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Abstract. Low-cost sensors for measuring particulate matter
(PM) offer the ability to understand human exposure to air
pollution at spatiotemporal scales that have previously been
impractical. However, such low-cost PM sensors tend to be
poorly characterized, and their measurements of mass con-
centration can be subject to considerable error. Recent stud-
ies have investigated how individual factors can contribute
to this error, but these studies are largely based on empirical
comparisons and generally do not examine the role of multi-
ple factors simultaneously. Here, we present a new physics-
based framework and open-source software package (opc-
sim) for evaluating the ability of low-cost optical particle sen-
sors (optical particle counters and nephelometers) to accu-
rately characterize the size distribution and/or mass loading
of aerosol particles. This framework, which uses Mie the-
ory to calculate the response of a given sensor to a given
particle population, is used to estimate the fractional error
in mass loading for different sensor types given variations in
relative humidity, aerosol optical properties, and the underly-
ing particle size distribution. Results indicate that such error,
which can be substantial, is dependent on the sensor technol-
ogy (nephelometer vs. optical particle counter), the specific
parameters of the individual sensor, and differences between
the aerosol used to calibrate the sensor and the aerosol being
measured. We conclude with a summary of likely sources
of error for different sensor types, environmental conditions,
and particle classes and offer general recommendations for
the choice of calibrant under different measurement scenar-
ios.

1 Introduction

Human exposure to aerosols is associated with adverse health
impacts and increased mortality (Apte et al., 2018; Burnett
et al., 2018; Cohen et al., 2017; Dockery et al., 1993). The
source and composition of aerosols have been linked to a
range of negative health impacts (Antonini et al., 2003; Hart
et al., 2012; Henneberger and Attfield, 1997; Lipsett and
Campleman, 1999), with more than 4 million annual deaths
worldwide attributed to ambient particulate matter pollution
(Cohen et al., 2017). Accurate estimates of aerosol sources
and health impacts critically rely on measurements of partic-
ulate matter concentrations across indoor and outdoor envi-
ronments worldwide.

In many countries, particulate matter (PM) pollution is
regulated by national or local government agencies (e.g., the
EPA in the United States) and is typically measured using
federally approved reference methods that are high in accu-
racy and precision. The existing infrastructure is generally
designed to measure regional-scale air pollution in order to
enforce (and assess the effectiveness of) air quality regula-
tions. However, particle pollution can vary in space and time
at much finer resolution than can be measured using stan-
dard monitoring technologies given their relatively high cost
and size. Over the past several years, new technologies have
emerged at price points (<USD 2000) that allow PM mea-
surements to be made with much higher spatiotemporal res-
olution, even down to the individual human level (Koehler et
al., 2019; Tryner et al., 2019a, b). These devices are physi-
cally small, use very little power, and can easily be deployed
at scale. As a result, such sensors are ideally suited for use in
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dense distributed sensor networks, providing high-resolution
air quality measurements, as well in as personal monitoring,
providing individuals with the ability to measure and under-
stand their exposure to harmful air pollutants. As with all
low-cost sensors (LCSs), accuracy is of paramount concern;
as shown by a number of recent laboratory and field-based
evaluation studies (Crilley et al., 2018; Dacunto et al., 2015;
Di Antonio et al., 2018; Holstius et al., 2014; Levy Zamora
et al., 2019; Malings et al., 2020; Northcross et al., 2013;
Sousan et al., 2016b, a; Wang et al., 2015), PM sensors can
perform quite poorly without additional constraints or cali-
brations.

Most low-cost PM sensors measure particles via light scat-
tering. Sampled particles intercept a beam of light (typically
from a laser or LED with a wavelength between 405 and
780 nm), and the scattered light is measured and correlated
with a PM mass concentration. In this work, we refer to such
instruments as optical particle sensors (OPSs). OPSs can be
broken down into two main types, nephelometers and optical
particle counters (OPCs). Nephelometers measure the parti-
cles as an ensemble, gathering light scattered by all particles
across a wide range of angles, typically 7–173◦ to avoid pure
forward and backward scattering (Abu-Rahmah et al., 2006;
Ahlquist and Charlson, 1967; Anderson et al., 1996). The to-
tal scattering amplitude is then correlated with a mass mea-
surement made by a reference instrument. (Nephelometers
that measure scattered light at a single angle are sometimes
referred to as photometers; for the purposes of this work
we consider photometers to be a subclass of nephelometer.)
OPCs, by contrast, detect particles individually, providing in-
formation on their number and size. Light scattered by each
individual particle is measured and each pulse is assigned
to a size bin based on its total light intensity, resulting in a
histogram which is converted to a mass loading once the en-
tire distribution has been measured. While these technologies
have been around for decades (Gucker et al., 1947; Patterson
et al., 1926), they have recently become available at much
lower cost due to the availability of small, inexpensive light
sources and electronic components.

