Fig. 7. Here we understand a heavy-
tailed PDF as a distribution that slowly goes to 0 and shows
higher probability density for values beyond the 3σ limit (or
3 SD limit) when compared to the normal distribution, ev-
idence of a higher probability of occurrence of outliers or
extreme values. The recovering rate of observations beyond
the [0.003, 0.997] quantile range of the reliable VLOS (shaded
area in Fig. 7) could shed light on the quality of the data re-
trieved by the filter.
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Figure 7. Probability density function of reliable observations of VLOS (solid black line) and nonreliable observations (solid red line) for
(a) phase 1 of the balconies experiment, with scans performed at 50 ma.g.l., and (b) phase 2 of the same campaign, with scans performed at
200 ma.g.l.

Another metric is the similarity between the PDF of
reliable and nonreliable data after filtering. The distance
between both probability density functions can be com-
pared with similarity metrics like the Kolmogorov–Smirnov
test (Kolmogorov, 1933) or Kullback–Leibler (KL) diver-
gence (Kullback and Leibler, 1951). The former test mea-
sures the statistical similarity between two random variables,
X1 and X2, by estimating the statistical distance, D (or K–
S statistic), between their cumulative distribution functions,
F1(x) and F2(x), as the supreme of their difference.

DK = sup
x
‖F1(x)−F2(x)‖ (8)

The null hypothesis here is that two realizations are from
the same distribution if the K–S statistic is such that its two-
tailed p-value is above a certain level α. Because the num-
ber of data analyzed here is large – we analyzed over 20 000
scans for the two phases of the Østerild campaign, each with
8910 data points, over almost 10 d – this similarity test is
very precise but also very strict, rejecting the null hypothesis
for small deviations between F1(x) and F2(x). Nevertheless,
the K–S statistics can be used to compare which probability
distribution after filtering is closer to the one representing the
reliable observations.

The KL divergence is a measure of similarity or overlap-
ping of two distributions, P1 and P2, with realizations X1
and X2, respectively. It is used in different applications to
shed light on the loss of information when X1 is represented
by P2 or vice versa and is defined by the expression Eq. (9).

DKL =
∑
x

P1(x) log
(
P2(x)

P1(x)

)
(9)

Both metrics will be used to estimate how the distribution
of nonreliable observations of VLOS is modified after filtering
and if the new distribution is similar (or close in a statistical
distance sense) to the probability density of reliable observa-
tions of the radial wind speed, shown in Fig. 7 for phases 1
and 2 of the measurement campaign, respectively.

Both performance metrics, the recovery rate of abnormal
measurements in the tails of the PDF of reliable observations
and its statistical distance to the PDF of filtered nonreliable
observations, will be assessed for the median-like filter, the
clustering filter, and also for data filtered with a CNR thresh-
old of −29 dB following Gryning and Floors (2019).

6 Results

6.1 Synthetic data

In Fig. 8 we can see the result of the two filters applied to
one synthetic scan contaminated with procedural noise. The
contaminated observations are indicated by the gray area in
this scan. Extreme values contaminating VLOS are identified
by both filters without problems, but subtle alterations of the
original values of the scan are hard to detect for the median-
like filter. The clustering filter performs very efficiently when
detecting this type of contaminated observation and filters al-
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most all the noise. Both filters repeat this behavior in all the
synthetic scans used for this controlled test, as can be seen
in Fig. 9, which shows the resulting metrics of the two filters
applied to the whole synthetic data set. Looking at ηtot, both
filters show similar mean values and spread, with the cluster-
ing filter performing slightly better. The difference becomes
noticeable when we see ηnoise, which for the clustering filter
shows a mean value of 0.95, far larger than the 0.67 of the
median-like filter. The latter result could be problematic if
the median-like filter is used since noise contaminating the
filtered scan will result in nonrealistic wind fields after re-
construction.

Both filters perform well when evaluated in terms of ηrec,
with the median-like filter showing a higher mean fraction of
good observations retrieved, 0.96, compared with the 0.89 of
the clustering filter. This result is expected since the median-
like filter is more permissive regarding fluctuations that can
seem locally anomalous for the clustering filter.

