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Abstract. This study introduces an effective channel selec-
tion method for hyperspectral infrared sounders. The method
is illustrated for the Atmospheric InfraRed Sounder (AIRS)
instrument. The results are as follows. (1) Using the im-
proved channel selection (ICS), the atmospheric retrievable
index is more stable, with the value reaching 0.54. The cov-
erage of the weighting functions is more evenly distributed
over height with this method. (2) Statistical inversion com-
parison experiments show that the accuracy of the retrieval
temperature, using the improved channel selection method
in this paper, is consistent with that of 1D-Var channel se-
lection. In the stratosphere and mesosphere especially, from
10 to 0.02 hPa, the accuracy of the retrieval temperature of
our improved channel selection method is improved by about
1 K. The accuracy of the retrieval temperature of ICS is also
improved at lower heights. (3) Statistical inversion compar-
ison experiments for four different regions illustrate latitu-
dinal and seasonal variations and better performance of ICS
compared to the numerical weather prediction (NWP) chan-
nel selection (NCS) and primary channel selection (PCS)
methods. The ICS method shows potential for future appli-
cations.

1 Introduction

Since the successful launch of the first meteorological satel-
lite, TIROS, in the 1960s, satellite observation technology
has developed rapidly. Meteorological satellites observe the
Earth’s atmosphere from space and are able to record data

from regions that are otherwise difficult to observe. Satel-
lite data greatly enrich the content and range of meteorologi-
cal observations, and, consequently, atmospheric exploration
technology and meteorological observations have taken us to
a new stage in our understanding of weather systems and re-
lated phenomena (Fang, 2014; Zhao et al., 2019). From the
perspective of vertical atmospheric observation, satellite in-
struments are developing rapidly. In their infancy, the tradi-
tional infrared measurement instruments for detecting atmo-
spheric temperature and moisture profiles, such as the TIROS
Operational Vertical Sounder (TOVS) (Smith et al., 1991) or
High Resolution Infrared Sounder (HIRS) in the Advanced
TIROS Operational Vertical Sounder (ATOVS) (Chahine,
1972; Li et al., 2000; Liu, 2007), usually employed filter
spectrometry. Even though such instruments have played an
important role in improving weather prediction, it is diffi-
cult to continue to build upon improvements in terms of ob-
servation accuracy and vertical resolution due to the limita-
tion of low spectral resolution. By using this kind of filter-
based spectroscopic measurement instrument, therefore, it is
difficult to meet today’s needs in numerical weather predic-
tion (Eyre et al., 1993; Prunet et al., 2010; Menzel et al.,
2018). To meet this challenge, a series of plans for the cre-
ation of high-spectral-resolution atmospheric measurement
instruments has been executed in the United States and in
Europe in recent years. One example is the AIRS (Atmo-
spheric InfraRed Sounder) on the Earth Observation System,
“Aqua”, launched on 4 May 2002 from the United States.
AIRS has 2378 spectral channels, providing sensitivity from
the ground to up to about 65 km in altitude (Aumann et al.,
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2003; Hoffmann and Alexander, 2009; Gong et al., 2012).
The United States and Europe, in 2010 and in 2012, also in-
stalled the CRIS (Cross-track Infrared Sounder) and the IASI
(Infrared Atmospheric Sounding Interferometer) on polar-
orbiting satellites, respectively.

China also places great importance on the development of
such advanced sounding technologies. In the early 1990s,
the National Satellite Meteorological Center began to in-
vestigate the principles and techniques of hyperspectral-
resolution atmospheric observations. China’s development
of interferometric atmospheric vertical detectors eventually
led to the launch of Fengyun no. 3 on 27 May 2008 and
Fengyun no. 4 on 11 December 2016, both of which were
equipped with infrared atmospheric instruments. How best
to use the hyperspectral-resolution observation data obtained
from these instruments, to obtain reliable atmospheric tem-
perature and humidity profiles, is an active area of study in
atmospheric inversion theory.

Due to technical limitations, at first only a limited num-
ber of channels could be built into the typical satellite in-
struments. In this case, channel selection generally involved
controlling the channel weighting function by utilizing the
spectral response characteristics of the channel (such as cen-
ter frequency and bandwidth). With the development of mea-
surement technology, increasing numbers of hyperspectral
detectors were carried on meteorological satellites. Due to
the large number of channels and data supported by such in-
struments today (such as AIRS with 2378 channels and IASI
with 8461 channels), it has proven extremely cumbersome
to store, transmit and process such data. Moreover, there is
often a close correlation between the channel, causing an
ill-posedness of the inversion and potentially compromis-
ing accuracy of the retrieval product based on hyperspectral-
resolution data.

However, hyperspectral detectors have many channels and
provide real-time mode prediction systems with vast quanti-
ties of data, which can significantly improve prediction accu-
racy. But if all the channels are used to retrieve data, the re-
trieval time considerably increases. Even more problematic
are the glut of information produced and the unsuitability of
the calculations for real-time forecasting. Concurrently, the
computer processing power must be enough to meet the de-
mands of simulating all the channels simultaneously within
the forecast time. In order to improve the calculation effi-
ciency and retrieval quality, it is very important to properly
select a set of channels that can provide as much information
as possible.

Many researchers have studied channel selection algo-
rithms. Menke (1984) first chose channels using a data pre-
cision matrix method. Aires et al. (1999) made the selection
using the Jacobian matrix, which has been widely used since
then (Aires et al., 2002; Rabier et al., 2010). Rodgers (2000)
indicated that there are two useful quantities in measuring
the information provided by the observation data: Shannon
information content and degrees of freedom. The concept

of information capacity then became widely used in satellite
channel selection. In 2007, Xu (2007) compared the Shannon
information content with the relative entropy, analyzing the
information loss and information redundancy. In 2008, Du et
al. (2008) introduced the concept of the atmospheric retriev-
able index (ARI) as a criterion for channel selection, and,
in 2010, Wakita et al. (2010) produced a scheme for calcu-
lating the information content of the various atmospheric pa-
rameters in remote sensing using Bayesian estimation theory.
Kuai et al. (2010) analyzed both the Shannon information
content and degrees of freedom in channel selection when
retrieving CO2 concentrations using thermal infrared remote
sensing and indicated that 40 channels could contain 75 % of
the information from the total channels. Cyril et al. (2003)
proposed the optimal sensitivity profile method based on
the sensitivity of different atmospheric components. Lupu et
al. (2012) used degrees of freedom for signals (DFS) to esti-
mate the amount of information contained in observations in
the context of observing system experiments. In addition, the
singular value decomposition method has also been widely
used for channel selection (Prunet et al., 2010; Zhang et al.,
2011; Wang et al., 2014). In 2017, Chang et al. (2017) se-
lected a new set of Infrared Atmospheric Sounding Interfer-
ometer (IASI) channels using the channel score index (CSI).
Richardson et al. (2018) selected 75 from 853 channels based
on the high-spectral-resolution oxygen A-band instrument on
NASA’s Orbiting Carbon Observatory-2 (OCO-2), using in-
formation content analysis to retrieve the cloud optical depth,
cloud properties and position.