The use of light scattering introduces a number of fun-
damental limitations for making PM mass measurements.
Many of these arise from environmental conditions and/or
the properties of the aerosol being measured; these can be
especially problematic when calibration is done using only
a single aerosol type or condition. A number of recent em-
pirical studies of OPSs have investigated some of these lim-
itations. These issues include (1) the inability to adapt to
changes in the particle size distribution (Dacunto et al., 2015;
Wang et al., 2015), (2) the hygroscopic growth of particles
due to changes in ambient relative humidity (Crilley et al.,
2018; Di Antonio et al., 2018; Malings et al., 2020; Zheng
et al., 2018), (3) changes in scattering efficiency due to dif-
ferences in aerosol optical properties (Crilley et al., 2018; Di
Antonio et al., 2018), and (4) the need for aerosol-specific
correction factors to account for differences in density (Da-

cunto et al., 2015; Northcross et al., 2013). While these stud-
ies have examined how these individual effects in isolation
may affect PM accuracy, to our knowledge there has not been
a systematic, comprehensive investigation of all these factors
together. Complicating matters is the fact that these individ-
ual properties are all intertwined – for example, when relative
humidity increases, it can cause particles to take up water,
which can change not only their size and mass but also their
shape, refractive index, and density.

To examine the relative contribution of error by various in-
teracting sources, we have developed a model that describes
how a given sensor will respond to different aerosols under
a wide range of conditions. This model is based entirely on
the underlying physics of light scattering (Mie theory) rather
than empirical relationships obtained through laboratory or
field measurements. While previous work has modeled neph-
elometers and OPCs in a similar way (Walser et al., 2017),
we believe this is the first detailed treatment of light scat-
tering as it relates specifically to LCSs. We use this model
to isolate the relevant sources of error and develop a better
understanding of the limitations (as well as strengths) of dif-
ferent kinds of OPSs.

The modeling tool described here, which is open-source
and freely available, can be used for the systematic study of
how different OPSs may detect various aerosol types under a
range of environmental conditions. This enables new insights
into the potential errors associated with a given PM measure-
ment, optimal strategies for calibrating OPSs, and ultimately
the design of the sensors themselves and the development of
algorithms for data analysis. The objective of this work is to
describe the model and software and to investigate broad in-
fluences of aerosol properties and sensor parameters on mea-
surement performance. This present work does not investi-
gate the performance of individual commercially available
sensors under the full range of conditions expected in the at-
mosphere, but such studies are enabled by this modeling tool
and are an important future extension of this work.

2 Methods

The modeling framework described in this section is avail-
able as an open-source (MIT license) Python library (opc-
sim) and has been made available on GitHub. Detailed docu-
mentation, including installation instructions and examples,
is available online (Hagan and Kroll, 2019). The framework
, called “opcsim”, consists of two primary components: the
code that models OPSs and implements the Mie theory algo-
rithms (Bohren and Huffman, 1983; Sumlin et al., 2018) and
the code to build and evaluate aerosol distributions.

We follow the same general modeling pattern regardless
of sensor type. Steps include (1) defining the device based
on its key physical parameters, (2) calibrating the device to
a specific aerosol type (for OPCs) or aerosol distribution (for
nephelometers), and (3) evaluating each particle in an aerosol
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population by computing the scattered light signal using Mie
theory and converting that signal to the sensor output based
on its calibration. In the following sections we describe how
the aerosol population is described by the model, followed
by how the sensors themselves are treated.

2.1 Representing an aerosol distribution

We represent an aerosol distribution as the sum of n lognor-
mal modes, whereby each mode i is defined by its geometric
mean particle diameter (Dp,i), geometric standard deviation
(σi), and number concentration (Ni). The aerosol distribu-
tion as a function of diameter Dp (dN/dlogDp) is given by
Eq. (1) (Seinfeld and Pandis, 2006):

dN
dlogDp

=

n∑
i=1

Ni
√

2π logσi
exp

(
−

(
logDp− logDp,i

)2
2log2σi

)
. (1)

Additionally, we define the composition of the aerosol dis-
tribution by defining the particle density (ρi), hygroscopic
growth factor (κi), and complex refractive index (mi) for
each mode. The role of these additional parameters is dis-
cussed in Sect. 3 below. While more complex representations
of the chemical makeup of the aerosol can be implemented
using our modeling framework (i.e., core-shell representation
of aerosols, complex aerosol mixtures), for the purposes of
this paper we focus only on well-mixed homogeneous parti-
cle modes, as described by Eq. (1). The above number distri-
bution can be converted to a mass distribution (or total mass
concentration) by assuming all particles are spherical with a
known density (Seinfeld and Pandis, 2006).