6.2 Real data

The data set from the balconies experiment presents advan-
tages for the clustering filter since the CNR value can be in-
cluded as a feature in describing the data. Nevertheless, as
mentioned already in Sect. 2, we do not count on any ref-
erence to assess the performance of the filter apart from the
radial wind speed distribution of very reliable observations
with CNR values within the range of−24 to−8 dB. As men-
tioned earlier, valid observations in this range might present
a similar distribution. Figure 7 shows this distribution be-
fore filtering, shadowing the area of values of VLOS that fall
in the region beyond 99.7 % of the total probability or 3σ
limit, usually classified as outliers. Figures 10 and 11 show
the recovery fraction for CNR and median-like and cluster-
ing filters when applied to data in the reliable and nonreli-
able CNR ranges for phases 1 and 2 of the Østerild exper-
iment. Unlike the clustering filter, the CNR threshold and
median-like filters show nonnegligible recovery rates beyond
the 3σ limit, particularly significant in the former. This result
is very much in line with the ηnoise metric from the synthetic
data. Within the 3σ range, the CNR and median-like filters
perform slightly better than the clustering filter in terms of
recovery fraction, in agreement with the results of ηrec in
Sect. 6.1. Even though this might compensate the fact that
CNR threshold and median-like filters fail to filter out the
major part of outliers, increasing the availability of measure-
ments, this difference does not make the PDF of the filtered
data more similar to the PDF of reliable data, as Table 4
shows via the metrics DK and DKL. According to this met-
ric, the PDF of the data after the application of the clustering
approach looks more statistically similar to reliable observa-
tions. This table also shows DK and DKL of the nonreliable
data before filtering, which in all cases is improved, except
forDK for median and CNR threshold filters during phase 2.

Table 4. Results of PDF similarity test of reliable and nonreli-
able data after filtering. The CNR=−29 dB threshold is also in-
cluded (Gryning and Floors, 2019).

Phase 1 DK DKL

Nonreliable data before filtering 0.097 0.134
CNR threshold>−29 dB 0.045 0.109
Median filter 0.047 0.126
Clustering filter 0.037 0.105

Phase 2

Nonreliable data before filtering 0.110 0.126
CNR threshold>−29 dB 0.114 0.052
Median filter 0.117 0.057
Clustering filter 0.103 0.045

Figures 12–14 show the performance of the three differ-
ent filters in different regions of the scan from, respectively,
phase 1 and 2 of the experiment. When the spatial distribu-
tion of the recovery fraction is analyzed, we can see that the
lowest values shown by the clustering filter are mostly lo-
cated in the far region of the scan, which in general presents
low CNR values. The spatial recovery rate during phase 1
also shows that the median-like and clustering filters are
able to identify hard targets, which are also a source of bad
observations. For scans recorded at 50 ma.g.l. in phase 1,
backscatter is affected by a group of seven turbines located
approximately in the middle of the scanning area, with one
turbine touching the end of the southern beams of the scan
and a meteorological mast located very close to the lidar. Fig-
ure 13 shows a detail of the recovery rate associated with
the flow in the vicinity of the turbine group in which we
can see that the clustering filter is able to better identify the
turbine locations, recovering more data in the surroundings
when compared to the median-like filter. The PDF of VLOS
in this area also shows more similarities between the data
filtered with the clustering algorithm and observations with
CNR values in the range [−24, 8].

Table 5 shows a summary of the additional data available
when the CNR=−29 dB threshold and the median-like and
clustering filters are applied instead of the more conservative
and restrictive CNR=−24 dB threshold filter. Additionally,
this table shows the fraction of observations exceeding the
3σ limit that are recovered by the three filters. Even though
the clustering filter shows a slightly lower fraction of ad-
ditional data available when compared to the other filters,
most of it comes from values within the 3σ region. Moreover
the quality of the data recovered by the clustering approach
seems to be higher when all these results are tested with the
performance metrics defined in Sect. 5.
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Figure 8. (a) Contaminated synthetic scan with noise indicated by gray area. (b) Scan filtered using the median-like approach. (c) Clustering
filter.

Figure 9. Histograms of the three performance indexes for the total number of synthetic scans. (a) Both filters show similar spread, but the
clustering filter rejects a rather higher fraction of noise. (b) The higher recovery rate of the median-like filter and its narrower distribution are
superior to the clustering algorithm; the cost is acceptance of more contaminated observations. (c) Both filters have similar mean values for
ηtot around 0.9.

7 Discussion

The metrics introduced in Sect. 5.1 attempt to evaluate two
different capabilities of the filters: the quality and number of
data recovered. In general these two metrics are in conflict
every time a high rate of noise detection will decrease the
data recovery. The metric ηtot attempts to quantify their rel-
ative importance regarding the noise fraction, which in this
study is distributed in a relatively wide range but on aver-
age represents 20 % of the total number of measurements
per scan. The impact of the noise fraction distribution on
the performance of the filters was not explored, and varia-
tions in its dispersion and mean value might be necessary.
Regarding the synthetic scans, they do not allow the iden-
tification of outliers in the time domain because they are
time-independent. Time-evolving synthetic turbulence fields
would be necessary to generate scans correlated in time and
enhance the self-similarity of the data. This might improve
the performance of the clustering approach and allow the ad-

dition of a time dependence in the median-like filter, used
already in Meyer Forsting and Troldborg (2016).