Today’s main methods for channel selection use only the
weighting function to study appropriate numerical methods,
such as the data precision matrix method (Menke, 1984),
singular value decomposition method (Prunet et al., 2010;
Zhang et al., 2011; Wang et al., 2014) and the Jacobi method
(Aires et al., 1999; Rabier et al., 2010). The use of the meth-
ods allows sensitive channels to be selected. The above-
mentioned studies also take into account the sensitivity of
each channel to atmospheric parameters during channel se-
lection, while ignoring some factors that impact retrieval re-
sults. The accuracy of retrieval results depends not only on
the channel weighting function but also on the channel noise,
background field and the retrieval algorithm.

Channel selection mostly uses the information content and
delivers the largest amount of information for the selected
channel combination during the retrieval (Rodgers, 1996; Du
et al., 2008; He et al., 2012; Richardson et al., 2018).

This method has made great breakthroughs in both the-
ory and practice, and the concept of information content it-
self does consider all the height dependencies of the kernel
matrix K (Rodgers, 2000). However, earlier works have ne-
glected the height dependencies of K for simplicity. This pa-
per uses the atmospheric retrievable index (ARI) as the in-
dex, which is based on information content (Du et al., 2008;
Richardson et al., 2018). Channel selection is made at dif-
ferent heights, and an effective channel selection scheme is
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proposed that fully considers various factors, including the
influence of different channels on the retrieval results at dif-
ferent heights. This ensures the best accuracy of the retrieval
product when using the selected channel. In addition, statis-
tical inversion comparison experiments are used to verify the
effectiveness of the method.

2 Channel selection indicator, scheme and method

2.1 Channel selection indicator

According to the concept of information content, the infor-
mation content contained in a selected channel of a hyper-
spectral instrument can be described as H (Rodgers, 1996;
Rabier et al., 2010). The final expression of H is as follows:

H =−
1
2

ln
∣∣∣ŜS−1

a

∣∣∣ε,
=−

1
2

ln
∣∣∣∣(Sa−SaKT

(
KSaKT

+Sε
)−1

KSa

)
S−1

a

∣∣∣∣ , (1)

where Sa is the error covariance matrix of the background
or the estimated value of atmospheric profile, Sε represents
the observation error covariance matrix of each hyperspec-
tral detector channel, Ŝ= (Sa−SaKT

(
KSaKT

+Sε
)−1KSa)

denotes the covariance matrix after retrieval and K is the
weighting function matrix.

In order to describe the accuracy of the retrieval results
visually and quantitatively, the atmospheric retrievable index
(ARI), p, (Du et al., 2008) is defined as follows:

p = 1− exp
(

1
2n

ln
∣∣∣ŜS−1

a

∣∣∣) . (2)

Assuming that before and after the retrieval the ratio of the
root-mean-square error of each element in the atmospheric
state vector is 1−p, then

∣∣∣ŜS−1
a

∣∣∣= (1−p)2n is derived. By
inverting the equation, the ARI that is p can be obtained in
Eq. (2), which indicates the relative portion of the error that is
eliminated by retrieval. In fact, before and after retrieval, the
ratio of the root-mean-square error of each element cannot be
1−p. Therefore, p defined by Eq. (1) is actually an overall
evaluation of the retrieval result.

2.2 Channel selection scheme

The principle of channel selection is to find the optimum
channel combination after numbering the channels. This
combination makes the information content, H , or the ARI
defined in this paper as large as possible, in order to maintain
the highest possible accuracy in the retrieval results.

There are M layers in the vertical direction of the atmo-
sphere and N satellite channels. Selecting n from N chan-
nels, there will be CnN combinations in each layer, leading
CnN calculations to get CnN kinds of p results. Furthermore,

there areM layers in the vertical direction of the atmosphere.
Therefore, the entire atmosphere must be calculated M ·CnN
times. However, the calculation M ·CnN times will be partic-
ularly large, which makes this approach impractical in cal-
culating p for all possible combinations. Therefore, it is nec-
essary to design an effective calculation scheme, and such
a scheme, i.e., a channel selection method, using iteration is
proposed, called the “sequential absorption method” (Dudhia
et al., 2002; Du et al., 2008). The method’s main function is
to select (“absorb”) channels one by one, taking the channel
with the maximum value of p. Through n iterations, n chan-
nels can be selected as the final channel combination. The
steps are as follows:

(I) The expression of information content in a single chan-
nel.

First, we use only one channel for retrieval. A row vector,
k, in the weighting function matrix, K, is a weighting func-
tion corresponding to the channel. After observation in this
channel, the error covariance matrix is as follows:

Ŝ= Sa−Sak
T
(
sε + kSak

T
)−1

kSa. (3)

It should be noted that
(
sε + kSak

T
)

is a scalar value in
Eq. (3), thus Eq. (3) can be converted to the following equa-
tion:

Ŝ=

(
I −

Sak
T k(

sε + kSak
T
))Sa =

(
I −

(kSa)
T k(
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))Sa.