2.2 Representing optical particle sensors

2.2.1 Optical particle counters (OPCs)

An OPC is defined by three instrument-specific parameters:
(1) the wavelength of the light source (λ), (2) the viewing
angle for which the scattered light is collected, and (3) the
number of discrete size bins and their widths. A bin, in this
context, refers to a single “slice” of the aerosol size distribu-
tion, with a fixed width and units of particle diameter. Typi-
cally, most low-cost OPCs have between 2 and 30 bins. These
can be determined either by looking up the parameters in
the device’s data sheet provided by the manufacturer or by
making simple measurements. Bins are often chosen to re-
duce the uncertainty in correct bin assignments within the
bounds of what the sensor is capable of detecting. Most low-
cost OPCs have the smallest bin at Dmin∼ 500 nm, with cost
typically being the driving factor – OPCs with lower Dmin
employ more expensive, higher-quality optics and photode-
tectors, allowing them to accurately detect smaller particles.
In this work, the bin boundaries (and hence widths) used for
a given OPC are taken from the manufacturer’s spec sheets if
available; otherwise, they are calculated by generating an ar-
ray of logarithmically spaced bin boundaries for a set number

of bins (nbins) between the minimum and maximum defined
diameters (Dmin and Dmax, respectively). Most often, a light
pulse generated by a single particle is assigned to exactly
one bin. However, there are approaches whereby bin assign-
ments are made using a probability distribution (Walser et
al., 2017); this is not implemented in this model but is an
approach that could be added in the future. Table 1 lists bin
widths and other parameters for a few commercially avail-
able low-cost OPCs.

OPCs are calibrated by relating the scattered light inten-
sity – a combination of the particle’s scattering cross section
(Cscat) and laser intensity – to the particle diameter. Practi-
cally, this is done by using calibration aerosols with known
optical properties and size and generating a calibration curve
between the test aerosol and the electronic pulse height gen-
erated by that aerosol. After repeating this process for many
sizes, a calibration curve can be generated. Here, we com-
pute the Cscat values with Mie theory using attributes of the
calibration aerosol. To simplify the model, we make several
assumptions, including the following: (1) all particles are
spherical and homogeneous (well-mixed); (2) the laser inten-
sity is constant, implying all particles are perfectly centered
in the beam of the laser; and (3) the photodetector and elec-
tronics are 100 % efficient, so we do not consider the impact
of signal-to-noise limitations.

As most low-cost OPCs contain an elliptical refocus-
ing mirror to gather the scattered light across many an-
gles, we compute the integrated light-scattering intensity
following a procedure first introduced by Jaenicke and
Hanusch (Jaenicke and Hanusch, 1993). Mie theory calcula-
tions are implemented using equations by Bohren and Huff-
man (Bohren and Huffman, 1983). The scattering cross sec-
tion is calculated as

Cscat =
λ

4π

22∫
21

[i1 (2)+ i2 (2)] sin2d2, (2)

where λ is the wavelength of incident light, 2 is the viewing
angle (which ranges from 21 to 22), and i1 and i2 are the
intensity distribution functions (Bohren and Huffman, 1983).

Figure 1 depicts the calibration curve generated for an
OPC with the characteristics of the Alphasense OPC-N2 (Ta-
ble 1) using polystyrene latex spheres (PSLs) of different di-
ameters for calibration. Equation (2) was used to compute the
theoretical Cscat values (y axis) integrated across the entire
viewing angle for a range of particle diameters (x axis). The
Cscat values at each bin boundary (green dots in Fig. 1) are
then computed, and spline interpolation is used between each
individual bin boundary to generate a mapping between the
scattering amplitude and its corresponding bin assignment.
In practice, this operates as a lookup table – a particle cross-
ing the laser generates a scattering amplitude that is associ-
ated with a specific “bin” via the calibration.

For OPCs that measure scattered light across a wide an-
gle, Cscat is generally a monotonically increasing function of
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Table 1. Characteristics of a selection of commercially available low-cost optical particle counters and nephelometers.

Manufacturer OPS type Model λ (nm) Viewing angle No. of size bins
(Ø1, Ø2)

Alphasense, Ltd. OPC OPC-N2 658 (32.0◦, 88.0◦) 16 (0.38–17.5 µm)
Alphasense, Ltd. OPC OPC-N3 658 (32.0◦, 88.0◦) 24 (0.35–40.0 µm)
Particle Plus OPC 785 (58.0◦, 118.0◦) 6 (0.3–10.0 µm)
NOAA/Handix OPC POPS 405 (38.0◦, 142.0◦) 16 (0.132–3.65 µm)
Plantower Nephelometer PMS5003 ∼ 650 ?1 6 (0.3–10+ µm)2

Sharp Nephelometer (photometer) GP2Y1010AUOF 870–980 ?1 1 (?)3

Shinyei Nephelometer (photometer) PPD42NS 870–980 ?1 1 (> 1 µm)
Samyoung Nephelometer (photometer) DSM501A 870–980 ?1 1 (> 1 µm)

1 Unknown; not provided in the manufacturer’s technical data sheet or the technical literature. 2 The PMS5003 reports six bins; however, these are not actual size
bins, but rather software-computed results (He et al., 2020). 3 No size detection limit for the Sharp sensor is listed in the literature or in the manufacturer’s
technical data sheet.