The synthetic wind fields used here do not consider the
presence of hard targets. These anomalies in the wind field
are observed by lidars as points with high CNR values and
abnormal VLOS. Assessing the performance of the filters in
detecting such anomalies needs a more realistic model of the
pulsed lidar. This lidar simulator would allow the generation
of information normally available in real lidar measurements,
like CNR, and the spread in the power spectra of the hetero-
dyne signal, Sb. This additional information will benefit the
performance assessment of the clustering filter and the sim-
ulation of hard targets. A more realistic lidar model was al-
ready implemented by Brousmiche et al. (2007), which can
be used to further explore these aspects of the filtering pro-
cess.

The data set analyzed from the balconies experiment cor-
responds to horizontal scans at 50 and 200 ma.g.l., limit-
ing the analysis to one scanning pattern. Different scanning
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Figure 10. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations (−24<CNR<−8)
and (b) nonreliable data (CNR<−24 or CNR>−8) for the three types of filters. The shadowed area in both graphs corresponds to the region
where observations exceed the 99.7 % probability (or 3σ limit) in the PDF of reliable observations. The darker shadowed area highlights
the additional fraction of extreme values nonfiltered by the median-like and CNR filters when the former uses the optimal input set nr= 5,
nφ = 3, and 1VLOS, threshold= 2.33 ms−1.

Figure 11. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations and (b) nonreliable
data for CNR and median and clustering filters. The shadowed area in both graphs corresponds to the region where observations exceed the
3σ limit in the PDF of reliable observations. Again, the darker shadowed area highlights the additional fraction of extreme values nonfiltered
by the median-like and CNR filters when the former uses the optimal input set nr= 5, nφ = 3 and 1VLOS, threshold= 2.33 ms−1.
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Figure 12. Total recovery fraction for phase 1 of the experiment. The noisy and far regions of the scans show a high recovery, above 80 %,
for (a) the CNR>−29 dB threshold filter and (b) the median-like filter and below 75 % for (c) the clustering filter. The three groups of hard
targets (turbines and one meteorological mast close to the lidar), which are identified by the median and clustering filter with recovery rates
below 20 %, are highlighted.

Figure 13. Detail of the recovery rate at the site of the turbines for the (a) median filter and (b) clustering filter. The recovery is lower in
the flow regime of the turbine cluster (there are seven turbines in line) and higher in their surroundings for the clustering filter. Red denotes
recovery rates of 0.5 or higher. (c) Probability density of VLOS around the group of turbines.

patterns in vertical and horizontal planes as well as wind
fields over different topography would make this analysis
more general, thus shedding light on the capabilities of the
filters presented here. This is especially critical regarding
the median-like filter, which might require again a sensi-
tivity analysis to select proper parameters that adapt to dif-
ferent scanning patterns and turbulence field characteristics.
So far, 1VLOS, threshold showed a dependence on the L and
αε2/3 parameters during the sensitivity analysis presented in
Sect. 6.1. Larger fluctuations in the VLOS field, whether they
come from larger turbulent structures, higher turbulence en-
ergy, or both, will need a larger value of 1VLOS, threshold to
avoid the rejection of good measurements. Range height in-
dicator (RHI) scanning patterns can pose the challenge of
strong vertical shear and small turbulent structures that will
need to reduce the window size nr and nφ for the median-like
filter and the selection of a different set of features (or a new

definition for1VLOS) for the clustering filter in order to keep
reliable observations from being filtered out.

Regarding feature selection, the clustering filter could con-
sider the spectral spreading of the heterodyne signal, Sb, and
time variation of VLOS in addition to features already used
in this work to characterize and distinguish better clustering
of good measurements. Nevertheless, due to the Euclidean
distance definition, additional dimensions will make the data
more sparse in higher dimensions, making it necessary to
use more data points per filtering step (here we used only
three scans at a time) to avoid the identification of good ob-
servations as spread-out, low-density noise. It is because of
this that the application of a feature selection method might
be necessary (Chandrashekar and Sahin, 2014).

Using the statistical distancesDK andDKL as a metric for
the filter performance might not be totally correct. At range
gates far from the lidar, the distance between beams increases
as well as the area covered by the accumulation of spectral
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Figure 14. The total recovery fraction of observations for phase 2 of the experiment. The noisy and far regions of the scans show a high
recovery, above 70 %, for (a and b) the CNR>−29 dB threshold and median-like filters, respectively. The recovery decreases to 55 % in the
same region for the clustering filter, in line with the previous results, assuming that outliers (above the 3σ limit) and noise are more likely to
be located here.