(4)

Substituting Eq. (4) into Eq. (2) gives the following equation:

p = 1− exp

(
1

2n
ln
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. (5)

(II) Simplification of Eq. (5) for calculating the p value.
Since Sa and Sε are positive definite symmetric matrices,

they can be decomposed into Sa = (S
1/2
a )T (S1/2

a ) and Sε =
(S1/2
ε )T(S1/2

ε ).
This can be defined using the following equation:

R= S1/2
ε KS1/2

a . (6)

The matrix R can then be regarded as a weighting function
matrix, normalized by the observed error and a priori uncer-
tainty. A row vector of R, r = s−1/2

ε kS1/2
a , represents the nor-

malized weighting function matrix of a single channel. Sub-
stituting r into Eq. (5) gives the following equation:

p = 1− exp
(

1
2n

ln
(∣∣∣∣I − rrT

1+ rT r

∣∣∣∣)) . (7)

For arbitrary row vectors, a and b, using the matrix property
det
(
I + aT b

)
= 1+ baT , the new expression for p is as fol-
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lows:
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(III) Iteration in a single layer.
First, the iteration in a single layer requires the calculation

of R. Using Sa, Sε , K and Eq. (6), R can be calculated. Sec-
ond, using Eq. (8), p of each candidate channel can be cal-
culated. Moreover, the channel corresponding to maximum
p is the selected channel for this iteration. After a channel
has been selected, according to Eq. (3) we can use Ŝ to get
Sa for the next iteration. Finally, channels which are not se-
lected during this iteration are used as the candidate channels
for the next iteration.

When selecting n from N channels, it is necessary to cal-
culate (N−n/2)n≈Nnp values, which is much smaller than
CnN . In addition to high computational efficiency by using
this method, another advantage is that all channels can be
recorded in the order in which they are selected. In the actual
application, if n′ channels are needed and n′ < n, we will not
need to select the channel again but record the selected chan-
nel only.

(IV) Iteration for different altitudes.
Because satellite channel sensitivity varies with height, re-

peating the iterative process of step (III) selects the optimum
channels at different heights. Assuming there areM layers in
the atmosphere and selecting n from N channels, it is neces-
sary to calculate M · (N − n/2)n≈M ·Nnp values, a much
smaller number than M ·CnN . In this way, different channel
sets can be used to evaluate corresponding height in the re-
trieved profiles.

2.3 Statistical inversion method

The inversion methods for the atmospheric temperature pro-
files can be summarized in two categories: statistical inver-
sion and physical inversion. Statistical inversion is essen-
tially a linear regression model, which uses a large num-
ber of satellite measurements and atmospheric parameters
to match samples and calculate their correlation coefficient.
Then, based on the correlation coefficient, the required pa-
rameters of the independent measurements obtained by the
satellite are retrieved. Because the method does not directly
solve the radiation transfer equation, it has the advantage of
fast calculation speed. In addition, the solution is numerically
stable, which makes it one of the highest-precision meth-
ods (Chedin et al., 1985). Therefore, the statistical inversion
method will be used for our channel selection experiment and
a regression equation will be established.

According to an empirical orthogonal function, the atmo-
spheric temperature (or humidity), T, and the brightness tem-
perature, Tb, are expanded as follows:

T= T∗ ·A, (9)
Tb = T∗b ·A, (10)

where T∗ and T∗b are the eigenvectors of the covariance ma-
trix of temperature (or humidity) and brightness temperature,
respectively. A and B stand for the corresponding expansion
coefficient vectors of temperature (humidity) and brightness
temperature.

Using the least-squares method and the orthogonal prop-
erty, the coefficient conversion matrix, V, is introduced:

A= V ·A, (11)

where

V= ABT
(

BBT
)−1

. (12)

Using the orthogonality, we get the following equation:

B= (T∗b)
TTb, (13)

A= (T∗)TT. (14)

For convenience, the anomalies of the state vector (atmo-
spheric temperature), T, and the observation vector (bright-
ness temperature), Tb, are taken as follows:

T̂= T+ T̂′ = T+GT′b = T+G
(

Tb−Tb

)
, (15)

where T̂ stands for the retrieval atmospheric temperature. T
and Tb are the corresponding average values of the elements,
respectively. T̂′ and Tb

′ represent the corresponding anoma-
lies of the elements, respectively.

Assuming there are k sets of observations, a sample
anomaly matrix with k vectors can be constructed:

T′ = (t ′1, t
′

2, . . ., t
′

k), (16)
T′b = (t

′

b1, t
′

b2, . . ., t
′

bk). (17)

Define the inversion error matrix as follows:

δ = T− T̂= T̂′−T′. (18)

The retrieval error covariance matrix is as follows:

Sδ =
1

k− n− 1
δδT,

=
1

k− n− 1
(T′−GT′b)(T

′
−GT′b)

T,

=
k− 1

k− n− 1
(Se−GTSxy−SxyGT

+GSyGT), (19)
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where

Se =
1

k− 1
T′T′T,

Sy =
1

k− 1
T′bT′b

T
,

Sxy =
1

k− 1
T′T′b

T
. (20)

Se stands for the sample covariance matrix of T, Sy denotes
the sample covariance matrix of Tb, and Sxy represents the
covariance matrix of T and Tb. The elements on the diago-
nal of the error covariance matrix, Sδ , represent the retrieval
error variance of T. The matrix G that minimizes the over-
all error variance is the least-squares coefficient matrix of the
regression Eq. (15), which meets the following criterion:

δ2
= tr(Sδ)=min. (21)

Taking a derivative of Eq. (21) with respect to G, ∂
∂G tr(Sδ)=

0= (−2Sxy + 2GSy), which means that

G= SxyS−1
y . (22)

Substituting Eq. (22) into Eq. (15) finally gives the least-
squares solution as follows:

T̂= T+SxyS−1
y

(
Tb−Tb

)
. (23)

It should be noted that the least-squares solution obtained
here aims to minimize the sum of the error variance for each
element in the atmospheric state vector after retrieval for sev-
eral different times. At present, statistical multiple regression
is widely used in the retrieval of atmospheric profiles based
on atmospheric remote sensing data. As long as there are
enough data, Sxy and Sy can be determined.