Figure 1. Calibration data for an OPC with 16 discrete size bins
between 0.38 and 17.5 µm. OPC parameters were chosen to match
the Alphasense OPC-N2 (wavelength of 658 nm, viewing angle
of 32–88◦) using monodispersed polystyrene latex spheres (m=
1.592+ 0j ). The integrated scattering amplitude calculated using
Mie theory is shown as the solid line, with points depicting the
corresponding scattering amplitude at each of the bin boundaries.
Shown as a shaded box is the range of scattering amplitudes that is
assigned to the smallest size bin.

the particle size. However, there may be cases in which this
is not true, typically due to the presence of Mie resonance
(e.g., near Dp = 1.5 µm in Fig. 1). When the function is not
monotonic, we apply a smoothing algorithm (Cerni, 1983;
Osborne et al., 2008) or merge together multiple bins (Pin-
nick et al., 1981; Walser et al., 2017) and accept the trade-off
whereby we obtain a higher rate of correct bin assignment in

exchange for reduced bin resolution. This non-monotonicity
is less of an issue as the viewing angle becomes wider, as the
larger range of angles will “smooth out” any Mie resonances
(Fig. S1 in the Supplement). The wide viewing angle thus
offers two key advantages: (1) the total signal (pulse height)
is larger, making it easier to detect small particles using in-
expensive electronics, and (2) the calibration curve is less
susceptible to small changes in the particle scattering cross
section.

While an OPC sizes and counts individual particles, we
are generally interested in evaluating the entire population of
particles. To obtain the results for the entire population, we
compute the scattering cross section for each particle in the
distribution and assign it to a bin using the calibration curve
generated previously – this results in a histogram with the
total sum of particles in each discrete size bin over a period of
time. Once we have the number distribution, we can compute
the aerosol mass loading (PM) using Eq. (3):

PM= ρ
∑
i

Ni
π

6
D3

p,i, (3)

where Ni is the number concentration for a given size bin,
Dp,i is the geometric mean diameter for a given size bin, and
ρ is the particle density, chosen to be constant. We can inte-
grate mass loadings between different diameters by summing
only across a sub-selection of bins (for example, if we intend
to calculate the PM1 mass concentration, we would choose
only the size bins corresponding to particles sized between 0
and 1 µm, whereas to calculate the PM2.5 mass concentration,
we would use the bins corresponding to sizes between 0 and
2.5 µm). This approach for computing mass loadings is sim-
ilar to that used by others (Di Antonio et al., 2018), though
we use the geometric mean particle diameter as opposed to
the mean particle diameter.

2.2.2 Integrating nephelometers

Nephelometers gather the light scattered by an aerosol popu-
lation across a wide range of angles to gather as much of the
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scattered light as possible, while avoiding the near-forward
and near-backward scattered light. Here, we define a neph-
elometer by the wavelength of its light source (λ) and its
viewing angle.

In practice, nephelometers are empirically calibrated by
correlating the total scattered light signal with a reference
mass measurement (Dacunto et al., 2015; Sousan et al.,
2016b; Wang et al., 2015). Within our model, we do the same
by computing the total scattered light signal using Mie theory
and then take the ratio of the scattered light to a calculated
mass loading. The total scattered light signal is calculated
by integrating Eq. (2) across the entire particle size distribu-
tion, resulting in a single scattered light intensity for a given
aerosol distribution. The calibration factor is then calculated
by taking the ratio of this value and the mass loading of the
aerosol distribution, which is calculated by integrating the
volume distribution and multiplying by the particle density
(Eq. 3). Once we have computed the calibration factor, we
can calculate the mass loading of the measured aerosol distri-
bution by multiplying the calibration factor by the calculated
total scattered light signal.

3 Results and discussion

We use the model described above to isolate the relative
sources of error associated with various differences in phys-
ical and optical properties of aerosols as well as with the
devices themselves. We include both simple, targeted ex-
periments probing the effects of changes in isolated prop-
erties and more complex, realistic experiments that attempt
to mimic real-world scenarios. In the latter case, we include
a variety of aerosol types in our model runs to resemble real-
world use cases; aerosol types include urban aerosol, wildfire
emissions, marine aerosol, dust, and continental background.
The physical and optical properties for these aerosols are
summarized in Table 2. We discuss these results in the con-
text of three particle sensors chosen to be representative of
low-cost OPSs: a nephelometer, which uses a 658 nm light
source and has a viewing range of 7–173◦, and two OPCs,
both with 16 equally spaced bins, a 658 nm light source, and
a viewing angle of 32–88◦. The two OPCs differ only in the
minimum particle size measured: the “low-cost OPC” is rep-
resentative of commercial OPCs currently on the market and
measures particles in the 0.38–17.5 µm size range, and the
“high-end OPC” represents an idealized OPC that can mea-
sure much smaller particles with a detection range of 0.1–
17.5 µm. We note that many expensive OPCs cannot measure
particles down to 100 nm; this lower size cutoff was chosen
as an approximate smallest particle size that an optical sensor
can detect.