Table 5. Additional data recovered, relative to the number of observations in the reliable range of CNR, and fraction of data recovered with
values beyond the 3σ range.

Phase 1, 3σ quantiles= [−18.16, 3.96] ms−1 Fraction of data Additional data
recovered beyond 3σ recovered

CNR threshold>−29 dB 27.1 % 23.4 %
Median filter 14.0 % 23.1 %
Clustering filter 8.6 % 22.1 %

Phase 2, 3σ quantiles= [−18.08, 7.35] ms−1

CNR threshold>−29 dB 16.5 % 40.4 %
Median filter 12.6 % 42.4 %
Clustering filter 3.2 % 38.1 %

information in the azimuth direction. Averaging VLOS over
larger areas as we move forward through each beam might af-
fect the statistics and the PDF of VLOS (especially its spread)
in the outer region of the scan. The fact that this region is
where we usually find the nonreliable measurement group
may make the PDFs of reliable and nonreliable observations
somewhat different. These possible deviations need to be in-
vestigated further.

The selection of features and the number of scans put
together per filtering step or iteration could also be auto-
mated using feature selection methods. Nevertheless, this
would make the clustering filter more complex in its imple-
mentation and more computationally expensive, which is the
main disadvantage of this approach compared to the median-
like filter. Very efficient median filters can achieve a com-
putational complexity up to O(n), with n being the num-
ber of observations in the data set. Depending on the data
structure, DBSCAN shows a computational complexity from
O(n log(n)) to O(n2). If the distance between points is in
general smaller than ε, the first limit can be achieved, but

clusters with different densities makes the algorithm less ef-
ficient. In the data analyzed here, having clusters with dif-
ferent densities is not an issue. Nevertheless, for nonhomo-
geneous flows, scans might persistently show regions with
VLOS, CNR, or other features with noticeably different val-
ues. It may then be necessary to revisit the clustering algo-
rithm used and implement an ε-independent clustering ap-
proach, like OPTICS (Ankerst et al., 1999) for instance.

8 Conclusions

The CNR threshold filtering has been the common approach
to retrieve reliable observations from lidar measurements. In
this work we compared this approach against two alterna-
tive techniques: a median-like filter based on the assumption
of smoothness of the wind field, hence in the smoothness of
the radial wind speed observed by a wind lidar, and a clus-
tering filter based on the assumption of self-similarity of the
observations captured by the wind lidar and the possibility
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of clustering them in groups of good data and noise. A con-
trolled test was carried out on the last two approaches using
a simple lidar simulator that sampled scans from synthetic
wind fields later contaminated with procedural noise. The re-
sults indicate that the clustering filter is capable of detect-
ing more added noise than the median-like filter at a good
recovery rate of noncontaminated data. When the three fil-
ters are tested on real data, the clustering approach shows a
better performance when identifying abnormal observations,
increasing the data availability between 22 % and 38 % and
reducing the recovery of abnormal measurements between
70 % and 80 % when compared to a CNR threshold. This is
an important result because it increases the spatial coverage
of the data which can be used later for wind field reconstruc-
tion and wind data analysis, especially in the far region of the
scan, which covers the largest measured area.

Even though the median-like filter is computationally ef-
ficient, it needs an optimal definition of input parameters,
which are dependent on the turbulence characteristics of the
wind field. The clustering filter is more robust in this sense
because it is capable of automatically adapting its parameters
to the structure of the data. This is a step forward to a more
robust and automated processing of data from lidars, which
ideally should be independent of the turbulence characteris-
tics of the measured wind field or the scanning pattern used.
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Appendix A: Sensitivity analysis on median-like filter
parameters

Figure A1 shows contours that present the optimal value
for ηtot among all possible values of 1VLOS, threshold and nφ
for nr= 5, the optimal window size in the radial direction.
Large 1VLOS, threshold results in large ηrecov but poor results
for ηnoise and the opposite for values of the threshold, as
expected. The metric ηtot then becomes relevant to deter-
mine the optimal combination of parameters. From the con-
tours it is possible to see that the performance in terms of
the ηtot metric is less sensitive to nφ than 1VLOS, threshold.
Even though the results here show average metrics for all
the scans simulated, the optimal value of 1VLOS, threshold
increases with the turbulence energy and length scale pa-
rameters, which is problematic because it requires previous
knowledge of turbulence characteristics that usually are not
available before reconstruction and, more importantly, data
filtering.

Figure A1. Contours of performance metrics for nr= 5 over the1VLOS, threshold-nφ space. Each point in the contour plot corresponds to the
mean value of (a) ηnoise, (b) ηrec and (c) ηtot among all the 4305 synthetic scans filtered. The optimal value corresponds to nr= 5, nφ = 3,
and 1VLOS, threshold= 2.33 ms−1.
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