3 Channel selection experiment

3.1 Data and model

The Atmospheric Infrared Sounder (AIRS) is primarily de-
signed to measure the Earth’s atmospheric water vapor and
temperature profiles on a global scale (Aumann et al., 2003;
Susskind et al., 2003). AIRS is a continuously operating
cross-track-scanning sounder, consisting of a telescope that
feeds an echelle spectrometer. The AIRS infrared spectrom-
eter acquires 2378 spectral samples at a resolution λ/1λ,
ranging from 1086 to 1570, in three bands: 3.74 to 4.61, 6.20
to 8.22 and 8.8 to 15.4 µm. The footprint size is 13.5 km. The
spectral range includes 4.3 and 15.5 µm for important tem-
perature observation and CO2, 6.3 µm for water vapor, and
9.6 µm for ozone absorption bands (Menzel et al., 2018). The
root-mean-square error (RMSE) of the measured radiation is
better than 0.2 K (Susskind et al., 2003). Moreover, global

Figure 1. Root-mean-square error of AIRS infrared channel (black
spots).

atmospheric profiles can be detected every day. Due to ra-
diometer noise and faults, there are currently only 2047 ef-
fective channels. However, compared with previous infrared
detectors, AIRS boasts a significant improvement in both the
number of channels and spectral resolution (Aumann, 1994;
Huang et al., 2005; Li et al., 2005).

The root-mean-square error of an AIRS infrared channel
is shown in Fig. 1. The measurement error is not below 0.2 K
for all the instrument channels. There are a few channels
with extremely large measurement errors, which reduce the
accuracy of prediction to some extent. Among them, some
extremely large measurement errors reduce the accuracy of
prediction to some extent (Susskind et al., 2003). At present,
more than 300 channels have not been used because their er-
rors exceed 1 K. If data from these channels were to be used
for retrieval, the accuracy of the retrieval could be reduced.
Therefore, it is necessary to select a group of channels to im-
prove the calculation efficiency and retrieval quality. In this
paper we study channel selection for temperature profile re-
trieval by AIRS.

For the calculation of radiative transfer and the weight-
ing function matrix, K, the RTTOV (Radiative Transfer
for TIROS Operational Vertical Sounder) v12 fast radiative
transfer model is used. Although initially developed for the
TOVS (TIROS Operational Vertical Sounder) radiometers,
RTTOV can now simulate around 90 different satellite sen-
sors measuring in the MW (microwave), IR (infrared) and
VIS (visible) regions of the spectrum (Saunders et al., 2018).
The model allows rapid simulations (1 ms for 40 channel
Advanced TOVS, ATOVS, on a desktop PC) of radiances
for satellite visible, infrared, or microwave nadir-scanning
radiometers given atmospheric profiles of temperature and
trace gas concentrations and cloud and surface properties.
The only mandatory gas included as a variable for RTTOV
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v12 is water vapor. Optionally, ozone, carbon dioxide, ni-
trous oxide, methane, carbon monoxide and sulfur dioxide
can be included, with all other constituents assumed to be
constant. RTTOV can accept input profiles on any defined set
of pressure levels. The majority of RTTOV coefficient files
are based on the 54 levels (see Table A1 in Appendix A), in
the range from 1050 to 0.01 hPa, though coefficients for some
hyperspectral sounders are also available on 101 levels.

In order to correspond to the selected profiles, the atmo-
sphere is divided into 137 layers, each of which contains
corresponding atmospheric characteristics, such as temper-
ature, pressure and the humidity distribution. Each element
in the weighting function matrix can be written as ∂yi/∂xj .
The subscript i is used to identify the satellite channel, and
the subscript j is used to identify the atmospheric variable.
Therefore, ∂yi/∂xj indicates the variation in brightness tem-
perature in a given satellite channel, when a given atmo-
spheric variable in a given layer changes. We are thus able to
establish which layer of the satellite channel is particularly
sensitive to which atmospheric characteristic (temperature,
various gas contents) in the vertical atmosphere. The RT-
TOV_K (the K mode) is used to calculate the matrix H(X0)
(Eq. 1) for a given atmospheric profile characteristic.

3.2 Channel selection comparison experiment and
results

In order to verify the effectiveness of the method, three sets
of comparison experiments were conducted. First, 324 chan-
nels used by the EUMETSAT Satellite Application Facil-
ity on Numerical Weather Prediction (NWP-SAF) were se-
lected. NCS is short for NWP channel selection in this pa-
per. NCSs were released by the NWP-SAF 1D-Var (one-
dimensional variational analysis) scheme, in accordance with
the requirements of the NWP-SAF (Saunders et al., 2018).
Second, 324 channels were selected using the informa-
tion capacity method. This method was adopted by Du et
al. (2008) without the consideration of layering. PCS is short
for primary channel selection in this paper.

Third, 324×M channels were selected using the infor-
mation capacity method for the M layer atmosphere. ICS is
short for improved channel selection in this paper. In order
to verify the retrieval effectiveness after channel selection,
statistical inversion comparison experiments were performed
using 5000 temperature profiles provided by the ECMWF
dataset, which will be introduced in Sect. 4.

The observation error covariance matrix, Sε, in the ex-
periment is provided by NWP-SAF 1D-Var. In general,
it can be converted to a diagonal matrix, the elements
of which are the observation error standard deviation of
each hyperspectral detector channel, which is the square
of the root-mean-square error for each channel. The root-
mean-square error of the AIRS channels is shown in
Fig. 1. The error covariance matrix of the background,
Sa, is calculated using 5000 samples of the IFS-137 data

Figure 2. Error covariance matrix of temperature (shaded).

provided by the ECMWF dataset (The detailed informa-
tion will be introduced in Sect. 4). The last access date
is 26 April 2019 (download address: https://www.nwpsaf.
eu/site/update-137-level-nwp-profile-dataset/ last access: 11
January 2020). The covariance matrix of temperature is
shown in Fig. 2. The results are consistent with the previous
study by Du et al. (2008).

The reference atmospheric profiles are from the IFS-137
database, and the temperature weighting function matrix is
calculated using the RTTOV_K mode, as shown in Fig. 3; the
results are consistent with those of the previous study by Du
et al. (2008). For the air-based passive atmospheric remote
sensing studied in this paper, when the same channel detects
the atmosphere from different observation angles, the value
of the weighting function matrix K changes due to the limb
effect. The goal of this section is focusing on the selection
methods of selecting channels; therefore, the biases produced
from different observation angles can be ignored.