We begin by investigating the impact that water uptake,
driven by changes in the ambient relative humidity, has on
the ability of all three OPSs to infer PM2.5 mass. Next, we
explore the impact of aerosol optical properties (namely, the

Table 2. Aerosol optical and chemical properties used in this work.

Aerosol type Refractive index Hygroscopicity Density
parameter κ6 (g cm−3)

Urban1 1.525+ 0.020j 0.40 1.35
Background2 1.520+ 0.008j 0.25 1.45
Marine3 1.384+ 0.001j 1.10 2.16
Dust4 1.555+ 0.003j 0.03 2.60
Wildfire5 1.570+ 0.002j 0.10 1.58

1 Chen et al. (2019), Cheung et al. (2020), Hussein et al. (2004), Jurányi et al. (2013),
Raut and Chazette (2007), Rissler et al. (2014), Shepherd et al. (2018), Wehner and
Wiedensohler (2003). 2 Levoni et al. (1997), Wang et al. (2014), Yin et al. (2015).
3 Levoni et al. (1997), Ueda et al. (2016), Zieger et al. (2017). 4 Koehler et al. (2009),
Petzold et al. (2009), Rocha-Lima et al. (2018). 5 Bougiatioti et al. (2016), Laing et
al. (2016), McMeeking (2004), Shepherd et al. (2018). 6 Petters and
Kreidenweis (2007).

complex RI), followed by the impact that perturbations in the
underlying particle size distribution can have on OPS ability
to infer mass loadings. Finally, we summarize our results into
general recommendations about each OPS type. Throughout,
to provide a simple metric for the accuracy of OPS measure-
ments, we present our results in terms of the ratio of the in-
ferred or measured PM2.5 mass concentration (Mm) to the ac-
tual PM2.5 mass concentration (Ma) at 0 % relative humidity.
An Mm/Ma ratio greater than 1 implies we are overestimat-
ing the PM2.5 loading, whereas a value less than 1 implies
we are underestimating it.

3.1 Relative humidity and hygroscopic growth

One of the most widely discussed sources of error for OPS
measurements is that caused by water uptake (Crilley et al.,
2018; Di Antonio et al., 2018; Malings et al., 2020; Wang
et al., 2015; Zheng et al., 2018). As relative humidity in-
creases, hygroscopic particles (those with nonzero hygro-
scopic growth parameters, κ) become larger as they take up
water (Petters and Kreidenweis, 2007), leading to an increase
in scattering caused by their increase in size. Additionally,
water uptake changes the optical and chemical properties of
the aerosol (e.g., RI, density), which can complicate any cor-
rections. The EPA requires PM2.5 measurements to be made
at relative humidities between 30 % and 40 % (Chow and
Watson, 1998) to minimize the effects of hygroscopic growth
on samples; however, since very few low-cost OPSs control
for relative humidity (for example, with an in-line dryer), this
can often lead to errors when performing a calibration by
co-location or when comparing results between instrument
types.

Figure 2 shows the impact that RH can have on the ac-
curacy of an OPS. There is little effect until relative hu-
midity reaches the deliquescence point of the aerosol, which
depends on aerosol composition. At higher relative humidi-
ties, OPSs will tend to overestimate PM2.5 mass, especially
for aerosols comprised of hygroscopic materials. When rela-

https://doi.org/10.5194/amt-13-6343-2020 Atmos. Meas. Tech., 13, 6343–6355, 2020



6348 D. H. Hagan and J. H. Kroll: Assessing the accuracy of low-cost optical particle sensors

Figure 2. The accuracy in PM2.5 mass loading for a given particle sensor (Mm/Ma) as a function of relative humidity for common aerosol
types. All three particle sensors were calibrated with ammonium sulfate (number-weighted geometric mean (GM)= 200 nm, geometric
standard deviation (GSD)= 1.65). Details on the physical and optical properties of the various aerosols can be found in Table 2.

tive humidity approaches 95 %, such overestimates in PM2.5
mass become exceedingly large: the OPCs observe a sim-
ilar effect, with errors ranging 100 %–500 % depending on
the hygroscopicity of the aerosol. Nephelometers see a more
pronounced effect, with errors as high as 750 % for extremely
hygroscopic aerosols and 200 %–300 % for less hygroscopic
aerosols.