In order to verify the effectiveness of the method, the dis-
tribution of 324 channels in the AIRS brightness tempera-
ture spectrum, without considering layering, is indicated in
Fig. 4. The background brightness temperature is the sim-
ulated AIRS observation brightness temperature, which is
from the atmospheric profile in RTTOV put into the model.
Figure 4a shows the 324 channels selected by PCS, while
Fig. 4b shows the 324 channels selected by NCS.

Without considering layering, the main differences be-
tween the 324 channels selected by PCS and NCS are as
follows. (1) In the near 10 µm band, fewer channels are se-
lected by PCS because the retrieval of ground temperature
is considered by NCS. (2) In the near 9 µm band, no chan-
nels are selected by PCS because the retrieval of O3 is not
considered in this paper. (3) As is known, the spectral range
from 6 to 7 µm corresponds to water vapor absorption bands,
but fewer channels are selected by NCS; (4) Near 5 µm band,
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Figure 3. Temperature weighting function matrix (shaded).

it includes 4.2 µm for N2O and 4.3 µm for CO2 absorption
bands. As is shown in Fig. 4, fewer channels are selected by
PCS in those bands. PCS is favorable for atmospheric tem-
perature observation. Because 4.2 and 4.3 µm bands are sen-
sitive to high temperature, a better observation can be ob-
tained for higher temperatures. (5) In the near 4 µm band, a
small number of channels are selected by NCS, but no chan-
nels are selected by PCS.

Above all, the information content considered in this study
only takes the temperature profile retrieval into consider-
ation, thus the channel combination of PCS is inferior to
that of NCS for the retrieval of surface temperature and the
O3 profile. The advantages of the channel selection method
based on information content in this paper are mainly re-
flected in the following ways: (1) the stratosphere and meso-
sphere are less affected by the ground surface, thus the re-
trieval result of PCS is better than that of NCS. (2) Due to
the method selected in this paper there are more channels at
4.2 µm for N2O and 4.3 µm for CO2 absorption bands. The
channel combination of PCS is better than that of NCS for
atmospheric temperature observation at higher temperature.

By comparing channel selection without considering lay-
ering, we note the general advantages and disadvantages of
PCS and NCS for the retrieval of temperature and can im-
prove the channel selection scheme. First, the retrieval of the
temperature profile for 324 channels selected by PCS is ob-
tained. The relationship between the number of iterations and
the ARI is shown in Fig. 5.

The ARI for PCS tends to be 0.38 and is not convergent,
thus the PCS method needs to be improved. In this paper, the
atmosphere is divided into 137 layers and, based on the in-
formation content and iteration, 324 channels are selected for
each layer. Then, the temperature profile of each layer can be
retrieved based on statistical inversion (see Sect. 4). The re-
lationship between the number of iterations and the ARI for
ICS is shown in Fig. 5b. When the number of iterations ap-
proaches 100, the ARI of ICS tends to be stable and reaches

Figure 4. The distribution of different channel selection methods
without considering layering in the AIRS brightness temperature
spectrum (blue line): (a) 324 channels selected by PCS (red circles)
and (b) 324 channels selected by NCS (red circles).

0.54. Thus, in terms of the ARI and convergence, the ICS
method is better than that of PCS.

Furthermore, because an iterative method is used to select
channels, the order of each selected channel is determined
by the contribution from the ARI. The weighting function
matrix of the top 324 selected channels, according to channel
order, is shown in Fig. 6.

As illustrated in Fig. 6, in the first 100 iterations, the dis-
tribution of the temperature weighting function for PCS is
relatively scattered; it does not reflect continuity between the
adjacent layers of the atmosphere. Besides, the ICS result
is better than that of PCS, showing that (1) the distribution
of the temperature weighting function is more continuous
and reflects the continuity between adjacent layers of the at-
mosphere and (2) regardless of the number of iterations, the
maximum value of the weighting function is stable near 300–
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Figure 5. The relationship between the number of iterations and
ARI. The blue line represents the result of ICS. The dashed red line
stands for the result of PCS.

Figure 6. The relationship between the number of iterations and
the weighting function of the top 324 selected channels (shaded):
(a) ICS and (b) PCS.

400 and 600–700 hPa, without scattering, which is closer to
the situation in real atmosphere.

4 Statistical multiple-regression experiment

4.1 Temperature profile database

A new database including a representative collection of
25 000 atmospheric profiles from the European Centre for
Medium-range Weather Forecasts (ECMWF) was used for
the statistical inversion experiments. The profiles were given
in a 137-level vertical grid extending from the surface up to
0.01 hPa. The database was divided into five subsets focus-
ing on diverse sampling characteristics, such as temperature,
specific humidity, ozone mixing ratio, cloud condensates and
precipitation. In contrast with earlier releases of the ECMWF
diverse profile database, the 137-level database places greater
emphasis on preserving the statistical properties of sampled
distributions produced by the Integrated Forecasting System
(IFS) (Eresmaa and McNally, 2014; Brath et al., 2018). IFS-
137 spans the period from 1 September 2013 to 31 Au-
gust 2014. There are two operational analyses each day (at
00:00 and 12:00 Z), and approximately 13 000 atmospheric
profiles over the ocean. The pressure levels adopted for IFS-
137 are shown in Table A2 (see Table A2 in Appendix A).

The locations of selected profiles of temperature, spe-
cific humidity and cloud condensate subsets of the IFS-91
and IFS-137 databases are plotted on the map in Fig. 7. In
the IFS-91 database, the sampling is fully determined by
the selection algorithm, which makes the geographical dis-
tributions very inhomogeneous. Selected profiles represent
those regions where gradients of the sampled variable are
the strongest: in the case of temperature, midlatitudes and
high latitudes dominate, while humidity and cloud conden-
sate subsets concentrate at low latitudes. However, the IFS-
137 database shows a much more homogeneous spatial dis-
tribution in all the sampling subsets, which is a consequence
of the randomized selection.

The temporal distribution of the selected profiles is illus-
trated in Fig. 8. The coverage of the IFS-137 dataset is more
homogeneous than the IFS-91 dataset. Moreover, the IFS-
137 database supports the mode with input parameters, such
as detection angle, 2 m temperature and cloud information.
Therefore, it is feasible to use the selected samples in a sta-
tistical multiple-regression experiment.

4.2 Experimental scheme

In order to verify the retrieval effectiveness of ICS, 5000 tem-
perature profiles provided by the IFS-137 were used for sta-
tistical inversion comparison experiments. The steps are as
follows.

– A total of 5000 profiles and their corresponding surface
factors, including surface air pressure, surface temper-
ature, 2 m temperature, 2 m specific humidity and 10 m
wind speed, are put into the RTTOV mode. Then, the
simulated AIRS spectra are obtained.
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Figure 7. Locations of selected profiles in the temperature (a, b), specific humidity (c, d) and cloud condensate (e, f) sampled from subsets
of the IFS-91 (a, c, e) and IFS-137 (b, d, f) databases (from https://www.nwpsaf.eu/site/update-137-level-nwp-profile-dataset/, last access:
11 January 2020).

Figure 8. Distribution of profiles within the calendar months
in IFS-91 (a) and IFS-137 (b) databases. Different subsets are
shown in different colors. Black parts stand for temperature.
Blue parts represent specific humidity. Green parts indicate ozone
subset. Orange parts stand for cloud condensate. Red parts
represent precipitation. Taken from https://www.nwpsaf.eu/site/
update-137-level-nwp-profile-dataset/ (last access: 26 April 2019).

– The retrieval of temperature is carried out in accordance
with Eq. (23). The 5000 profiles are divided into two
groups. The first group of 2500 profiles is used to obtain
the regression coefficient, and the second group of 2500
is used to test the result.

– The results are then verified; the test is carried out based
on the standard deviation between the retrieval value
and the true value.

4.3 Results and discussion

For the statistical inversion comparison experiments, the
standard deviation of temperature retrieval is shown in Fig. 9.
First, because PCS does not take channel sensitivity as a
function of height into consideration, the retrieval result of
PCS is inferior to that of ICS. Second, by comparing the re-
sults of ICS and NCS we found that below 100 hPa, since the
method used in this paper considers near ground to be less
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Figure 9. The temperature profile standard deviation of statistical
inversion comparison experiments. The red line indicates the result
of ICS. The dashed black line stands for the result of NCS. The
dashed blue line represents the result of PCS.

of an influencing factor, the channel combination of ICS is
slightly inferior to that of NCS, but the difference is small.

From 100 to 10 hPa, the retrieval temperature of ICS in
this paper is consistent with that of NCS, slightly better than
the channel selected for NCS. From 10 to 0.02 hPa, near the
space layer, the retrieval temperature of ICS is better than
that of NCS. In terms of the standard deviation, the channel
combination of ICS is slightly better than that of PCS from
100 to 10 hPa. From 10 to 0.02 hPa, the standard deviation of
ICS is lower than that of NCS by about 1 K, meaning that the
retrieval result of ICS is better than that of NCS.

In order to further illustrate the effectiveness of ICS, the
mean improvement value of the ICS and its percentages com-
pared with the PCS and NCS at different heights are shown
in Table 1. Because PCS does not take channel sensitivity
as a function of height into consideration, the retrieval result
of PCS is inferior to that of ICS. In general, the accuracy
of the retrieval temperature of ICS is improved. Especially
from 100 to 0.01 hPa, the mean value of ICS is evidently im-
proved by more than 0.5 K, which means the accuracy can
be improved by more than 11 %. By comparing the results of
ICS and NCS we found that below 100 hPa, since the method
used in this paper considers near ground to be less of an in-
fluencing factor, the channel combination of ICS is slightly
inferior to that of NCS, but the difference is small. From 100
to 0.01 hPa, the mean value of ICS is improved by more than
0.36 K, which means the accuracy can be improved by more
than 9.6 %.

This is because, as shown in Fig. 4, (1) stratosphere and
mesosphere is less affected by the ground surface, thus the
retrieval result of PCS is better than that of NCS. (2) Due to
the method selected in this paper, there are more channels

Figure 10. The average temperature profiles in four typical regions.
The red line indicates the equatorial zone. The dashed pink line
stands for the subtropics. The dashed blue line represents the mid-
latitude region. The dashed black line stands for the Arctic.

at 4.2 µm for N2O and 4.3 µm for CO2 absorption bands,
and the channel combination of PCS is superior to that of
NCS for atmospheric temperature observation in the high-
temperature zone. Moreover, ICS takes channel sensitivity
as a function of height into consideration, thus its retrieval
result is improved.

5 Statistical inversion comparison experiments in four
typical regions

The accuracy of the retrieval temperature varies from place
to place and changes with atmospheric conditions. There-
fore, in order to further compare the inversion accuracy under
different atmospheric conditions, this paper has divided the
atmospheric profile from the IFS-137 database introduced
in Sect. 4 into four regions: the equatorial zone, subtrop-
ical regions, midlatitude regions and the Arctic. The aver-
age temperature profiles in these four regions are shown in
Fig. 10. The retrieval temperature varies from place to place
and changes with atmospheric conditions. In order to further
compare the regional differences of inversion accuracy, the
temperature standard deviations of ICS in four typical re-
gions are compared in Sect. 5.2.

5.1 Experimental scheme

In order to further illustrate the different accuracy of the
retrieval temperature using our improved channel selection
method under different atmospheric conditions, the profiles
in four typical regions were used for statistical inversion
comparison experiments. The experimental steps are as fol-
lows:
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Table 1. The mean improvement value of the ICS and its percentages compared with the PCS and NCS at different heights.

Pressure Improved mean value/ Improved value/
percentage compared with PCS percentage compared with NCS

hPa K/% K/%

Surface–100 hPa 0.24/10.77 % −0.04/−3.27 %
100–10 hPa 0.15/5.08 % 0.06/2.4 %
10–1 hPa 0.04/0.64 % 0.17/2.99 %
1–0.01 hPa 0.52/11.92 % 0.36/9.57 %

– A total of 2500 profiles in Sect. 4 are used to work out
the regression coefficient.

– The atmospheric profiles of the four typical regions, i.e.,
the equatorial zone, subtropical regions, midlatitude re-
gions and the Arctic, are used for statistical inversion
comparison experiments and to test the result.

– The results are then verified; the test is carried out based
on the standard deviation between the retrieval value
and the true value.