The larger error of the nephelometer is caused in part by
the fact that the PM2.5 mass is directly proportional to the
total scattered light, which has no upper limit. For the OPCs,
particles that take up significant water can be assigned to
larger size bins and thus will not be integrated in the PM2.5
mass calculation. At moderate humidities (50 %–80 %), er-
rors for both the nephelometers and OPCs can vary by as
much as 20 %–50 %, which is in agreement with a number of
published experimental studies on the subject (Crilley et al.,
2018; Di Antonio et al., 2018; Malings et al., 2020; Zheng
et al., 2018). In addition to overestimating mass loadings at
high relative humidity due to hygroscopic growth, the OPCs
underestimate the mass loadings across all relative humidi-
ties. This is not caused by relative humidity or a lack of
hygroscopic growth but is instead a result of the “missing
mass” below the detectable threshold of the OPC. The low-
cost OPC, which cannot detect particles smaller than 380 nm,
misses between 30 % and 90 % of the mass, whereas the
high-end OPC, which can detect particles larger than 100 nm,
misses very little mass for most aerosol types. The only ex-
ception is marine aerosol, which has a refractive index that
is substantially different from the aerosol with which the in-
strument was calibrated.

3.2 Choice of calibration material and aerosol optical
properties

OPCs are calibrated by correlating the scattering amplitude
of known particle sizes for particles of a given composition
(Gao et al., 2013). The relationship between scattering am-
plitude and bin assignment (i.e., particle size) is heavily de-
pendent on the aerosol’s complex refractive index (RI). Fig-
ure 3 shows the Mie scattering curve for a range of com-
mon calibration materials, including both absorbing and non-
absorbing materials. For a given particle size, the RI of
the particle can result in a range of scattered light intensi-
ties (Cscat) that vary by as much as an order of magnitude.
This can have pronounced effects on the calculated size (and
hence mass) of a particle. In particular, the Mie curve for
black carbon (BC) is substantially different from that of non-
absorbing materials. As a result, for an OPC calibrated with a
non-absorbing material (such as PSLs), smaller BC particles
(diameters < 300 nm) will be overestimated in size, whereas
larger BC particles (> 300 nm) will be underestimated. Even
small changes in the scattering (real) component of the RI of
the calibration material can lead to particles being assigned
to the incorrect bin: an RI higher than that of the calibra-
tion material will generally cause particles to be assigned to
bins that are too large (overestimating size and mass), and an
RI lower than that of the calibration material will generally
cause particles to be assigned to bins that are too small (un-
derestimating size and mass). Considering that bins are often
at least hundreds of nanometers in width, the impact of such
bin misassignment on reported mass can be large. For both
OPCs and nephelometers, this will lead to large errors in in-
ferred mass, though it can be more pronounced for OPCs,
since the error for nephelometers is proportional to the in-
crease in scattering and is not affected by the misassignment
of individual particles to a particular size bin.
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Figure 3. Mie curves (integrated over a viewing angle of 32–88◦)
for a select group of common calibration materials. Materials shown
include polystyrene latex spheres (PSLs), ammonium sulfate, sec-
ondary organic aerosol (SOA), and black carbon (BC). Small dif-
ferences in the refractive index of a measured material can lead to
drastic bin misassignment depending on where bin boundaries are
set at the time of calibration.

The effect of differences in refractive index on inferred
PM2.5 mass measurements is shown in Fig. 4. Results are
shown for a single aerosol distribution, in which the only pa-
rameter allowed to vary is the RI. The real component of
the refractive index is shown on the x axis, with the up-
per and lower bounds being determined by the imaginary
part of the refractive index; the imaginary component ranges
from 0 (non-absorbing) to 0.79 (black carbon). The neph-
elometer (blue swatch in Fig. 4) is calibrated using PSLs
(m= 1.59+0j ). When the nephelometer is evaluated at this
exact RI (and a constant size distribution), it measures mass
accurately (Mm/Ma = 1). However, if the real component of
the aerosol being evaluated is higher than that of the cali-
bration standard, the total scattering is greater, resulting in
the inferred PM2.5 mass being larger than the actual PM2.5
mass (Mm/Ma> 1). Similarly, as the absorbing component
becomes larger, less of the incoming light is scattered, re-
sulting in a substantial underestimation of the mass loading.

Also shown are the results for two OPCs. The high-end
OPC (green) is sensitive to particles as small as 100 nm,
whereas the low-cost OPC (red) is sensitive to particles as
small as 380 nm. As the absorbing component of the refrac-
tive index becomes larger, the scattering amplitude across the
entire distribution is too small for the OPC to detect, result-
ing in a mass reading of zero. Both OPCs exhibit this effect,

Figure 4. The accuracy of OPSs as a function of the refractive index
of the aerosol being measured. The real component of the RI is on
the x axis, and the width of each swatch is bounded by the absorp-
tion and imaginary component, which spans from 0 (non-absorbing,
solid line) to 0.79 (black carbon, dashed line). Results are shown
for a nephelometer (blue) and the two OPCs (orange and green).
All results are for a generic particle size distribution with number-
weighted GM= 200 nm and GSD= 1.65, and the OPSs were cali-
brated with PSLs.

but for the high-end OPC, fewer particles will fall below the
size cutoff of the OPC than for the low-cost OPC, resulting
in a less dramatic underestimate of the mass. Most commer-
cially available OPCs are more similar to the low-cost OPC,
with Dmin of around 500 nm. If operating in an environment
where the aerosol is strongly absorbing, large underestimates
in PM2.5 should be expected. Even under conditions in which
the aerosol is not absorbing, the low-cost OPC largely under-
estimates the mass due to its high minimum size cutoff. For
nephelometers, the errors are not as drastic but still strongly
depend on the RI of the calibration aerosol used.