5.2 Results and discussion

Using statistical inversion comparison experiments in four
typical regions, the standard deviation of temperature re-
trieval is shown in Fig. 11. Generally, the retrieval temper-
ature by ICS is better than that of NCS and PCS. In particu-
lar, above 1 hPa (the stratosphere and mesosphere) the stan-
dard deviation of atmospheric temperature can be improved
by 1 K with PCS and NCS. Thus, ICS shows a great improve-
ment. The results were consistent with Sect. 4.

In order to further compare the regional differences of in-
version accuracy, the temperature standard deviation of ICS
in four typical regions are compared in Fig. 12.

The temperature standard deviations of the ICS in the four
typical regions are large (Fig. 12). Below 100 hPa, due to the
high temperature in the equatorial zone, the channel combi-
nation of ICS is better than that of PCS and NCS for atmo-
spheric temperature observation at higher temperature. The
standard deviation is 0.5 K. Due to the method selected in
this paper there are more channels at 4.2 µm for N2O and
4.3 µm for CO2 absorption bands, which has been previously
described in Sect. 3. Near the tropopause, the standard devi-
ation of the equatorial zone increases sharply. It is also due
to the sharp drops in temperature. However, the standard de-
viation of the Arctic is still around 0.5 K. From 100 to 1 hPa,
the standard deviation of ICS is 0.5 to 2 K. With the increase
in latitude, the effectiveness considerably increases. Accord-
ing to Fig. 11, ICS takes channel sensitivity as a function of
height into consideration, thus its retrieval result is better.

Although the improvements of ICS in the four typical re-
gions are different, in general, the accuracy of the retrieval
temperature of ICS is improved. Because PCS does not take
channel sensitivity as a function of height into consideration,

the retrieval result of PCS is inferior to that of ICS. In gen-
eral, the accuracy of the retrieval temperature of ICS is im-
proved.

6 Conclusions

In recent years, the atmospheric layer in the altitude range of
about 20–100 km has been named “the near-space layer” by
the aeronautical and astronautical communities. It is between
the space-based satellite platform and the aerospace vehicle
platform, which is the transition zone between aviation and
aerospace. Its unique resource has attracted a lot of attention
from many countries. Research and exploration, therefore,
on and of the near-space layer are of great importance. A
new channel selection scheme and method for hyperspectral
atmospheric infrared sounder AIRS data based on layering is
proposed. The retrieval results of ICS concerning the near-
space atmosphere are particularly good. Thus, ICS aims to
provide a new and an effective channel selection method for
the study of the near-space atmosphere using the hyperspec-
tral atmospheric infrared sounder.

An improved channel selection method is proposed, based
on information content in this paper. A robust channel selec-
tion scheme and method are proposed, and a series of channel
selection comparison experiments are conducted. The results
are as follows.

– Since ICS takes channel sensitivity as a function of
height into consideration, the ARI of PCS only tends
to be 0.38 and is not convergent. However, as the 100th
iteration is approached, the ARI of ICS tends to be sta-
ble, reaching 0.54, while the distribution of the temper-
ature weighting function is more continuous and closer
to that of the actual atmosphere. Thus, in terms of the
ARI, convergence and the distribution of the tempera-
ture weighting function, ICS is better than PCS.

– Statistical inversion comparison experiments show that
the retrieval temperature of ICS in this paper is consis-
tent with that of NCS. In particular, from 10 to 0.02 hPa
(the stratosphere and mesosphere), the retrieval temper-
ature of ICS is obviously better than that of NCS at
about 1 K. In general, the accuracy of the retrieval tem-
perature of ICS is improved. Especially, from 100 to
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Figure 11. The temperature profile standard deviation of statistical inversion comparison experiments in four typical regions. The red line
indicates the result of ICS. The dashed black line stands for the result of NCS. The dashed blue line represents the result of PCS. The panels
show data for the following regions: (a) the equatorial zone, (b) subtropical regions, (c) midlatitude regions and (d) the Arctic.

Figure 12. The temperature standard deviation of ICS in four typ-
ical regions. The red line indicates the result from the equatorial
zone. The dashed pink line represents the result from the subtropics.
The blue line represents the result from midlatitudes. The dashed
black line stands for the result from the Arctic.

0.01 hPa, the accuracy of ICS can be improved by more
than 11 %. The reason is that stratosphere and meso-
sphere are less affected by the ground surface, thus the
retrieval result of ICS is better than that of NCS. Addi-
tionally, due to the method selected in this paper, there

are more channels at 4.2 µm for the N2O and at 4.3 µm
for the CO2 absorption bands, and the channel combi-
nation of ICS is better than that of NCS for atmospheric
temperature observation at higher temperature.

– Statistical inversion comparison experiments in four
typical regions indicate that ICS in this paper is signifi-
cantly better than NCS and PCS in different regions and
shows latitudinal variations, which shows potential for
future applications.

Data availability. The data used in this paper are available from the
corresponding author upon request.
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Appendix A

Table A1. Pressure levels adopted for RTTOV v12: 54 pressure level coefficients and profile limits within which the transmittance calcula-
tions are valid. Note that the gas units here are ppmv. (From https://www.nwpsaf.eu/site/software/rttov/ last access: 11 January 2020, RTTOV
Users guide).

Level Pressure Tmax Tmin Qmax Qmin Q2max Q2min Q2Ref
number hPa K K ppmv∗ ppmv∗ ppmv∗ ppmv∗ ppmv∗

1 0.01 245.95 143.66 5.24 0.91 1.404 0.014 0.296
2 0.01 252.13 154.19 6.03 1.08 1.410 0.069 0.321
3 0.03 263.71 168.42 7.42 1.35 1.496 0.108 0.361
4 0.03 280.12 180.18 8.10 1.58 1.670 0.171 0.527
5 0.13 299.05 194.48 8.44 1.80 2.064 0.228 0.769
6 0.23 318.64 206.21 8.59 1.99 2.365 0.355 1.074
7 0.41 336.24 205.66 8.58 2.49 2.718 0.553 1.471
8 0.67 342.08 197.17 8.34 3.01 3.565 0.731 1.991
9 1.08 340.84 189.50 8.07 3.30 5.333 0.716 2.787
10 1.67 334.68 179.27 7.89 3.20 7.314 0.643 3.756
11 2.50 322.5 17627 7.75 2.92 9.191 0.504 4.864
12 3.65 312.51 175.04 7.69 2.83 10.447 0.745 5.953
13 5.19 303.89 173.07 7.58 2.70 12.336 1.586 6.763
14 7.22 295.48 168.38 7.53 2.54 12.936 1.879 7.109
15 9.84 293.33 166.30 7.36 2.46 12.744 1.322 7.060
16 13.17 287.05 16347 7.20 2.42 11.960 0.719 6.574
17 17.33 283.36 161.49 6.96 2.20 11.105 0.428 5.687
18 22.46 280.93 161.47 6.75 1.71 9.796 0.278 4.705
19 28.69 282.67 162.09 6.46 1.52 8.736 0.164 3.870
20 36.17 27993 162.49 6.14 1.31 7.374 0.107 3.111
21 45.04 27315 164.66 5.90 1.36 6.799 0.055 2.478
22 55.44 265.93 166.19 6.21 1.30 5.710 0.048 1.907
23 67.51 264.7 167.42 9.17 1.16 4.786 0.043 1.440
24 81.37 261.95 159.98 17.89 0.36 4.390 0.038 1.020
25 97.15 262.43 163.95 20.30 0.01 3.619 0.016 0.733
26 114.94 259.57 168.59 33.56 0.01 2.977 0.016 0.604
27 134.83 259.26 169.71 102.24 0.01 2.665 0.016 0.489
28 156.88 260.13 169.42 285.00 0.01 2.351 0.013 0.388
29 181.14 262.27 17063 714.60 0.01 1.973 0.010 0.284
30 207.61 264.45 174.11 1464.00 0.01 1.481 0.013 0.196
31 236.28 270.09 177.12 2475.60 0.01 1.075 0.016 0.145
32 267.10 277.93 181.98 4381.20 0.01 0.774 0.015 0.110
33 300.00 285.18 184.76 6631.20 0.01 0.628 0.015 0.086
34 334.86 293.68 187.69 9450.00 1.29 0.550 0.016 0.073
35 371.55 300.12 190.34 12432.00 1.52 0.447 0.015 0.063
36 409.89 302.63 194.40 15468.00 2.12 0.361 0.015 0.057
37 449.67 304.43 198.46 18564.00 2.36 0.284 0.015 0.054
38 490.&5 307.2 201.53 21684.00 2.91 0.247 0.015 0.052
39 532.56 31217 202.74 24696.00 3.67 0.199 0.015 0.050
40 572.15 31556 201.61 27480.00 3.81 0.191 0.012 0.050
41 618.07 318.26 189.95 30288.00 6.82 0.171 0.010 0.049
42 661.00 321.71 189.95 32796.00 6.07 0.128 0.009 0.048
43 703.59 327.95 189.95 55328.00 6.73 0.124 0.009 0.047
44 745.48 333.77 189.95 37692.00 8.71 0.117 0.009 0.046
45 786.33 336.46 189.95 39984.00 8.26 0.115 0.008 0.045
46 825.75 338.54 189.95 42192.00 7.87 0.113 0.008 0.043
47 863.40 342.55 189.95 44220.00 7.53 0.111 0.007 0.041
48 898.93 346.23 189.95 46272.00 7.23 0.108 0.006 0.040
49 931.99 34924 189.95 47736.00 6.97 0.102 0.006 0.038
50 962.26 349.92 189.95 51264.00 6.75 0.099 0.006 0.034
51 989.45 350.09 189.95 49716.00 6.57 0.099 0.006 0.030
52 1013.29 360.09 189.95 47208.00 6.41 0.094 0.006 0.028
53 1033.54 350.09 189.95 47806.00 6.29 0.094 0.006 0.027
54 1050.00 350.09 189.95 47640.00 6.19 0.094 0.006 0.027
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Table A2. Pressure levels adopted for IFS-137: 137 pressure levels (in hPa).

Level Pressure Level Pressure Level Pressure Level Pressure Level Pressure
number (hPa) number (hPa) number (hPa) number (hPa) number (hPa)

1 0.02 31 12.8561 61 106.4153 91 424.019 121 934.7666
2 0.031 32 14.2377 62 112.0681 92 441.5395 122 943.1399
3 0.0467 33 15.7162 63 117.9714 93 459.6321 123 950.9082
4 0.0683 34 17.2945 64 124.1337 94 478.3096 124 958.1037
5 0.0975 35 18.9752 65 130.5637 95 497.5845 125 964.7584
6 0.1361 36 20.761 66 137.2703 96 517.4198 126 970.9046
7 0.1861 37 22.6543 67 144.2624 97 537.7195 127 976.5737
8 0.2499 38 24.6577 68 151.5493 98 558.343 128 981.7968
9 0.3299 39 26.7735 69 159.1403 99 579.1926 129 986.6036
10 0.4288 40 29.0039 70 167.045 100 600.1668 130 991.023
11 0.5496 41 31.3512 71 175.2731 101 621.1624 131 995.0824
12 0.6952 42 33.8174 72 183.8344 102 642.0764 132 998.8081
13 0.869 43 36.4047 73 192.7389 103 662.8084 133 1002.225
14 1.0742 44 39.1149 74 201.9969 104 683.262 134 1005.356
15 1.3143 45 41.9493 75 211.6186 105 703.3467 135 1008.224
16 1.5928 46 44.9082 76 221.6146 106 722.9795 136 1010.849
17 1.9134 47 47.9915 77 231.9954 107 742.0855 137 1013.25
18 2.2797 48 51.199 78 242.7719 108 760.5996
19 2.6954 49 54.5299 79 253.9549 109 778.4661
20 3.1642 50 57.9834 80 265.5556 110 795.6396
21 3.6898 51 61.5607 81 277.5852 111 812.0847
22 4.2759 52 65.2695 82 290.0548 112 827.7756
23 4.9262 53 69.1187 83 302.9762 113 842.6959
24 5.6441 54 73.1187 84 316.3607 114 856.8376
25 6.4334 55 77.281 85 330.2202 115 870.2004
26 7.2974 56 81.6182 86 344.5663 116 882.791
27 8.2397 57 86.145 87 359.4111 117 894.6222
28 9.2634 58 90.8774 88 374.7666 118 905.7116
29 10.372 59 95.828 89 390.645 119 916.0815
30 11.5685 60 101.0047 90 407.0583 120 925.7571
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