3.3 Changes in the particle size distribution (PSD)

The ability of optical particle sensors to adapt to perturba-
tions in the underlying particle size distribution (PSD) is im-
portant because PSDs can be highly variable over short pe-
riods of time, especially in urban areas with highly varying
contributions from various local sources. Figure 5 shows the
accuracy of all three OPSs as the function of the PSD of the
particles being measured. These calculations assume a sin-
gle lognormal mode with all other properties of the aerosols
(density, refractive index, and hygroscopicity) held constant.
For the purpose of the model, the OPCs were calibrated
using PSLs at each bin boundary, and the nephelometer
was calibrated using ammonium sulfate (N = 1× 104 cm−3,
GM= 400 nm, and GSD= 1.65). The entire population of
ammonium sulfate particles is then evaluated while vary-
ing the number-weighted geometric mean particle diameter
(GM) and the geometric width of the distribution (GSD). For
each PSD, we compute the relative accuracy of each device
and plot the results in Fig. 5, in which the color and contours
correspond to the Mm/Ma metric.
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Figure 5. Mass concentration accuracy (Mm/Ma) of OPSs for a
range of particle size distributions (PSDs). Accuracy is shown for
all combinations of PSDs with number-weighted geometric mean
diameters (GMs) between 100 and 1000 nm and geometric stan-
dard deviations (GSDs) between 1.2 and 2.0. Perturbations in the
PSD can lead to large errors for nephelometers and optical parti-
cle counters with high minimum particle size cutoffs. All results
are shown for ammonium sulfate particles; the OPCs were cali-
brated with PSLs, and the nephelometer was calibrated with ammo-
nium sulfate (N = 1× 104 cm−3, GM= 400 nm, and GSD= 1.5).
A black dashed line indicates the 1 : 1 line, where Mm/Ma = 1.

The nephelometer substantially underestimates the mass
concentration (by 50 %–70 %) for most PSDs, since it is cal-
ibrated to a single PSD. As the PSD changes, the ratio of
total scattered light to integrated mass changes, causing the
accuracy to change as well. OPCs are potentially better since
they measure the size of the particles and can theoretically
account for changes in the PSD; however, they are still sub-
ject to errors given their limitations in detected size range. In
particular, the low-cost OPC considerably underestimates the
mass (by 60 %–90 %) for most PSDs as the bulk of the mass
is below the detectable size limit of the OPC. As the geo-
metric mean diameter increases in size or the width of the
distribution becomes larger, a larger fraction of the particles
enters the detectable range, slightly improving the results for
the low-cost OPC. The high-end OPC is most able to adapt to
the changes in the PSD due to its significantly smaller Dmin
(100 nm); there is roughly a 20 % difference across the entire
range of PSDs shown. Unlike the low-cost OPC, a majority
of the mass falls within the detectable range of the high-end
OPC, resulting in little to no effect of changes to the PSD on
the accuracy of the mass concentration measurement.

While previous work has highlighted the importance of the
varying PSD and its effect on making accurate mass mea-
surements with OPSs (Di Antonio et al., 2018; Gao et al.,

2013; Malings et al., 2020), the effect of missing mass – the
mass below the lowest size bin of an OPC – has received rel-
atively little attention. The standard way to treat this missing
mass is to empirically correct via regression analysis (Da-
cunto et al., 2015; Malings et al., 2020). While this can mit-
igate absolute errors, it requires the assumption that the PSD
is constant in shape, varying only in magnitude. With par-
ticle loadings that are mostly below tens of micrograms per
cubic meter (µg m−3) throughout the United States, this as-
sumption is unlikely to be a large source of absolute error.
However, if the same approach were used in highly polluted
environments where sub-300 nm aerosol loadings can eas-
ily reach hundreds of micrograms per cubic meter (µg m−3)
(Bhandari et al., 2020; Gani et al., 2019, 2020), changes in
the PSD are likely to lead to large errors (in both an absolute
and relative sense) in mass loading measurements. Overall,
nephelometers and OPCs with high minimum size cutoffs
are prone to substantial uncertainties as the underlying PSD
changes, whereas for OPCs with low minimum size cutoffs
this effect is relatively minor.

4 Implications and future work

In this work, we have laid out a framework for understanding
the sensitivity of low-cost optical particle sensors to the vari-
ous physical and optical properties of aerosols. We described
a new Mie-theory-based software package (opcsim) for mod-
eling the response of OPSs to various aerosols and demon-
strated its use for better understanding the strengths and lim-
itations of various low-cost particle sensors. We also used
the model to investigate how various potential pitfalls (e.g.,
changes to environmental conditions, mismatches between
calibration particles and particles being measured) may con-
tribute to errors in mass concentration measurements. A sum-
mary of these results is given in Table 3.

Consistent with previous studies, our results suggest that
relative humidity is a large source of uncertainty for all OPSs
when the aerosol is hygroscopic and relative humidities are
above the deliquescence point, typically around 75 %; addi-
tionally, the error introduced by relative humidity is highly
sensitive to the aerosols’ affinity for water. This is cor-
rectable, at least to first order, limiting the impact of RH er-
ror on final results (Crilley et al., 2018; Di Antonio et al.,
2018; Malings et al., 2020). We showed that the aerosol op-
tical properties are most important for low-cost OPCs and
of medium importance for high-end OPCs and nephelome-
ters. This is especially relevant when the aerosol is strongly
absorbing, as the amount of scattered light can make small
particles undetectable with inexpensive optical detectors. If
it were possible to measure some proxy for aerosol compo-
sition in real time, it would be possible to vastly reduce this
error and improve the accuracy of mass measurements using
OPSs for real-time data collection. Finally, we showed that
the underlying particle size distribution is very important for
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Table 3. Effects of changing environmental and/or aerosol parameters on the relative error in measured mass loading by different OPS types.

Parameter changed OPS type

Low-cost OPC High-end OPC Nephelometer

RH and hygroscopicity (Fig. 2) Very high (20 %–200 %) for hygroscopic
materials when RH>∼ 75 %

Optical properties (Fig. 4)∗ Very high Medium Medium
(30 %–100 %) (20 %–60 %) (20 %–75 %)

Particle size distribution (Fig. 5) Very high Low High
60 %–90 % < 20 % 50 %–70 %

∗ Primarily a source of error when an OPS calibrated with non-absorbing particles measures absorbing particles (or
vice versa).

the accuracy of low-cost OPCs and nephelometers, while be-
ing of low relative importance for high-end OPCs that can
properly count and size particles at low sizes. The ability of
a given OPC to measure small particles is found to be impor-
tant, with marginal improvements leading to large gains in
ability to accurately infer mass. Additionally, the choice of
calibrant is found to be extremely important for both neph-
elometers and OPCs. Ensuring that OPSs are calibrated intel-
ligently (i.e., using particles similar to the aerosol to be de-
tected) can lead to significant improvements in expected per-
formance. Finally, the bin boundary definitions for an OPC
are also important, as defining them with large overlap in ex-
pected Cscat values can lead to significant bin misassignment
and therefore inaccurate mass calculations.

Table 4 summarizes these results within the context of
measurements of representative real-world aerosol types. It
provides an overview of the potential errors associated with
different types of optical particle sensors under various sce-
narios, with recommendations for the type of calibration
particles that would minimize errors in PM2.5 mass mea-
surements. Generally, in environments where small particles
(< 300 nm) comprise a large percentage of the total mass,
low-cost OPCs will be subject to considerable error. This
will also be the case in environments with substantial levels
of light-absorbing aerosol, such as wildfires or soot-heavy
environments. (Sensor calibration using absorbing particles
could help mitigate this effect, though this would introduce
new errors when measuring non-absorbing aerosol.) In envi-
ronments in which the underlying aerosol size distribution is
variable (especially on short sub-hourly timescales), such as
urban environments or evolving wildfire plumes, nephelome-
ters and low-cost OPCs will struggle to keep up with the
changes in the relationship between the total scattered light
and mass loading, leading to large variance in the mass esti-
mates.

The estimates and recommendations given in Table 4 are
not intended to be comprehensive, but rather serve as a start-
ing point for characterizing the strengths and limitations of
low-cost OPSs using Mie theory (and specifically the opc-

sim software package). Additional opcsim simulations car-
ried out across a range of sensor designs, calibrant particles,
and measured particle types could provide more comprehen-
sive and quantitative estimates of errors in measured parti-
cle sizes and mass loadings, including for individual sen-
sors and individual use cases. Future improvements to opc-
sim could be made to allow for the simulation of more com-
plex aerosols (e.g., externally mixed populations, other par-
ticle morphologies) or the inclusion of more complex bin-
assignment algorithms; comparison with laboratory studies
(in which Mm/Ma is measured rather than just estimated)
would also be useful. Additionally, colocated data with size-
resolved measurements would allow for improved validation
of the OPC component of this model. It is hoped that the
Mie-theory-based approach described here will lead to an im-
proved understanding of the errors associated with low-cost
optical PM measurements, insight into calibration techniques
that minimize such errors, and ultimately guidance into the
design of new PM sensors for improved low-cost measure-
ments of air quality and human exposure.

Code availability. The source code, documentation, and examples
of how to use the model can be found at the link posted here:
https://doi.org/10.5281/zenodo.3905043 (Hagan and Kroll, 2020).
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